
Nature Microbiology

nature microbiology

https://doi.org/10.1038/s41564-024-01857-wArticle

Systematic mapping of antibiotic 
cross-resistance and collateral sensitivity 
with chemical genetics
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Peer Bork4,5,6, Pascale Cossart1,7, Camille V. Goemans    1,8  & 
Athanasios Typas    1,4 

By acquiring or evolving resistance to one antibiotic, bacteria can 
become cross-resistant to a second antibiotic, which further limits 
therapeutic choices. In the opposite scenario, initial resistance leads to 
collateral sensitivity to a second antibiotic, which can inform cycling or 
combinatorial treatments. Despite their clinical relevance, our knowledge 
of both interactions is limited. We used published chemical genetics data 
of the Escherichia coli single-gene deletion library in 40 antibiotics and 
devised a metric that discriminates between known cross-resistance and 
collateral-sensitivity antibiotic interactions. Thereby we inferred 404 cases 
of cross-resistance and 267 of collateral-sensitivity, expanding the number 
of known interactions by over threefold. We further validated 64/70 inferred 
interactions using experimental evolution. By identifying mutants driving 
these interactions in chemical genetics, we demonstrated that a drug pair 
can exhibit both interactions depending on the resistance mechanism. 
Finally, we applied collateral-sensitive drug pairs in combination to reduce 
antibiotic-resistance development in vitro.

Although antibiotic resistance is increasing at alarming rates1, fewer 
and fewer novel antibiotics are being approved for clinical use2,3. Impor-
tantly, the development or acquisition of resistance to one drug can lead 
to cross-resistance (XR)4 to other drugs, limiting treatment options. The 
same processes can also give rise to collateral sensitivity (CS)5 to other 
drugs due to trade-offs or fitness costs of resistance mechanisms6,7 
(Fig. 1a). The principle of CS has been successfully used to reduce the 
rates of resistance emergence8–15, or even re-sensitize microorgan-
isms to antibiotics16, by combining or cycling CS drug pairs. In an era 

of diminishing therapeutic options, knowledge of XR and CS is more 
important than ever.

The most common approach to measure XR and CS is to experi-
mentally evolve resistance to one drug for several lineages and then 
measure their susceptibility to another drug (Fig. 1a). Our understand-
ing of the underlying mechanism(s) relies on sequencing the genomes 
of the evolved strains8,17–19. Although powerful, this approach is effort, 
scale and cost heavy. Hence, current knowledge of XR and CS inter-
actions is limited to a few bacteria and a relatively small number of 

Received: 24 January 2024

Accepted: 13 October 2024

Published online: xx xx xxxx

 Check for updates

1Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. 2Center for Microbiology, VIB–KU Leuven, Leuven, Belgium. 
3Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium. 4Molecular Systems Biology Unit, European Molecular Biology Laboratory, 
Heidelberg, Germany. 5Department of Bioinformatics, University of Würzburg, Würzburg, Germany. 6Max Delbrück Centre for Molecular Medicine, Berlin, 
Germany. 7Department of Cell Biology and Infection, Institut Pasteur, Paris, France. 8Global Health Institute, School of Life Sciences, École Polytechnique 
Federale de Lausanne, Lausanne, Switzerland. 9Present address: Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, 
Switzerland. 10Present address: European Food Safety Authority, Parma, Italy.  e-mail: camille.goemans@epfl.ch; typas@embl.de

http://www.nature.com/naturemicrobiology
https://doi.org/10.1038/s41564-024-01857-w
http://orcid.org/0000-0001-8239-0353
http://orcid.org/0000-0001-6823-5269
http://orcid.org/0000-0001-6900-6986
http://orcid.org/0000-0003-1434-5176
http://orcid.org/0000-0002-3043-3259
http://orcid.org/0000-0002-5564-1644
http://orcid.org/0000-0002-0797-9018
http://crossmark.crossref.org/dialog/?doi=10.1038/s41564-024-01857-w&domain=pdf
mailto:camille.goemans@epfl.ch
mailto:typas@embl.de


Nature Microbiology

Article https://doi.org/10.1038/s41564-024-01857-w

drug-pair relationships. We independently validated 8.3% (70/840) 
of these interactions by experimental evolution with 91% precision 
(64/70). By integrating all data into a drug-interaction network, we 
examined the monochromaticity (that is, if a given interaction is exclu-
sively XR or CS) and conservation within antibiotic classes, identifying 
antibiotic (classes) with extensive XR or CS interactions. All data are 
available at https://shiny-portal.embl.de/shinyapps/app/21_xrcs. We 
also used the available chemical genetics data to identify the mutations 
driving specific interactions, thereby confirming known and resolving 
new mechanisms. Finally, we showed that newly identified CS pairs used 
in combination could reduce resistance evolution compared with single 
drugs. Overall, we present a systematic framework to accelerate XR and 
CS discovery and mechanism deconvolution, paving the way for the 
development of rationally designed antibiotic combination treatments.

Results
Building a training set of known XR and CS interactions
To build a training set of known XR and CS interactions, we collected 
data from four studies that performed experimental evolution in  
E. coli8,17–19. The majority of interactions (78%; 338/429) were only tested 
in one study. From the 91 antibiotic pairs tested in at least two studies, 
only one-third (n = 30; 20 neutral, nine XR and one CS) was called uni-
formly across studies, whereas 56 were called XR or CS interactions in 
one study but neutral in the other (Fig. 2a). The discrepancy between 
experimental evolution results could be due to several reasons: selec-
tion biases (for example, different selection pressure and number of 
generations used), slightly different criteria used to define XR and CS 
(for example, methods and cutoffs used for fitness-effect measure-
ments), low power to call interactions (limited number of lineages 
tested) and population complexity (resistance or sensitivity assess-
ment is typically done at the population level). We reasoned that most 
discrepancies were probably due to false negatives (interaction missed 
and reported neutral in one study), as studies were undersampling 
the antibiotic-resistance solution space and used different metrics 
to call interactions. For this reason, we designated drug pairs as XR 
or CS if they exhibited an interaction in at least one study, even if they 
were neutral in other(s). In contrast, drug pairs displaying conflicting 

antibiotics8,9,12,16–26. Importantly, experimental evolution probes a lim-
ited number of lineages and a small part of the solution space in terms 
of possible resistance mutations, which strongly depends on the selec-
tion pressure applied. This may lead to inconsistencies when assessing 
drug-pair interactions. Furthermore, experimental evolution leads to 
the acquisition of numerous mutations that make the identification of 
causal resistance mechanisms difficult without additional experiments. 
To facilitate drug susceptibility testing of experimentally evolved strains 
or to dissect the evolved resistance mechanism(s), adaptations to the 
original method have been proposed—for example, automation of 
minimum inhibitory concentration (MIC) measurements26 and pheno-
typic stratification of evolved strains27,28. Although these adaptations 
allow for an increase in the number of lineages, chemicals and interac-
tions probed, the genetic space explored for resistance is limited and 
extensive sequencing, as well as previous knowledge are required to 
identify the causal resistance mechanisms. Here we set out to overcome 
these limitations by developing a predictive framework based on the 
systematic nature of chemical genetics screens.

Chemical genetics involve the systematic assessment of drug 
effects on genome-wide mutant libraries29,30. Such data have been 
previously shown to capture information on drug mode of action, 
resistance and interactions in Escherichia coli31–36. Importantly, chemi-
cal genetics systematically quantify how each gene in the genome con-
tributes to resistance or susceptibility to a large set of drugs (Fig. 1b). 
The similarity between chemical genetic profiles for different drugs has 
been reported to correlate with XR frequency18 and has been used to 
minimize XR between antimicrobial peptides and antibiotics37. Several 
years ago we proposed that such chemical genetics data could be used 
to identify both XR and CS interactions by comparing drug profiles30 
(Fig. 1c), expediting the systematic identification of XR/CS interactions 
and mapping of their underlying mechanisms.

In this study we used available E. coli chemical genetics data31 for 40 
antibiotics (Methods) and explored different similarity metrics to iden-
tify the one that best discerns between known XR and CS interactions. 
We applied this metric to all antibiotic drug pairs therein and discovered 
three times more XR and six times more CS interactions than previ-
ously identified, including the reclassification of 116 previously tested 
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Fig. 1 | Chemical genetics allow for systematic XR and CS assessment. 
 a, Schematic illustration of the conventional way XR and CS drug interactions 
are assessed by experimental evolution. Resistant mutants selected by 
drug 1 are tested for susceptibility to drug 2. The MIC, or 90% inhibitory 
concentration (IC90), of drug 2 is compared with that of the ancestral strain. 
b, Schematic illustration of chemical genetic screens with arrayed libraries. 
Several drugs (drug 1, 2 and so on) are profiled across genome-wide gain-of-
function or loss-of-function mutant libraries. The fitness of each mutant is 

evaluated independently—for example, by measuring colony size. c, XR and 
CS are associated with chemical genetics profile similarity and dissimilarity, 
respectively. The s-score (used as a proxy for fitness) of each deletion mutant 
is plotted for two drugs involved in either XR or CS. If the same mutations make 
cells more resistant or sensitive to two drugs, cells are more likely to evolve 
mechanisms that inhibit or promote these exact processes during evolution and 
become XR to both drugs, whereas the opposite is true for CS.
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responses (that is, XR in one study and CS in another) were excluded 
(n = 5). After comparing drugs for which chemical genetics data are 
available31, we came up with 206 drug pairs (111 neutral, 70 XR and 
25 CS) involving 24 different antibiotics (Source Data Fig. 2), which 
we used as the training set and ground truth for devising a chemical 
genetics-based metric to infer XR and CS relationships. The power of 
chemical genetics is that they probe the impact of loss-of-function 
mutations of each non-essential gene on the resistance or sensitivity 
to many drugs. In the chemical genetics data we used, the drug effects 
on each mutant are represented by s-scores, assessing the fitness of a 
mutant in one condition compared with its fitness across conditions31,38 
(Methods and Supplementary Table 1).

Chemical genetics profile concordance identifies XR and CS
Using our training set, we hypothesized that XR drugs should share 
resistance mechanisms (XR) and thus have concordant chemical genetic 
profiles, as previously suggested for a subset of XR pairs (n = 36)18. The 
opposite should be true for CS pairs, as mutations causing resistance 
to one drug would sensitize cells to another, leading to discordant 

chemical genetics profiles for the two drugs (Fig. 1c). We first tested 
whether different correlation-based metrics from chemical genetics 
data could discriminate between known XR, CS or neutrality (Methods) 
but all performed poorly (area under the curve (AUC) for the receiver 
operating curve (ROC), 0.52–0.67; Extended Data Fig. 1a). We reasoned 
that the noise generated by the high proportion of neutral phenotypes 
in the chemical genetics data31 was compromising performance. To 
overcome this, we used six features based only on extreme s-scores 
per condition: the sum and count of positive concordant s-scores, 
negative concordant s-scores and total discordant s-scores (Methods). 
We then trained decision tree models with these features for each drug 
pair. The trained classifier performed well, with the F1 score, recall, 
precision and ROC AUC consistently exceeding 0.7 (Extended Data 
Fig. 1b). To avoid overfitting of a model based on a suboptimal training 
dataset of XR/CS (Fig. 2a), we aimed to interpret the model instead of 
applying it directly on our test dataset. We learned from decision tree 
attributes (Extended Data Fig. 1c) that the sum and count of concord-
ant negative s-scores are the most informative features, followed by 
the sum of discordant s-scores. In addition, if the count of concordant 
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Fig. 2 | Chemical genetics-derived metric separates well-known XR and CS 
interactions and infers new ones. a, The overlap between published XR and 
CS interactions from four existing datasets8,17–19 is low, even when directionality 
is not taken into account. b, A devised metric derived from chemical genetics 
profile similarity, OCDM, can robustly discern between known XR, CS and neutral 
interactions. False detection rate-adjusted P values were obtained from a two-
sided Mann–Whitney U-test. The box boundaries represent the first and third 
quartiles, with the median indicated. The whiskers extend to the furthest data 
points within 1.5× the interquartile range. c, ROC curves for the classification of 
XR (positive class) versus non-XR (negative class) and CS (positive class) versus 

non-CS (negative class). Each OCDM cutoff represents a point on the curve and is 
associated with a true-positive rate and a false-positive rate. The OCDM cutoffs 
chosen for XR and CS interactions are depicted with a closed circle. d, New 
XR, neutral and CS pairs inferred by chemical genetics using the OCDM cutoff 
expand the currently known XR and CS interactions in E. coli by two- and fourfold, 
respectively. This difference further increases if we take into account drug pairs 
for which the interaction is inferred differently from previous studies (Extended 
Data Fig. 2). Note that known interactions (n = 420 total) include drug pairs for 
which there is no available chemical genetics data.
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negative s-scores was higher than the median count of concordant 
hits across all drug pairs (n = 7), the level of discordance would lose 
importance for classifying interactions. Based on this information we 
came up with the outlier concordance–discordance metric (OCDM), 
which discriminated previously reported CS and XR interactions from 
neutral ones (ROC AUC = 0.76 and 0.73, respectively; Fig. 2b,c, Source 
Data Fig. 2 and Methods), and selected the cutoff for extreme s-scores 
based on the OCDM performance (Extended Data Fig. 1d). We then 
used the OCDM cutoffs (Fig. 2c and Methods) to classify all possible 
interactions between the 40 antibiotics within the chemical genet-
ics data31 (the confusion matrix is shown in Extended Data Fig. 1e). 
This yielded 634 new drug-pair relationships (313 XR, 196 CS and 125 
neutral), expanding the number of known XR and CS interactions by 
two and four times, respectively (Fig. 2d and Supplementary Table 2).

Based on the OCDM, drug pairs were inferred as XR if there was 
high concordance in the mutant profiles despite any discordance sig-
nal. In contrast, CS relationships required not only high discordance, 
but also no concordance signal in the chemical genetics profiles. The 
priority in concordance when defining interactions reflects the fact 
that XR-conferring mutations will dominate over CS mutations when 
a heterogeneous population, evolved in the first drug, is treated with 
a second drug. Overall, our metric does not classify interactions as 
exclusively XR or CS but rather reflects the frequency/strength of 
concordance or discordance of chemical genetics profiles of thou-
sands of gene knockout mutants. In terms of previously measured 
drug pairs (n = 206), our metric agreed with 90 and disagreed with 
116 of the previously identified interactions. 85/116 were previously 
identified as neutral interactions (Extended Data Fig. 2a–c) and we 
reasoned that these may be potential false negatives—akin to what 
was observed when comparing drug pairs across studies (Fig. 2a). This 
increased the total number of inferred drug-pair relationships to 840 
(404 XR, 267 CS and 169 neutral) and expanded the number of known 
XR and CS interactions by three and six times, respectively (Extended 
Data Fig. 2d). A user-friendly Shiny app available at https://shiny-portal.
embl.de/shinyapps/app/21_xrcs allows the user to browse the XR and 
CS interaction data per drug pair, class-based pair or genes of interest 
and includes views of drug class interactions.

Chemical genetics-based metric accurately infers XR and CS
To benchmark our chemical genetics-based metric (OCDM) and cutoff 
decisions, we selected a subset of 38 newly inferred and 32 previously 
tested drug pairs (for 21/32, we predicted a different interaction than 
one previously reported) and measured their interactions using experi-
mental evolution. In our setup we evolved resistance to 23 antibiotics 
in 12 lineages for up to about 50 generations (population bottleneck, 
approximately 2 × 106 cells; Methods) and tested resistant lineages for 
changes in susceptibility to a second antibiotic (Supplementary Table 3, 
Fig. 3a and Methods). Drug pairs were chosen to cover a wide OCDM 
range and to have low initial MICs to be able to evolve several-fold resist-
ance. The number of antibiotic pairs belonging to the same chemical 

class was limited (n = 3) to avoid inflating the prediction accuracy of 
XR predictions, as same-class drug pairs are likely to share resistance 
mechanisms. Evolving resistance to both drugs of each pair allowed 
us to assess the (bi)directionality of interactions, something that the 
OCDM score cannot assess. By definition, XR interactions are bidirec-
tional and failure to detect them in both ways in experimental evolution 
experiments exemplifies the limitations of the method. In contrast, 
CS interactions can be directional, as resistance mechanisms for each 
drug of the pair can be different and not bear a fitness cost to the other 
drug. Hence, most of the previously detected CS pairs have been uni-
directional. To decrease false negatives (that is, the failure to detect an 
interaction), we evolved resistance to a large number of lineages (n = 12), 
probed interactions in both directions and avoided strict cutoffs on the 
number of lineages required to exhibit an interaction to call drug pairs 
CS or XR (one was enough). As in our OCDM score, we considered XR 
interactions dominant to CS and non-monochromatic drug pairs (with 
lineages exhibiting both XR and CS) were deemed to be XR.

In total, we validated all but six of the inferred interactions, which 
amounts to a validation rate of 91.4%. Not only did we confirm all inter-
actions for which previous studies and our metric agreed (n = 11) but 
also 18/21 interactions for which our predictions contradicted previous 
studies (Fig. 3b–d). This implies that several more of the 116 interac-
tions that the OCDM metric classified differently from previous reports 
may be correct (Extended Data Fig. 2a–d). This high validation rate 
could be positively influenced by loss-of-function mutations typically 
dominating short evolution experiments, as the one we performed 
here (50 generations), and the OCDM score being based on chemical 
genetics data of an E. coli single-gene deletion library. To test whether 
longer experimental evolution would influence precision, we continued 
the evolution for a subset of drugs for 100 generations and probed 14 
drug pairs for XR and CS, including three drug pairs that our shorter 
evolution experiment could not validate. Eleven of the 14 interactions 
agreed with the chemical genetics-based inferences despite individual 
lineages changing interactions with time and overall CS interactions 
decreasing during longer evolution (Extended Data Fig. 2e). Overall, 
chemical genetics could capture the results of experimental evolution 
regarding XR and CS well, although observed frequencies change with 
duration and strength of selective pressure.

The four published studies contained only 25 CS interactions. 
Here we inferred and validated 23 further CS interactions as well as 
two known ones (Fig. 3b). The majority of the validated CS interac-
tions (n = 19/25) were bidirectional. The two non-monochromatic 
interactions that exhibited single instances of XR were classified as 
XR per our definition (Fig. 3b). This illustrates the power of chemical 
genetics to identify new CS interactions, especially the rare bidirec-
tional ones, which are the most promising for cycling/combination 
therapies8–15. In contrast to CS drug pairs, about one-third of the tested 
XR pairs (n = 11/38), including those that were previously known, were 
non-monochromatic (Fig. 3d)—that is, some evolved lineages were sen-
sitive, instead of resistant, to the second antibiotic. We failed to detect 

Fig. 3 | Inferred XR and CS interactions are validated with high accuracy 
by experimental evolution. a, Schematic of benchmarking conducted for 70 
drug pairs by experimental evolution and IC90 measurements. Twelve lineages 
were evolved in parallel for five passages in increasing concentrations of 23 
antibiotics. At each passage, the culture growing at the highest concentration 
was transferred to a new antibiotic gradient. The IC90 of the final resistant 
population was then measured for all lineages in the relevant antibiotics. 
b–d, Heatmaps of 70 new and known drug-pair interactions, split depending 
on whether they were inferred as CS (b), neutral (c) or XR (d). Interactions were 
tested in both directions, with the drug for which selection occurred shown first 
and the drug for which MIC/IC90 was tested shown second. In each interaction, 
all tested lineages are shown (n = 9–12). Coloured boxes denote the interaction 
observed for a given lineage. The three columns on the right of the lineage 
results represent the summary for all lineages. We considered an interaction as 

validated if the log2-transformed IC90 fold change was >1 for XR and <−1 for CS 
in any direction tested for at least one lineage compared with the wild type. An 
interaction of a drug pair was deemed to be XR if there was at least one lineage 
showing XR despite any CS for other lineages. Interaction monochromaticity 
(that is, whether the interaction is exclusively CS or XR; neutral lineages do not 
affect this call and were labelled as not applicable (N/A)) and directionality (drug 
pair interacting consistently in both directions) are shown. Interactions referred 
to as reclassified in the text are those for which our inference and validation 
agree but previous reports have reported differently. The interaction in red (least 
monochromatic interaction) is used in Fig. 5 to understand the mechanisms in 
play. The interactions in bold are used later in Fig. 6 to test resistance evolution in 
drug combinations. The interaction in italics (drug pair 14), which was conflicting 
across studies (XR in one study and CS in another), has been inferred and 
validated to be CS.
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the expected bidirectionality in nine XR cases and failed to detect the 
interaction after 50 generations of experimental evolution in four fur-
ther cases (Fig. 3c); however, we detected the XR interaction for three 
out of four cases after 100 generations (Extended Data Fig. 2e). Overall, 

the discovery of XR/CS using evolution experiments strongly depends 
on the experimental design and, given that frequencies change with 
experimental setup, calls are sensitive to strict thresholds and low 
numbers of lineages probed.
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Fig. 4 | CS and XR interactions between and within antibiotic classes. 
a, Interactions between members of the same antibiotic class (within class) are 
exclusively inferred as XR. The within-class group includes classes with more 
than one member probed—that is, β-lactams, aminoglycosides, quinolones, 
macrolides, tetracyclines and sulfonamides. b, Overview of all inferred and 
known drug interactions in E. coli at the class level. When a class has only one 
representative the antibiotic is named and shown in grey. The heat map sums XR 
and CS interactions across drug classes inferred by the OCDM metric. Within-
class interactions are not displayed in the plot but are all exclusively classified 
as XR. Antibiotics are grouped according to their modes of action. Dot size 
represents the count of interactions between classes (or single antibiotics). 

c, Coherency of interactions of each class with all other classes—that is, if all 
members of the class interact the same with other classes—calculated as the 
sum of the absolute differences between the number of XR and the number 
of CS interactions with each other class normalized to the number of drugs in 
the class. The higher the number, the more coherently the class is behaving. 
d, Interaction preference of each class (single- or multi-membered), calculated as 
the log2-transformed ratio of the number of CS and XR interactions with all other 
antibiotics from other classes. Antibiotic classes with a ratio of >0 are considered 
predominantly CS (n = 8), whereas those with a ratio of <0 as predominantly 
XR (n = 12). Antibiotic classes in bold are classes with more than one antibiotic 
tested.
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Antibiotic classes with extensive XR or CS
In contrast to other studies looking into CS and XR, where mostly 
one antibiotic per class is tested, here we could assess antibiotic class 
behaviours, as for some classes, several members were profiled in the 
chemical genetics data31. Antibiotics from the same class exhibited 
exclusively XR interactions, as they largely shared the mode of action 
and mechanisms of resistance (Discussion). In contrast, as previously 
reported39, antibiotics of different chemical classes exhibited both XR 
and CS interactions (Fig. 4a), the former often driven by promiscuous 
resistance mechanisms (for example, efflux pumps) and the latter by 
mutations that lead to modifications of the outer-membrane compo-
sition (Extended Data Fig. 3). We next investigated whether antibiotic 
classes behaved coherently, that is, whether members of two classes 
interacted predominantly in the same way. Although this was true for 
antibiotic classes with members that share cellular target(s) and/or 
transport mechanisms (for example, tetracyclines and macrolides), 
this was less the case for classes with distinct targets (β-lactams) or 
transport mechanisms (quinolones of different generations; Fig. 4c). 
Interestingly, protein synthesis-inhibitor classes did not only act coher-
ently but also exhibited mostly XR interactions between them (Fig. 4b), 
with the exception of aminoglycosides, which are known to be CS with 
drugs of different classes8,17,19.

Besides aminoglycosides, the only other class reported to be 
enriched in CS interactions are polymyxins8,17. In addition to these 
two classes and nitrofurantoin, for which CS interactions have been 
reported before17, we identified sulfonamides and several single 
drugs (fosfomycin, rifampicin and tunicamycin) with extensive CS 
interactions (Fig. 4b,d). Sulfonamides were largely CS to macrolides 
and β-lactams, driven by lipopolysaccharide (LPS)- and nucleotide 
biosynthesis-related mechanisms (Fig. 4b and Extended Data Fig. 3a). In 
contrast, protein-synthesis inhibitors (apart from aminoglycosides) were 
enriched in XR interactions, probably because of shared efflux resistance 
mechanisms (AcrAB–TolC; Fig. 4b,d and Extended Data Fig. 3b).

Chemical genetics unravel CS and XR mechanisms
Understanding the mechanisms of XR and CS interactions from 
sequences of experimentally evolved strains is challenging, as passen-
ger mutations occur in parallel to the causal mutation(s), and indirect 
mutations can also affect the expression/activity of causal resistance 
elements. The situation is even less obvious for CS interactions, for 
which very few mechanisms are known to date7,17,19,26. Chemical genet-
ics make it easier to disentangle causality as all genes contributing to 
resistance or sensitivity to a certain drug are identified. To explore this, 
we first investigated how known CS interactions were represented in 
chemical genetics. For example, the decrease in proton motive force 
across the inner membrane decreases aminoglycoside uptake and 
makes cells more resistant to aminoglycosides, but also collaterally sen-
sitive to drugs whose efflux is driven by proton motive force-dependent 
pumps, such as AcrAB–TolC17,19. Mutations in trkH, which encodes a 
proton-potassium symporter, were previously shown to cause this 
phenotype, in particular for the CS interaction between the amino-
glycoside tobramycin and nalidixic acid or tetracycline17,39. The trkH 

mutant, as well as mutants in subunits of the respiratory complexes17,39, 
indeed exhibited discordant s-scores for these known CS drug pairs in 
chemical genetics (Extended Data Fig. 4a). Using the same logic, we 
tried to deduce the unknown mechanism of the recently described 
CS interaction between cefoxitin and novobiocin26. Genes involved in 
adding polarity to the LPS core—waaG, waaP and waaQ—were strongly 
discordant for this drug pair, leading to cefoxitin resistance and novo-
biocin sensitivity (Extended Data Fig. 4b). The outer-membrane pen-
etration of novobiocin, a large lipophilic antibiotic, is known to be 
affected by LPS modifications40,41. At the same time, these mutations 
lower the levels of the outer-membrane porins OmpC and OmpF42, 
allowing less cefoxitin and other cephalosporins to enter the cell43.

Drug interactions can be non-monochromatic, as multiple resist-
ance mechanisms exist for a given drug. Given that chemical genetics 
systematically explore the mutational space (of single loss-of-function 
mutations), we assumed that they should capture the dynamics of such 
interactions better. To assess this, we focused on XR drug pairs that exhib-
ited non-monochromaticity in our validation experiment (n = 11/38; 
Fig. 3d). Antibiotic pairs with non-monochromatic XR interactions 
exhibited significantly stronger discordance scores in chemical genet-
ics than drug pairs with monochromatic XR (P = 1.00 × 10−5; Extended 
Data Fig. 4c). Hence, chemical genetics can capture monochromaticity 
of XR interactions and potentially identify the antibiotic pairs that can 
evolve both XR and CS relationships (Extended Data Fig. 4d–g). We then 
investigated the most non-monochromatic pair in more detail, that is, 
tetracycline and azithromycin, which showed XR, CS and neutral interac-
tions in four, six and two lineages, respectively (Fig. 3d). For each of our 12 
tetracycline-evolved lineages, we measured changes in susceptibility to 
both antibiotics at each of the ten passages (Fig. 5a and Methods). Almost 
all lineages exhibited increased neutrality with time and as resistance to 
tetracycline increased, except for three lineages (lineages 1, 4 and 12), 
which evolved low resistance to tetracycline and remained CS to azithro-
mycin (Fig. 5a). First, and as noted earlier, this could partially explain the 
low rates of CS and XR discovery in previous studies (Fig. 2a), given that 
XR and CS is typically assessed using final populations with high resist-
ance to one drug. Second, it suggests that with time cells evolve more 
specific resistance mechanisms—for example, target- compared with 
intracellular concentration-related mechanisms.

To understand the mechanisms driving changes in the tetracy-
cline–azithromycin relationship over time, we sequenced all 12 lineage 
populations from days 3, 5 and 7 (Extended Data Fig. 5). Lineages with 
neutral interactions carried either point mutations in tetracycline 
target genes (for example, lineage 3 with rpsJ V57L, coding for the S10 
ribosomal protein44) or a combination of CS and XR strains in the popu-
lation (for example, linage 7 with mutations in hldE and marR; Fig. 5a 
and Extended Data Fig. 5). Mutations in marR, which encodes a repres-
sor of efflux pumps in E. coli and is a known modulator of antibiotic 
resistance45,46, were behind all XR interactions observed in different lin-
eages (lineages 2, 5, 7 and 10; Fig. 5a and Extended Data Fig. 5). This was 
consistent with marR deletion (ΔmarR) increasing resistance to both 
drugs in chemical genetics data (Fig. 5b). In contrast, all lineages with 
stable and strong CS interactions had promoter or deletion mutations 

Fig. 5 | Chemical genetics recapitulate the dynamics and explain the 
mechanisms of non-monochromatic interactions. a, Changes in azithromycin 
susceptibility during the evolution of 12 lineages in tetracycline (100 generations, 
Methods). Resistance levels of 12 lineages to both antibiotics are shown for days 
2, 3, 5, 7 and 10. Lineages are grouped according to whether they exhibited CS, 
neutrality or XR on day 5 (same as Fig. 3d). Dashed lines indicate the neutral 
threshold. b, Chemical genetic profiles of the E. coli deletion library in tetracycline 
and azithromycin31. Mutants with concordant (XR-related) and discordant 
(CS-related) profiles are highlighted. Dots in grey represent mutants that do not 
have s-scores within the 3% extreme cutoff for both drugs. Lines at x = 0 and y = 0 
are shown to separate concordant and discordant zones of the plot. c, Mutations 
of lineage 11 during evolution. Genome sequencing of the lineage population 

reveals a succession of two point mutations in genes that both lead to CS—first 
in hldE, which is then replaced by mutations in waaF, a slightly less detrimental 
gene for azithromycin resistance according to chemical genetics data in b. For the 
other 11 lineages see Extended Data Fig. 5. d, The fold change in tetracycline and 
azithromycin IC90 of knockout mutants compared with the wild type confirms 
that both hldE and waaF contribute to resistance to tetracycline and sensitivity to 
azithromycin, whereas ompF deletion leads only to resistance to tetracycline; n = 6 
biological replicates. e, Tetracycline uptake is reduced in a waaF deletion (ΔwaaF) 
mutant. Tetracycline fluorescence was measured in cell pellets and the signal 
was normalized to the optical density at 600 nm (OD600nm); n = 3–6 biological 
replicates. d,e, Data are the mean ± s.e.m. f, OmpF, a major tetracycline importer, 
is the most downregulated protein in ΔwaaF42. FC, fold change.
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in waaD (Extended Data Fig. 5), one of the most sensitive mutants 
to azithromycin and resistant to tetracycline in chemical genetics 
data31,47 (Fig. 5b). Lineages that were initially CS but became neutral 
(lineages 8, 9 and 11) carried initially strong CS mutations on waaD or 
hldE (both are involved in synthesis of the ADP–heptose precursor of 
core LPS), which were then replaced by strains with mutations in genes 
with milder CS or XR phenotypes, such as waaF and marR (Fig. 5b,c 
and Extended Data Fig. 5). We confirmed the slightly milder CS (lower 
azithromycin sensitivity) for the waaF deletion mutant (ΔwaaF), a 
gene encoding a protein that adds the second heptose sugar to the 
LPS inner core, compared with the hldeE and waaD deletion mutants 
(Fig. 5d). We postulated that the increased tetracycline resistance 
of all LPS core mutants is due to reduced uptake compared with the 
wild type and confirmed this by measuring intracellular tetracycline 
fluorescence in ΔwaaF cells (Fig. 5e and Source Data Fig. 5e). This 
lower intracellular tetracycline concentration is probably due to low 
OmpF levels in ΔwaaF cells (Fig. 5f)42, as OmpF is the major tetra cycline 
importer43,48,49. This is in agreement with chemical genetics data, 
where ΔompF is tetracycline-resistant but not azithromycin-sensitive 
(Fig. 5b,d). Hence, loss-of-function mutations in waaF (or in other LPS 
core genes such as hldE, waaD and waaP) reduced the OmpF levels in 
the outer membrane and increased tetracycline resistance. At the same 
time, cells became more sensitive to azithromycin (and macrolides) 
because their outer membrane became less polar and thereby more 
permeable to hydrophobic antibiotics50.

Overall, we confirmed that chemical genetics data can pinpoint 
CS and XR mechanisms that emerge and get selected during experi-
mental evolution, thereby helping us to rationalize the dynamics of 
non-monochromatic antibiotic interactions.

Combining CS antibiotic pairs reduces resistance evolution
Combination, sequential use and cycling of CS drug pairs reduce the 
rate of resistance evolution8–15 and re-sensitize resistant strains16 in 
laboratory settings. This has also been observed for a Pseudomonas 
aeruginosa infection in clinics23. Considering the therapeutic poten-
tial of CS antibiotic combinations, we tested the degree to which our 
newly identified CS pairs reduced resistance evolution in combina-
tion when compared with single drugs (Fig. 6a). We selected four CS 
pairs, two neutral pairs and one XR pair involving nine antibiotics. 
We evolved seven E. coli lineages to single drugs or combinations 
(using a 1:1 ratio compared with drug MICs) for seven days and meas-
ured the IC90 of the evolved populations (Fig. 6a and Methods). For 
each antibiotic combination, we calculated 2,401 evolvability indices  
(74 combinations), that is, the degree by which resistance to any of 
the single drugs increases (log2(evolvability index) > 0) or decreases 
(log2(evolvability index) < 0) in the drug combination (Methods)21. 
As expected, lineages evolved in the presence of the ceftazidime– 
ciprofloxacin XR combination reached higher resistance to each drug 

compared with lineages evolved with single antibiotic treatments 
(Fig. 6b and Source Data Fig. 6). In contrast, most lineages treated 
with CS or neutral combinations evolved lower resistance than those 
treated with single antibiotics (Fig. 6b). The strongest reduction in 
resistance evolution occurred for combinations of bidirectional CS 
pairs (Figs. 3c and 6b). For example, six of seven lineages evolved 
full resistance towards mecillinam alone (256-fold increase in MIC), 
whereas the combination of mecillinam with nitrofurantoin or levo-
floxacin led to almost no mecillinam resistance (average fold change 
in IC90 < 2). For the cefoxitin–levofloxacin pair, resistance evolved 
in combination was lower just for cefoxitin (Fig. 6b and Extended 
Data Fig. 6), despite the pair showing bidirectional CS during experi-
mental evolution (Fig. 3c). Together, we demonstrate that reciprocal 
CS antibiotic pairs hold a great potential for diminishing resistance 
evolution when used in combination.

a

b

D1

D7

[Drug 1]

7x
 li

ne
ag

es

[Drug 1 + 2] [Drug 2]

G
ro

w
th

[Drug 1]
IC90 IC90

G
ro

w
th

IC90 IC90

[Drug 2]

M
ec

ill
in

am
 a

nd
 n

itr
of

ur
an

to
in

M
ec

ill
in

am
 a

nd
 le

vo
flo

xa
ci

n

G
en

ta
m

ic
in

 a
nd

 c
ip

ro
flo

xa
ci

n

C
ef

ox
iti

n 
an

d 
le

vo
flo

xa
ci

n

G
en

ta
m

ic
in

 a
nd

 c
ef

ox
iti

n

G
en

ta
m

ic
in

 a
nd

 a
zi

th
ro

m
yc

in

C
ef

ta
zi

di
m

e 
an

d 
ci

pr
of

lo
xa

ci
n

lo
g 2(

ev
ol

va
bi

lit
y 

in
de

x)

n = 2,401 for each violin plot

XRCS Neutral

–8

–6

–4

–2

0

2

4

6

Fig. 6 | Combinations of reciprocal CS antibiotic pairs reduce resistance 
evolution. a, Experimental design. After evolving resistance to single antibiotics 
or their combination (seven lineages for each, passaged every 24 h for 7 d; 70 
generations in total), the IC90 of both antibiotics was determined for the evolved 
mutants. In each passage mutants growing (coloured yellow) at the highest 
concentration (well marked by a thick circle) were transferred (Methods). b, The 
measured IC90 values were used to calculate the evolvability index (equation (2), 
Methods; data using slightly different original evolvability indices (equation 
(3), Methods) in Extended Data Fig. 6a). The red line represents the cutoff 
(log2(evolvability index) = 0; the evolvability index was log2-transformed to 
make data symmetrical) below which the antibiotic pair is considered to reduce 
resistance evolution compared with single antibiotics. Red dots on the violin plots 
represent the median. The box boundaries represent the first and third quartiles, 
with the median indicated. The whiskers extend to the furthest data points within 
1.5× the interquartile range. Non-XR antibiotic combinations led to lower collective 
resistance and in the case of reciprocal CS to lower evolvability indices and lower 
resistance to each of the antibiotics combined (Extended Data Fig. 6b).
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Discussion
A better understanding of how resistance to one antibiotic limits treat-
ment with others (XR) or opens new opportunities (CS) is imperative 
in the context of the ongoing antimicrobial resistance crisis. In the 
last decade such drug interactions have been assessed for several 
pathogens8,12,16–18,21–25,51. However, the main detection method, experi-
mental evolution, has limitations. First, it has low sensitivity, which 
leads to different studies reporting different interactions for the same 
drug pairs in the same species (Fig. 2a). This is because only limited 
numbers of lineages and resistance mechanisms are probed. What 
further augments the problem is that resistance mechanisms largely 
depend on the amount and time of selective pressure applied, as we 
show for the tetracycline–azithromycin pair (Fig. 5a) and for the 13 
further drug pairs probed for both 50 and 100 generations (Extended 
Data Fig. 2e). In addition to these inherent limitations each study uses 
different selection pressures, metrics and number of lineages to assess 
interactions. Although within-species comparisons are possible when 
the metric and selection pressure are standardized52, cross-species 
comparisons become challenging as it is unclear whether the dif-
ferences in interactions stem from biological (different resistance 
mechanisms) or technical reasons (false negatives, more difficult to 
standardize selective pressure across species). Second, experimental 
evolution is laborious and limits the number of drug pairs that can be 
tested. As a result, the monochromaticity of interactions (especially 
for drug classes) has been challenging to assess properly in the past. 
Last, it is very hard to identify the underlying mechanism for CS and 
XR interactions by only sequencing resistant lineages and without 
additional tailored experiments.

By assessing the impact of thousands of individual mutations at 
once on resistance or sensitivity to different drugs, chemical genetics 
can bypass most of these limitations. As we show here chemical genetics 
offer a way to systematically and quantitatively assess all chromosomal 
resistance mechanisms (independent of selective pressure) and can 
dramatically increase the throughput of bacterial species and drugs 
tested. In addition, it can provide insights into how monochromatic or 
conserved such interactions are as well as a basis to dissect the driving 
mechanisms. As proof-of-principle we focused on published chemical 
genetics data from E. coli31 because of the large number of antibiotics 
screened at different concentrations and the extensive benchmark-
ing. In the future similar analyses can be expanded to other available 
datasets in the same or other species34,47,53–56, but the OCDM metric 
may need to be fine-tuned and/or retrained, especially if the fitness 
metric and dynamic range of the data are different. Such datasets will 
inevitably increase with time as genome-wide mutant libraries are 
becoming available for tens of species and even more strains57,58; these 
can be arrayed or pooled29,59 and constructed by targeted deletions60–62, 
transposon insertions59,63 or CRISPRi knockdowns53,64. Including such 
libraries will allow probing of the role of essential genes and/or gene 
overexpression when mapping antibiotic resistance and XR/CS rela-
tionships. An obvious limitation of our current metric is that it is based 
on single loss-of-function (deletion) mutations of non-essential genes. 
During evolution (in the laboratory or in patients) resistance does not 
only arise by frequent loss-of-function mutations in non-essential 
genes but also by less frequent gain-of-function mutations (via point 
mutations, insertions or duplications) and by mutating essential genes 
(for example, antibiotic target). Moreover, epistatic relationships 
between multiple mutations can affect both resistance and XR/CS 
to other drugs. As global epistasis maps65 become more common in 
bacteria in the future, such data could make XR and CS inferences 
even more robust.

In this study we devised an approach and metric to map CS and XR 
in E. coli using available chemical genetics data for 40 antibiotics. We 
thereby increased the number of known interactions by several-fold, 
validated previous conflicts in literature and proposed different interac-
tions for 116 drug pairs reported mostly neutral (n = 85) by single studies 

before (18 were further validated by experimental evolution). Beyond 
this we obtained unique insights into within-class interactions, unravel-
ling that all antibiotic classes are dominated by XR interactions between 
their members. Although this is largely expected, some classes have 
members with non-overlapping targets and/or resistance mechanisms. 
Specifically for β-lactams, their use in combination has been reported 
to constrain resistance evolution during fast-switching regimens66 or 
for specific pairs and resistance mechanisms67. Moreover, we identified 
many new bidirectional CS interactions and used a handful to show that 
the evolution of antibiotic resistance to combinations of such antibiotics 
is harder. In the past evolutionary variability and non-monochromaticity 
of CS interactions has been identified as a bottleneck for their use in 
clinics68,69. It remains to be seen if the ability to identify monochromatic 
and bidirectional CS drug pairs alleviates some of these limitations. 
Finally, we mechanistically rationalized CS interactions and explained 
why some drug interactions can be non-monochromatic. In the case 
of tetracycline–azithromycin, the mechanisms that played a role in 
experimental evolution were a small subset of the possible mechanisms 
revealed by chemical genetics. This is probably because only 12 lineages 
were probed but also likely to be due to the fitness costs of some of 
these resistance mechanisms. Interestingly, the interaction changed 
non-monotonically over time and longer/stronger selection on one 
drug (tetracycline) led to more neutral interactions with the second 
drug (azithromycin). This means that long-term, bacterial populations 
may opt for target mutations or low/neutralized fitness-cost resistance 
mechanisms, neutralizing also CS/XR interactions. Hence, fast-switching 
or combinatorial treatments may be more efficient than sequential 
antibiotic treatments for CS drug pairs.

The increased ability to map XR and CS interactions between 
drugs opens the path for future expansion of such endeavours to 
non-antibiotics with antibacterial or adjuvant activity70–72 and to prob-
ing interactions in different environments—such as in bile, different 
pHs73, urine media, biofilms74 or gut microbiome communities—as 
fitness costs are known to change with the environment75. Moreover, 
the systematic nature of chemical genetics limits false negatives and 
metric biases and can allow for comprehensive comparisons across 
species and strains using corresponding genome-wide mutant librar-
ies. Cross-species studies have been conducted previously to map drug 
synergies and antagonisms35,76. Knowledge on how drugs interact at 
multiple levels—resistance evolution, efficacy, long-term clearance 
effects77 and host cytotoxicity—will open the path for designing better 
combinations for the clinical setting.

Methods
Data sources and preprocessing
The E. coli chemical genetics data were obtained from a previous 
study31 in which the fitness of 3,979 non-essential single-gene knock-
out mutants and essential gene hypomorphs was evaluated in 324 
different conditions (114 unique stresses and drugs tested in different 
concentrations). Fitness effects were quantified as s-scores, that is, a 
modified t-statistic on the deviation of the colony size of one mutant 
in one condition from the median colony size of the mutant across all 
conditions38,78. We reprocessed the data to exclude the following: (1) 
strains from the hypomorphic mutant collection and mutants that 
had ≥10 missing values for the conditions, reaching a final number of 
3,904 mutants, and (2) environmental stresses (for example, different 
temperatures, pH, heavy metals, amino acids, dyes and alternative 
carbon sources), non-antibiotic drugs and drug combinations. Anti-
biotics with a narrow range of s-scores (no extreme s-scores, that is, 
<−6.9 or >3.9) were also excluded from the analysis (n = 7). This left us 
with 40 antibiotics that were further used in this study (Supplementary 
Table 1). For those antibiotics tested in multiple concentrations, the 
highest was selected.

Previously reported XR and CS interactions were collected from 
four studies. Lazar and colleagues17,18 measured XR and CS in E. coli 
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BW25113 using 12 antibiotics where interactions were defined based 
on a difference of at least 10% in the growth of more than 50% evolved 
lineages compared with control lineages. Oz and colleagues19, and 
Imamovic and Sommer8 compared the MICs of evolved populations 
with the wild type to define XR and CS in E. coli MG1655 using 22 and  
23 antibiotics, respectively. We kept the original definitions and assess-
ments of XR and CS used in the respective studies. When integrat-
ing these datasets, interactions of overlapping antibiotic pairs were 
annotated as ‘XR and neutral’, ‘CS and neutral’, ‘XR and CS’ and ‘XR and 
CS and neutral’ if conflicting interactions were observed in different 
studies. Interactions with ‘XR and CS’ and ‘XR and CS and neutral’ anno-
tations were removed (n = 6) and ‘XR and neutral’ and ‘CS and neutral’ 
were re-annotated as ‘XR’ and ‘CS’, respectively, because evolution 
experiments are prone to false negatives. Directionality was reduced 
(keeping drug 1–drug 2 but removing the reciprocal) by removing one 
pair (if XR/CS was bidirectional) or the ‘neutral pair’ (if the interaction 
was unidirectional). After the preprocessing steps, only conditions 
for which chemical genetics data were available were selected as the 
training set (n = 24), amounting to 111 neutral, 70 XR and 25 CS drug-pair 
relationships (Supplementary Table 3).

Assessment of correlation metrics
Given that the first attempts at combining chemical genetics profiles 
and XR/CS interactions found associations between the chemical 
genetics profile similarity and XR/CS17,18, we assessed several correla-
tion methods from SciPy (v1.12.0)79 to compute various correlation 
coefficients between two drugs (drugs 1 and 2; Extended Data Fig. 1a). 
The correlation functions were applied to drug pairs with known inter-
actions for which chemical genetics data are available. For each drug 
pair in this dataset, the correlation coefficient was computed using the 
four methods (Pearson, Spearman, Kendall’s tau and weighted tau). We 
plotted ROC curves to evaluate the performance of the computed cor-
relation coefficients in distinguishing between interaction types (XR 
(n = 70) versus non-XR (n = 136) and CS (n = 25) versus non-CS (n = 181)). 
The correlation coefficients served as the predictor values and the 
interaction types (either XR or CS) were the true labels. The ROC AUC 
was computed for each correlation method (Extended Data Fig. 1a).

Feature generation and interpretation of decision trees
For each condition in the chemical genetics data, 3% extreme positive 
and negative s-scores were chosen after assessment of different cutoffs 
(Extended Data Fig. 1d). Six features were generated by antibiotics 
pairwise calculation: sum of positive concordant s-scores, sum of nega-
tive concordant s-scores, sum of discordant s-scores, count of posi-
tive concordant s-scores, count of negative concordant s-scores and 
count of discordant s-scores. Using these features, machine-learning 
algorithms (based on decision trees80) were used and models were 
trained to classify XR (n = 70) versus non-XR (n = 136) and CS (n = 25) 
versus non-CS (n = 181).

To address the class imbalance, the minority class was oversam-
pled to match the size of the majority class. A search space for hyper-
parameters was defined for the decision tree classifier, including the 
function to measure the quality of a split, the maximum depth of the 
tree, the minimum number of samples required to split an internal node 
and the minimum number of samples required to be at a leaf node. A 
fivefold grid search cross-validation always excluding the test set from 
the training set, stratified to maintain the same proportion of the target 
class as the entire dataset, was used to find the best hyperparameters 
for the decision tree classifier based on the F1 score. The resulting 
classifier was trained and again evaluated on the balanced dataset 
using cross-validation. The best classifier according to the F1 score, 
precision, recall and ROC AUC was then fitted to the balanced dataset.

The trained decision tree classifier was graphed, showing the deci-
sion paths and splits. The tree visualization was limited to a depth of 
three for clarity (Extended Data Fig. 1c). We learned from decision tree 

classifiers that if the count of concordant negative s-scores was higher, 
the level of discordance was not important to classify interactions. The 
sum and count of concordant negative s-scores were found to be the 
most important features, followed by the sum of discordant s-scores. 
This information was used to generate the OCDM metric, described 
in detail in the following section. Classifier training, hyperparameter 
tuning and visualization were implemented using the scikit-learn 
package (v1.1.3)81.

Metric generation and interaction measurement
Among the correlation methods, six chemical genetics-derived fea-
tures and their engineered combinations, we identified the OCDM as 
the best metric to separate statistically significantly XR, neutral and 
CS interactions (Fig. 2c). The OCDM metric is defined as the differ-
ence between the sum of concordant s-scores and the sum of discord-
ant s-scores if the count of concordant s-scores (NC) is lower than the 
median count as shown below. Otherwise, OCDM is simply the sum of 
concordant s-scores.

OCDM = {
∑C −∑D , ifNc < medianNc
∑C , else

(1)

where C represents concordant s-scores and D represents discordant 
s-scores. To identify optimal threshold determination (cutoffs) of 
OCDM, the false-positive (FPR) and true-positive (TPR) rates were used 
to calculate the true factor (TF = TPR − (1 − FPR) = sensitivity − specific-
ity), which was computed for each threshold. This threshold represents 
the best trade-off between sensitivity (TPR) and specificity (1 − FPR), 
which are >105.159057 (to define XR) and <27.224792 (to define CS).

All data analyses were performed in Python (v3.9.17).

Bacterial strains and growth conditions
For all experiments, and unless otherwise specified, E. coli (strain 
BW25113) or single-gene knockouts in this strain60 were cultured in LB 
Lennox broth (tryptone 10 g l−1, yeast extract 5 g l−1 and sodium chloride 
5 g l−1) at 37 °C and fully aerobically (850 rpm) or on agar (2%) plates 
(same medium and temperature).

MIC (IC90) determination
Overnight cultures of E. coli BW25113 were diluted to OD600mn = 0.001 
and cultured with antibiotics (Supplementary Table 1) at eight con-
centrations in a twofold dilution gradient, in two technical replicates 
in microtiter plates (U-bottomed 96-well plates; Greiner Bio-One, 
268200) at 37 °C with continuous shaking (850 rpm; orbital micro-
plate shaking). The plates were sealed with breathable membrane 
(Breathe-Easy; Sigma-Aldrich, Z380059-1PAK) and the OD600nm was 
measured every 30 min for 24 h using the BioTek Gen5 (v3.02.2) and 
SoftMax Pro 7.1 software. The liquid handler Biomek FX (Beckman Coul-
ter) was used to prepare plates. All MIC tests were performed in a total 
volume of 100 µl per well. Controls included ‘no cell + no drug’ controls 
to assess contamination, ‘no drug’ controls to assess maximal growth 
and ‘no cell’ controls to assess artefacts (OD600mn change) of the drugs 
alone or their interaction with medium components. The AUC was 
calculated using the simps function from SciPy (v1.12.0)79 and divided 
by the no drug control. Across the study, the MICs were defined as the 
IC90, which was calculated using the drc (v0.5.8) package in R (v.4.1.2)82.

Experimental evolution and XR/CS measurements
Overnight cultures of wild-type E. coli were diluted 1:1,000 and exposed 
to eight concentrations—from 0.5× IC90 to 64× IC90—of 23 antibiotics 
in 12 lineages using the same volumes and plates as for MIC determi-
nation. Every 24 h the lineages growing in the highest concentration 
(OD600nm > 0.3) were back-diluted to OD600nm = 0.01 and the volume 
needed to reach a final dilution of 1:1,000 (3–10 µl) was transferred 
to the next plate with the same concentration gradients. Once the 
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evolution experiment was completed (five passages for a total of five 
days; approximately 50 generations in total), the lineages were tested 
for antibiotic susceptibility for 70 of the 634 predicted interactions 
(11%; 30 novel XR, eight known XR, 25 novel CS, two known CS, four 
novel neutral and one known neutral interaction; Fig. 3b–d and Source 
Data Fig. 3). The IC90 values were determined as in ‘MIC determination’  
(12 lineages or populations × 140 combinations (70 unique drug 
pairs) × 2 technical replicates = 3,360 IC90 values; Source Data Fig. 3c–e).  
Changes in IC90 were compared with the ancestor strain. Interactions 
were defined as XR or CS if log2(fold change) > +1 or −1, respectively. 
For 14 drug pairs, we performed five more passages (total of ten pas-
sages; approximately 100 generations) and measured the changes in 
IC90 again (Extended Data Fig. 2e). In the case of the azithromycin–tet-
racycline pair, we tracked changes both in tetracycline resistance and 
azithromycin susceptibilities across multiple generations.

Whole-genome sequencing and analysis
A clone from the wild type and from populations of 12 lineages from 
days 3, 5 and 7 were sequenced to determine mutations responsible for 
the given phenotype. Genomic DNA was extracted using a Macherey 
Nagel DNA extraction kit and sequenced using single-end Illumina 
NextSeq 2000 (P1; length of 122 bp). Mutations were identified by 
mapping sequences to the reference genome from the NCBI database 
(E. coli BW25113 strain K-12 chromosome; GCF_000750555.1)83 using 
Breseq84 with the following parameters: -p -l 80 -j 8 -b 5 -m 30. Muta-
tions present in the wild-type clone compared with the NCBI reference 
genome were eliminated to only identify mutations that are associated 
with resistance/sensitivity.

P1 transduction
Single colonies of E. coli wild type (BW25113) and the corresponding 
Keio mutants60 were used for P1 transduction. P1 lysate preparation and 
transduction were performed as previously described85. We confirmed 
the transduction success with colony PCR.

Tetracycline fluorescence assay
Wild-type E. coli and waaF- waaD- and hldE-knockout mutants were 
cultured in 5 ml LB with continuous shaking at 37 °C until they reached 
an OD600nm of 0.5. Aliquots (1 ml) of each culture were centrifuged at 
3,500 rpm (1,300g) for 10 min and the supernatants were discarded. 
The pellets were washed three times with 0.5 ml of 137 mM PBS, 
resuspended in 50 µl of 137 mM PBS and transferred to black-walled, 
clear- and flat-bottomed 96-well plates (Greiner Bio-One, 655096) 
containing three concentrations of twofold serially diluted tetracycline 
(highest final concentration, 16 µg ml−1; final volume, 100 µl per well). 
Both the OD600nm and fluorescence (excitation λ, 405 nm; emission λ, 
535 nm) were measured with an Infinite M1000 PRO plate reader (Tecan 
i-control (v1.10)) for 15 min, with readings taken every minute. Three to 
six biological replicates were conducted for each experiment.

Experimental evolution against antibiotic combinations
The IC90 values for individual antibiotics (n = 8) and drug combinations 
at a 1:1 IC90 ratio (n = 7) were measured as in ‘MIC determination’. The 
evolution experiment was carried out in the same way as described in 
‘Experimental evolution and XR/CS measurements’ with the following 
changes: the initial wild-type culture was exposed to 11 concentra-
tions—from 0.125× IC90 to 128× IC90—of eight single antibiotics and 
seven antibiotic combinations for seven lineages. At the end of the 
experiment (seven passages for a total of seven days; approximately 
70 generations), the IC90 values of drugs 1 and 2 were measured in 
drug 1-, drug 2- and drug 1 + 2-resistant lineages as described in ‘MIC 
measurements’. To compare the evolution of resistance to single drugs 
versus drug combinations, evolvability indices were calculated using 
the average of the log2-transformed IC90 ratios of two drugs for each 
possible pair (2,401 values per antibiotic combination) as:

Evolvability index = 1
2 × (log2 (

IC90(drug1)drug1+2
IC90(drug1)drug1

)

+ log2 (
IC90(drug2)drug1+2
IC90(drug2)drug2

))
, (2)

where IC90(drug 1)drug1+2 corresponds to the IC90 of drug 1 for the lineage 
evolved against the drug 1 + 2 combination. We calculated evolvability 
indices using the modified equation, an average of the log2-transformed 
IC90 ratios of two drugs, different from previously defined (equation (3))21  
as it assesses the effects of combining drugs on resistance to each 
drug separately.

Evolvability index = 1
2 × (

IC90(drug1)drug1+2
IC90(drug1)drug1

+
IC90(drug2)drug1+2
IC90(drug2)drug2

) (3)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All supplementary data are provided in Supplementary Tables 1–3. A 
reference genome from the NCBI database (E. coli BW25113 strain K-12 
chromosome, GCF_000750555.1) was used. Raw reads of sequenced 
samples (file names describe samples) are available via Zenodo at 
https://doi.org/10.5281/zenodo.10572857 (ref. 86). All data are included 
in the Shiny app at https://shiny-portal.embl.de/shinyapps/app/21_
xrcs. Source data are provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Performance of different metrics and models in 
capturing XR and CS antibiotic interactions from chemical genetics data. 
a, Receiver operating characteristic (ROC) curves for classification of XR 
(positive class) vs non-XR (negative class), and CS (positive class) vs non-CS 
(negative class), using simple linear and non-linear correlation metrics. AUC 
is the area under the curve. b, The performance of the decision tree model 
on balanced classes shows that both XR and CS interactions can be well 
classified. c, Decision tree with classes CS (class 1) versus the rest (class 0), where 
a maximum depth of 3 is shown for visualization, illustrates the hierarchy of 
decisions to discriminate classes. Each node in the tree represents a decision 
point based on the value of a particular feature, and branches represent 

the outcome of the decision. The root node divides the data based on the 
‘concordant_negative_w’ feature, which is the sum of s-scores (as weights) of 
hits on the negative concordant site of a scatterplot. The tree branches out to 
‘discordant_w’ feature, which is the sum of s-scores (as weights) of hits on the 
discordant site of a scatterplot, while ‘discordant_w_m’ is the sum of products 
of s-scores (as weights) of hits on the discordant site of a scatterplot. d, P values 
from a paired Mann–Whitney U-test (two-sided) are depicted across quantile 
cutoffs for extreme s-scores to differentiate XR/CS/neutral interactions based on 
OCDM values. Q3 and Q97 perform the best. e, Confusion matrix of results based 
on Q3 and Q97. Most interactions inferred as non-XR/non-CS were previously 
reported neutral. For more information, see also Extended Data Fig. 2a-c.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Chemical genetics metric captures well prior 
information and can be used to reclassify a subset of prior interactions. 
a,b, Comparison of previously reported XR (a) and CS (b) interactions with our 
inferences based on our chemical genetics metric (OCDM) show an agreement 
of 67–68% for CS (n=17) and XR (n=47) - 10 such interactions were validated 
experimentally during our benchmarking (Fig. 3b,d). The rest is inferred as 
neutral or the opposite interaction by OCDM, including seven interactions 
(4 CS, 2 neutral & 1 XR) that we experimentally validated that OCDM inference 
was correct (Fig. 3b,d). c, In contrast to CS or XS, there is less agreement for 
neutral interactions with previous studies. This is consistent with the high 
false negative rates when comparing prior studies between them (Fig. 2a). The 
majority of previously reported neutral interactions (76.6%, n=85) are inferred 
as CS/XR by chemical genetics. 11/13 we included in the benchmarking set were 
confirmed as inferred by OCDM. The other two were inferred CS, but although 

most lineages exhibited CS, a single lineage exhibited XR, and hence called XR 
(Fig. 3b–d). d, New XR, neutral, and CS pairs inferred by chemical genetics and 
the OCDM cutoff are 2.8- and 6.4-fold more than currently known XR and CS 
antibiotic interactions in E. coli, after reclassifying interactions (n = 116) we infer 
differently than previously reported. The plot includes known interactions for 
which chemical genetics data is not available. e, Resistance against 12 antibiotics 
was evolved again for up to ~100 generations in 12 lineages. The MIC of evolved 
populations was measured at ~50 and ~100 generations for the same lineages 
in different antibiotics, allowing us to assess XR/CS for 17 drug pairs in both 
directions. Data are represented and drug pairs are numbered as in Fig. 3b,d. All 
inferred interactions were validated at both ~50 and ~100 generations. The length 
of experimental evolution affected the XR/CS of individual lineages and to a 
lower degree the cumulative call of the drug pair.
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Extended Data Fig. 3 | Chemical genetics can uncover the biological 
processes that drive interactions between antibiotic classes. a, Clustered 
heatmap of discordant mutants that are part of CS interactions between 
sulfonamides and macrolides (blue) or beta-lactams (green). Genes in bold are 

involved in LPS or nucleotide biosynthesis. b, Clustered heatmap of concordant 
mutants that are part of XR interactions between tetracyclines (violet), 
macrolides (blue), and other protein synthesis inhibitors. Genes in bold regulate 
or are part of the major efflux pump in E. coli (AcrAB-TolC).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Chemical genetics can infer mechanisms and 
monochromaticity of XR and CS drug interactions. a, Scatter plot of chemical 
genetic profiles of the E. coli deletion library in tobramycin and nalidixic acid31. 
Mutants with concordant (XR-related) and discordant (CS-related) profiles are 
highlighted. Dots in grey represent mutants that do not have s-scores within 
the 3% extreme values for both drugs. The underlined knockout mutants are 
known causal genes of this CS interaction17,19. b, Chemical genetic profiles for 
novobiocin and cefoxitin, presented as in a. Underlined knockout mutants 
indicate that the changes in polarity of the lipopolysaccharide (LPS) core can 
drive resistance to cefoxitin while providing sensitivity to the large and non-
polar novobiocin. c, Non-monochromatic XR interactions (n=11) have higher 
absolute discordance scores than their monochromatic counterparts (n=27) 
(two-sided Mann–Whitney U-test; P = 3.758e-07) - monochromaticity was defined 

in the validation experiment. This means that chemical genetics can infer the 
monochromaticity of XR interactions. The box boundaries represent the first and 
third quartiles, with the median indicated. The whiskers extend to the furthest data 
points within 1.5 times the interquartile range (IQR). d, The highest discordance 
score of -133.8481 based on the 11 non-monochromatic XR interactions from c was 
used to separate the remaining inferred XR interactions (excluding the 38 validated) 
into monochromatic (n=225) or non-monochromatic (n=168). e–g. Scatter plots of 
chemical genetic profiles of the E. coli deletion library31 for examples of other pairs 
of drugs with both high concordance and discordance (in addition to azithromycin 
and tetracycline shown in Fig. 5b). As the azithromycin-tetracycline pair, those are 
expected to be non-monochromatic. Data are depicted as in a,b. For all data, see the 
relevant Shiny app at https://shiny-portal.embl.de/shinyapps/app/21_xrcs.
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Extended Data Fig. 5 | Genome sequencing of lineage populations evolved in tetracycline. Results of the remaining 11 lineages from days 3, 5, and 7. Results are 
shown as in Fig. 5c, and lineages grouped in XR, CS, and neutral according to classification in Fig. 5a.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | CS antibiotic combinations constrain resistance 
evolution to one or both compounds. a, log2 transformed evolvability Index 
as originally proposed in the literature (equation (3), Methods) confirms 
observations made using the slightly modified Evolvability Index (equation (2), 
Methods) – Fig. 6b. Red dots on the violin plots represent the median. The box 
boundaries represent the first and third quartiles, with the median indicated. 
The whiskers extend to the furthest data points within 1.5 times the interquartile 

range (IQR). b, The log2 of MIC (IC90) of the evolved population in both drugs 
compared evolved population of the drug itself is used to identify whether and 
how well combining drugs reduces resistance to each drug compared to single-
drug treatments. Reciprocal CS drug pairs do this efficiently. The red dashed line 
shows the no-effect when combining drugs does not change resistance evolution 
to single drug treatments. The bars in the violin plots represent the distributions 
of log2 MIC ratios for each antibiotic combination.
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