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Summary
Background Manually extracted imaging-based body composition measures from a single-slice area (A) have shown
associations with clinical outcomes in patients with cardiometabolic disease and cancer. With advances in artificial
intelligence, fully automated volumetric (V) segmentation approaches are now possible, but it is unknown
whether these measures carry prognostic value to predict mortality in the general population. Here, we developed
and tested a deep learning framework to automatically quantify volumetric body composition measures from
whole-body magnetic resonance imaging (MRI) and investigated their prognostic value to predict mortality in a
large Western population.

Methods The framework was developed using data from two large Western European population-based cohort
studies, the UK Biobank (UKBB) and the German National Cohort (NAKO). Body composition was defined as (i)
subcutaneous adipose tissue (SAT), (ii) visceral adipose tissue (VAT), (iii) skeletal muscle (SM), SM fat fraction
(SMFF), and (iv) intramuscular adipose tissue (IMAT). The prognostic value of the body composition measures
was assessed in the UKBB using Cox regression analysis. Additionally, we extracted body composition areas for
every level of the thoracic and lumbar spine (i) to compare the proposed volumetric whole-body approach to the
currently established single-slice area approach on the height of the L3 vertebra and (ii) to investigate the
correlation between volumetric and single slice area body composition measures on the level of each vertebral body.

Findings In 36,317 UKBB participants (mean age 65.1 ± 7.8 years, age range 45–84 years; 51.7% female; 1.7% [634/
36,471] all-cause deaths; median follow-up 4.8 years), Cox regression revealed an independent association between
VSM (adjusted hazard ratio [aHR]: 0.88, 95% confidence interval [CI] [0.81–0.91], p = 0.00023), VSMFF (aHR: 1.06,
95% CI [1.02–1.10], p = 0.0043), and VIMAT (aHR: 1.19, 95% CI [1.05–1.35], p = 0.0056) and mortality after
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adjustment for demographics (age, sex, BMI, race) and cardiometabolic risk factors (alcohol consumption, smoking
status, hypertension, diabetes, history of cancer, blood serum markers). This association was attenuated when using
traditional single-slice area measures. Highest correlation coefficients (R) between volumetric and single-slice area
body composition measures were located at vertebra L5 for SAT (R = 0.820) and SMFF (R = 0.947), at L3 for VAT
(R = 0.892), SM (R = 0.944), and at L4 for IMAT (R = 0.546) (all p < 0.0001). A similar pattern was found in
23,725 NAKO participants (mean age 53.9 ± 8.3 years, age range 40–75; 44.9% female).

Interpretation Automated volumetric body composition assessment from whole-body MRI predicted mortality in a
large Western population beyond traditional clinical risk factors. Single slice areas were highly correlated with
volumetric body composition measures but their association with mortality attenuated after multivariable
adjustment. As volumetric body composition measures are increasingly accessible using automated techniques,
identifying high-risk individuals may help to improve personalised prevention and lifestyle interventions.

Funding This project was conducted using data from the German National Cohort (NAKO) (www.nako.de). The
NAKO is funded by the Federal Ministry of Education and Research (BMBF) [project funding reference numbers:
01ER1301A/B/C, 01ER1511D, and 01ER1801A/B/C/D], federal states of Germany and the Helmholtz Association,
the participating universities and the institutes of the Leibniz Association. This research has been conducted using
the UK Biobank Resource under Application Number 80337. MJ was funded by the Deutsche For-
schungsgemeinschaft (DFG, German Research Foundation)-518480401. VKR was funded by American Heart As-
sociation Career Development Award 935176 and National Heart, Lung, and Blood Institute-K01HL168231.

Copyright © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
We searched PubMed for articles between database inception
(1946) and June 5, 2024, using the search terms ((MRI [Title/
Abstract]) OR (Magnetic Resonance Imaging [Title/Abstract])
OR (CT [Title/Abstract]) OR (Computed Tomography [Title/
Abstract])) AND ((Body Composition [Title/Abstract]) AND
(Mortality [Title/Abstract])) AND (Humans [Filter]) NOT
(Patients [Title/Abstract]) NOT (Systematic Review [Title/
Abstract]). We identified 52 articles, of which 46 were original
research articles. Of these 46 articles, 40 used cross-sectional
imaging studies (computed tomography [CT] and magnetic
resonance [MR] imaging) for body composition analysis. Of
these, 30 articles focused on disease-specific populations. The
remaining ten articles used single-slice CT images to measure
body composition and assessed its association with adverse
health outcomes in screening populations or population-
based cohorts. Five out of these ten studies reported an
association between two-dimensional muscle or adipose
tissue area/density with mortality. Of the remaining five
studies, four used small cohorts (n < 3.300). Only one study
was performed in a larger cohort of 9223 adults who
underwent routine colorectal cancer screening.

Added value of this study
In contrast, our study proposes a novel deep learning
framework for three-dimensional body composition analysis
from whole-body MR images and assesses the association
with mortality in more than 36,000 individuals from the
general population.
We showed that deep learning enables fully automated and
robust quantification of volumetric body composition from
whole-body MR imaging and predicts all-cause mortality
beyond traditional clinical risk factors in more than 36,000
individuals from a large Western population. Although single-
slice area measures of body composition, the most widely
used approach in research studies, were highly correlated with
volumetric measures, the association between area measures
and mortality attenuated after multivariable adjustment.

Implications of all the available evidence
As volumetric body composition analysis from medical
imaging studies becomes increasingly accessible using
automated deep learning techniques, it could be used to
opportunistically identify high-risk individuals to improve
personalised prevention and lifestyle interventions.
Introduction
Body composition measures, including adipose tissue
compartments and skeletal muscle, are associated with
clinical outcomes in patients with prevalent car-
diometabolic disease and cancer and have been identi-
fied as potential imaging biomarkers to improve
www.thelancet.com Vol 110 December, 2024
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personalised risk assessment and prognostication.1–3

Several studies have demonstrated added prognostic
value of different body composition measures beyond
traditional cardiovascular and oncological risk factors.4–6

However, routine quantification of body composition
measures from cross-sectional imaging studies such as
magnetic resonance imaging (MRI) is not performed in
clinical radiology workflows due to time and equipment
constraints.

With recent advances in artificial intelligence (AI),
fully automated approaches to quantify volumetric body
composition from cross-sectional imaging studies have
become feasible. In contrast to other techniques, such as
dual-energy X-ray absorptiometry, ultrasound, or su-
perficial estimates (3D surface scanning or waist
circumference), MRI may provide a more comprehen-
sive estimate of an individual’s body composition. This
includes the capability to better characterise different
tissue types (e.g., subdivide fat compartments and
characterise muscle quality) and reflect their distribu-
tion within the body. In addition, an automated volu-
metric MRI approach may provide a more accurate
estimate of an individual’s body composition than the
currently widely used single-slice area approach at the
third lumbar vertebra, as it captures the full three-
dimensional structure of the body rather than relying
on a single cross-sectional slice.7–11

In this proof-of-concept study, we developed and
tested a fully automated deep learning framework to
estimate volumetric body composition defined as sub-
cutaneous and visceral adipose tissue (SAT and VAT),
skeletal muscle (SM), SM fat fraction (SMFF), and
intramuscular adipose tissue (IMAT) from whole-body
MRI studies across different sites, scanner types, and
field strengths. We then tested whether these body
composition measures were associated with all-cause
mortality beyond traditional clinical risk factors in over
30,000 individuals from the UK Biobank (UKBB).
Finally, we compared our framework to the commonly
used method of estimating body composition from a
single-slice area.12,13
Methods
Data sources
This study used data from two large population-based
cohort studies: (i) the UK Biobank (UKBB, age range
45–84 years) and (ii) the NAKO Gesundheitsstudie/
German National Cohort (NAKO, age range 40–75
years).14,15 Both studies collected detailed clinical in-
formation and acquired a comprehensive MR imaging
protocol in a subgroup of participants, including an
axial oriented whole-body T1-weighted 3D VIBE two-
point Dixon sequence, which was used for body
composition quantification in this study. Detailed in-
formation on the data sources is provided in
Supplemental Methods.
www.thelancet.com Vol 110 December, 2024
Ethics
Informed consent was obtained from all participants in
the UK Biobank and the German National Cohort study.
In addition, we received local IRB approval (IRB of the
University of Freiburg: 23-1316-S1-retro and 24-1099-
S1-retro).

Overview of the study design
The primary aim of this study was to develop and test a
deep learning model to automatically quantify volu-
metric body composition from whole-body MR imaging
and investigate their prognostic value to predict mor-
tality in a large sample of a Western population (UKBB).
Additional aims were to compare the proposed volu-
metric whole-body approach to the currently established
single-slice area approach on the height of the L3
vertebra and to investigate the correlation between
volumetric whole-body and single-slice area body
composition measures on the level of each vertebral
body (UKBB and NAKO).9,16,17

For the survival analysis, the continuous body
composition measures were categorised into groups
(≥upper 10th percentile, middle 10–90th percentile, and
low <10th percentile). To reduce overfitting, these
thresholds were defined in the NAKO and then applied
to the UKBB for all further analysis. The NAKO data was
also used to replicate the correlation analysis between
volumetric whole-body vs. single-slice body composition
areas performed in the UKBB. An overview of the study
design is provided in Fig. 1.

Deep learning framework development and testing
We propose a fully automated deep learning frame-
work for body composition analysis from whole-body
T1-weighted Dixon MR imaging that can quantify (i)
volumetric whole-body and (ii) single-slice area body
composition at the height of each thoracic and lumbar
vertebra. Body composition was defined as subcu-
taneous and visceral adipose tissue (SAT and VAT),
skeletal muscle (SM), SM fat fraction (SMFF), and
intramuscular adipose tissue (IMAT). The only inputs
to the framework were the axially oriented in- and
opposed-phase images of the whole-body T1-weighted
two-point VIBE Dixon MR sequence; the output of the
model were segmentation masks for SAT, VAT, SM,
and IMAT that estimated the whole-body volumes
(dm3). The framework consists of two independent
models (i) volumetric whole-body composition seg-
mentation and (ii) spine labelling to extract single-
slice body composition areas at the height of each
thoracic and lumbar vertebra. All manual segmenta-
tions for model development and testing were
generated by an experienced senior year radiology
resident (5 years of experience in MR imaging) using
all four image contrasts (in-phase, opposed-phase,
water, fat) and three imaging planes (axial, as well
as coronal and sagittal multiplanar reconstructions)
3
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Fig. 1: Overview of the study design. (a) The deep learning framework was developed to quantify body composition (SAT, VAT, SM, SMFF,
and IMAT) from MR imaging as volumetric whole-body and single-slice area body composition at each level of the thoracic and lumbar spine.
(b) Body composition was quantified in over 60,000 individuals from two large observational cohort studies. (c) After independent testing, the
association, correlation, and prognostic value of the body composition measures were investigated. Biobank, UK biobank. IMAT, intramuscular
adipose tissue. L, lumbar vertebra. NAKO, German National Cohort. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal
muscle fat fraction. T, thoracic vertebra. VAT, visceral adipose tissue. MRI, magnetic resonance imaging.
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on the T1-weighted Dixon sequences. For quality
control, all segmentations were independently vali-
dated and adjusted where necessary by a board-
certified radiologist (10 years of experience in MR
imaging). We used the open-source NORA - medical
imaging platform (www.nora-imaging.org, Freiburg,
Germany) for all annotations and image-based calcu-
lations, model development, and testing. Further
detailed information on model development and
testing is provided in Supplemental Methods.

Endpoint in the UKBB
The primary endpoint of this study was all-cause mor-
tality in the UKBB. The UKBB receives death notifica-
tions regularly through linkage to national death
registries. The dates of death were obtained from
baseline until the date of data download, May 25, 2023.
All survival analyses were performed in the UKBB only,
as outcome data were not available for the NAKO.

Covariates
Detailed information on the extraction and definition of
covariates from UKBB and NAKO is provided in
Supplemental Methods.
Statistical analysis
Data harmonisation
We observed minor distribution shifts between UKBB
and NAKO data for SMFF and IMAT, likely due to
technical artefacts, as described in Supplemental
Methods. Distributions were harmonised before
further analyses (Supplemental Methods).

Baseline demographics
Baseline characteristics of the UKBB and NAKO par-
ticipants were presented as mean ± standard deviation
(SD) or median with interquartile ranges (IQR) for
continuous variables and absolute counts with percent-
ages for categorical variables. Normality assumptions
were informally assessed using Q–Q plots and histo-
grams due to the large sample size in this study. Dif-
ferences between males and females were assessed
using Welch’s t-test for normal and Mann–Whitney-U-
Test for non-normally distributed variables.

Association between body composition measures and all-
cause mortality in the UKBB
Survival analyses were only performed in the UKBB.
The association between body composition measures
www.thelancet.com Vol 110 December, 2024
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and all-cause mortality was explored for continuous and
categorised body composition measures. To avoid
overfitting, we did not define the thresholds to catego-
rise the continuous body composition measures into
groups in the UKBB itself. Instead, we used body
composition data from the NAKO to define cutoffs for
risk categories in an independent dataset. Cutoffs were
defined as high (≥10th percentile of NAKO partici-
pants), middle (10–90th percentile of NAKO partici-
pants), and low (<10th percentile of NAKO participants),
which were calculated for males/females and
volumetric/single-slice area body composition measures
separately and are summarised in Supplemental
Table S1. Subsequently, these cutoffs were applied to
the UKBB.

To investigate time to death in the UKBB, Kaplan–
Meier survival estimates and log-rank tests were
computed using the above-defined body composition
categories. The association between the continuous body
composition measures and mortality was evaluated via
univariable and multivariable Cox proportional hazards
regression analysis adjusted for age, sex, BMI, race,
alcohol consumption, smoking status, hypertension, dia-
betes, history of cancer, stroke, or myocardial infarction,
total cholesterol, HDL cholesterol, LDL cholesterol, tri-
glycerides, glucose, and HbA1c. These confounders were
identified using a modified disjunctive cause criterion.

Follow-up time in the UKBB was calculated from the
date of the MRI examination (start time and origin time
for survival analysis) to the date of death, the date of loss
to follow-up (0.02% [7/36,317] leaving the UK), or May
25, 2023 (date of UKBB data download), whichever came
first. The proportional hazards assumption was tested
by computing scaled Schoenfeld residuals, and linearity
was assessed using Martingale residuals. Both as-
sumptions were satisfied for all models. All results of
Cox proportional hazards regression analyses were re-
ported as Hazard Ratios (HR) per 1-unit change and
95% (2.5th and 97.5th percentiles) confidence intervals
(CI). All analyses were performed using the volumetric
whole-body composition measures. In addition, we
present the same analyses for the currently established
approach estimating body composition measures from a
single-slice area at the height of the L3 vertebra to allow
for a better comparison to the currently published
literature. Furthermore, we calculated the continuous
net reclassification improvement (NRI) for the volu-
metric vs single-slice area measures based on the above-
defined risk categories using the nricens R package.18,19

95% (2.5th and 97.5th percentiles) CIs were estimated
by using 5000 nonparametric bootstrap samples.

Correlation between volumetric whole-body and single-slice
area body composition measures
To investigate the correlation between volumetric whole-
body and single-slice area body composition measures
at the height of each vertebra (thoracic and lumbar
www.thelancet.com Vol 110 December, 2024
spine), Pearson’s correlation coefficients were calculated
for normally distributed body composition measures
(SM, SMFF) and Kendall’s rank correlation coefficient
for non-normally distributed body composition mea-
sures (SAT, VAT, and IMAT) in the UKBB for the entire
cohort and stratified by sex and BMI. Subsequently,
these analyses were repeated with the NAKO data using
a similar approach.

All statistical analyses were performed using R
V4.2.1 (R Core Team, www.r-project.org, 2022). Statis-
tical significance was indicated by p-values < 0.05.

Role of funders
The funders of this study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
Study cohorts
The UKBB cohort consisted of 36,317 individuals
(18,777 females and 17,540 males) with a mean age of
65.1 ± 7.8 years (age range 45–84 years) and a mean
BMI of 25.9 ± 4.3 kg/m2. VSAT, VSMFF, and VIMAT were
higher in females than in males (all p < 0.0001; Table 1).
In contrast, males had higher VVAT and VSM (all
p < 0.0001; Table 1).

Similar results were found for NAKO participants
(23,725 individuals; mean age of 53.9 ± 8.3 years [age
range 40–75 years] and a mean BMI of 27 ± 4.7 kg/m2;
Table 2) and for single-slice area body composition
measures at L3 in both cohorts.

Association between body composition measures
and all-cause mortality in the UKBB
Survival analysis using volumetric whole-body composition
measures
Over a median follow-up of 4.77 years (IQR 3.92–6.12
years), 634 deaths (1.7%) of all causes were observed.
Detailed information on the UKBB covariates is shown
in Table 1. Kaplan–Meier survival curves showed that
the whole-body lower 10th percentile VSM category and
the upper 10th percentile VSMFF and VIMAT category had
a 6% mortality rate over 8 years, 3-fold higher than the
middle category (Log-rank p < 0.0001; Fig. 2a).

In Cox regression adjusted for age, sex, and BMI,
VSM was associated with a lower risk (aHR: 0.86, 95% CI
[0.81–0.91], p < 0.0001), and VSMFF (aHR: 1.07, 95% CI
[1.04–1.11], p < 0.0001) and VIMAT (aHR: 1.28, 95%
CI [1.05–1.35], p < 0.0001) with a higher risk of all-cause
mortality (Fig. 2b). These associations remained robust
after further adjustment for race, alcohol consumption,
smoking status, hypertension, diabetes, history of
stroke, history of myocardial infarction, history of can-
cer, and blood serum markers (TC, HDL, LDL, tri-
glycerides, glucose, HbA1c) (VSM, aHR: 0.88, 95% CI
[0.83–0.94], p < 0.0001; VSMFF, aHR: 1.06, 95% CI
5
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Characteristic Ove
N =

Age (y) 53.

BMI (kg/m2) 27

SAT (dm3) 14.

L3 SAT (dm2) 2.0

VAT (dm3) 3.3

L3 VAT (dm2) 1.4

SM (dm3) 12.

L3 SM (dm2) 1.4

SMFF (%) 15.

L3 SMFF (%) 24.

IMAT (10−1dm3) 1.4

L3 IMAT (10−1dm2) 0.4

IMAT, intramuscular adipose
subcutaneous adipose tissue.
Y, years. Mean ± SD; median

Table 2: Baseline characte

Characteristic Overall,
N = 36,317a

Female,
N = 18,777a

Male,
N = 17,540a

Age (y) 65.1 ± 7.8 64.4 ± 7.7 65.7 ± 7.9

BMI (kg/m2) 25.9 ± 4.3 25.4 ± 4.6 26.4 ± 3.8

Race (white) 35,124/36,221 (97%) 18,170/18,735 (97%) 16,954/17,486 (97%)

SAT (dm3) 15.00 (IQR
11.62–19.38)

17.10 (IQR
13.44–21.72)

13.10 (IQR
10.43–16.45)

L3 SAT (dm2) 2.03 (IQR 1.54–2.7) 2.29 (IQR 1.67–3.05) 1.83 (IQR 1.45–2.33)

VAT (dm3) 3.50 (IQR 2.01–5.35) 2.43 (IQR 1.44–3.65) 5.02 (IQR 3.43–6.70)

L3 VAT (dm2) 1.4 (IQR 0.78–2.26) 0.94 (IQR 0.54–1.48) 2.08 (IQR 1.37–2.89)

SM (dm3) 11.44 ± 3.01 9.06 ± 1.34 13.99 ± 2.08

L3 SM (dm2) 1.30 ± 0.35 1.04 ± 0.17 1.59 ± 0.25

SMFF (%) 16.04 ± 3.25 17.20 ± 3.05 14.79 ± 2.99

L3 SMFF (%) 24.59 ± 5.63 26.36 ± 5.47 22.70 ± 5.16

IMAT (10−1 dm3) 1.42 (IQR 1.07–1.85) 1.51 (IQR 1.18–1.92) 1.31 (IQR 0.96–1.76)

L3 IMAT (10−1 dm2) 0.40 (IQR 0.26–0.60) 0.48 (IQR 0.33–0.68) 0.32 (IQR 0.2–0.49)

Regular alcohol
consumptionb

25,679/36,033 (71%) 12,120/18,612 (65%) 13,559/17,421 (78%)

Ever smokersc 14,804/36,154 (41%) 6993/18,677 (37%) 7811/17,477 (45%)

History of hypertension 19,793/33,350 (59%) 9001/17,083 (53%) 10,792/16,267 (66%)

History of diabetes 2057/35,985 (5.7%) 745/18,593 (4.0%) 1312/17,392 (7.5%)

History of stroke 407/36,317 (1.1%) 140/18,777 (0.7%) 267/17,540 (1.5%)

History of myocardial
infarction

857/36,317 (2.4%) 161/18,777 (0.9%) 696/17,540 (4.0%)

History of cancer 4345/35,981 (12%) 2347/18,588 (13%) 1998/17,393 (11%)

All-cause death 633/36,317 (1.7%) 222/18,777 (1.2%) 411/17,540 (2.3%)

Follow up time (y) 4.77 (IQR 3.92–6.12) 4.78 (IQR 3.92–6.14) 4.76 (IQR 3.90–6.09)

IMAT, intramuscular adipose tissue. L3, 3rd lumbar vertebra. SAT, subcutaneous adipose tissue. SM, skeletal
muscle. SMFF, skeletal muscle fat fraction. UKBB, UK biobank. VAT, visceral adipose tissue. Y, years. aMean ± SD;
median (IQR); n/N (%). bRegular alcohol consumption was defined as (“Daily or almost daily”, “Three or four
times a week”, “Once or twice a week”). c“Ever smokers” includes former and current smokers.

Table 1: Baseline characteristics – UKBB.
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[1.02–1.10], p = 0.004; VIMAT, aHR: 1.19, 95% CI
[1.05–1.35], p = 0.0057; Fig. 2b). There was no sub-
stantial association between VSAT or VVAT and all-cause
mortality (VSAT, aHR: 0.98, 95% CI [0.95–1.02], p = 0.32;
VVAT, aHR: 0.96, 95% CI [0.90–1.02], p = 0.18; Fig. 2b).
rall,
23,725

Female,
N = 10,651

Male,
N = 13,074

9 ± 8.3 54.1 ± 8.2 53.8 ± 8.3

± 4.7 26.4 ± 5.3 27.4 ± 4.1

41 (IQR 10.96–19.10) 16.71 (IQR 12.71–21.98) 12.99 (IQR 10.05–16.62)

1 (IQR 1.47–2.71) 2.24 (IQR 1.57–3.07) 1.88 (IQR 1.43–2.45)

5 (IQR 1.82–5.15) 2.02 (IQR 1.12–3.29) 4.62 (IQR 3.10–6.19)

1 (IQR 0.72–2.26) 0.81 (IQR 0.41–1.41) 2.00 (IQR 1.27–2.73)

62 ± 3.28 9.62 ± 1.45 15.05 ± 2.14

3 ± 0.37 1.11 ± 0.17 1.70 ± 0.25

87 ± 3.25 17.20 ± 3.05 14.79 ± 2.99

34 ± 5.61 26.36 ± 5.47 22.70 ± 5.16

1 (IQR 1.05–1.85) 1.51 (IQR 1.17–1.92) 1.31 (IQR 0.96–1.76)

0 (IQR 0.26–0.58) 0.48 (IQR 0.34–0.68) 0.33 (IQR 0.21–0.50)

tissue. L3, 3rd lumbar vertebra. NAKO, German National Cohort. SAT,
SM, skeletal muscle. SMFF, skeletal muscle fat fraction. VAT, visceral adipose tissue.
(IQR).

ristics – NAKO.
Survival analysis using single-slice area measures at L3
The Kaplan–Meier plots for the body composition risk
categories for the single-slice areas showed results that
were largely similar to those for the volumetric risk
categories (Fig. 3a).

In Cox proportional hazards regression analysis
adjusted for age, sex, and BMI, ASM was associated with
a lower risk (aHR: 0.63, 95% CI [0.40–0.98], p = 0.041),
while ASMFF (aHR: 1.02, 95% CI [1.00–1.04], p = 0.018)
and AIMAT (aHR: 1.42, 95% CI [1.10–1.83], p = 0.0077;
Fig. 3b) were associated with a higher risk of all-cause
mortality, similar to the volumetric whole-body mea-
sures. Conversely to the volumetric measures, however,
these associations could not be reliably estimated after
further adjustment for the risk factors listed above for
single-slice area SM and IMAT (ASM, aHR: 0.66, 95% CI
[0.39–1.10], p = 0.11; AIMAT, aHR: 1.20, 95% CI
[0.88–1.63], p = 0.26; Fig. 3b). There was no substantial
association between ASAT, AVAT, and ASMFF with all-
cause mortality after adjustment (ASAT, aHR: 0.88,
95% CI [0.73–1.04], p = 0.14; AVAT, aHR: 0.93, 95% CI
[0.82–1.07], p = 0.31; ASMFF, aHR: 1.02, 95% CI
[1.00–1.04], p = 0.11; Fig. 3b).

In reclassification analysis based on the volumetric
whole-body vs. single-slice area body composition mea-
sure categories (≥10th; 10–90th; <10th percentile) for
each investigated measure, we found that the volumetric
whole-body composition categories better identified
high-risk individuals for all-cause mortality than the
single-slice area categories with the highest NRI for SM
(NRI = 0.053, 95% CI [0.016–0.089]; Supplemental
Figure S3).

Correlation between volumetric whole-body and
single-slice area body composition at different
vertebral heights
The highest correlation coefficients between whole-body
volumes and single-slice areas were found at L5 for SAT
(R = 0.820, 95% CI [0.818–0.822]), at L3 for VAT
(R = 0.892, 95% CI [0.891–0.893]), SM (R = 0.944, 95%
CI [0.943–0.945]), L4 at IMAT (R = 0.546, 95% CI
[0.541–0.550]), and at L5 for SMFF (R = 0.947, 95% CI
[0.946–0.948] all p < 0.0001, Supplemental Table S2).

A largely similar pattern was observed in the NAKO
(Supplemental Table S3). Additional stratified analyses
by sex and BMI are provided in Supplemental
Tables S4–S6 for the UKBB and in Supplemental
Tables S7–S9 for the NAKO, which revealed substan-
tial variability for the vertebral level with the highest
correlation between volumetric whole-body and single-
slice areas for the different body composition mea-
sures, which was more pronounced for BMI strata than
for sex strata.

Testing of the deep learning framework
Overall performance of the volumetric whole-body
composition segmentation model was high, with Dice
www.thelancet.com Vol 110 December, 2024
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VSM

VSMFF

VIMAT

VSAT VVAT VSM VSMFF VIMAT

Fig. 2: Kaplan Meier survival estimates and forest plots for volumetric whole-body composition measures in the UKBB. (a) Overall survival
in the UKBB for volumetric body composition according to 10th percentile (blue, <10%), mid 80th percentile (red, 10%–90%), and upper 10th
percentile (green, >90%) of VSAT, VVAT, VSM, VSMFF, and VIMAT. Cutoffs were derived from the NAKO cohort to avoid overfitting. Kaplan Meier
survival estimates show substantial differences between VSM, VSMFF, and VIMAT categories. (b) Forest plots show hazard ratios per 1-unit change
with 95% confidence intervals of Cox proportional hazards regression analysis with endpoint all-cause mortality in the UKBB. Models were
adjusted for age, sex, and BMI (upper row), and additional adjustment for traditional risk factors (lower row) for each body composition
measure. VSM, VSMFF, and VIMAT showed robust associations with all-cause mortality beyond baseline demographics and traditional risk factors.
Outcome data was only available in the UKBB (median follow-up 4.8 years). Full models were adjusted for age, sex, BMI, race, alcohol con-
sumption, smoking status, hypertension, diabetes, history of stroke, history of myocardial infarction, history of cancer, and blood serum
markers (TC, HDL, LDL, triglycerides, glucose, and HbA1c). IMAT, intramuscular adipose tissue. L, lumbar vertebra. MACE, major adverse car-
diovascular event. NAKO, German National Cohort. SAT, subcutaneous adipose tissue. SM, skeletal muscle. SMFF, skeletal muscle fat fraction.
UKBB, UK biobank. VAT, visceral adipose tissue.

Articles
coefficients ≥0.88 in the NAKO testing dataset and
≥0.86 in the UKBB testing dataset. Pearson’s correlation
coefficients assessing the linear relationship between
manual and automatically generated volumetric seg-
mentation masks were r > 0.99 in the NAKO testing
dataset and r > 0.97 in the UKBB testing set. The spine
labelling model’s performance was highly accurate, with
mean distance errors of the automated labels in the
craniocaudal direction of −1 ± 7 mm in the NAKO
testing dataset and 4 ± 8 mm in the UKBB testing
dataset. The Dixon swap correction model correctly
changed the swapped fat contrast to a water contrast and
vice versa when a Dixon swap artefact was present in the
original images and left the correct contrasts unchanged
on a per-scan basis.

Detailed testing results of the proposed deep
learning framework are provided in Supplemental
Results and Supplemental Figures S4 and S5 and
Supplemental Table S10.
www.thelancet.com Vol 110 December, 2024
Discussion
In this study, we developed and tested a fully automated
deep learning framework to estimate body composition
from whole-body MRI and investigated the prognostic
value to predict mortality in over 30,000 individuals from
a Western population. Our major findings were (i) that
deep learning enables robust and reliable volumetric
body composition analysis from whole-body MRI, (ii) that
only volumetric whole-body measures were independent
predictors for all-cause mortality in a large sample of a
Western population beyond traditional demographic and
cardiometabolic risk factors with a 12% lower (SM), 6%
higher (SMFF), and 19% higher (IMAT) hazard per 1-
unit change for all-cause mortality, and (iii) that single-
slice body composition areas showed strong but highly
sex- and BMI-dependent correlations with volumetric
whole-body composition at varying levels.

These results are clinically relevant as medical
imaging-based body composition quantification is
7
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Fig. 3: Kaplan Meier survival estimates and forest plots for single-slice area body composition measures in the UKBB. (a) Overall survival
in the UKBB for single-slice area body composition according to 10th percentile (blue, <10%), mid 80th percentile (red, 10%–90%), and upper
10th percentile (green, >90%). Cutoffs were derived from the asymptomatic NAKO cohort to avoid overfitting. Kaplan Meier survival estimates
showed graded associations for AVAT, ASM, ASMFF, and AIMAT categories. (b) Forest plots show hazard ratios per 1-unit change with 95%
confidence intervals of Cox proportional hazards regression analysis with endpoint all-cause mortality in the UKBB. Models were adjusted for
age, sex, and BMI (upper row), and additional adjustment for traditional risk factors (lower row) for each body composition measure. After full
adjustment for baseline demographics and traditional risk factors, the association between single-slice area body composition measures and all-
cause mortality could not be reliably estimated. Outcome data was only available in the UKBB (median follow-up 4.8 years). Full models were
adjusted for age, sex, BMI, race, alcohol consumption, smoking status, hypertension, diabetes, history of stroke, history of myocardial infarction,
history of cancer, and blood serum markers (TC, HDL, LDL, triglycerides, glucose, and HbA1c). IMAT, intramuscular adipose tissue. L, lumbar
vertebra. MACE, major adverse cardiovascular event. NAKO, German National Cohort. SAT, subcutaneous adipose tissue. SM, skeletal muscle.
SMFF, skeletal muscle fat fraction. UKBB, UK biobank. VAT, visceral adipose tissue.
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increasingly recognised as a strong and independent
prognostic factor in patients with prevalent car-
diometabolic and oncologic diseases that can be quanti-
fied from different cross-sectional imaging studies and
could complement currently established strategies to
improve personalised risk assessment and clinical deci-
sion making in screening and hospital populations.4,20–23

Our study demonstrated that body composition is an
independent prognostic marker beyond traditional clin-
ical risk factors not only in diseased patients but also in a
large Western population, which could be integrated into
clinical care as an opportunistic screening tool to help
identify high-risk individuals to initiate personalised risk
discussion and intensified prevention.24 This opportu-
nistic body composition assessment could be performed
regardless of the initial indication of an imaging test and
could serve as an easy to obtain instrument to improve
patient care.

However, to date, the use of body composition
measures is limited to retrospective research studies
because manual, expert-level segmentation is costly and
time-consuming, which hinders seamless integration
into current clinical workflows.25,26 To ease the labour-
intensive and time-consuming manual segmentation
process, most studies have measured body composition
areas on a single axial slice12,13 as multiple analyses have
reported high correlations between single-slice areas
and whole-body composition volumes.9,16,17,27 While
several height levels have been suggested for optimal
single-slice area body composition estimation, the most
widely used approach is a single-slice area at the level of
the L3 vertebra.16,17,28 However, body composition areas,
including height- and/or BMI-adjusted measures, are
known to have substantial age-, sex-, and race-related
variations and are strongly associated with standard
anthropometric measures.2,29,30 In line with these results,
we found strong correlations between single-slice and
volumetric whole-body composition measures in over
60,000 individuals, but the vertebral level with the highest
correlation coefficient showed substantial variation
www.thelancet.com Vol 110 December, 2024
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between the different body composition measures and was
highly dependent on sex and BMI strata.31 This variability
is an important limitation that reduces the accuracy, gen-
eralisability, and comparability between different studies
and clinical settings with the risk that readily available and
prognostically important information from routine medi-
cal imaging scans may go unnoticed.7,8

Advances in artificial intelligence have made
automated analyses of large imaging cohorts feasible.
Previously, Glasser et al.32,33 found that artificial in-
telligence could estimate all-cause mortality risk in
older adults using 2D dual-energy absorptiometry
images. In addition, Langner et al.33 showed that
artificial intelligence could estimate body composition
metrics from a two-dimensional representation of a
whole-body MR image. To our knowledge, ours is the
first study to test whether body composition measures
derived from three-dimensional imaging are associ-
ated with clinical outcomes and the first to compre-
hensively estimate volumetric muscle and fat
compartments using a manual segmentation gold
standard. Our results in over 30,000 individuals
showed that SM, SMFF, and IMAT were the body
composition measures with the greatest predictive
value, highlighting the advantage of MRI-based body
composition assessment over other techniques used,
such as dual-energy X-ray absorptiometry or surface
scanning, which lack the ability to subdivide different fat
compartments and assess SMFF. Our study further
showed that the associations between single-slice body
composition areas and mortality attenuated after multi-
variable adjustment for demographic and car-
diometabolic risk factors, whereas the association for
volumetric whole-body measures remained robust
beyond these risk factors. In addition, reclassification
analysis based on single-slice area vs. volumetric whole-
body composition analysis showed that especially the
VSM measure more frequently identified individuals at
high risk for all-cause mortality than ASM measures.
Based on these results and increasingly available fully
automated tools, we consider volumetric body composi-
tion estimation to be the preferred method for clinical
integration over the traditional single-slice area approach
because it has the potential to (i) more accurately quantify
an individual’s true body composition, (ii) serve as a more
robust prognostic factor, and (iii) facilitate comparability
across studies and patient groups.

This study has limitations. First, the two investigated
population-based cohort studies consist of predomi-
nantly white Western Europeans with a limited age
range (40–84 years). Whether our results are general-
isable to more heterogeneous groups needs to be
investigated in future studies. Second, data for outcome
analysis were only available in the UKBB with a median
follow-up of 4.8 years; the adjusted hazard ratios re-
ported in this study may not generalise to longer follow-
www.thelancet.com Vol 110 December, 2024
up periods and are limited for proper causal inference
due to differential depletion of the groups over time.
This reduced our data set for assessing the association
between body composition and all-cause mortality.
Third, despite the possibility of integrating the fully
automated deep learning framework for volumetric
whole-body composition segmentation into clinical
practice without disrupting routine radiology workflows,
clinical use cases may currently be limited because
whole-body MRI is not a commonly performed exami-
nation in daily routine, and it remains unclear whether
typically imaged body regions (such as the liver or the
pelvis) carry the same prognostic information as
embedded in the volumetric whole-body measures. In
addition, our model was developed for a T1-weighted
VIBE Dixon sequence, which is widely used in clinical
radiology but may not be part of every protocol.
Furthermore, although our model provided robust re-
sults across sites, different scanner types, and field
strengths, future studies will need to investigate whether
the model also generalises to non-Siemens scans. Also,
further studies are needed to assess whether our find-
ings are reproducible in computed tomography (CT),
where whole-body scans are routinely performed, e.g.,
for cancer staging. Finally, our study has methodological
limitations, including potential unmeasured confound-
ing and residual confounding due to measurement error
in confounding variables such as smoking status and
alcohol consumption. In addition, we did not perform a
sample size estimation, as we used fixed sample sizes
based on the two available cohorts. However, given the
precise confidence intervals of the adjusted hazard ratios
for the volumetric whole-body measures, the sample
size seemed adequate for our analysis.

In conclusion, deep learning allowed for automated
and robust quantification of body composition from
whole-body MR imaging and predicted mortality in a
large Western population beyond traditional clinical risk
factors. Single-slice body composition measures were
highly correlated with volumetric measures but the as-
sociation with mortality attenuated after multivariable
adjustment. As volumetric body composition measures
are increasingly accessible using automated techniques,
identifying high-risk individuals may help to improve
personalised prevention and lifestyle interventions.
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