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CONTEXT AND SIGNIFICANCE Myelodysplastic neoplasms (MDS) are characterized by malignant transfor-
mation of blood-forming cells and can occur after allogeneic hematopoietic stem cell transplantation. Deter-
mining whether this is caused by the patient’s own cells (recipient derived) or cells received from the trans-
plant (donor derived) is therefore critical. However, conventional methods fail to adequately address this
question. Here, the authors solve the origin of MDS in a 38-year-old patient affected by this scenario. Using
a customized single-cell-based strategy that identifies the MDS-associatedU2AF1S34Y mutation, they reveal
a recipient-derived MDS in an unambiguous manner, thus providing the opportunity for an effective treat-
ment. The study emphasizes the need to further develop and implement high-resolution approaches at sin-
gle-cell resolution to advance personalized medicine.
SUMMARY
Background: Distinguishing donor- vs. recipient-derived myelodysplastic neoplasm (MDS) after allogeneic
hematopoietic stem cell transplantation (allo-HSCT) is challenging and has direct therapeutical implications.
Methods: Here, we took a translational approach that we used in addition to conventional diagnostic tech-
niques to resolve the origin of MDS in a 38-year-old patient with acquired aplastic anemia and evolving MDS
after first allo-HSCT. Specifically, we used single-cell transcriptional profiling to differentiate between donor-
and recipient-derived bone marrow cells and established a strategy that additionally allows identification of
cells carrying the MDS-associated U2AF1S34Y variant.
Results: The patient exhibited mixed donor chimerism combined with severely reduced erythropoiesis and
dysplastic morphology within the granulocytic and megakaryocytic lineage along with the MDS-associated
U2AF1S34Ymutation in the bonemarrow. Single-cell transcriptional profiling together with targeted enrichment
of theU2AF1S34Y-specific locus further revealed that, while the immune compartmentwasmainly populated by
donor-derived cells, myelopoiesis was predominantly driven by the recipient. Additionally, concordant with
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recipient-derived MDS, we found that U2AF1S34Y-mutated cells were exclusively recipient derived with X but
not Y chromosome-specific gene expression.
Conclusion:Our study highlights the clinical potential of integrating high-resolution single-cell techniques to
resolve complex cases for personalized treatment decisions.
Funding: The study was funded by intramural resources of the Charité – Universitätsmedizin Berlin and the
Berlin Institute of Health.
INTRODUCTION

With an incidence of�2–6/million,1 aplastic anemia (AA) is a rare,

potentially life-threatening hematopoietic disorder that results in

bone marrow failure (BMF) with trilineage cytopenia due to reduc-

tionof hematopoietic stemcells.2–4 In younger patients, allogeneic

hematopoietic stemcell transplantation (allo-HSCT) froma human

leukocyte antigen (HLA)-identical sibling donor is the therapy of

choice, since HLA-mismatched donors pose the risk of severe

complications from graft versus host disease (GvHD).5–9 After

immunosuppressive or cytotoxic therapy, secondary myelodys-

plastic neoplasm (MDS) can evolve from AA10–18 and is then cate-

gorized asmyeloid neoplasm post cytotoxic therapy according to

the current classification by the World Health Organization (WHO)

and InternationalConsensusClassification (ICC).11,12 In the setting

of posttransplant MDS, it is critical to additionally distinguish be-

tween secondaryMDSanddonorMDS, since the latterwould pre-

clude the initial donor and require an alternative donor for future

allo-HSCTs.However, currentmethods in routine diagnostics pro-

vide only limited accuracy to differentiate between donor- and

recipient-derived mutations in bone marrow (BM) samples with

mixed donor chimerism. To overcome this limitation, we estab-

lishedacustomizedsingle-cell strategy tounambiguously address

the origin of MDS after allo-HSCT in a 38-year-old female patient

with acquired AA. We show how our implementation of this trans-

lational approach provides an opportunity for personalized diag-

nostics to solve similar clinical questions.

RESULTS

Clinical background of the patient with AA requiring
allo-HSCT
The 38-year-old patient with AA in whom we demonstrate our

strategy initially presented with severe symptomatic pancyto-

penia (Figure 1), including life-threatening macrocytic anemia

(hemoglobin [Hb] 4.6 g/dL, mean corpuscular volume [MCV]

120 fL, mean corpuscular hemoglobin [MCH] 41.8 pg, mean

corpuscular hemoglobin concentration [MCHC] 34.8 g/dL, eryth-

ropoietin 510 U/L, reticulocyte production index [RPI] 0.1, lactate

dehydrogenase [LDH] 251U/L) as sign of BMF in 2019. Since dis-

orders associated with anemia and BMF are manifold, compre-

hensive diagnostic screening was performed.9,19 Morphological,

serological, flowcytometric, andmolecular assessment (Figure2)

excluded a range of potential diagnoses. Vitamin B12, folic acid,

ferritin, and iron levels were within normal range. Therefore,

metabolite deficiency could be ruled out as cause for the anemia.

BM biopsy revealed regular cell morphology without dysmor-

phias, fibrosis, and blasts but a substantial decrease in BM cellu-

larity to 20%with hematopoietic cells <10%. Flow cytometry re-

vealed a Della Porta score20 of 1, absence of myeloid blasts, and
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full presence of all glycosylphosphatidylinositol-anchored pro-

teins on hematopoietic cells at the time point of initial diagnosis.

In the molecular assessment, there were no mutations present,

especially no MDS-typical mutations. Therefore, hypoplastic

MDS and paroxysmal nocturnal hemoglobinuria could be ruled

out as main differential diagnoses. Cytogenetic assessment

showed a normal karyotype (46, XX), making Fanconi anemia un-

likely. Both liver parameters (alanine transaminase [ALT] 16 U/L,

aspartate transaminase [AST] 34 U/L, gamma-glutamyltransfer-

ase [gamma-GT] 20 U/L, bilirubin 0.64 mg/dL, urea 21 mg/dL,

albumin 41.9 g/L) and kidney function (creatinine 0.73mg/dL, na-

trium 139 mmol/L, potassium 3.9 mmol/L, glomerular filtration

rate [GFR] >90) were within normal range, excluding hepatic or

renal insufficiency as cause for the BM suppression. Serology

was negative for viral infection and anti-nuclear and anti-mito-

chondrial antibodies, ruling out viral or autoimmune causes.

Finally, the beta-glucocerebrosidase enzyme activity assay and

serum protein electrophoresis were negative for Gaucher’s dis-

ease.Gastrointestinal diseaseswereexcludedvia esophagogas-

troscopy and colonoscopy. As a consequence, and based on

both her BM biopsy (cellularity <25%, hematopoietic cells

<30%) and pancytopenic peripheral blood results (Figures 1C

and 2), the patient was diagnosed with non-severe AA (nSAA) in

transition to severe AA (SAA) by a team of specialized hematolo-

gists and hematopathologists. After this initial diagnosis, the pa-

tient showed rapid progression of BMFandpancytopenia, as evi-

denced by further decrease in BM cellularity (�10%), decreasing

neutrophil count (0.52/nL), and decreasing reticulocyte count

(7.2/nL) in the peripheral blood. Moreover, her platelet count re-

mained far below the lower normal limit even after several platelet

transfusions (41/nL) over the followingmonths, which led to a dy-

namic transition toward SAA. The patient then ultimately required

an allo-HSCT, which she received from her HLA-identical brother

5 months after onset of AA following non-myeloablative condi-

tioning therapy with 2-Gy radiation, fludarabine (4 3 30 mg/m2),

cyclophosphamide (4 3 300 mg/m2), and anti-thymocyte

globulin (Thymoglobulin: 3 3 2.5 mg/kg) (Figures 1A and 1B).

Transition to MDS of unclear origin
Due to beginning graft failure and deterioration of the patient’s

general condition, a single stem cell boost atmonth 21 and immu-

nosuppressive therapy with anti-thymocyte globulin (ATGAM)

were given to the patient. However, CD34+ donor chimerism

declined progressively, ultimately reaching 69% 33 months after

initial diagnosis of AA (Figure 1C). Additionally, morphological

signs of MDS became detectable in the patient’s BM, particularly

affecting megakaryopoiesis, as shown by histopathology (Fig-

ure 3A). Due to repeated dry puncture, cytology could not be as-

sessed properly. Evaluation by flow cytometry was compatible

with MDS according to the scoring system of Della Porta20
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Figure 1. Clinical course of the patient with AA, onset and resolution of MDS
(A) Clinical scenario showing patient characteristics of donor and recipient with unclear origin of MDS.

(B) Timeline of events following onset/diagnosis of AA (month 0) with additional examination of BM samples collected at month 31 (histopathology, XY-

fluorescence in situ hybridization [FISH], and scRNA-seq with targeted U2AF1S34Y enrichment) and month 33 (scRNA-seq).

(C) Development of donor chimerism, mutational status, and blood counts during the course of disease. �Two different ASXL1mutations (ASXL1G651 at month 26

and ASXLR965* from month 31 onwards) and a single U2AF1 mutation (U2AF1S34Y) with increasing AF were detected in the patient’s BM. The x axes are not to

scale.

Allo-HSCT, allogeneic hematopoietic stem cell transplantation; AA, aplastic anemia; MDS, myelodysplastic neoplasm; RBC, red blood cell; PLT, platelet;

ATGAM, anti-thymocyte globulin treatment; AF, allele frequency; HLA, human leukocyte antigen; Hb, hemoglobin; WBC, white blood cell count.
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(Figures 3C and 3D). In addition, MDS-typical mutations21–27 were

found by bulk DNA sequencing of known mutational hotspots,

notably comprising the U2AF1S34Y variant, which was longitudi-

nally detected between months 26 and 34 after diagnosis of AA

(Figures 1C, 3C, and 3D). Together, this indicated that, following

allo-HSCT, the patient had developed MDS that either originated

from the donor or the recipient, with the latter likely being a result

of previous cytotoxic therapy during allo-HSCT conditioning ther-

apy (myelodysplastic neoplasm post cytotoxic therapy [MDS-

pCT] according to WHO/ICC11,12). Due to rapid dynamic progres-

sion of MDS (Figure 3), it was expected that the patient would

require a second allo-HSCT. However, donor-associated MDS

would have required the search for a substitute donor, thereby

increasing the risk for GvHD. Additional investigation via XY-

fluorescence in situ hybridization (FISH) on a BM trephine biopsy

showed an accumulation of X chromosome signals in dysmorphic

cells, particularly in megakaryocytes (Figure 3B). However, further

assessment was not possible due to autofluorescence and differ-

ences in fluorescence intensity between Y and X chromosome-

specific signals. Moreover, diagnosis of lineage dysplasia based

on morphological assessment of BM biopsies alone had to be in-
terpreted with caution, since potential cytotoxic cell damage due

to antecedent therapy is indistinguishable from true MDS.

Thus, further treatment decisions were greatly limited by the

fact that conventional methods in routine diagnostics could not

distinguish between the origin of recipient-derived MDS or

donor-cell-derived MDS.

A customized single-cell approach enables MDS
precision diagnostics
We thus used a single-cell strategy to differentiate between

donor- and recipient-derived BM cells and established an

approach that additionally allows identification of cells carrying

the U2AF1S34Y variant (Figure 4A). Specifically, we performed

standard 30 single-cell gene expression profiling of BM-derived

cells collected 31 and 33months after diagnosis of AA and onset

of MDS in the patient. To enable mutational profiling, we modi-

fied the standard workflow and used the barcoded single-cell

cDNA pool from the sample collected at month 31 to enrich

U2AF1-specific amplicons that comprise the locus of the mutant

variant while inserting a sequencing handle via targeted

amplification.
Med 6, 1–9, April 11, 2025 3
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Figure 2. Clinical characteristics of the

38-year-old patient with AA at initial diag-

nosis requiring allo-HSCT

(A) Histopathology of the trephine biopsy reveals

severely hypocellular BM with a cellularity of 20%,

less than 10% hematopoietic cells, a decrease of all

three cell lines, and nearly complete absence of

erythropoiesis. However, both megakaryopoiesis

and granulopoiesis show lineage maturation.

Megakaryocytes (encircled) are quantitatively

reduced but show regular nuclei with normal lobu-

lation. Granulocytes show band formed and

segmented nuclei (arrows) as a sign of maturation.

Flow cytometry-based results were not compatible

with MDS according to the Della Porta scoring

system.20 Karyotype and mutational status do not

show any deviations or signs of clonal hematopoi-

esis. Scale bar: 30 mm.

(B) Peripheral blood parameters and BM biopsy

result of the patient in relation to diagnostic re-

quirements for nSAA, SAA, and vSAA.7,8 The pa-

tient is at the border of nSAA toward SAA.

WT, wild type; adj., adjusted; BM, bone marrow;

LLN, lower limit of normal; ULN, upper limit of

normal; nSAA, non-severe AA; SAA, severe AA;

vSAA, very severe AA.
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To evaluate our approach, we benchmarked the targeted

strategy against the standard 30 single-cell RNA sequencing

(scRNA-seq) run and an additional PCR approach that was per-

formed on the cDNA from the initial targeted enrichment. We

found that sequences used for the targeted or additional ampli-

fication strategies were specifically abundant in the respective

enrichment library but practically absent in the native 30

scRNA-seq library (Figure S1A). We further evaluated the overall

performance of our enrichment strategy, which showed that the

distribution of counts for all (non-U2AF1) genes was strongly

reduced (Figures S1B and S1C), whereas U2AF1S34Y locus-spe-

cific coverage was greatly increased in the targeted and addi-

tional PCR libraries (Figures S1D and S2). While the additional

PCR did not outperform the targeted approach, we conclude

that both enrichment strategies are highly comparable

(Figures S1E–S1G), overall highly efficient, and consistent in

providing U2AF1S34Y locus-specific information.

Unambiguous recipient-derived posttransplant MDS
diagnosis enables personalized treatment choice and
disease resolution
Having established the methodological framework, we first used

the 30 scRNA-seq libraries to identify major cell types (Figure 4B)

and assign individual cells to their origin (recipient vs. donor) via

single-nucleotide polymorphism (SNP)-based deconvolution

(Figure 4C) and expression of sex-specific genes (Figure 4F).

This showed that the immune compartment predominantly con-

sisted of male cells, whereas megakaryocytes and monocytes

were almost all female (Figure 4D), indicating that, in the chimeric

BM, immediate myelopoiesis mainly originated from the recipient,

while lymphocytes stemmed from the donor. This was consistent
4 Med 6, 1–9, April 11, 2025
with secondary rather than donor-derived MDS, especially since

MDS can be accompanied by monocytosis.29 Moreover, CD34+

donor chimerism further decreased at month 33 compared to

month 31 (Figure 1C) together with a recipient-derived increase

and decrease in megakaryocytes and monocytes, respectively

(Figures S1H and S1I). This indicated progressive expansion of

the MDS clone via megakaryocytic proliferation, which is in line

with the morphologic dysplasia we observed in this lineage.

We then leveraged the targeted enrichment libraries to further

genotype cells based on their U2AF1-specific mutational status,

which enabled us to identify a total of 25 and 3,019 cells carrying

either the mutated (U2AF1S34Y) or wild-type (U2AF1WT) variant,

respectively (Figure 4E). Finally, integration of these findings

with our previous analyses revealed that mutated U2AF1S34Y

cells were recipient-derived female, while U2AF1WT-cells were

donor-derived male, as illustrated for monocytes and megakar-

yocytes (Figure 4G).

Following our results, the patient was scheduled for a second

allo-HSCT from her HLA-identical brother at month 34 instead of

receiving an allo-HSCT from a partially mismatched unrelated

donor, thereby reducing the risk of severe GvHD. So far, longitu-

dinal examination of the recipient’s BM showed complete remis-

sion of MDS with normal flow cytometry results (Della Porta

score 0), absence ofMDS-relatedmutations, and a donor chime-

rism of 100% (Figures 1C and S3).

DISCUSSION

The outcome of SAA has improved substantially since allo-HSCT

emerged as curative upfront treatment and outperforms

immunosuppressive therapy in younger patients.30–32 However,
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Figure 3. Clinical manifestation of posttrans-

plant onset and progression of MDS

(A) Histopathology of the recipient’s BM 31 months

after initial diagnosis of AA. H&E stain shows

increased cellularity as compared to initial diag-

nosis with a left shift of granulopoiesis, dysmorphic

small megakaryocytes with hypolobulated nuclei,

abnormal nucleus:cytoplasm ratio, and condensed

chromatin (encircled). However, with a cellularity of

40%, the BM is still hypocellular. Prussian blue stain

reveals severe iron overload in stromal macro-

phages (arrows). Gomori silver stain shows mild to

moderate expansion of reticulin fibers (right area

next to dashed line). CD236 stain is mostly nega-

tive, since erythropoiesis is nearly absent. Myelo-

peroxidase stain marks granulocytes. CD34 is ex-

pressed by capillary endothelia. Myeloblasts are

not visible. CD117 stain shows a few randomly

distributed mast cells (circles). CD68 stain reveals

mostly mature stromal macrophages but also some

monocytic cells (arrows). CD3 highlights small ag-

gregates of T lymphocytes that were enriched in the

recipient as a morphological correlate for T cell-

dominant lymphoplasmacytosis. CD138 stain

highlights slightly enriched plasma cells. Scale

bars: 70 mm (H&E) and 100 mm (immunohisto-

chemistry).

(B) XY-FISH of the recipient’s BM 31 months after

initial diagnosis of AA reveals an accumulation of X

chromosome signals (red signal, highlighted by a

white arrow) in dysmorphic cells, particularly in

polyploid megakaryocytes. Y chromosome signals

(green signal, highlighted by an orange arrow) were

mostly visible in small regular-shaped immune

cells. Scale bar: 15 mm.

(C) Further routine BM assessment at month 31

reveals clear signs of MDS, including severe dys-

morphias in the megakaryocytic lineage as

described in (A), MDS-compatible flow cytometry

results (Della Porta score20 of 2), decrease in donor

chimerism, and mutations in the ASXL1 and U2AF1

genes. Scale bar: 30 mm.

(D) Routine BM assessment at month 33 shows

progression of MDSwith severe dysmorphias in the

megakaryocytic lineage as described in (A), an

increased Della Porta score20 of 3, a further decrease in donor chimerism, and maintenance of allele frequencies for mutations in the ASXL1 and U2AF1 genes.

Scale bar: 30 mm. mut, mutated.
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a considerable residual risk of disease progression, relapse or

clonal evolution to MDS, or acute myeloid leukemia re-

mains.5,8,16,33,34 The choice of an adequate donor is particularly

important, since GvHD is considered a main complication and

cause of mortality after allo-HSCT. If available, allo-HSCT from

an HLA-identical sibling donor is therefore the therapy of choice

for SAA.5,6,9,30 Nevertheless, our study shows that additional

complications can arise in these cases with the occurrence of

clonal disorders secondary to AA, such as posttransplant MDS,

requiring a second or third allo-HSCT. Clinical routine diagnostic

tools comprise morphological (cytology and/or histology) or flow

cytometry-based assessment for this scenario.11,12,20 Addition-

ally, chimerism analysis, panel sequencing, and minimal residual

disease analysis are used as an approximation of the amount of

the patient’s remaining autologous cells and presence of MDS-

associated mutations.11,12,35,36 However, these measures do
not allow us to distinguish therapy-related dysmorphia from dis-

ease-associated dysplasia and, in the case of mixed chimerism,

cannot determine whether the MDS clone originates from the pa-

tient (recipient derived) or cells received from the transplant (donor

derived). Although donor-derived myeloid neoplasia is usually

rare,10 the distinction between donor- and recipient-derived

MDS is of utmost importance for further therapeutic strategies,

especially in patients who are in need of repeated allo-HSCT after

initial allo-HSCT from an HLA-identical sibling. In the case of

donor-derived MDS, an alternative donor needs to be found that

might potentially hold less HLA compatibility than the sibling,

therefore likely increasing the risk of GvHD.

More recent molecular tools hold the potential to remedy the

difficulty of solving recipient- vs. donor-derived MDS. While

bulk approaches generate only average readouts that do not allow

us to disentangle information from individual cells,37,38 single-cell
Med 6, 1–9, April 11, 2025 5
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Figure 4. Identification of MDS clones using individualized single-cell genomics

(A) Single-cell strategy used to distinguish recipient- from donor-derived cells. BM-derived cells from the patient were used to generate barcoded cDNA from

which single-cell whole-transcriptome and U2AF1-targeted enrichment libraries were constructed. PR1, partial read 1; CB, cell barcode; UMI, unique molecular

identifier; TSO, template switch oligo; R1, read 1; R2, read 2.

(B) UMAP projection of BM-derived scRNA-seq profiles at 31 (n = 6,494 cells) and 33 (n = 6,042 cells) months following diagnosis of AA and onset of MDS. Major

cell types are indicated by colors and labels.

UMAP, uniform manifold approximation and projection.

(C and D) Annotation of recipient-derived (red, n = 926 cells) and donor-derived (blue, n = 11,610 cells) single-cell profiles by genetic deconvolution using ex-

pressed SNPs (souporcell28). Shown are projection of cells on UMAP (C) and the amount of recipient or donor chimerism across cell types at 31 months post AA

diagnosis (D).

(E) Identification of U2AF1S34Y-mutated (dark green, n = 25) and U2AF1WT (gray, n = 3,019) cells using targeted sequencing at 31 months post AA diagnosis and

projection onto UMAP.

(F) Expression of the sex-specific genes XIST (female specific) and RPS4Y1 (male specific).

(G) Co-analysis of chimerism analysis, targeted sequencing of U2AF1, and sex-specific gene expression for monocytes (n = 29) and megakaryocytes (n = 47).

U2AF1S34Y-mutated cells are recipient derived and do not have Y chromosome-specific gene expression.
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approaches have provided an unprecedented opportunity

to investigate heterogeneous cell populations in the human

BM.39,40However, standard and commercially available protocols
6 Med 6, 1–9, April 11, 2025
aremostly biased toward limited sequence information from the 30

or 50 end of the mRNA,41–43 thus often not capturing or providing

sufficient coverage of the mutational locus that would be required
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for the identification of malignant cells. In principle, this could be

addressed with long-read sequencing strategies, although, in

practice, their use remains very limited, either because high error

rates hamper robust detection of mutations at single-nucleotide

resolution or because elaborate sample preparation, high costs,

and the scarcity of instruments make them unfeasible in the clin-

ical context.44–46

Our work highlights the real-life setting of a young patient at

our hospital affected by this clinical scenario but for whom the

origin of MDS could not be diagnosed. This prompted us to

develop an approach that could be readily implemented within

a short time frame. Notably, our single-cell strategy leverages

existing single-cell gene expression protocols that are widely

available in research hospitals to enable additional genotyping

of each cell based on its MDS-specific U2AF1WT/S34Y status

with high accuracy. Ultimately, this allowed us to unambiguously

diagnose recipient-derived MDS in our patient. Although further

optimization and benchmarking would be required, our single-

cell approach can, in principle, be readily adapted for the

profiling of other disease-specific mutations, thus offering an un-

precedented opportunity for precision diagnostics and personal-

ized therapy.
Limitations of the study
Our study highlights the clinical potential of implementing

customized high-resolution techniques to solve complex

cases that would otherwise not be possible with typically

available methods. While our U2AF1S34Y-based single-cell

strategy allowed us to effectively address the origin of MDS

in our patient, an individual approach and further investigation

are required for each case that take into account patient

and sample diversity. The study of other disease-specific mu-

tations also highly depends on the feasibility of designing

specific primers around the locus of interest and the need to

optimize PCR and DNA purification steps. Additionally, any

methodology for personalized diagnostics that is not part of

clinical routine is currently not funded by public health care.

To make these approaches more accessible, future research

may be needed to develop cost-effective and multiplexed

strategies, such as via the availability of single-cell-resolved

MDS-specific gene panels.
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Wlodarski, M.W., Kölking, B., Wichmann, M., Görlich, K., et al. (2012). Fre-

quency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2

in patients with myelodysplastic syndromes. Blood 119, 3578–3584.

https://doi.org/10.1182/blood-2011-12-399337.

24. Xu, L., Gu, Z.H., Li, Y., Zhang, J.L., Chang, C.K., Pan, C.M., Shi, J.Y., Shen,

Y., Chen, B., Wang, Y.Y., et al. (2014). Genomic landscape of CD34+ he-

matopoietic cells in myelodysplastic syndrome and genemutation profiles

as prognostic markers. Proc. Natl. Acad. Sci. USA 111, 8589–8594.

https://doi.org/10.1073/pnas.1407688111.

25. Gelsi-Boyer, V., Brecqueville, M., Devillier, R., Murati, A., Mozziconacci,

M.J., and Birnbaum, D. (2012). Mutations in ASXL1 are associated with

poor prognosis across the spectrum of malignant myeloid diseases.

J. Hematol. Oncol. 5, 12. https://doi.org/10.1186/1756-8722-5-12.

26. Tefferi, A., Mudireddy, M., Finke, C.M., Nicolosi, M., Lasho, T.L., Hanson,

C.A., Patnaik, M.M., Pardanani, A., and Gangat, N. (2018). U2AF1 muta-

tion variants in myelodysplastic syndromes and their clinical correlates.

Am. J. Hematol. 93, E146–E148. https://doi.org/10.1002/ajh.25084.

27. Negoro, E., Nagata, Y., Clemente, M.J., Hosono, N., Shen, W., Nazha, A.,

Yoshizato, T., Hirsch, C., Przychodzen, B., Mahfouz, R.Z., et al. (2017). Or-

igins of myelodysplastic syndromes after aplastic anemia. Blood 130,

1953–1957. https://doi.org/10.1182/blood-2017-02-767731.

28. Heaton, H., Talman, A.M., Knights, A., Imaz, M., Gaffney, D.J., Durbin, R.,

Hemberg,M., and Lawniczak, M.K.N. (2020). Souporcell: robust clustering

of single-cell RNA-seq data by genotype without reference genotypes.

Nat. Methods 17, 615–620. https://doi.org/10.1038/s41592-020-0820-1.

29. Wu, A., Gao, P., Wu, N., Shi, C., Huang, Z., Rong, C., Sun, Y., Sheng, L.,

Ouyang, G., and Mu, Q. (2021). Elevated mature monocytes in bone

marrow accompanied with a higher IPSS-R score predicts a poor prog-

nosis in myelodysplastic syndromes. BMC Cancer 21, 546. https://doi.

org/10.1186/s12885-021-08303-8.

30. Drexler, B., Zurbriggen, F., Diesch, T., Viollier, R., Halter, J.P., Heim, D.,

Holbro, A., Infanti, L., Buser, A., Gerull, S., et al. (2020). Very long-term

follow-up of aplastic anemia treated with immunosuppressive therapy or

allogeneic hematopoietic cell transplantation. Ann. Hematol. 99, 2529–

2538. https://doi.org/10.1007/s00277-020-04271-4.

31. Locasciulli, A., Oneto, R., Bacigalupo, A., Socié, G., Korthof, E., Bekassy,
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Assay
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BOND Polymer Refine Detection Leica Cat#DS9800

Deposited data

scRNA-seq count data This paper GEO: GSE228278

Oligonucleotides

10X Genomics cDNA forward primer:

CTACACGACGCTCTTCCGATCT

Integrated DNA Technologies N/A

Custom U2AF1-specific reverse primer

for targeted PCR: GTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCTAGCAT
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Integrated DNA Technologies N/A

Custom U2AF1-specific reverse primer

for additional PCR: GTGACTGGAGTTCA

GACGTGTGCTCTTCCGATCTGTTCAG
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Integrated DNA Technologies N/A

Software and algorithms

MiSeq Reporter 2.6 Illumina https://support.illumina.com/sequencing/

sequencing_software/miseq_reporter/

downloads.html

VariantStudio 3.0 Illumina https://support.illumina.com/sequencing/

sequencing_software/variantstudio/

downloads.html
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TapeStation Software 3.1.1 Agilent Technologies https://www.agilent.com/en/product/
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systems/tapestation-software/tapestation-

software-379381

Kaluza Software 2.1 Beckman Coulter https://www.beckman.com/flow-cytometry/

software/kaluza
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Code for scRNA-seq data analyses This paper https://github.com/liviuspenter/MDS

https://doi.org/10.5281/zenodo.13988685

Cell Ranger 7.1.0 10X Genomics https://www.10xgenomics.com/support/

software/cell-ranger/latest

R 4.2.2 N/A https://cran.r-project.org/

R studio 2022.12 N/A https://github.com/rstudio/rstudio

Seurat 4.3.0 Hao et al.47 https://github.com/satijalab/seurat

Souporcell 2.4 Heaton et al.28 https://github.com/wheaton5/souporcell

Pysam 0.2 N/A https://github.com/pysam-developers/

pysam

Starcode 1.3 Zorita et al.48 https://github.com/gui11aume/starcode

kallisto bustools 0.48 Melsted et al.49 https://github.com/pachterlab/kallisto

bedtools 2.30.0 Quinlan & Hall50 https://github.com/arq5x/bedtools2

ggplot2 3.4.0 Wickham51 https://github.com/tidyverse/ggplot2

nanoranger Penter et al.52 https://github.com/mehdiborji/nanoranger

Other

NovaSeq 6000 Illumina Cat#20012850

NextSeq 500 Illumina Cat#SY-415-1001

FACSAria III Instrument BD Biosciences Cat#23-11585-02

MiSeq System Illumina Cat#SY-410-1003

Chromium Controller 10x Genomics Prod#1000204

40 mm mesh Falcon Cat #352340

4200 TapeStation system Agilent Part#G2991BA

Olympus BX46F Olympus N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The patient was a 38-year-old Caucasian female. Her donor was her 38-year-old Caucasian male twin brother. This study is in accor-

dance with the declaration of Helsinki and was approved by the local ethics committee (EA2/147/22). Both the patient and her donor

gave informed consent for the publication of clinical results.

METHOD DETAILS

Histopathology and XY-FISH
Histopathology was performed using formalin-fixed and paraffin-embedded EDTA decalcified BM trephine biopsies obtained 26, 31

and 33 months after onset of AA. All biopsies were stained with hematoxylin-eosin (H&E), Periodic-acid Schiff stain (PAS), Giemsa-,

Gomori-Silver and Prussian blue stain. Additionally, immunohistochemical staining was performed using the LEICA BondMAX (Leica

Biosystems, Buffalo, NY, USA) immunostainer. Briefly, 2 mm tissue sections were deparaffinized, rehydrated, and subjected to heat-

induced epitope retrieval and endogenous peroxidase blocking with H2O2. Subsequently, BM slides were incubated for 30 min with

the following primary antibodies: CD236 (1:400, Dako, Ret40f), Myeloperoxidase (MPO, 1:3000, Dako, polyclonal), CD34 (1:50, Leica,

Qbend/10), CD117 (1:400, Dako, polyclonal), CD14 (1:200, Abcam, SP192), CD68 (1:200, Dako, PG-M1), CD61 (1:100, Leica, 2f2),

CD20 (1:750, Dako, L26), CD3 (1:100, Dako, polyclocal), CD138 (1:25, Dako, MI15). All slides were examined with anOlympus BX46F

and a 40x ocular lens by two hematopathologists. BM evaluation was conducted according to the standardized procedure for iliac

trephine biopsies.53 Interphase FISH analysis was performed using a CEP X Spectrum orange/CEP Y Spectrum green probe kit

(Abott), targeting chromosomal regions Xp11.1-q11.1/Yq12 according to the manufacturer’s instruction.

Flow cytometry
100 mL of fresh EDTA-anticoagulated BM aspirate was collected 5, 26, 31 and 33 months after onset of AA. Staining (whole blood

staining method) was performed using the following antibodies for 20 min on ice: CD45-Krome Orange, CD34-APC, CD33-PE,

CD13-PC5.5, CD117-PE, CD38-Pacific Blue, HLA-DR-Pacific Blue, CD15-Pacific Blue, CD11b-APC, CD25-ECD, CD4-ECD,

CD19-PE, CD10-FITC and isotype controls (all Beckman Coulter, Brea, CA, USA). Red blood cells were subsequently lysed using
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commercial lysing buffer (Pharm Lyse, BD Biosciences). Flow cytometry data were analyzed using the Kaluza software (Beckman

Coulter) and according to the method described by Della Porta et al. for MDS.20

Cytology
For cytological assessment, EDTA chelated BM aspirate was collected 5, 26, 31 and 33 months after onset of AA. BM smears were

prepared and stained according to Pappenheim and with Prussian blue stain. All slides were microscopically evaluated by two

hematologists.

DNA sequencing
100 mL of fresh heparinized BM aspirate was collected at initial diagnosis of AA and 5, 26, 31, 33 and 34 months after onset of AA.

Mononuclear cells were isolated via density gradient centrifugation (Lymphoprep, Stemcell Technologies). DNA was isolated using

the QIAamp DNAmini Kit (Qiagen) according to the manufacturer’s instructions. 10–40 ng DNA was used per sample. Polymerase

chain reaction (PCR), purifications, adapter ligation, library quantification and pooling were conducted as outlined in the recommen-

dedBIOOScientific protocol ‘‘NEXTflexMyeloid Amplicon Panel’’ (PerkinElmer). Sequencing data was automatically analyzed on the

Illumina MiSeq instrument using the MiSeq Reporter. FASTQ files were generated as output and reads aligned to the reference hu-

man genome (hg19) with deviations from the reference sequences stored as variants. The Variant Call Format (VCF) files were opened

and annotated in Illumina Variant Studio.

STR-based donor chimerism analysis
DNA was extracted using a standard DNA extraction method (QIAamp; Qiagen) as recommended by the manufacturer. Chimerism

analyses were conducted based on the discrimination of donor and recipient alleles on short tandem repeats (STRs) using the

AmpFLSTR Identifier PCR Amplification Kit (Applied Biosystems). For quantification of chimerism, the areas under the curves

were calculated using Genemapper Version 3.7 software (Applied Biosystems).

Single-cell sequencing and targeted enrichment
BM aspirates were collected from the patient at two time points (31 and 33months) after initial diagnosis of AA. Samples were filtered

through a 40 mMmesh and mononuclear cells isolated via density gradient centrifugation (Lymphoprep, Stemcell Technologies) and

an additional erythrocyte removal step using the ACK Lysing Buffer (Thermo Fisher Scientific).

For the sample collected at month 31, cells were processed using the Chromium Next GEM Single Cell 3ʹ Reagent Kit v3.1 and the

Chromium Controller (10x Genomics) to generate barcoded, full-length cDNA from which a whole-transcriptome 30-scRNA-seq li-

brary was produced according to the manufacturer’s instructions.

For targeted enrichment of the U2AF1S34Y locus, 30 ng of total barcoded cDNA were amplified in a 50 mL PCR reaction using 1x

KAPA HiFi HotStart ReadyMix (Kapa Biosystems), 0.4 mMof a cDNA forward primer containing a partial read 1 sequence (CTACACG

ACGCTCTTCCGATCT) and 1 mM of a U2AF1-specific reverse primer containing a read 2 handle (GTGACTGGAGTTCAGACG

TGTGCTCTTCCGATCTAGCATGTCGTCATGGAGACA) with the following cycling conditions as outlined in the Drop-seq protocol41:

95�C for 3min; 4 cycles of: 98�C for 20 s, 65�C for 45 s, 72�C for 3min; 9 cycles of: 98�C for 20 s, 67�C for 20 s, 72�C for 3min; 1 cycle

of 72�C for 5 min followed by cooling to 4�C. The PCR product was completed to 100 mL with H2O and then purified using a

SPRIselect Reagent (BeckmanCoulter) to PCRmix ratio of 0.6x as outlined in the cDNA cleanup step of the 10xGenomics Chromium

Next GEM Single Cell 3ʹ User Guide (#CG000315 Rev C).

An additional PCRwas performed using 100 ng purified DNA from the targeted enrichment with 0.4 mMof the cDNA forward primer

containing a partial read 1 sequence and a reverse primer containing a partial read 2 sequence and a read 2 handle (GTGA

CTGGAGTTCAGACGTGTGCTCTTCCGATCTGTTCAGACGTGTGCTCTTCC) with the same cycling and purification steps as

described previously. cDNA samples from the targeted and additional PCRs were then separately indexed following the steps as

outlined in the ‘‘Sample Index PCR’’ section of the 10x Genomics Chromium Next GEM Single Cell 3ʹ User Guide using a total of

13 cycles. The targeted library was purified via double-sided size selection using SPRIselect to PCR mix ratios of 0.48x and 0.68x

to remove unspecific large and small fragments, respectively. The additional PCR library was cleaned up using an SPRIselect to

PCR mix ratio of 0.48x for the removal of unspecific large fragments. DNA fragment size distributions and DNA concentrations

were determined on a TapeStation instrument using the High Sensitivity D5000 ScreenTape Assay (Agilent) and a Qubit Fluorometer

using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific), respectively.

The 30-scRNA-seq, targeted and additional PCR libraries from the sample collected at month 31 were sequenced on a NextSeq

500 sequencer (Illumina) using the High Output v2.5 kit (150 cycles) in the following sequencingmode: Read 1 (28 cycles), i7 index (10

cycles), i5 index (10 cycles), Read 2 (102 cycles).

For the sample collected at month 33, mononuclear cells were sorted on a FACS Aria III Instrument with a 100 mm nozzle config-

uration, using PI staining (Invitrogen) to exclude dead cells. The 30-scRNA-seq library was then generated using the Chromium Next

GEM Single Cell 3ʹ Reagent Kits v3.1 and sequenced on a NovaSeq 6000 instrument (Illumina) with the SP Reagent Kit v1.5 (200

cycles) and the same sequencing mode used previously.
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Computational analysis of single-cell data
Following alignment against GRCh38 and generation of count matrices with 10x Genomics Cell Ranger, single cell gene expression

profiles were analyzed using the Seurat package 4.3.047 as previously described.54 Briefly, after filtering of high-quality cells (genes

>200, UMIs <5000, %mitochondrial reads <20) and normalization of data, single cell profiles were annotated based on a normal

human reference BM dataset provided by the Seurat package using weighted-nearest neighbor analysis.47 Donor- and recipient-

derived cells were identified through clustering based on expressed single nucleotide polymorphisms using souporcell28 with

k = 2 and information on T cell chimerism.

Following processing of amplicon libraries using 10x Genomics Cell Ranger,U2AF1S34Y andU2AF1wt cells were identified by anal-

ysis of reads mapping to the mutation locus (chr21:43,104,346) using pysam (https://github.com/pysam-developers/pysam) and

collapsing of UMIs using starcode48 with a Levenshtein distance of 3 as described.52 PCR handles were quantified from raw

sequencing data using kallisto bustools.49 Pseudobulk coverage was computed using bedtools v.2.30.0.49 Plots were visualized

using ggplot2 v.3.4.0.51
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