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Uremic toxins and the gut microbiome 
in chronic kidney disease

Chronic kidney disease (CKD) represents a hidden epidemic 
that is projected to become the fifth highest cause of years of 
life lost by 2040 [1]. The progressive loss of kidney function 
results in the retention of various uremic toxins in the sys-
temic circulation. These toxins gain increasing importance 
as key mediators not only of the progression of CKD but 
also of its systemic complications, such as cardiovascular 
and mineral bone disease. Recent analyses of circulating 
metabolite profiles in two of the largest CKD cohorts—the 
Chronic Kidney Disease in Children (CKiD) cohort [2] and 
the German CKD cohort (GCKD) [3]—have advanced our 
understanding of the condition. Using standardized commer-
cially available high-throughput mass spectrometry-based 
methods for metabolite detection and annotation (Metabolon 
Inc., Durham, USA), 1416 plasma metabolites have been 
measured in adult CKD patients [3]. There is, however, a 
pressing need for more information on the potentially patho-
genic interplay of these metabolites with various organ sys-
tems in the context of health to CKD to frailty transition.

In this issue of Pediatric Nephrology, Ebrahimi and 
colleagues further analyze the CKiD metabolome data in 
a subgroup of 150 patients, focusing on five gut-derived 
metabolites to establish associations between metabolite 
accumulation and kidney function, disease etiology, and 
clinical outcomes [4]. The authors use targeted absolute 
quantification to pave the road toward clinical application.

There is flourishing evidence about the pivotal role of the 
gut microbiome in regulating various facets of health and 
disease [5]. This ecosystem harbors up to 150 times more 
genes than the human genome [6], many of which are cru-
cial for the bacterial breakdown of mammalian diets. CKD 
leads to an accumulation of circulating microbiome-derived 
metabolites in both animal models [7] of CKD and patients 
with CKD [8]. In CKD, alterations in the composition and 
function of the gut microbiome have been described in adults 
[9] and children [10]. Gut microbiome alterations are due to 
multiple factors like nutrition, the overgrowth of urease-pro-
ducing bacteria due to high urea levels, or drug intake. These 
alterations contribute not only to the increased production of 
uremic toxins but also disrupt intestinal wall integrity, facili-
tating the entry of these solutes into the systemic circulation 
[11]. The pivotal contribution of the gut microbiome in the 
accumulation of uremic toxins, in addition to reduced renal 
clearance, has been highlighted in recent animal experiments 
and translational studies. The transfer of the gut microbiome 
from CKD patients into germ-free mice has direct impli-
cations on metabolite accumulation and clinical endpoints 
compared to the transfer of the gut microbiome from healthy 
donors [9]. Moreover, key enzymes for microbial generation 
of prototypic uremic toxins have been shown to be highly 
abundant in fecal samples from CKD donors when compared 
to healthy donors using qPCR-based methods [10, 12].

Based on the knowledge about the microbial origin 
of these metabolites, the gut microbiome becomes very 
attractive as a target to treat by dietary interventions like a 
high-fiber diet and different biotics designed to have ben-
eficial effects on the host, including prebiotics (nonviable 

 *	 Johannes Holle 
	 Johannes-benjamin.holle@charite.de

1	 Department of Pediatric Gastroenterology, Nephrology 
and Metabolic Diseases, Charité – Universitätsmedizin 
Berlin, Berlin, Germany

2	 Experimental and Clinical Research Center, a Cooperation 
of Charité – Universitätsmedizin Berlin and Max Delbrück 
Center for Molecular Medicine, Berlin, Germany

3	 German Centre for Cardiovascular Research (DZHK), 
Partner Site Berlin, Berlin, Germany

4	 Max Delbrück Center for Molecular Medicine 
in the Helmholtz Association, Berlin, Germany

5	 Institute of Experimental Biomedicine, University Hospital 
Würzburg, Würzburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00467-024-06609-w&domain=pdf
http://orcid.org/0000-0001-8032-4096
http://orcid.org/0000-0003-4288-3828


	 Pediatric Nephrology

substances modulating the microbiome), probiotics (live 
microorganisms), postbiotics (bacterial metabolic products), 
and synbiotics (combination of pre- and probiotics) [13].

The need for more pediatric research 
in the field of microbiome‑host interaction

It is worth mentioning that clinical and molecular pheno-
types in adult patients with CKD are highly influenced by 
confounding comorbidities, cumulating in multimorbidity 
and frailty, especially in the elderly population with CKD 
[1]. Many of these CKD-related factors have been shown 
to have an important impact not only on the composition 
and the metabolic function of the gut microbiome [14], but 
also on disease outcomes. Therefore, analyzing microbi-
ome-host interactions in pediatric populations, allows more 
disease-specific insights into CKD pathophysiology, as con-
founding comorbidities are less frequent compared to adult 
populations.

However, children also exhibit unique properties not only 
in terms of microbiome maturation and development [15] 
but also in terms of metabolite generation and handling as 
a consequence of pubertal maturation, a larger body water 
volume in young children, lower circulating protein abun-
dances, a different pattern of underlying kidney disease, and 
subsequently altered solute handling at the proximal tubule 
[16]. Moreover, dietary patterns and physical activity do not 
only differ geographically between populations but differ 
between children and adults.

From a clinical point of view, investigating the impact 
of gut-derived uremic toxins in children with CKD is still 
underappreciated, since early-life exposure in a vulnerable 
population is likely to affect long-term outcomes, which 
might differ from those observed in adults. Children have 
maturing organ functions, and injury from uremic toxins 
during critical growth and development periods may have 
lifelong implications for kidney function, cardiovascular dis-
ease, and immune maturation [17]. In addition, the cumula-
tive, lifelong exposure to increased uremic toxins levels is 
highest in children, which reveals the discrepancy between 
clinical need and scientific knowledge.

How pediatric CKD cohorts contribute 
to the field

The CKiD study as well as the cardiovascular comorbidi-
ties in children with CKD (4C) study are both multicenter, 
prospective cohort studies of children and adolescents with 
mild to moderately impaired kidney function recruited in 

the USA and Europe, respectively. In line with its longitu-
dinal design and availability of follow-up data, there have 
been meaningful publications not only on disease etiology 
and phenotypes but also on risk factors associated with the 
progression of CKD. In addition, neurocognitive (CKiD) 
and cardiovascular outcomes (CKiD and 4C) have been 
assessed.

The CKiD consortium performed untargeted and targeted 
metabolite quantification based on mass spectrometry. At 
baseline and during follow-up measurements after 2 and 
4 years, they annotated 622 plasma metabolites [2, 18, 19]. 
Based on this resource, they explored associations between 
metabolite signatures and the progression of CKD [20] 
and neurocognitive outcomes [18]. In addition, they used 
machine learning to identify metabolomic signatures specifi-
cally related to different underlying disease etiologies [19].

In the 4C cohort, the prototypic uremic toxins 3-indox-
ylsulfate (IxS) and p-cresol sulfate (pCS) have been quan-
tified and associated with longitudinally assessed kidney 
and cardiovascular outcomes [21, 22]. Moreover, there 
have been smaller pediatric studies investigating the role of 
these metabolites in the context of growth [23] and kidney 
replacement therapy [24, 25].

In the current manuscript, Ebrahimi and colleagues 
describe absolute quantifications of five prototypic gut-
derived uremic toxins in a subset of 150 patients in the 
CKiD study: IxS, pCS, indoleacetate (IA), p-cresol glucu-
ronide (pCG), and phenylacetylglutamine (PAG) [4]. The 
authors selected these metabolites based on their techni-
cal capabilities for absolute quantification and previous 
research demonstrating their significance in uremic toxicity. 
IA and IxS are bacterial-derived Trp metabolites, the latter 
sulfated by the liver. p-cresol is metabolized from tyrosine 
and glucuronidated to pCG or sulfated to pCS by the liver. 
PAG is derived from the liver metabolism of microbially 
produced phenylacetate and was recently shown to acti-
vate beta-adrenergic receptors. This manuscript adds some 
meaningful information to the field and, moreover, high-
lights persisting gaps of knowledge in the expanding field 
of microbiome and metabolome analyses in CKD.

First, the absolute quantification of the reported toxins 
showed a CKD stage-dependent increase, which is in line 
with what has been reported in adults [26] and children 
[22, 24] with CKD. However, like previous studies, the 
current analysis does not allow for more specific specu-
lations about potential factors, beyond CKD stage and 
etiology that contribute to the variability of toxin levels. 
Whereas in the 4C study, where serum levels of pCS were 
higher in patients with CAKUT when compared to glo-
merular diseases [22], the current study [4] reports lower 
pCS levels but higher levels of IxS, PAG, and pCG among 
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patients with CAKUT. Therefore, possible associations 
with the use of antibiotics in distinct patient groups and 
potentially harmful consequences on the gut microbiome 
and microbial toxin production and/or absorption are still 
pending.

Second, both CKiD and 4C explored potential asso-
ciations between metabolites and clinical outcomes. 
Prevention of the progression of CKD is of outstanding 
importance, so a deeper understanding of the underlying 
mechanisms is crucial for drug development and further 
improvements of current treatment strategies. In vitro and 
animal experiments describe the deleterious effects of 
uremic toxins on kidney damage and fibrosis. Among 622 
metabolites annotated in the CKiD cohort, 406 metabo-
lites are associated with eGFR. Despite a relatively mod-
erate mean decline in eGFR of 5 and 7 ml/min after 2 and 
4 years, respectively, the change of 35 metabolites was 
associated significantly with the decline of eGFR [2]. 
Among those, the level of 6 metabolites (namely N6-car-
bamoylthreonyladenosine, pseudouridine, 5,6-dihydrouri-
dine, C-glycosyltryptophan, lanthionine, gulonate) were 
associated independently with a composite endpoint of 
kidney replacement therapy or 50% reduction of eGFR 
[20]. None of these metabolites has been validated in the 
current study by targeted metabolomics. The current study 
does not report the impact of the quantified metabolites on 
kidney outcome, whereas in the 4C study, IxS was inde-
pendently associated with the progression of CKD [21]. 
There are several possible explanations for why IxS is not 
significantly related to the progression of CKD in CKiD 
(untargeted) but in 4C, including technical (untargeted vs. 
targeted approach), statistical (622 vs. 2 metabolites) and 
clinical explanations (eGFR at baseline was 54 in CKiD vs. 
27 ml/min × 1.73 m2 in 4C).

In addition, the authors of the current study reported 
neurocognitive and cardiovascular outcomes, showing no 
significant positive associations with the metabolite levels. 
Again, this contrasts with what was reported previously in 
the CKiD study, where both PAG and IA were associated 
among 27 other metabolites with neurocognitive outcomes 
[18]. Like the explanations mentioned above, the current 
analysis only focused on a subgroup of patients from the 
CKiD cohort, which might explain the discrepancy. Moreo-
ver, there was no positive association between reported 
metabolite levels and left ventricular hypertrophy or mass 
index. While in the 4C study, there was a positive correla-
tion of IxS with carotid intima-media thickness and pro-
gression of pulse wave velocity, these outcome parameters 
have not yet been investigated by the CKiD consortium, 
although cIMT is available in a subset of patients [27]. 
The key findings of metabolite-outcome associations are 
summarized in Fig. 1.

Uremic toxins as a target to treat and modify 
disease outcomes

Taken together, both the CKiD and the 4C cohort report a 
stage-dependent increase in circulating uremic toxin levels in 
children, which is consistent with what has been described in 
adult CKD patients [26, 28]. In adult CKD patients, uremic 
toxins are clearly associated with gastrointestinal and neuro-
logic symptoms in uremia [29], whereas a heterogeneous cor-
relation with cardiovascular outcomes has been reported, prob-
ably due to confounding comorbidities in elderly populations 
[30–32]. So far, smaller interventional studies targeting the gut 
microbiome and microbial toxin production in adult popula-
tions report conflicting outcomes [33–35]. However, most of 
these studies only report very limited data on microbiome and 
metabolome profiles. In contrast, there is increasing knowl-
edge from animal experiments underscoring the pivotal role 
of uremic toxins in CKD-related pathologies and deciphering 
the underlying molecular pathways. An example from recent 
literature about a potential intervention with the prebiotic inu-
lin nicely illustrates some discrepancies between animal and 
human studies highlighting the need for more translational 
research: In a rat model of CKD, high-fiber (inulin) diet altered 
the microbiota, increasing Bifidobacterium and Lactobacillus 
while decreasing Clostridiaceae and Ruminococcaceae. This 
was accompanied by decreased levels of IxS and pCS and 
attenuated aortic calcification, left ventricular hypertrophy, and 
cardiac fibrosis markers (TGF-β) [36]. In a human pilot study, 
inulin intervention had similar effects on microbiome compo-
sition but failed to lower circulating IxS and pCS levels [37].

Future research needs to focus more on the molecular 
characterization of distinct subpopulations of CKD patients 
to better match microbiome-targeted interventions to 
patients who might benefit from these treatments. Besides 
clinical parameters, environmental factors need more appre-
ciation, as, for instance, dietary patterns or physical activity 
have been shown to be crucial for treatment success [38]. 
The impact of diet has also been highlighted by several edi-
torial comments on the slogan of this year’s World Micro-
biome Day on June 27: “Feed your microbes – How diet 
shapes your gut microbiome” [39]. Evidently, the individual 
patient’s microbiome is key to the success of microbiome-
targeted interventions, and efforts are still needed to pre-
dict metabolic profiles in the human gut [40]. In addition, 
diagnostic tools for quick, cheap, and reliable detection of 
microbiome signatures need to be established in this con-
text to pave the way toward individualized treatments. We 
should take the chance to investigate the impact of dietary 
interventions and pre-, pro-, post-, or synbiotic interventions 
in children, as the risk of side effects is low in comparison to 
conventional drugs, and treatment response might be better 
in the absence of multimorbidity and frailty.
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