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Multiple myeloma long-term survivors
exhibit sustained immune alterations
decades after first-line therapy

A list of authors and their affiliations appears at the end of the paper

The long-term consequences of cancer and its therapy on the patients’
immune system years after cancer-free survival remain poorly understood.
Here, we present an in-depth characterization of the bone marrow immune
ecosystem of multiple myeloma long-term survivors, from initial diagnosis up
to 17 years following a single therapy line and cancer-free survival. Using
comparative single-cell analyses combined with molecular, genomic, and
functional approaches, we demonstrate that multiple myeloma long-term
survivors exhibit pronounced alterations in their bone marrow micro-
environment associated with impaired immunity. These immunological
alterations were frequently linked to an inflammatory immune circuit fueled
by the long-termpersistence or resurgence of residualmyeloma cells. Notably,
even in the complete absence of any detectable residual disease for decades,
sustained changes in the immune system were observed, suggesting an irre-
versible ‘immunological scarring’ caused by the initial exposure to the cancer
and therapy. Collectively, our study provides key insights into the molecular
and cellular bone marrow ecosystem of long-term survivors of multiple mye-
loma, revealing both reversible and irreversible alterations in the immune
compartment.

The immune system plays a key role in the prevention, develop-
ment, and treatment of cancer. Powerful immune surveillance
mechanisms constantly monitor tissues to remove potentially can-
cerous cells. However, malignant tumors can evade immune control
or even hijack immunological processes to propel tumor growth.
Notably, the interaction between the tumor and the immune system
induces bidirectional adaptations. Well-studied examples for
immunological changes induced by continuous exposure to tumor
cells include the exhaustion and dysfunction of T cells, as well as the
suppressive polarization of myeloid immune cells, such as tumor-
associated macrophages or myeloid-derived suppressor cells1–5. In
infectious diseases, irreversible immune dysfunction has been
described, long after the infection has been cleared, a phenomenon
termed immunological scarring6,7. However, whether cancer or
cancer treatment may cause similar long-term consequences on the

immune system years after cancer-free survival remains poorly
understood.

MultipleMyeloma (MM) is a hematologic neoplasm characterized
by the clonal proliferation of malignant plasma cells within the bone
marrow (BM).MMprovides a prime example of a disease that depends
on the interplay with its tumor microenvironment8,9. Recent bulk and
single-cell genomic efforts dissected the clonal complexity as well as
clonal evolution patterns of MM from precursor stages to sympto-
matic disease and upon refractory cancer after multiple therapy
lines10–12. While transcriptional stability has been observed in the
transition from precursor states to MM progression, more dynamic
shifts within the transcriptome and clonal outgrowth occurred upon
refractory cancer13. Besides the genomic evolution of myeloma cells,
substantial changes in the immune and stromal cell composition have
been described across the different MM disease stages, promoting an
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inflammatory BM microenvironment upon disease progression8. Cell-
cell interactions within the BM appear to be crucial to mediate tumor
growth in MM, highlighting the importance for a deeper under-
standing of the tumor ecosystem at different disease stages14. While
recent studies on the MM ecosystem focused on disease progression
from precursor stages as well as refractory disease, it remains unclear
whether myeloma and myeloma therapy causes long-term alterations
of the immune systemyears to decades after progression-free survival.

Despite improved therapy options, MM remains an incurable
disease, and historically, only a minor fraction of MM patients
experienced long-term survival (LTS) over 7 years after first-line
therapy15,16. Nonetheless, even patients in complete remission (CR)
without the detectable measurable residual disease (MRD) may ulti-
mately experience biochemical progression years after progression-
free survival. Previous studies on the LTS phenomenon inMM focused
on quantitative changes in immune cell types17–19. However, the tran-
scriptional evolution patterns ofmyeloma cells in LTS patients, as well
as the long-term molecular adaptations of the BM microenvironment
years after progression-free survival, remain unexplored.

Here, we characterize the BM immune ecosystem of MM long-
term survivors at initial diagnosis (ID) and 7–17 years after first-line
therapy with a standard induction regimen and high-dose therapy
followed by autologous stem cell transplantation. These patients
experienced long-term remission in the absence of any maintenance
therapy for a median of 9 years prior to sampling (Supplementary
Data 1). Since treatment regimens have changed in recent years and
patients now receive permanent maintenance therapy, the selected
patient cohort represents an ideal setting to study the immediate and
long-term impactof cancer and cancer therapy on the immune system.
Notably, our data demonstrate that LTS patients display sustained
alterations in the immune microenvironment compared to age-
matched controls. These changes are associated with the resurgence
of disease activity but are also detectable in patients considered
functionally cured, suggesting both reversible and irreversible long-
term consequences of the disease and therapy. We identify bone
marrow infiltrating inflammatory T cells as part of an inflammatory
circuit, driving these sustained immune aberrations. Importantly, this
disease-associated immune cell trafficking can be used to reliably track
the re-initiation of the disease.

Results
The bone marrow immune ecosystem of multiple myeloma
long-term survivor patients
The long-term alterations of the immune systemyears to decades after
successful cancer therapy and LTS remain unknown. To elucidate the
bone marrow immune ecosystem of LTS cancer patients, our study
included 24 multiple myeloma patients who experienced LTS for 7 to
17 years (median 10.5 years) after first-line therapy with standard
induction regimen andhighdose therapy followedby autologous stem
cell transplantation (Fig. 1a and Supplementary Data 1). Notably, the
favorable outcome of these patients could not have been predicted by
state-of-the-art risk stratification tools, as 10 out of 24 patients dis-
played an intermediate or poor prognosis according to the Interna-
tional Staging System (ISS)20, and 4 patients even harbored high-risk
cytogenetic aberrations. Average myeloma cell infiltration within the
BM across all patients at ID was remarkably high (mean 50%). For 11 of
these MM patients with paired longitudinal samples at ID and upon
LTS 7–17 years post-diagnosis, we performed droplet-based single-cell
RNA-sequencing (scRNAseq) of total BM mononuclear cells. In addi-
tion, CD3 +T cells were separately profiled in all cases by scRNAseq to
ensure sufficient coverage of the T cell compartment, even in the
presence of a high tumor burden. Bone marrow samples from three
healthy, age-matched donors were included as controls, applying the
identical workflow (Fig. 1a, Supplementary Fig. 1a, e and Supplemen-
tary Data 2). Following data integration, clustering and dimensionality

reduction across experiments, we analyzed 213,200 high-quality BM
cells covering the vast majority of previously described hematopoietic
cell types and cell states of the BM (Fig. 1b and Supplementary Fig. 1b).
These included plasma cells, all hematopoietic stem and progenitor
cell stages, T cell and natural killer (NK) cell populations, several den-
dritic cell and monocyte subpopulations as well as the main B cell
differentiation states.

Comparing immune cell compositions of healthy donors with
patients at ID revealed an expected enrichment for plasma cells and a
trend towards higher amounts of cDC1 and NK cells, as well as a
depletion of different B cell stages as described by previous studies
(Fig. 1c, d and Supplementary Fig. 1c, d)10,21. At the LTS timepoint, the
BM composition was partially normalized, however, a significant
enrichment of the dendritic cell compartments cDC1 and cDC2
constituted a specific feature of LTS patients (Supplementary
Fig. 1d). Besides changes in the BM cell type composition, we also
observed considerable transcriptional perturbations within many
BM-resident cell types, reflecting disease-associated adaptations of
cellular transcriptomic states (Fig. 1c). To quantify these changes in
cellular states associated with ID and LTS, we made use of DA-seq, a
computational tool that measures howmuch a cell’s neighborhood is
dominated by a certain biological state (see “Methods”). As expected,
a major transcriptomic remodeling from healthy to malignant
plasma cells was observed at ID (Fig. 1e, f). In addition, significant
transcriptomic changes occurred within CD14 + monocytes, CD16+
monocytes as well as T and NK cells. Importantly, while the tran-
scriptomic remodeling of immune cells partially normalized during
LTS, sustained signs of immune remodeling were maintained even
decades after a single therapy line and in the absence ofmaintenance
therapy for at least 4 years (median 9 years) (Fig. 1g and Supple-
mentary Data 1).

Malignant plasma cells may persist during long-term survival
and display a transcriptionally stable phenotype
Recent studies reported dynamic transcriptional shifts of malignant
plasma cells and clonal outgrowth during disease courses induced by
therapeutic interventions13. However, it remains poorly understood
whether plasma cells driving relapse years after tumor-free survival
undergo molecular adaptations in the absence of therapy pressure.
Moreover, it is unclear whether malignant plasma cells persist in the
BM of LTS patients that are considered functionally cured.

To address these questions, we performed an in-depth analysis of
plasma cells to explore the longitudinal changes of the tumor cell
compartment throughout LTS. The transcriptional heterogeneity of
the plasma cell compartment was reflected by patient-specificMMcell
clusters and a cluster of putative healthy plasma cells to which all
patients and the healthy controls contributed (Fig. 2a). Patient-specific
clusters showed distinct gene expression patterns in line with pub-
lished bulk RNA gene expression signatures, highlighting the diversity
of our patient cohort (Supplementary Fig. 2a)22. As expected, the
expanded plasma cell compartment at ID partially normalized upon
LTS. However, some patients still harbored a high fraction of plasma
cells at the LTS state (Fig. 2b). To delineate healthy and malignant
plasma cells, we analyzed copy number aberrations (CNA) using
inferCNV (see methods, Supplementary Fig. 3). Overall, 59 out of 63
CNAs detected by cytogenetics could also be identified by our single-
cell analyses, permitting a clear discrimination between healthy and
malignant plasma cells (Fig. 2c and Supplementary Fig. 2b, c). Fur-
thermore, plasma cells classified as malignant almost exclusively
expressed a single immunoglobulin light chain, whereas plasma cells
classified as healthy contained both kappa and lambda-expressing
cells, confirming the accuracy of our CNA analyses (Fig. 2d, e and
Supplementary Fig. 2e). The fraction of malignant plasma cells within
the overall plasma cell pool (termed ‘malignancy score’) was increased
in LTS patients that had experienced a biochemical progression from
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complete remission (CR) after a long-term remission phase, hereafter
termed non-CR patients (Fig. 2f and Supplementary Fig. 2d). As
expected, patients that were in clinical CR harbored less or no malig-
nant plasma cells. Moreover, the fraction ofmalignant cells defined by

CNAs correlated with the result obtained from next-generation flow
cytometry for the detection of measurable residual disease (MRD)
(Fig. 2g). Themapping of CNAs in the single-cell data of the plasma cell
compartment enabled us to address the question of how myeloma
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Fig. 1 | The bone marrow immune ecosystem of multiple myeloma long-term
survivor patients. a Overview of the study design and experimental layout; cre-
ated with BioRender.com. b Global UMAP representation of scRNAseq data of
paired human BM samples from 11MM long-term survivor patients at initial diag-
nosis (ID) and long-term survival (LTS), as well as 3 healthy, age-matched controls.
c Global UMAP split by clinical groups. The density and distribution of cells are
color-coded. Gray represents all remaining cells. d Changes in cell type abundan-
cies between ID (n = 11) or LTS (n = 11) in comparison to healthy donors (n = 3).
e Global UMAP highlighting differentially abundant cells (red) determined by DA-
Seq at initial diagnosis as compared to cells from healthy controls. f Fractions of
differentially abundant (DA) cells compared to all cells per cell type and patient at
initial diagnosis (n = 11). Benjamini-Hochberg (BH) adjusted significant differences

(p <0.05) evaluatedbyunpaired two-sidedWilcoxon rank sum test are highlighted.
g Fractions of DA cells compared to all cells per patient within ID, LTS or healthy
controls (Healthy). Dots represent sample means. BH corrected p-values from
unpaired (Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-
sum tests are shown. If not statedotherwise, paired humanBMsamples from 11MM
patients at ID and LTS, as well as 3 healthy, age-matched controls, were used for
comparison. Abbreviations: HSCs: hematopoietic stem cells, MEP: megakaryocyte-
erythrocyte progenitors, MyeloP: myeloid progenitors, cDC1/2: conventional den-
dritic cells 1/2, pDCs: plasmacytoid dendritic cells, NK: natural killer cells, MSCs:
mesenchymal stromal cells; ID: initial diagnosis, LTS: long-term survival. Box plots:
center line, median; box limits, first and third quartile; whiskers, smallest/largest
value no further than 1.5*IQR from the corresponding hinge.
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cells develop throughout the LTS state upon recurring disease activity.
Malignant myeloma cells from the same patient at ID and LTS shared
the highest transcriptional similarity to each other in comparison to
myeloma cells from other patients (Fig. 2c, h). This suggested a high
transcriptional stability of plasma cells upon resurgence of disease
activity even after long-lasting remission over years to decades. How-
ever, minor adaptations in the transcriptomic makeup between mat-
chedmalignant plasma cells at ID and LTS were observed, as indicated
byminor, but specific changes in theUMAP representation (Fig. 2c). To
further study the molecular adaptations of myeloma cells, we focused
on 4 patients with sufficient malignant cells captured for both

matching clinical states to reliably obtain the subclonal compositionof
the respective patients (Supplementary Fig. 3). Notably, we observed a
changing subclonal composition which translated into specific chan-
ges of gene expression patterns of published transcriptomic sig-
natures that are commonly used to categorize transcriptional patterns
of myeloma cells (Fig. 2i)22. For example, P009 gained a cancer-testis
antigen (CTA) expression pattern, which is reported to be associated
with a proliferative myeloma disease, whereas P021 lost the previously
expressed NFKB signature upon the resurgence of disease (Fig. 2i).
Together, our observations demonstrate that malignant plasma cells
may persist in LTS patients and display an overall transcriptionally
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Fig. 2 |Malignant plasma cells frequently persist during long-term survival and
display a stable transcriptional phenotype. a UMAP embedding of the BM
plasma cell (PC) compartment colored by thepatient.bPC fraction of total BMcells
summarized by the patient and compared between clinical groups (Healthy (n = 3),
ID (n = 10), LTS (n = 10)). Dots indicate the PC fraction of total BM cells for each
sample. Significance was tested by a two-sided unpaired Wilcoxon rank sum test.
c Split UMAP of PCs by clinical groups (ID, LTS) highlighting their malignancy
annotation (healthy, malignant) derived from inferCNV. The remaining cells are
grayed out. d PC UMAP highlighting the dominant immunoglobulin light chain
expression. e Representative scatter plots of immunoglobulin expression (highest
lambda chain (IGLC) and kappa chain (IGKC)) of healthy (green) and malignant
(violet) PCs. fMalignancy score (malignant PC fractionof total PCs) per patient at ID
and LTS (n = 9). Large dots indicate the malignant PC fraction of total BM cells for
each sample. Significance was tested by a two-sided paired Wilcoxon signed rank
test. gCorrelation ofmalignancy score from flow cytometryMRD (number of Light

Chain restricted plasma cells/all plasma cells) withmalignancy score from inferCNV
analysis (number of malignant cells/all plasma cells). Spearman’s Rho and the sig-
nificance level of correlation are indicated using a two-sided test based on the t
distribution. h Euclidean distance of malignant plasma cells between ID and LTS
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state were excluded. Significancewas testedby a one-sided pairedWilcoxon signed
rank test. i Heatmap showing average expression patterns (module scores; scaled
by row) of known bulk RNA signatures (Broyl et al. 2010) per patient and clinical
state. If not stated otherwise, paired human BM samples from 11MM patients at ID
and LTS, as well as 3 healthy, age-matched controls, were used for comparison.
Abbreviations: PC: plasma cells; ID: initial diagnosis; LTS: long-term survival; IGLC:
immunoglobulin light chain; LC: lambda chain; KC: kappa chain. Box plots: center
line, median; box limits, first and third quartile; whiskers, smallest/largest value no
further than 1.5*IQR from the corresponding hinge.
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stable phenotype that is maintained for decades, while specific tran-
scriptomic adaptations may occur.

Multiplemyeloma long-term survivor patients display sustained
signs of immune remodeling decades after a single therapy line
While specific compositional changes in the BMmicroenvironment of
LTS patients have been reported17–19, it remains unknown whether
these cell types adopt a cellular state similar to healthy BM cells or
maintain signs of their current or past exposure to malignant plasma

cells or therapy. Our initial analyses revealed a major transcriptomic
remodeling of BM-resident immune cells during the disease course,
with monocytic, T, and NK cell compartments displaying the most
extensive alterations in cell states besides the plasma cell compart-
ment (Fig. 1f). To further investigate these molecular changes across
the clinical states, we first focused on the most remodeled cell com-
partment, classical CD14+ monocytic cells (Fig. 3a). In line with our
global DA-seq analysis, the majority of monocytes from ID patients
clustered separately from monocytes of healthy donors, reflecting a
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disease-associated transcriptomic remodeling. Notably, this remodel-
ing partially normalized in the LTS state, although a considerable
number of monocytes maintained a remodeled state years to decades
after a single therapy line (Fig. 3a). To quantify the transcriptionally
perturbed cells in the diseased states, we introduced a ‘dissimilarity
score’ approximating whether a cell’s neighborhood is dominated
either by the healthy or the disease state. Combining the dissimilarity
score with machine learning-based approaches enabled us to classify
cells as ‘healthy-like’ or ‘aberrant-like’ with high accuracy and a low
false prediction rate (see methods). These analyses revealed that
classical monocytes from patients at ID showed a high degree of dis-
similarity to healthy monocytes and were frequently classified as
‘aberrant-like’. Upon LTS, only a partial normalization was observed,
suggesting a sustained transcriptional remodeling throughout LTS in a
subset of monocytes (Fig. 3b, c).

To investigate whether other immune cell types also display sus-
tained transcriptional changes in the LTS state, we next focused on the
T cell compartment. CD8 +T cell states were annotated in naive,
memory, effector, as well as KLRB1 + cells based on known tran-
scriptomic marker genes (Fig. 3g and Supplementary Fig. 4a–c).
Notably, also in the CD8 +T cell compartment, a sustained transcrip-
tional remodeling was observed upon long-term survival (Fig. 3d–f).
Moreover, a significant and irreversible depletion of KLRB1 + CD8 +T
cells was observed at the ID state and maintained throughout
LTS (Fig. 3h).

In line with our observations from the classical monocyte and
CD8 + T cell compartments, we observed a remodeling of non-classical
CD16 + monocytes, as well as the CD4+ T and NK cell states at ID,
which was partially sustained throughout LTS (Supplementary
Fig. 4d–o). Together, our data reveals a major transcriptional remo-
deling across several cell types of the bone marrow immune micro-
environment during active MM disease, which is sustained in a subset
of cells throughout long-term survival.

An inflammatory circuit is associated with immune remodeling
during active disease and long-term survival
To characterize disease-associated molecular programs responsible
for the acute remodeling in the bone marrow immune ecosystem at
ID, we performed a comprehensive gene set enrichment analysis
(GSEA) comparing aberrant-like cell states with cells from healthy
controls within all cell types of the bone marrow that displayed
disease-associated remodeling. This analysis revealed a globally up-
regulated inflammatory program (Hallmark TNFA signaling via NFKB
and Hallmark inflammatory response) shared across all remodeled
BM cell types, as well as cell type-specific changes (Fig. 4a). In par-
ticular, aberrant monocytes acquired a pro-inflammatory pheno-
type. The expression of inflammatory genes in monocytes
correlated with their dissimilarity to healthy monocytes, peaked in
ID patients, and partially reversed throughout LTS (Fig. 4b). How-
ever, the remaining ‘aberrant-like’ monocytes in the LTS state spe-
cifically displayed a sustained inflammatory phenotype, suggesting a
persistent inflammatory response of the classical monocyte com-
partment even decades after the first line therapy (Fig. 4c). As part of
the inflammatory response, ‘aberrant-like’ monocytes displayed an
increased chemokine activity and expressed increased levels of
proinflammatory cytokines and chemokines, including CCL3, IL1B
and CXCL8, with the latter two known to support myeloma cell
growth and survival (Fig. 4d, e and Supplementary Fig. 5a–e)23.
Interestingly, the corresponding receptors of CXCL8, CXCR1, and
CXCR2 were mainly expressed on NK cells, suggesting a role for
CXCL8 in the regulation and induction of leukocyte migration as
reported previously (Supplementary Fig. 5f). NK cells themselves
switched from a cytotoxic to an inflammatory phenotype with
increased chemokine activity, which was maintained throughout the
LTS state (Fig. 4a, f).

To explore the interactionnetwork betweenplasmacells and their
microenvironmental cells at ID, we used CellPhoneDB24 to infer inter-
cellular communications (see “Methods”). We observed the highest
number of interactions between myeloid and plasma cells (Fig. 4g).
Notably, these interactions were significantly increased between
remodeled CD14 + monocytes and plasma cells, suggesting that the
remodeled state of CD14 + monocytes may be mediated by the inter-
action with plasma cells (Supplementary Fig. 5g).

Importantly, remodeled T and NK cells were the main producers
of the proinflammatory master cytokine interferon-gamma (IFNG)
both at ID and LTS (Fig. 4h, i and Supplementary Fig. 5h). Moreover,
remodeled T and NK cells displayed significantly increased expression
of the inflammatory chemokines CCL3, CCL4 and CCL5, suggesting that
they act as major regulators of the observed acute and sustained BM
inflammation (Supplementary Fig. 5i–k). In line with an increased
synthesis of proinflammatory cytokines by aberrant lymphocytes,
including IFNG, we observed the strongest IFNG response in aberrant
myeloid cells, includingCD14 + andCD16 +monocytes aswell as cDC2s
(Fig. 4a). Notably, the interferon-inducible chemokine CXCL10 was
mainly expressed by CD16 + monocytes peaking at ID and being
maintained at a lower level throughout LTS (Supplementary Fig. 5l, m).
Aberrant IFNG-expressing CD8 +T cells and NK cells specifically
expressed CXCR3, the chemokine receptor mediating migration
towards CXCL10 sources, which we will elucidate in detail in the next
section (Fig. 4j and Supplementary Fig. 5n).

In summary, these data suggest that upon MM disease activity in
the BM, inflammatory signals drive a positive feedback loop with IFNG
secretion by aberrant lymphocytes inducing the release of CXCL10
frommyeloid cells. This in turnmay lead to the recruitment ofCXCR3 +
inflammatory CD8 + T cells to the BM (see below) causing an inflam-
matory circuit which is maintained at a lower level in LTS patients
(Supplementary Fig. 6a).

Bone marrow infiltration of inflammatory T cells is associated
withmyeloma burden and serves as an accessible biomarker for
disease activity
To characterize the origin and phenotype of disease-associated
remodeled immune populations, we focused on aberrant
CD8 + T cells as key producers of inflammatory cytokines throughout
ID and LTS. Gene expression analyses of the scRNAseq data revealed
the chemokine receptorCXCR3 and the amino acid transporter LAT1 as
accurate biomarkers for a disease-associated inflammatory CD8 +T
cell state (Fig. 5a, b). To further assess the value of surface CXCR3
expression as a marker for myeloma-associated CD8+ T cells, we
subjected BM CXCR3 + and CXCR3- CD8 +T cells from an independent
cohort of 7MM patients to bulk RNA-sequencing (Supplementary
Fig. 6b). Importantly, scRNAseq-derived CXCR3 expression was highly
overlapping with both, the single-cell-derived gene signature defining
aberrant CD8 + T cells (Fig. 5c) and the bulk RNA-sequencing-derived
gene signature for CXCR3+ T cells within the BM (Fig. 5d). This con-
firms the specificity of surface CXCR3 as a biomarker for remodeled
inflammatory T cells.

Next, we performed multiplex immunofluorescence stainings on
BM biopsies and confirmed the co-expression of CXCR3 and LAT1 on
CD8 + T cells in MM patients (Fig. 5e). Importantly, the mean expres-
sion intensities of CXCR3, as well as LAT1 in CD8 +T cells were highly
elevated in MM patients compared to B cell Non-Hodgkin lymphoma
and MDS control cohorts, confirming the specific enrichment of
aberrant inflammatory CD8 +T cells inMM (Fig. 5f and Supplementary
Fig. 6c). Notably, the fraction of detected aberrant inflammatory
CD8 + T cells positively correlated with the number ofMUM1 + plasma
cells, suggesting a tumor-load dependent accumulation of aberrant
inflammatory CD8 + T cells in the bone marrow at ID, with LAT1 and
CXCR3 serving as accurate biomarkers (Fig. 5f and Supplemen-
tary Fig. 6c).
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To explore the origin of remodeled CD8 +T cells, we determined
RNA velocities to predict the future cell state based on ratios of spliced
to unspliced mRNAs (see methods). As reported in previous studies,
this analysis revealed the transient and connected states of the main T
cell subsets25 (Fig. 5g). However, the cluster comprising aberrant
inflammatoryT cells,markedby LAT1 andCXCR3 expression and ahigh
dissimilarity score, appeareddisconnected to the cluster harboring the

main homeostatic BM-resident T cell subsets (Fig. 5g). As described
above, CXCR3 is a chemokine receptor mediating migration towards
the chemoattractants CXCL10, which is synthesized at increased levels
in the BM upon MM (Supplementary Fig. 5l, m). These observations
point towards a chemokine-mediated infiltration of inflammatory
T cells from the periphery to the BM. To further explore this, we
quantified the CXCR3 expression on CD8 +T cells of paired BM and
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Fig. 4 | An inflammatory circuit underlies immune remodeling during active
disease and long-term survival. a Significantly enriched gene sets in aberrant cell
types at ID versus healthy controls. Selected gene sets are shown. Benjamini-
Hochberg adjusted p-values are encoded by dot size, colors represent normalized
enrichment scores (NES). Stars mark significant enrichment of the selected gene
sets. b Left, correlation between indicated module score and dissimilarity score in
CD14 + monocytes. Cell density is color-coded. Spearman’s Rho and the sig-
nificance level of correlation are indicated. Right, distribution of indicated module
score by clinical group. Benjamini-Hochberg adjusted p-values from unpaired
(Healthy/ID, Healthy/LTS) and paired (ID/LTS) two-sided Wilcoxon rank-sum tests
are shown. c Boxplots of indicated module score (see b) in CD14 +monocytes split
by clinical group and cell state prediction (n(ID/healthy) = 9, all other n = 11). The
dashed line represents the mean expression of healthy controls. Significance was
tested by paired two-sided Wilcoxon rank-sum tests. d Mean CXCL8 expression at
ID and LTS per patient. e Boxplots ofmeanCXCL8 expression in CD14 +monocytes
split by clinical group and cell state prediction. The dashed line represents the

mean expression of healthy controls. Significance was tested by paired two-sided
Wilcoxon rank-sum tests. f NK cytotoxicity module score in NK cell subsets.
Benjamini-Hochberg adjusted p-values from unpaired (Healthy/ID, Healthy/LTS)
and paired (ID/LTS) two-sidedWilcoxon rank-sum tests are shown. g Predicted the
number of interactions between plasma cells and immune cells at ID using Cell-
PhoneDB. h Mean interferon-gamma (IFNG) expression at ID and LTS per patient.
i, j Boxplots of IFNG (i) and CXCR3 (j) expression in CD8+ T cells split by clinical
group and cell state prediction (n per group/condition = 11). The dashed line
represents the mean expression of healthy controls. Significance was tested by
paired two-sided Wilcoxon rank-sum tests. If not stated otherwise, paired human
BM samples from 11MM patients at ID, LTS, and 3 healthy controls were used for
comparison. Abbreviations: CD14/CD16_M: CD14 + /CD16+ monocytes; cDC: con-
ventional dendritic cells; pDC: plasmacytoid dendritic cells; CD4/CD8_T: CD4+ /
CD8+ T cells; NK: natural killer cells. Box plots: center line, median; box limits, first
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corresponding hinge.
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peripheral blood (PB) samples from50MMpatients viaflowcytometry
(Supplementary Fig. 6b). In line with our hypothesis, in patients with
low tumor burden (< 50%), CXCR3 + T cells were mainly present in the
peripheral blood and not in the BM (Fig. 5h). In contrast, in patients
with high tumor burden (> 50%) the number of CXCR3 + T cells

decreased in PB, while an increased number of CXCR3 + T cells was
observed in the BM, suggesting a tumor-load dependent migration of
inflammatory T cells to the BM.

To further validate this finding, we isolated bulk CD8 + T cells
from LTS patients, as well as CXCR3 + and CXCR3- CD8 +T cell subsets
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from paired PB and BM samples of newly diagnosed MMpatients, and
performed RNA-sequencing, followed by mapping the T cell receptor
(TCR) repertoire (Supplementary Fig. 6b, d). While we observed a
trend towards a reduced clonal diversity in T cells of LTS patients, we
did not observe any indication for clonal expansion of inflammatory
CXCR3 +CD8 +T cells if compared to their CXCR3- CD8 +T cell coun-
terparts (Supplementary Fig. 6d). In contrast, hierarchical clustering
based on TCR repertoire information revealed a striking overlap of the
CXCR3 + fractions from PB and BM for each patient, indicating a close
relation between remodeled CD8 +T cells in the BM with
CXCR3 +CD8 +T cells in PB (Fig. 5i and Supplementary Fig. 6e). In line
with this, the clonotypes of the top 10 clones in CXCR3 + T cells from
the PB showed a high overlap with the top clonotypes in
CXCR3 + T cells from BM fraction but not with their CXCR3- negative
counterparts, suggesting a disease-associated infiltration of inflam-
matory T cells from the periphery to the BM (Fig. 5j and Supplemen-
tary Fig. 6f).

Together, our data suggest that upon MM disease activity,
inflammatory CD8 +T cells are recruited to BM, where they serve as
key players in the establishment and maintenance of the sustained
inflammatory BM remodeling at ID and LTS (Supplementary Fig. 6a).
BM infiltration by inflammatory T cells is associated with myeloma
burden and serves as an accessible biomarker for disease activity that
can be measured both in the BM and the peripheral blood.

Immune remodeling in LTS patients is associated with future
disease resurgence and impaired immune function even in the
absence of measurable disease
The sustained immune alterations observed in LTS patients may be
caused by the initial exposure to the cancer, therapeutic interventions,
the persistence of residual MMcells, or a combination of these factors.
To systematically dissect potential sources of sustained immune
alterations, we first investigated the relationship between residual MM
cells and immune perturbations in LTS patients. Specifically, we
assessed the extent of immune cell remodeling in relation to the
fraction of malignant plasma cells within the total plasma cell popu-
lation, as indicated by the CNV malignancy score described above.
Indeed, our analysis revealed that microenvironmental immune
remodeling, as determined by DA-seq-based prediction scores, dis-
similarity scores, and surrogate CXCR3 expression in CD8+ T cells,
correlated with the proportion of malignant plasma cells in the bone
marrow of LTS patients (Fig. 6a, b andSupplementary Fig. 7a).

Clinical follow-up allowed us to differentiate LTS patients with
complete remission (CR) from those with remaining or resurgent MM
cells (non-CR patients) and from patients that remained in CR for four
years following sample collection for scRNAseq (termed sustained CR)
(Supplementary Fig. 7b). At the time of sample collection, the ratio of
BM to peripheral blood CXCR3 +CD8 +T cells increased progressively
from healthy donors to sustained CR patients and those losing CR, to
patients at initial diagnosis (ID), reflecting the respective disease bur-
den across these clinical states (Fig. 6c). Notably, CR patients transi-
tioning to non-CR status within the subsequent four years exhibited a
significantly higher BM to blood CXCR3 +CD8 +T cell ratio compared
to thosemaintaining in sustained CR (Fig. 6d). In line with an increased
CD8 + T cell infiltration into the BM, an increased CD4 + to CD8 +T cell
ratio in the blood was associated with future relapse from CR during
LTS (Supplementary Fig. 7c). Collectively, these findings uncover
persistent or resurgent MM cells as an important factor for sustained
immune perturbation in the BM, and suggest that blood measure-
ments, specifically CXCR3 expression on T cells, may be used as
accessible biomarkers to track environmental perturbations asso-
ciated with future relapse.

In line with the importance of residual MM cells for the sustained
immune remodeling in LTS patients, the number of aberrantly classi-
fied immune cells gradually increased from healthy donors to CR and

non-CR patients (Fig. 6e, f and Supplementary Fig. 7d). However, even
patientswith sustainedCR and nodetectable disease activity at timeof
sample collection, as well as during an additional four-year follow-up
period, exhibited a substantial presence of aberrantly classified T cells,
monocytes, and NK cells (Fig. 6e–h and Supplementary Fig. 7d, e). This
observation suggests the occurrence of long-lasting, irreversible
immunological alterations that persist independently of residual MM
cells. While the quantity of remodeled immune cells was correlated
with residual disease activity, the degree of remodeling in aberrant
immune cellswas similarly pronounced in LTS patients with or without
indications of remaining disease activity (Fig. 6g–k and Supplementary
Fig. 7e–l). Moreover, compared to healthy controls, the naïve CD8 +T
cell compartment of LTS patients showed a higher expression of an
‘early T cell activation signature’, even in the absence of any measur-
able disease activity, pointing towards a chronic pre-activatory state
(Supplementary Fig. 7m)26. A gene within this ‘early activation sig-
nature’ was the well-studied surface marker CD69, expressed on acti-
vated T cells27. In line with our previous observations, CD8 +T cells
from patients in CR and ‘sustained’ CR displayed increased
CD69 surface protein levels when compared to healthy controls,
providing additional evidence for a persistent long-term imprint in
CD8 + T cells in the absence of disease activity (Supplementary
Figs. 7n, 8c).

A recent study suggested clonal hematopoiesis (CH) as a potential
driver of immune dysfunction in pediatric cancer survivors28. Targeted
sequencing of BM samples revealed that 8 out 15 LTS patients carried
mutations in genes related to CH (DNMT3A, n = 5, TP53, n = 2, ASXL1,
n = 1, TET2 n = 1) (Supplementary Data 1). Although the prevalence of
these mutations is higher compared to previously studied multiple
myeloma (MM) cohorts29,30, the small cohort size limits the ability to
draw definitive conclusions. Notably, the degree of immune cell
remodeling in LTS patients, both with and without clonal hematopoi-
esis of indeterminate potential (CHIP), was similarly extensive, sug-
gesting that CHIP may not play a central role in the observed immune
alterations of LTS patients (Supplementary Fig. 9).

To further delineate the effects of the initial tumor exposure
from those resulting from therapy, we analyzed CXCR3 expression
in CD8 + T cells as a surrogate marker for immunological dis-
turbances in triple-matched samples from 136 MM patients col-
lected at initial diagnosis after induction therapy and following high-
dose melphalan treatment with autologous stem cell transplanta-
tion. Notably, the fraction of CXCR3-positive T cells showed a slight
increase throughout the therapy, hinting at potential cumulative
effects of the treatment (Fig. 6l). Yet, the fraction of CXCR3-positive
T cells of MM patients measured at initial diagnosis (before treat-
ment) was highly correlated with the fractions of CXCR3-positive
T cells of the same patients measured throughout the different
treatment phases (Fig. 6m; Wilcoxon signed rank tests < 0.001). This
suggests that in addition to therapy-related effects, the initial
exposure to the tumor, which plays a crucial role in determining
immune remodeling at initial diagnosis (compare Fig. 5f and Sup-
plementary Fig. 6c), likely also contributes to the immune altera-
tions observed in LTS patients.

To assess whether sustained immune aberrations translate into
changed T cell functionality, we measured the capacity of T cells from
LTS patients to produce cytokines upon T cell activation. For this
purpose, sorted CD3 +T cells were stimulated with PMA and Ionomy-
cin, and intracellular cytokine production (TNFa, IFNG, IL2) was mea-
sured as a surrogate parameter for T cell functionality (Fig. 6n).
Notably, stimulated T cells from LTS patients produced significant
lower amounts of allmeasured cytokines compared to control samples
from healthy donors and early-stage MM patients (Fig. 6o). Of note,
impaired T cell functionality was also observed in patients with no
measurable disease activity and sustained CR, suggesting a sustained
immunological scarring in LTS patients. This aligns with broad
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evidence suggesting that chronic exposure to inflammatory stimuli
causes impaired T-cell functionality31.

Collectively, these findings suggest that the immune alterations
observed in LTS patients are likely not only due to the persistence or
resurgence of malignant plasma cells but also result from long-lasting,
irreversible immunological changes induced by the initial exposure to
the disease and subsequent therapeutic interventions.

Discussion
The long-term consequences of cancer and cancer therapy on the
immune system remain poorly understood. In this study, we have
comprehensively investigated the immune ecosystem in MM LTS
patients, years to decades after a successful first therapy line, com-
prising high-dose therapy followed by autologous stem cell

transplantation. Notably, as LTS patients analyzed in this study
received their first-line therapymore than a decade ago, the treatment
regiments differ from those applied today, including a high amount of
tandem-transplantation and the use of doxorubicin. We uncovered
that MM long-term survivors display sustained immune alterations
that are associated with the resurgence of the disease and correlated
with disease activity. These disease-associated immune alterations are
mediated by an inflammatory circuit driven by a tumor load-
dependent infiltration of inflammatory T cells into the bone marrow.
However, even in the absence of any measurable disease activity for
years to decades, long-term alterations in the bonemarrow ecosystem
associated with defective immunity were observed.

Previous studies on immune reconstitution after exposure to
cancer or cancer therapy, including autologous stem cell
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transplantation, focused on the short-term impact. For example, te
Boekhorst et al.32. and Schlenke et al.33. investigated the reconstitution
of the T cell compartment in a mixed cohort of different hematologi-
cal, as well as solid tumor patients. Both studies did not observe any
signs of functional impairment in T cells from PB as measured by
standard flow cytometry phenotyping. However, MM patients were
underrepresented in both study cohorts. In a study focusing on short-
term consequences of autologous SCT in MM, an impaired cytokine
production of the T cell compartment was observed, concluding that
the complete recovery of the immune system might require more
time34. However, our study reveals long-term sustained molecular
changes in the immune microenvironment, even in MM patients that
were considered functionally cured, suggesting irreversible immuno-
logical scarring, as previously described in infectious diseases6,7. While
our study focused on transcriptomic and immunological changes in
LTS patients, a recent study identified clonal hematopoiesis as a
common event upon long-term survival of pediatric cancers28. In a
subset of Hodgkin Lymphoma survivors, therapy-related STAT3
mutations were detected that potentially also impact on T cell biology.

While our data support a non-genomic mechanism of sustained
changes of the immune system inMMLTS,wecannot exclude that also
genomic aberrations may contribute to some of the irreversible phe-
notypes we observed. Recent studies on MM have shown that expo-
sure to high-dose melphalan increases the mutational burden by
~ 10–20%. Nonetheless, the involvement of key myeloma driver genes
is infrequent in most of these mutations35. Whether and how the
immune system is affected by the mutagenic impact of melphalan still
needs to be examined, desirably in a comparative study including
patients treated with and without high-dose chemotherapy.

Our study suggests a tumor load-dependent inflammatory circuit
in MM with the release of CXCL10 from myeloid cells causing the
migration of CXCR3 + inflammatory T cells from the periphery to the
BM, in line with previous reports in the context of cancer and
vaccinations36–38. Inflammatory T cells and NK cells, in turn, act as
major drivers for IFNG-mediated BM changes in a self-propelling cir-
cuit. This inflammatory circuit is initiated at ID and maintained in a
subset of immune cells during LTS. Notably, immune remodeling in
LTS patients was associated with future disease resurgence and
impaired immune function even in the absence of measurable disease.
However, it remains to be investigated whether the sustained proin-
flammatory bone marrow microenvironment in LTS patients actually
promotes disease resurgence or contributes to disease control.
Locally, such proinflammatory bone marrow microenvironments may
serve as a basis for seeding and repopulation of circulating myeloma
cells fromextramedullary sites into the bonemarrow. On the contrary,
the recruitment of CXCR3-expressing T cells has been associated with
an improved antitumor immunity, and IFNG and CXCL10 have been

shown to inhibit the growth of MM cells, pointing towards a potential
role in immune-mediated tumor control39,40.

Importantly, we demonstrate that disease-associated T cell traf-
ficking can be used to track and reliably predict the re-initiation of the
disease in the bone marrow of LTS patients by analyzing CXCR3
expression on CD8+ T cells in the peripheral blood. This highlights
how disease associated changes in the microenvironment might be
used in combination with MRD detection methods to predict resur-
gence of disease activity. While the detailed contributions of T cell
migration to anti-cancer immunity remains to be investigated, target-
ing the introduced inflammatory circuit may offer potential avenues
for new therapeutic strategies41,42.

Of note, our study included paired samples of patients experi-
encing long-term remission after a single therapy line in the absenceof
any maintenance therapy for years. Due to continuous maintenance
therapy as the new standard of care, this patient cohort is not recrui-
table nowadays and thus displays a highly valuable selection of
patients to study the long-term consequences of cancer and cancer
therapy in absence of potential biases associated with additional
therapies.

Together, our study provides detailed insights into the molecular
and cellular immune bone marrow ecosystem of MM long-term sur-
vivors, thereby revealing reversible and irreversible disease- and
therapy-associated alterations of the immune compartment which can
serve as diagnostic and predictive tools.

Methods
Human samples
Ethics approval and consent to participate. BM samples from heal-
thy and diseased donors were obtained at Heidelberg University
Hospital after informed written consent using ethic application
numbers S-480/2011 and S-052/2022. BM aspirates were collected
from the iliac crest. Healthy BM donors received financial compen-
sation in some cases. For BM, mononuclear cells (BMMC) were iso-
lated by Ficoll (GE Healthcare) density gradient centrifugation and
stored in liquid nitrogen until further use. All experiments involving
human samples were approved by the ethics committee of the Hei-
delberg University Hospital and were in accordance with the
Declaration of Helsinki.

Flow cytometry
MRD analysis. Flow cytometry for the detection of minimal residual
disease (MRD) in fresh BM samples was performed according to the
highly standardized flow cytometry approach developed and descri-
bed by the Spanish Myeloma Collaborative Group using a commer-
cially available EuroFlow 8-color 2-tube MM MRD Kit (Cytognos,
Salamanca, Spain)43. Tube one contained multiepitope CD38-FITC,

Fig. 6 | Immune remodeling in LTS patients is associated with future disease
resurgence and defective immune function even in the absence ofmeasurable
disease. a Correlation of malignant plasma cell fraction (CNV-based malignancy
score) and degree of remodeling (mean DA-seq score). Spearman’s Rho is indi-
cated. b Correlation between mean CXCR3 expression in CD8 +T cells and CNV-
based malignancy score; Spearman’s Rho is indicated. c Correlation between the
ratio of BM to PB CXCR3 +CD8+ T cells and BM cytological PC count.
n(healthy) = 5, n(sust.CR) = 11, n(losingCR) = 11, n(ID) = 23. Spearman’s Rho is indi-
cated. d Comparison of BM to PB ratio of CXCR3+CD8+ T cells between sust.CR
patients (n = 11) and patients losing CR (n = 11). The dashed line indicates the mean
ratio of healthy controls. Significance was tested by unpaired Wilcoxon rank sum
test. e Bar plot summarizing fractions of dissimilarity-based classification by the
clinical group for CD8+ T cells (healthy n = 3; complete remission (CR) n = 6; non-
CR n = 5). f Similar to (e) but for classical monocytes. g Distribution of the dis-
similarity score by clinical group within CD8 +T compartment. Large dots indicate
sample means. h Similar to (g) but for classical monocytes. (i–k) Boxplots of
indicated gene/genesets. The dashed line indicates the mean module score of

healthy control. Significance was tested by paired Wilcoxon rank-sum tests.
l Fraction of CXCR3+CD8 +T cells at ID, after induction, and high-dose melphalan
and autologous stem cell transplantation (ASCT), n = 136 patients, significance
determined by Wilcoxon signed-rank tests. Benjamini-Hochberg adjusted p-values
are shown. m Correlation of CXCR3-positive T cells among paired samples from
distinct therapy phases. Spearman’s Rho is indicated. n Study design scheme;
created with BioRender.com. o Intracellular cytokines in T cells of LTS patients
(n = 17) and controls (n = 10). Significance was tested by unpaired Wilcoxon rank
sum test. If not stated otherwise, paired BM samples from 11MM patients at ID and
LTS, and 3 healthy controls were used. Box plots: center line, median; box limits,
first and third quartile;whiskers, smallest/largest value no further than 1.5*IQR from
the corresponding hinge. Bar plots: Error bars indicate the standard error of the
mean (SEM). Error bands in correlation graphs indicate a 95% confidence interval of
best linear fit. All statistical tests were performed using a two-sided approach.
Abbreviations: ID: initial diagnosis; LTS: long-term survival; CR: complete remis-
sion; BM: bone marrow; PB: peripheral blood.
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CD56-PE (clone C5.9), CD45-PerCP-Cyanine5.5 (clone EO1), CD19-PE-
Cyanine7 (clone 19-1), CD117-APC (clone 104D2) and CD81-APC-C750
(clone M38) antibodies. Tube two contained multiepitope CD38-FITC,
CD56-PE (clone C5.9), CD45-PerCP-Cyanine5.5 (clone EO1), CD19-PE-
Cyanine7 (clone 19-1), cytoplasmic polyclonal immunoglobulin (Ig) κ-
APC goat and cytoplasmic polyclonal Igλ-APC-C750 antibodies. Drop-
in CD27 Brilliant Violet 510 (clone O323, Biolegend, San Diego, USA)
and CD138 Brilliant Violet 421 (clone MI15, BD, Heidelberg, Germany)
antibodies were added to tubes one and two, according to manu-
facturer’s instructions. Measurements were performed using BD
FACSLyric (BD, Heidelberg, Germany) after the implementation of the
EuroFlow Standard Operating Protocol for Instrument Setup and
Compensation in FACSDiva (BD Biosciences, San Jose, CA, USA). Final
data analysis was performed in Infinicyt 2.0 (Cytognos, Salamanca,
Spain). An automated gating and identification tool (Cytognos, Sala-
manca, Spain) was used to support the identification of MM cells.
Plasma cells were identified based on the co-expression of CD38 and
CD138antigens. An aberrant plasmacell expressionprofilewasdefined
as CD45-low/negative, CD56-positive, CD19-negative, and light chain-
restricted.

Flow cytometry of cryopreserved BM samples. Human BM samples
were thawed in a water bath at 37 °C and transferred dropwise into
RPMI-1640 10% FCS. Cells were centrifuged for 5min at 350 × g and
washedoncewithRPMI-1640 10% FCS. Cellswere resuspended in FACS
buffer (FB) (PBS 5% FCS 0.5mM EDTA) co-incubated for 15min at 4 °C.
For analysis of CXCR3 expression on CD8 + T cells across different
clinical groups, cells were stained with CD8-APC (1:30), CD3-APCR700
(1:50), CD45-APCH7 (1:20), CD4-FITC (1:20), CXCR3-PECy7 (1:20),
CD194-BV421 (1:20), CD196-BV605 (1:20), CD152-PE (1:20) surface
antibodies and FcR blocking reagent (Miltenyi). For analysis of CD69
expression on CD8+ T cells, cells were stained with CD8-BUV395
(1:50), CD4-BUV737 (1:50), CXCR4-BV421 (1:30), CD45RO-BV711 (1:50),
CD69-FITC (1:10), CXCR3-PECy7 (1:20), CCR7-APC (1:50), CD3-APCCy7
(1:100) surface antibodies and FcR blocking reagent (Miltenyi). After
washing with FB, all experiments were measured on BD FACSFortessa
flow cytometer, equipped with 5 lasers, or BD FACSLyric flow Cyt-
ometer, equipped with three lasers.

Single-cell RNA sequencing data
BM preparation, staining and sorting for gene expression analysis.
Human BM samples were thawed in a water bath at 37 °C and trans-
ferred dropwise into RPMI-1640 10% FCS. Cells were centrifuged for
5min at 350× g andwashedoncewithRPMI-1640 10% FCS, followedby
resuspension in FACS buffer (FB) (PBS 5% FCS 0.5mM EDTA) con-
taining CD45-PE (1:50) and CD3-APC (1:10) and FcR blocking reagent
(Miltenyi) and incubation for 15min at 4 °C. Cells werewashedwith FB.
To exclude debris and ensure that actual cells were sorted for droplet-
based scRNAseq, cells were stained with a DNA dye (Vybrant DyeCycle
Violet, Thermo Fisher Scientific). For this purpose, 2.5 µl ml−1 Vybrant
dye in cell suspension medium was incubated with 3 × 10^6 cells at
37 °C for 20min in a water bath. Following the incubation, the cells
were placed on ice and were sorted immediately for each experiment
into 15 µl PBS containing 2% fetal bovine serum. For sorting of total BM
cells, single, live cells were selected. For sorting of T cells, additionally,
CD45 +CD3+ cells were gated (Supplementary Fig. 1e). Cells were
sorted using a FACSAria Fusion or FACSAria II equipped with 100 µm
nozzles, respectively. Sorted cell numbers were confirmed using a
LUNA automated cell counter (Logos Biosystems). A volume of 33.8 µl
of the cell suspension was used as input without further dilution or
processing, with final concentrations of around 300 cells per µl.

Single-cell RNA sequencing and data preprocessing. Single-cell
RNA sequencing libraries of BMMCs form healthy controls and MM
patients were generated using 10x Genomics single-cell RNAseq

technology (Chromium Single Cell 3’ Solution v2) according to the
manufacturer’s protocol and sequenced on an Illumina HiSeq4000
(paired end, 26 and 74bp). Upon sequencing, FASTQ files were pro-
cessed and aligned to the human reference genome GRCh38 (GEN-
CODE v32) using the standard Cellranger pipeline (10x
Genomics, v4.0).

scRNA-seq data analysis
All analyses were performed in R (v4.0.0). The output from the Cell-
ranger pipeline was combined into one count matrix and further
processed and analyzed using the Seurat framework (v4.0.1, (Hao et al.
2021)). Parameters are indicated when non-default settings for a spe-
cific function were used.

Quality control of BM scRNA-seq data. Cells were retained in the
dataset if they had 200 – 40,000 UMIs, 400 – 6,000 features, and
fewer than 10% mitochondrial reads. In addition, decontX()from the R
package celda (v1.4.744,) was used to estimate and remove con-
taminating ambient RNA.

Dimensionality reduction and clustering of BM scRNAseq-data.
Gene counts were log-normalized, and the top 2000 variable fea-
tures were identified and scaled using default parameters of Find-
VariableFeatures() and ScaleData(). Dimensionality reduction of the
scaled data was performed by principal component analysis (PCA).
The top 50 PCs were then used to build a shared nearest neighbor
graph (SNN, FindNeighbors(dims = 1:50)) for Louvain clustering
(FindClusters(resolution = 0.7)) and uniform manifold approxima-
tion and projection (RunUMAP(Dims = 1:50)) of the data in two-
dimensional space. Final cluster resolution and annotation was
defined by evaluating known marker genes. Clusters with over-
lapping gene signatures were merged to reach overall cell-type
resolution (MetaClusters). In order to achieve a more fine-granular
filtering and annotation, each cell type (MetaCluster) was subsetted,
and count matrices were separately processed again from variable
feature selection and re-scaling to dimensionality reduction by PCA
and subsequent clustering and UMAP representation. Clusters with
contaminating gene expression profiles or aberrantly high mito-
chondrial and low housekeeping gene expression were considered as
doublets, or low quality, respectively, and removed. Final cell anno-
tation was then transferred back to the global BM count matrix. In
addition, cells from patients treated with maintenance and induction
therapy were removed.

Copy number analysis. Single-cell copy number analysis was per-
formed using infercnv (v1.6.0, (Tickle T 2019)) with JAGS (v4.3.0,
(Plummer 2003)). First, we generated a gene ordering file using a Python
script provided by the infercnv developers (https://github.com/
broadinstitute/infercnv/blob/master/scripts/gtf_to_position_file.py, 21
Apr 2021) and excluded all genes that were not part of this file. We only
considered chromosomes 1-22 and, in order to avoid artefacts due to
differential immunoglobulin gene expression, excluded all genes
starting with “IGH”, “IGL” or “IGK”. The actual inferCNV analysis was
performed separately for the plasma cells from each patient and
utilized non-normalized decontX-corrected expression values.
Plasma cells from the three healthy donors were used as reference
cells. We disabled the filtering threshold regarding counts per cell
and used the arguments “cutoff = 0.1”, “cluster_by_groups = TRUE”,
“cluster_references = FALSE”, “analysis_mode = ‘subclusters’.
“tumor_subcluster_pval = 0.05”. “denoise = TRUE”, “noise_logistic =
TRUE”, “HMM=TRUE”, “HMM_type = ‘i6’” and “num_threads = 1”
within infercnv’s function run(). Subsequently, we manually anno-
tated the detected sub-populations as “healthy”, “malignant” or
“unclear” based on the denoised infercnv results. We additionally
determined the major immunoglobulin light chain expressed by

Article https://doi.org/10.1038/s41467-024-54543-0

Nature Communications |        (2024) 15:10396 12

https://github.com/broadinstitute/infercnv/blob/master/scripts/gtf_to_position_file.py
https://github.com/broadinstitute/infercnv/blob/master/scripts/gtf_to_position_file.py
www.nature.com/naturecommunications


malignant cells in a patient-wise fashion by inspecting the expression
of the corresponding genes (IGKC, IGLC1-7). Afterward, we refined
the malignancy annotation to reduce the number of cells that were
wrongly classified as malignant. To this end, we compared immu-
noglobulin light chain gene expression (decontX-corrected and
normalized) in each putatively malignant cell with the corresponding
mean expression in its sub-population. If the expression of the
patient-specific major light chain gene was less than half of the cor-
responding mean expression in the corresponding sub-population
and the expression of another light chain gene was above 1.5 times
the corresponding mean expression in the corresponding sub-
population, a cell’s classification was forced to “healthy”. Copy
number heatmaps were generated using ComplexHeatmap (v2.6.245),
circlize (v0.4.1346,), scales (v1.1.1, (H. Wickham 2020)), magick
(v2.7.347,) and imagemagick (v6.9.1248,). Only cells from samples that
were not obtained during induction and maintenance treatment are
displayed.

scRNA-seq quality control of T cell data. Cells were kept in the
dataset if they had between 500–20,000 UMIs, between 300–4000
detected features, and less than 10% mitochondrial reads. Clusters of
contaminating cells, including myeloid cells, erythroid progenitors,
and plasmablasts, were identified based on the expression of cell type-
specific marker genes. Subsequently, decontX() from the R package
celda (v1.4.744) was applied on the count matrix to account for cross-
contaminating reads using the contaminating cell types and remaining
T cells as cluster labels. The final Seurat object was filtered tomaintain
only T cells, and the decontX matrix was used for all subsequent
analyses.

Classification of T cell subsets. A reference dataset was generated
from the T cell dataset by annotating cells based on the normalized
decontX matrix (NormalizeData):

CD4: CD4 > 1.5 & CD8A= =0 & CD8B = = 0 & TRDC= =0
CD8: (CD8A> 1.5 | CD8B > 1.5) & CD4 = =0 & TRDC= =0
gdT: TRDC> 1.5 & CD8A= =0 & CD8B = = 0 & CD4 = =0
For each of these T cell subsets, dimensionality reduction was

performed ((NormalizeData(), FindVariableFeatures(nfeatures =
1000), ScaleData(), RunPCA()), and cells were clustered to define the
main cell states (FindNeighbours(reduction = ’pca’,dims = 1:20),
FindClusters(resolution = 0.4)). The subsets were then merged back
into a combined reference dataset to annotate the complete T cell
dataset with SingleR (v1.2.449,) taking “pruned.labels” output to split
the T cell Seurat object into CD4, CD8, or gdT cell subsets for further
analyses.

CD8 subset analysis. Dimensionality reduction and clustering
was re-run (as above, except RunUMAP(dims= 1:20),
FindClusters(resolution = 0.5)) as the final filtering step excluding a
cluster-specific for cycling cells and then repeated to obtain a final
version (as before, except FindClusters(resolution =0.45)). Clusters
were annotated to CD8 +T cell states based on the module score
expression for custom gene signatures, which was added for each cell
with AddModuleScore(): naive (genes: CCR7, TCF7, LEF1, SELL; cluster:
(1), effector/central memory (genes: GPR183, CCR7, SELL, IL7R, CD27,
CD28, GZMA, CCL5, S1PR1, GZMK, CXCR4, CXCR3, CD44; clusters: (2,
3, 5, 7), cytotoxic (genes: EOMES, TBX21, GZMB, PRF1, FASLG, GZMH,
GZMA; cluster: (4). In addition, cluster 6 was annotated as
KLRB1 + T cells based on the high expression level of the
corresponding gene.

CD4 subset analysis. Similar to the CD8 +T cell dataset, cells were
projected into a low dimensional space and grouped using graph-
based clustering (as before, except FindClusters(resolution =0.45)).

Differential abundance analysis. Changes in the composition of the
BM microenvironment between the clinical states were evaluated by
log2fold-change differenceof each patient’s cell type fraction from the
corresponding healthy control’s mean fraction. Prior to quantification
of the compositions, plasma cells, and erythroid progenitors were
excluded and evaluated separately. Further, plasma cells from patient
P015 were excluded for cellular abundance analysis, as only the
negative MACS fraction for plasma cell enrichment was available for
single-cell RNA sequencing. Fractions and log2fold-change differences
were tested for significance using an unpairedWilcoxon rank sum test.

For cluster-independent differential abundance analysis, DA-seq
was performed (Zhao et al. 202150). The tool computes a multiscale
score for eachcell basedon the k-nearest- neighborhood for k between
50 and 500. Following the multiscale score computation, a logistic
regression classifier is trained to predict the enrichment state of each
cell. Cells in differential abundant populations, whose neighborhoods
are enriched with cells from one biological state, ID or healthy
respectively, tend to be closer to each other in the score space. The
logistic regression classifier is trained with L2 regularization to ensure
smooth output and reduced outliers. The regularization hyperpara-
meter lambda is optimized using cross-validation. As a result, a high
value indicates that a cell is located in an enriched region, and low
values indicate that a cell is in a depleted region. Cells with a DA
measure > 0.95 and < −0.95 were considered as differential abundant
and were visualized on the UMAP. A continuous DA-seq score was
calculated by subtracting scaled module scores (AddModuleScore())
for significantly up- and downregulated genes in differentially
abundant cells.

Dissimilarity analysis and aberrant cell classification. To determine
and quantify whether a cell is transcriptionally more similar to healthy
cells or to perturbed counterparts in the disease state, we introduce a
‘dissimilarity score’. It requires condition labels i (in our case “Healthy”
and “ID”), sample labels j and a data matrix X. The analysis was per-
formed per cell type to account for cell type-specific transcriptional
differences. By default, we chose PCA coordinates of ndimensions as
dimension-reduced representations of our data, where nwas assessed
by prior MetaCluster analysis. Cells were divided by condition and
further sampled to adjust for equal group sizes. We computed the
k = 30 nearest neighbors using the FNN package (v.1.1.3) to look at the
condition distribution for each cell in the dataset. Dissimilarity was
quantified by summing up the neighbors per condition with higher
values meaningmore neighboring cells from the diseased state (ID) as
compared to healthy. To adjust for sampling effects, this process was
iterated 100 times with changing seeds. Each cell is assigned the
median dissimilarity and the final score is scaled between 0 and 1
between all conditions.

To allow group-wise comparisons between ‘healthy-like’ cells and
most dissimilar, i.e., ‘aberrant-like’ cells among the clinical states, we
used the automatic machine learning software H2O autoML (E. LeDell
2020). Initially, each cell was given a ‘state’ label (‘healthy-like’ or
‘aberrant-like’) based on the combination of the ‘clinical state’ (‘Heal-
thy’ or ‘ID’) and the ‘dissimilarity score’. The underlying ‘dissimilarity
score’ threshold was defined as 99% of all cells from the healthy con-
trols being labeled ‘healthy-like’, and applying this threshold on all
patients’ cells. Then, the top 500–1000 variable genes were computed
for each cell population (see Supplementary Data 3) using Seurat’s
FindVariableFeatures(). To train and validate the models, training
(80%) and test (20%) datasets were generated for each cell popu-
lation using the createDataPartition() function from the caret
package (v.6.0-9151). To have sufficient numbers of healthy plasma
cells for model training and validation, healthy plasma cells
from the ‘Human Cell Atlas’52 were integrated with our dataset
applying the Scanorama algorithm with default parameters on all
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features53. The partitioned datasets were then converted to H2O
objects using the H2O library (H2O R version: 3.36.0.3. H2O
cluster version: 3.36.0.3). The function h2o.automl() was used
for the model training process using the train dataset and top
n variable genes (500 or 1000) as input. Following parameters
were set: max_models = 80 (which computes 82 models due
to including the two Stacked Ensembles as default),
max_runtime_secs_per_model = 7200, stopping_rounds = 5 and
nfolds = 50 or nfolds = 5 (depending on dataset size). Moreover, a
seed was set to ensure result reproducibility.

The top leader model (see Supplementary Data 3) was selected
and used for label prediction on the respective test dataset. To assess
label prediction accuracy for each model, a confusion matrix was
generated, and the F1 score calculated using caret’s confusionMatrix()
function. The respective leader model was then used for classification
and label prediction. After running h2o.predict(), additional filtering
thresholds were applied (p0 > = 0.66 and p1 > =0.66) on the internal
probability values to differentiate between clearly defined (p0 > =0.66
and p1 > =0.66) and non-defined cells.

Differential gene expression analysis. Differential gene expression
analyses were computed using a two-part generalized linear model
implemented in MAST (v1.18.054,). The Hurdle model in MAST con-
siders the bimodal expression distributions of single-cell data having
either a strong gene expression or zero values (zero inflation). Nor-
malized decontX corrected data of the whole human bone marrow or
without the cells of ID were used as input. Genes with less than 10%
expression across all libraries were filtered out. For the remaining
genes, the hurdlemodel using the patients, the cell state, andCR status
wasfitted using theMAST function zlm(). The obtained coefficients for
each variance-covariance and gene were reported with summary().

Gene set enrichment analysis. Gmt files containing gene set collec-
tions were obtained from the Molecular Signatures Database
(c2.cp.v7.4.symbols.gmt, c5.all.v7.4.symbols.gmt, h.all.v7.4.symbols.
gmt55,56,). To search for enriched terms of cells from patients at initial
diagnosis being classified as ‘aberrant’ compared to ‘healthy’ cells from
healthy donors, their average log2 fold-change among all genes was
calculated. Subsequently, genes were sorted by their average log2 fold-
change andused formultilevel GSEAwith the fgsea Rpackage (v1.14.057,).
Results were filtered for padj <0.05 and sorted by their normalized
enrichment score (NES). Significantly enriched gene sets of interest were
further evaluated by calculating a module score for the corresponding
gene signature, or for specified leading-edge genes in each cell using
AddModuleScore()in Seurat and comparing these modules in cell types
of interest between the clinical groups.

To systematically assess enriched gene sets between the clinical
groups including the ‘complete remission’ status, all gene set collec-
tions were combined into one gene matrix transposed file (gmt) as
input for GSEA, which was then performed as stated above. Top 100
enriched (NES) and significant (p <0.05) scores were selected per
corresponding cell type, translated into aModuleScore, and tested for
significancebetween the clinical andCR states using a pairedWilcoxon
signed rank test.

GO overrepresentation analysis. To identify enriched terms among
theDEGs from theMAST analyses, GOoverrepresentation analysis was
performed with the clusterProfiler R package (v3.16.158,). The function
enricher() was used to run GO analysis based on the same gmt files as
used for GSEA.

Surfaceome filtering. DEGs from the MAST comparison of aberrant-
like cells from patients at initial diagnosis against healthy-like cells
from healthy donors within the memory CD8 +T cell subset were fil-
tered for surface proteins using Cell Surface Protein Atlas data,

including validated surfaceome proteins59. Briefly, surface proteins
annotated in Table A of the file http://wlab.ethz.ch/cspa/data/S2_File.
xlsx (21 Apr 2021) were filtered for the category ‘1 - high confidence’
and DEGs were filtered for the intersection with the remaining gene
symbols in the surfaceome table.

Cell-cell interaction analysis. Cell-cell interactions were inferredwith
CellphoneDB2.024 using normalized anddecontX corrected count data
of the humanbonemarrowdata set. Receptor-ligand interactionswere
inferred formean expressionwithin each cell label cluster aswell as for
clusters having the combined information of cell label and DA-Seq
information. For downstream analyses, significant interactions with an
adjusted p-value < 0.05 were considered, which required an expres-
sion of receptor and ligand in at least 10% of the cells per cluster.
CellphoneDB2.0 was computed per patient, and the significant inter-
action counts were grouped over the respected disease subgroups.

RNA Velocity. To investigate developmental dynamics, scVelo
(v0.2.460,) in combination with Velocyto (v0.17.1761,) in Python (v3.9.7)
was used. Readswere annotated as spliced, unspliced, and ambiguous.
The pipeline was run individually for each sample and data from
resulting loom files were combined. Cells were subsetted based on
prior analysis of CD8 +T cells. Splicing kinetics were recovered using
recover_dynamics() with standard parameters, velocities were com-
puted using velocity (mode = ‘dynamical’) and the velocity graph was
calculated by velocity_graph() with standard parameters. Finally, for
visualization, summarized velocity vectors are plotted using the velo-
city_embedding_stream() function in UMAP space in combination with
the dissimilarity score. For plotting of single marker expression,
velocity() was used.

Bulk RNA-sequencing and TCR clonotyping
BM preparation, staining, and sorting. For sorting of CXCR3 + and
CXCR3- cells, BM and PB samples of MM patients were thawed and
processed as described above. Cells were stained with CD3-APCCy7
(1:100), CD4-BUV737 (1:50), CD8-BUV395 (1:50) and CXCR3-PECy7
(1:20) antibody. For sorting of CXCR3 + and CXCR3- cells, single, live
CD3 +CD4-CD8+ cells were gated and sorted as CXCR3- or CXCR3 +
cells, respectively. 1000 CXCR3 + and CXCR3-CD8 +T cells from each
sample were sorted on FACSAria Fusion equipped with a 100 µm
nozzle.

Bulk RNA-sequencing and gene expression analysis. RNA was iso-
lated using the PicoPure RNA Isolation Kit (ThermoFisher), bulk RNA-
sequencing libraries were generated using the SMART Seq Stranded
Total RNA-Seq kit (Takara) and sequenced using the Illumina NovaSeq
6000 platform (2 × 100bp). Adapter trimming was performed with
Skewer (v0.2.262,). Reads were aligned to human reference GRCh38
using STAR (v2.5.2b63,) and gene count tables were generated using
Gencode v.32 annotations. Differential expression between samples
was tested using the R/Bioconductor package DESeq2 (v1.30.164,).
Sample origin (BM vs. PB) was added to the design formula (condition:
CXCR3 + vs. CXCR3- CD8+ T) to retrieve significantly upregulated
genes for CXCR3 +CD8 + T cells within the BM (termed bulkRNA
Remodeling Module).

TCR clonotype analysis. Analysis and quantification of the TCR
receptor profiles, statistical analysis, and visualizationwere performed
using three main tools: MiXCR (v3.0.1365,), VDJtools (v1.2.166,) and
immunarch (v0.6.6, (ImmunoMindTeam 2019)). Raw bulk RNA
sequencing data of sorted CD8 + T cells in FASTQ format was used as
the input for the TCR clonotype analysis. Analyze shotgun command
of MiXCR was used to align variable (V), diversity (D), joining (J), and
constant (C) genes of T-cell receptors, correct PCR and sequencing
errors, assemble bulk RNA-seq reads by CDR3 region to the reference
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IMGT67 library andexportbulkTCRclonotypes. To this end, thedefault
parameters recommended by the developers for RNA-seq data were
used. Basic analysis, diversity estimation and repertoire overlap ana-
lysis modules of VDJtools were then used for the downstream analysis
of the bulk TCR clonotypes provided by the MiXCR output. For the
TCR repertoire clonality comparison between groups, the clonality
metric was calculated as [1 – normalized Shannon Wiener Diversity
Index]. Significant differences were evaluated by paired Wilcoxon
signed rank test. For TCR repertoire overlapquantification, the Jaccard
index was utilized. Hierarchical clustering of the quantified TCR
repertoire overlap was then performed using the hclust() function of
theRMASSpackage. JoinSamples() commandof VDJtoolswere used to
highlight overlapping TCR clonotypes by representative CDR3 amino
acid sequence between CXCR3 status and sample origin (BM, PB) of
CD8 + T cells of single patients. In addition, the frequency of the top 10
most abundant TCR clonotypes across different samples was tracked
using immunarch. Clonotype tracking was performed by the repre-
sentative CDR3 amino acid sequence of TCR clonotypes.

T cells in vitro cytokine assay
CD3 + T cells were enriched from the BM of 30 MM patients using the
Pan T cell isolation kit with MS columns (both Miltenyi Biotec, Ber-
gisch, Germany). 5 × 105 CD3 + T cells were plated in 0.5ml T cell
expansion medium (Stemcell Technologies, Cologne, Germany) with
50 IE/ml IL-2, 1 % Pen/Strep (both from Sigma-Aldrich, Taufkirchen,
German) in 24 well-plates and incubated overnight at 37 °C, 5 % CO2.
On the next day, GolgiStop (0.66 µl/ml) (both BD Biosciences, Hei-
delberg, Germany) was added, and cells were stimulated with PMA
(50ng/ml) and Ionomycin (1 µg/ml) (both Sigma-Aldrich, Taufkirchen,
Germany). 6 h after incubation, intracellular staining was performed
using transcription factor buffer set (BD Biosciences, Heidelberg,
Germany) according to manufacturer’s instructions. Briefly, cells were
washed twice in PBS and stained with cell surface antibodies CD3-
APCCy7 (1:100), CCR7-APC (1:50), CD45RO-BV711 (1:50), CD4-BUV737
(1:50) and CD8- BUV395 (1:50) for 20min at 4 °C. Subsequently,
antibody-conjugated cells were fixed and permeabilized for intracel-
lular staining before washed twice with 1x Perm/Wash buffer and
stained with antibodies against intra-cellular markers (TNFa-PECy7
(1:100), IFNG-PE (1:50) and Il-2-BV421 (1:50)) at 4 °C for 45min. Cells
werewashed twicewith 1x Perm/Washbuffer, andmeasurements were
acquired on cell analyzer FACS Lyrics (BD Bioscience, Heidelberg,
Germany). Controls without PMA and Ionomycin stimulation were
included in this assay. Flow cytometry data were visualized in FlowJo
(BD Bioscience, Heidelberg, Germany).

CHIP genotyping
NGS sample preparation and library generation. Genomic DNA was
isolated using the QlAamp DNA Mini or Micro Kit (Qiagen) according
to the manufacturer’s instructions. Input DNA quantitation was per-
formed using a Quantus fluorometer (Promega) with 50 ng input per
sample. DNA was then processed using the TruSight Myeloid
Sequencing Panel Kit (Illumina), which includes the hybridization and
extension-ligation of oligos, followed by PCR amplification with spe-
cific dual-index primers and adapters. The quality and size of PCR
products were examined via agarose gel electrophoresis. After PCR
clean-up via AMPure XP beads, the normalized libraries were pooled
and loaded on a MiniSeq for sequencing using the MiniSeq High
Output Kit (300 cycles) to generate 2 × 150 read lengths. The TruSight
Myeloid Sequencing Panel comprises 568 amplicons interrogating 54
genes associated with myeloid neoplasms: ABL1, ASXL1, ATRX, BCOR,
BCORL1, BRAF, CALR, CBL, CBLB, CBLC, CDKN2A, CEBPA, CSF3R,
CUX1, DNMT3A, ETV6, EZH2, FBXW7, FLT3, GATA1, GATA2, GNAS,
HRAS, IDH1, IDH2, IKZF1, JAK2, JAK3, KDM6A, KIT, KMT2A, KRAS,MPL,
MYD88, NOTCH1, NPM1, NRAS, PDGFRA, PHF6, PTEN, PTPN11, RAD21,

RUNX1, SETBP1, SF3B1, SMC1A, SMC3, SRSF2, STAG2, TET2, TP53,
U2AF1, WT1 and ZRSR2.

Bioinformatics analysis. Data alignment was performed with Local
Run Manager v2.0.0 (Illumina), aligner BWA, and Quality Control
parameters were examined via Sequencing Analysis Viewer v2.4.7
(Illumina). For data annotation, Variant Studio v3.0 (Illumina) was
used, and variants were interpreted from a threshold of read depth
≥ 500 and allelic frequency ≥ 2%. Interpretation and classification of
variants is based on pathogenicity, defined by varsome (https://
varsome.com), localization in functional domains, examined by cBio-
Portal for Cancer Genomics (https://www.cbioportal.org) and avail-
ability of a COSMIC-ID (Catalog Of Somatic Mutations In Cancer -
https://cancer.sanger.ac.uk/cosmic) as well as publications of the
corresponding variant.

Multiplex Immunofluorescence
The frequency, localization, and spatial proximity of T cell sub-
populations and plasma cells, as well as their expression of respec-
tivemarkers LAT1 and CXCR3, was analyzed bymultispectral imaging
(MSI). Formalin-fixed and paraffin-embedded (FFPE) bone marrow
(BM) biopsies of patients with MM (n = 33), and control BM tissue of
patients with B cell Non-Hodgkin lymphomas without evidence for
BM infiltration (n = 12) and myelodysplastic syndromes were col-
lected between 2017 and 2020 at the Institute of Pathology of the
Medical Faculty of the Martin-Luther University Halle-Wittenberg,
Germany. The use of FFPE tissue samples was approved by the Ethical
Committee of the Medical Faculty of the Martin Luther University
Halle-Wittenberg, Halle, Germany (2017-81). The staining procedure
was performed as recently described (Bauer et al., 2020). Themarker
panel used for staining included monoclonal antibodies (mAb)
directed against CD3 (Labvision. Germany. clone SP7), CD8 (Abcam,
Cambridge, UK, clone SP16), MUM1 (Dako, USA, cloneMUM1p), LAT1
(Abcam, Cambridge, UK, clone EPR17573) and CXCR3 (Abcam,
Cambridge, UK, clone ab133420). Briefly, all primary mAb were
incubated for 30min. Tyramide signal amplification (TSA) visualiza-
tion was performed using the Opal seven-color IHC kit containing
fluorophores Opal 520, Opal 540, Opal 570, Opal 620, and Opal 690
(Perkin Elmer Inc., Waltham, MA, USA), and DAPI. Stained slides were
imaged employing the PerkinElmer Vectra Polaris platform. Cell
segmentation and phenotyping of the cell subpopulations were
performed using the inForm software (PerkinElmer Inc., USA). The
frequency of all immune cell populations analyzed, and the carto-
graphic coordinates of each stained cell type were obtained. The
statistical analysis of the cell populations’ spatial distribution was
performed in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNAseq andbulk RNAseqdata generated in this study have been
deposited in the European Genome-Phenome Archive (EGA) under
accession code EGAS00001006980 https://ega-archive.org/search/
EGAS00001006980. The processed scRNAseq data are available at
Figshare https://doi.org/10.6084/m9.figshare.26935744. Source data
are provided with this paper.

Code availability
The source code used for generating the figures and the underlying
data supporting the findings of this study have been deposited in
Figshare and are publicly available under https://doi.org/10.6084/m9.
figshare.26935744.
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