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Abstract

RNA-binding proteins (RBPs) are important contributors to post-transcriptional regulatory pro-

cesses. The combinatorial action of expressed RBPs and non-coding factors bound to the same

transcript determines post-transcriptional properties of the mRNA in a context-dependent man-

ner. To gain a better understanding of RNA stability and translational activity across different

conditions, we have compiled and analyzed a set of ribosome profiling datasets for four human

cell lines and used existing and newly generated metabolic labeling data to determine matching

RNA degradation rates. We then used machine learning methods to predict RNA degradation

rate and translation level from RBP binding information, which comprised existing in vivo binding

datasets and computationally predicted binding sites. Utilizing this new RNA stability resource,

we predicted RNA degradation rate and translation level from RBP binding alone. In vivo binding

sites had higher importance for prediction compared to computationally predicted binding sites,

likely due to confounding effects. We further explored the feature importance of different RBPs

for stability prediction in the context of differential stability conferred by 3’UTR isoforms. Taken

together, an RNA stability machine learning model trained on one context successfully generalizes

but is impacted by the availability and reliability of current data.
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1. Introduction

Gene expression is regulated at multiple levels to ensure the correct temporal and cell-type-

specific development and homeostasis of an organism. Post-transcriptional mechanisms, such as

those regulating RNA processing, splicing, export, localization, translation, and degradation of the

RNA, play an important role in ensuring that the transcriptome is buffered against transcriptional

noise [21] and can be quickly remodeled if needed [44]. In addition to non-coding regulatory RNAs,

post-transcriptional steps are regulated by RNA-binding proteins (RBPs), which recognize short

sequence and/or structure motifs on the RNA and form an RBP code that determines the RNA

fate. RBPs interact with effector proteins, assembling a complex with a specific action on the RNA.

Competition between RBPs for binding sites and auto-regulatory feedback loops contribute to the

gene regulatory landscape [43],[37].

Global RNA stability is a combination of separate nuclear [40] and cytoplasmic RNA decay

processes, with cytoplasmic RNA stability strongly influenced by deadenylation rate [15] as well

as translation speed and codon composition [14]. There are two main strategies to measure RNA

degradation rates in mammalian cells: either measuring leftover RNA at different time points after

transcription inhibition [27], or using metabolic labeling with nucleotide analogs and monitoring

their incorporation over time, as newly synthesized RNA replaces the degraded old RNA [10], [22].

Both methods have been used in multiple studies measuring RNA stability in human and mouse

cell lines, and they generally agree with each other [30].

To determine RBP binding sites, methods that use UV light-induced covalent cross-linking and

immunoprecipitation of the RBP coupled with sequencing of the associated RNA (Cross-Linking

and Immunoprecipitation sequencing, CLIP-seq) are prevalent [20]. RBP binding sites are called

as clusters of accumulated reads, with protocol-specific diagnostic events such as mutations that

indicate the cross-linked nucleotide allowing CLIP to have single-nucleotide resolution. With the

accumulation of hundreds of CLIP datasets, accompanied by functional data of RBP knockdown

experiments, RBP binding preferences and regulatory grammar have been pursued in a systematic

way [36, 46].

Challenges associated with CLIP experimental data, include a substantial number of false neg-

atives (due to high dependence on transcript abundance) and false positives (due to shortness of
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reads and contamination with abundant RNA species). With the rise in using deep learning ap-

proaches for genomics applications, convolutional neural networks (CNNs) have been trained on

CLIP data to learn RBP binding preferences from RNA sequences [18]. This approach helps fil-

ter false negatives present in experimental datasets and to be able to predict binding events in a

different cell type in which the experimental data is unavailable.

Prior models have predicted RNA stability from influencing factors such as the RNA sequence

and RBP binding events. Yeast RNA half-lives lie within minutes and can be predicted well from

sequence alone, with codon composition explaining 55% half-life variability and 3’UTR sequences

another 5% [8]. Mammalian RNAs have typical half-lives of several hours, and prediction accuracy

is lower. A recent deep learning approach complemented RBP features with codon composition,

exon junctions, and 5’UTR features to improve the prediction performance [1].

Most existing datasets for RNA stability report gene-level half-lives averaged across isoforms.

However, the expectation is that stability levels of the same gene are regulated by different isoforms

[19]. Measuring both isoform-specific stability and RBP binding is not straightforward due to

the limited ability of short sequencing reads to resolve isoform composition, and while long-read

sequencing techniques show promise in this regard [33, 3], such datasets are very rare. Since many

machine learning (ML) methods, especially deep learning models, require large datasets in order

to achieve acceptable predictive performance, many studies attempt to aggregate stability datasets

across cell lines and even species. This approach, however successful in identifying general patterns

common among different data sources, neglects differential regulation across conditions.

In this work, we aim to dissect RNA stability determinants conferred by RBPs. Unlike prior

work, we focus on finding differential factors across isoforms and cell lines. To this end, we generated

novel stability datasets for several cell lines. We then trained ML models to predict stability from

RBP binding information and use ML interpretability methods on the models to identify the most

influential RBPs. We explore the limits of existing datasets and the extent of their usability

for this task. We employ predicted RBP binding sites to identify differential stability features

across isoforms of the same gene. We evaluate our approach by using models trained on one cell

line to predict stability on unseen data from other cell lines as well as massively parallel reporter

experiments. We conclude that there is a robust component in RNA stability that can be interpreted

with the current state of existing data and methods at cell line- and isoform-level.
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2. Results

2.1. Establishing feature maps from ribosome profiling and RNA degradation data

The availability of in vivo target site information for hundreds of RNA-binding proteins opens

a possibility to use machine learning to uncover possibly multiple roles of RNA binding proteins

on distinct aspects of RNA metabolism. We set out to predict mature RNA degradation rate,

translation level, and translation efficiency from RBP binding data in human cells. To this end,

we implemented a framework with two main steps: the first part uses DNNs to calculate RBP

binding sites for each transcript, the second part defines downstream tasks to use the binding

information to learn a regressor for predicting degradation or translation rate. We leverage both

in-vivo RBP binding data from CLIP experiments, here referred to as raw CLIP data, and in-silico

binding predictions. Our raw CLIP data comprises the PAR-CLIP compendium of RBPs profiled

in HEK293 cells [36], as well as the ENCODE eCLIP datasets in K562 and HepG2 cells [46]. These

CLIP datasets had recently been used to train DeepRiPe, a convolutional neural network classifier

that predicts RBP binding sites along an input RNA sequence [18, 23].

The workflow is summarized in Figure 1. In the first step, feature maps are computed. To

this end, each sequence was divided into non-overlapping bins of 150nt or 200nt to be consistent

with DeepRiPe’s input size. We then assigned binary binding labels based on raw CLIP data: For

each transcript, we assigned one to an RBP class if the transcript contains one or more bins with

annotated binding sites binding sites, and zero otherwise. To derive the in-silico features, we ran

inference on existing pre-trained DeepRiPe models [18] to predict RBP binding for each sequence

bin. We used the maximal predicted score among all bins per transcript or 3’UTR, to aggregate

predictions across the bins back to isoform-level.

The output of the first step thus consists of aggregated raw CLIP and DeepRiPe features that

will be the inputs for the following regression module, for either the whole transcript sequence

or only the 3’UTR. Labels for the supervised training of the regressor are the RNA degradation

rate estimates calculated from 4-thiouridine metabolic labeling experiments using INSPEcT [11].

We used the labeling data for four human cell lines: an exisiting HEK293 dataset [35], along with

newly generated measurements in K562, HepG2, and HeLa cells. We derived gene-level estimates of

degradation rates and assigned this value to the highest expressed isoform in each cell line. As labels
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for translation level, we utilized a value of ”P sites per million” (ORFs pM) from ribosome profiling

experiments [5]. In addition, we computed translation efficiency (TE) as a log-scale ratio between

the ORFs pM and transcripts per million (TPM) derived from cytoplasmic RNA sequencing.
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Figure 1: Overview of the prediction framework and dataset. Top: RBP features. For each gene, the top expressed
transcript isoform is selected as the representative sequence. Experimental and predicted RBP binding sites derived
from eCLIP and PAR-CLIP are summarized per transcript. Bottom: Prediction labels. Middle: Regression models
used for prediction.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2024. ; https://doi.org/10.1101/2024.11.19.624283doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.19.624283
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2. Learning a regressor

We evaluated several regression models, initially focusing on using training and test data from

the same cell line (HEK293). We considered five models of different complexity levels: two linear

regression models (lasso and ridge), gradient-boosted tree regressor (GBR), multi-layer perceptron

(MLP), and two-legged neural network (the legs providing raw CLIP and DeepRiPe-predicted

input separately into the network). Because translation is regulated by RNA-binding proteins at

the 5’UTR, CDS, or 3’UTR, we use features for the whole transcript for interpretation of translation

prediction. For predicting degradation rate, we focus on 3’UTR features only, as 3’UTR-binding

RBPs are known to regulate RNA stability and informative features are easier to interpret.

Figure 2: Predictive performance of regression models. X-axis: Average Pearson correlation coefficient between the
true and predicted value of degradation rate or translation level in HEK293 cells for the five tested models. The right
most plot is showing performance for models trained on 3’UTR region only, while for the the two other plots models
are trained on the whole transcript. Color denotes the RBP feature set used in prediction: either DeepRiPe-predicted
RBP sites (green), experimental RBP binding sites from eCLIP and PAR-CLIP (orange), or both (blue). Each model,
label, and feature combination was run with five different random seeds.

We achieved a maximum performance of Pearson correlation between true and predicted values

exceeding 0.75 for predicting translation level and 0.6 for degradation rate. Prediction performance

dropped to 0.4 and 0.3, respectively, if only DeepRiPe features were used for prediction, but the

best performance was achieved with the combination of both raw CLIP and DeepRiPe features.

We observed small differences in the models’ performance (Figure 2) with cases where the simpler

linear models and GBR outperformed neural networks, likely reflecting limitations of the dataset.

As linear and tree-based models are easier to interpret and neural networks did not outperform

them, we further focused on feature importance from ridge regression and GBR models to gain

insight into which RBPs were important for predicting RNA stability and translation level.
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2.3. Interpreting the results and the role of RBPs

We compared coefficients for ridge regression and feature importance from GBR prediction

across several runs and identified the most important RNA-binding proteins to predict degradation

rate and translation. The top 10 important features of GBR are shown in Figure 3 A, B 3.

2.3.1. RBPs for predicting degradation

GBR assigned high importance to both DeepRipe and raw CLIP features, whereas top ridge

regression coefficients were highly dominated by raw features. Among the features with high im-

portance, we find well known regulators of RNA stability: PUM2 destabilizes mRNA by recruiting

CCR4-NOT deadenylase [16]; IGF2BP1 enhances mRNA stability by binding N6-methyladenosine

(m6A) modified sites [24], and LARP4 stabilizes mRNA by binding to poly(A) tail and protecting

from deadenylation [34]. Additionally, two more poly(A)-binding proteins, PABPC4 and PABPN1,

also showed high importance, linking the degradation rate with the status of the poly(A) tail. Re-

cent evidence shows that different transcripts have a strong bias towards different PABPs, which

is reflected in their stability [38]. However, some important features do not have a known direct

connection to cytoplasmic RNA stability, such as SUB1 and SLTM, nuclear transcription factors

whose RNA-binding activity is only known from interactome studies ([2, 7]).

2.3.2. RBPs for predicting translation

Similar to degradation, GBR gave high importance to RBPs known to be relevant for translation

regulation. Thus, CAPRIN1 possibly regulates translation via condensates with FMRP1 [26].

Dead-box helicase DDX3X regulates translation as well [6]. Poly(A) binding proteins are again

given high importance (LARP4, PABPN1). As for stability, there are again nuclear proteins among

the imporant features, which are presumably not involved in translation but rather in transcription

(SUB1) and cleavage and polyadenylation (FIP1L1, CPSF1).
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Figure 3: Top 10 important features for prediction of degradation with 3’UTR features (A) and translation with
whole transcript features (B) with GBR. Error bars represent standard deviation from 5 runs initiated with different
random seeds. (C) Correlation between degradation and transcript abundance. (D). Feature importance (GBR)
against the partial correlation of each feature with degradation.

2.3.3. Degradation and translation are related

We wondered why our models would give some proteins high importance if they have no known

role in degradation or translation. In addition, we noticed that three among the top ten impor-

tant features selected by GBR for degradation prediction were among the top ten for predicting
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translation (LARP4, SUB1, PABPC1). To investigate this further, we looked at the relationship

between those labels in our dataset. Indeed, the degradation rate is anticorrelated to translation

level (Pearson = -0.49, Figure 3C 3). Moreover, both of these properties have a strong relationship

to cytoplasmic RNA abundance (log transcript per million (TPM) value from the RNA sequencing

of the cytoplasmic fraction) (Supplementary Figure A.7). We reasoned that the underlying cor-

relation to RNA abundance may provide an explanation for shared RBP features that are highly

important for prediction. In particular, partial correlation shows the correlation between two fea-

tures while accounting for the effect of all other features. We thus computed the correlation of

each RBP feature to the degradation rate while accounting for the effect of all other RBP features.

The result is shown in Figure 3D 3. Indeed, the three most important features (LARP4, SUB1,

PABPC1) also have the highest partial correlation to the degradation rate. All three of them are

derived from raw CLIP data, and we reason that the underlying confounding RNA abundance,

rather than their biological role in RNA stability, underlies their high importance for prediction.

This also likely explains the distinctly lower performance of DeepRiPe versus CLIP-based features,

as the computational predictions will be less confounded by RNA abundance.

2.3.4. Cell line specific feature importance

Our newly generated RNA stability data allowed us to investigate if there were any cell line-

specific RBPs regulating either RNA stability or translation. We trained models on datasets from

different cell lines and focused specifically on DeepRiPe features, as raw RBP features may be

confounded by the underlying transcript abundance. Comparing feature importance for K562,

HepG2 and HeLa cell lines to HEK293, there is general agreement between feature importance for

all of the cell lines (Figure 4). Thus, it is likely that there was no RBP with strong cell type-specific

effects on RNA stability in our dataset.
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Figure 4: Comparison of feature importance (ridge regression coefficients) between models trained on HEK293 (X
axis) and K562, HepG2 and HeLa, respectively (Y axis). Only DeepRiPe features are shown.

2.3.5. Predicting of stability for unseen isoforms

Given that important RBP features were cell type agnostic, we asked if we could correctly

predict the stability of isoforms that differ between cell lines. To this end, we used the model

trained on the HEK293 dataset to predict RNA stability for those top expressed isoforms, which

were present in the other three cell lines and did not occur in the HEK293 training set. The models

achieved a Pearson correlation of approximately 0.3 (degradation rate) to 0.6 (translation level)

(Supplementary Figure A.8). Examining correctly predicted isoforms (i.e., isoform among both

the top N stable and top N predicted stable transcripts, similarly for unstable), we investigated

individual predictions using Shapley values [31]. We asked if contributions of RBPs for individuals

examples differed from the global feature importance and identified specific RBPs important for

individual isoforms. We then used integrated gradients of a DeepRiPe model prediction [18] if a

DeepRiPe feature was selected in the top 10 important for an isoform and the DeepRiPe prediction

output was higher than 0.5. Figure 5 shows two examples where PUM2 is the most important

feature for the prediction of degradation rates in a GBR model, and the DeepRiPe output is high

for PUM2 in alternative parts of the transcript. The attribution map for this highly PUM2-positive

bin clearly pinpoints an instance of the known PUM2 motif (UGUA(U/A)AUA) [17].

2.3.6. Predicting stability in controlled context

To evaluate the performance of stability predictors without confounding factors such as un-

derlying alternative transcript abundance and codon composition, we turned to massively parallel
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1.A 2.A

1.B

1.C

2.B

2.C

Figure 5: Feature importance analysis for two individual transcripts: ENST00000511647 and ENST00000370132.
A: SHAP values. B: DeepRiPe prediction for 3UTR. C: Integrated gradients for PUM2 prediction for bin 50.
1.A: most important features for a HEK293 trained GBR model for degradation rates, and inference on transcript
ENST00000511647 in the K562 cell line. 1.B: DeepRiPe binding prediction for overlapping sequence bins from
transcript ENST00000511647, for selected RBPs. 1.C: attribution maps of DeepRiPe for PUM2 in the second
sequence bin in transcript ENST00000511647. 2.A: most important features for a HEK293 trained GBR model
for degradation rates, and inference on transcript ENST00000370132 in the K562 cell line. 2.B: binding prediction of
DeepRiPe models for the first 100 overlapping sequence bins from transcript ENST00000370132, for selected RBPs.
2.C: attribution maps of DeepRiPe for class PUM2, at the sequence bin number 23 in transcript ENST00000370132
that is predicted strongly for PUM2 binding. Attribution maps 1.C and 2.C show known PUM2 motifs in the part
of the transcript sequence where PUM2 binding is predicted by DeepRiPe.
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reporter assay (MPRA) data [41]. In this assay, parts of 3’UTRs selected to contain AU-rich ele-

ments or other stability determinants were cloned into a lentiviral GFP reporter and transducted

into the Jurkat cell line. RNA and DNA abundance was measured before and four hours after

inducing transcriptional silencing of the reporter. The ratio of the RNA abundance between the

two time points, normalized to DNA abundance, reflects the relative stability of the reporter car-

rying the specific 3’UTR insert. We predicted RBP binding sites on the inserts with DeepRiPe

and used these features to predict reporter RNA stability with ridge regression and GBR. Here, we

used available pre-trained DeepRipPe models for PAR-CLIP (as the size of the fragment exactly

corresponded to the PAR-CLIP bin size but was too small for the eCLIP model). Despite the

reduced amount of input features, we could predict stability with performance similar to that of

prediction of degradation rate in transfer learning setting (Pearson correlation 0.3) (Figure 6A).

Most important features selected by either model corresponded to ARE-binding proteins (ZFP36,

ELAV2/3, ZC3H7B [29]) (Figure 6B).
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Figure 6: RNA stability prediction for massively parallel reporter assay (MPRA) [41]. (A) Correlation between
true and predicted value for RNA stability for GBR prediction. (B) Comparison of top important features selected
by GBR or Ridge models. Permutation importance is shown.
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3. Discussion

3.1. Differences in feature importance between models

Given the data and task at hand, deep machine learning models did not exceed simpler choices,

which are typically easier to interpret. We have compared highly important features of linear and

GBR models. Whereas some features were specifically important for one model type, some had

reproducibly high importance across models. Important features are expected to differ between

linear regression and GBR, given the non-perfect performance of both models on the regression

task. Additionally, the nature of the model plays a role. For example, SLBP protein has a very

large coefficient in linear regressor for translation prediction (Supplemental Figure 1) because it

exclusively binds histone mRNAs, which are highly translated, and is needed for their processing

and translation [48]. However, only a few of the histone genes are expressed in a given cell type.

Thus, this feature is not likely to be often used in the decision trees and has low importance in

GBR. It is important to keep in mind that the absence of an RBP feature in the top feature list

for a given model does not signify that this RBP is not important for the biological process, only

that it was not helpful or redundant for a given model to obtain a good prediction.

3.2. Comparison of DeepRiPe and raw CLIP data

pWe included DeepRiPe features based on the assumption that these features may generalize

better than raw CLIP data. First, in vivo binding data include false negatives due to low levels

of transcript expression in the respective cell line. Additionally, raw CLIP data is not generally

available across all cell lines and include false positives as well as non-specific binding sites, which

will get a low prediction score from DeepRiPe if the RBP has considerable sequence specificity.

While the performance using DeepRiPe features alone was at first seemingly worse than using

raw CLIP data, this did not apply to the prediction of translation efficiency, for which translation

levels are normalized to transcript abundance. This pointed to RNA abundance being a strongly

confounding factor for CLIP-based prediction of stability and translation. Upon closer investigation,

this was reflected in the set of most important features, which included repeatedly identified nuclear

factors without known roles in stability or translation. While the methods to derive binding sites

from CLIP data explicitly account for RNA abundance [46], there is apparent leakage for binding

sites to be found on more highly expressed transcripts.
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3.3. Relevance of using reporter assays

Despite their lower success, DeepRiPe-feature based models are more likely to correspond to the

real ability to predict stablity and translation, and to identify biologically meaningful features. For

instance, while of similarly limited performance, we were able to recover known AU-rich element

binding proteins as most important features on the MPRA data. While not recapitulating the full

regulatory sequence landscape, reporters have the advantage to focus on one aspect while keeping

the rest constant, a useful characteristic to pinpoint important regulatory features in isolation.

3.4. Isoform-specific RNA stability

We derived degradation rates from single time-point metabolic labeling data, followed by mod-

eling via INSPeCT [11]. This allows to perform experiments at lower costs, but comes at the price

of having less precise estimates of RNA degradation rates. As it is inherently difficult to derive

isoform-level stability measures from short-read data, we decided to use gene level estimates and

assigned them to the most highly expressed isoform as a representative sequence.

The direct measurement of isoform-specific stability using long-read native RNA sequencing is

therefore likely to be beneficial. We evaluated one such published dataset [33], and initial modelling

results indeed exhibited a higher performance on these data. However, the half-lives reported by

this study strongly diverge from those of other datasets we tested (for instance, ribosomal protein

mRNAs have one of the shortest half-lives in this dataset). We therefore did not pursue this issue

further, as it will have to be resolved by additional long-read derived stability data.

3.5. Limitations of the study

As outlined, the newly generated RNA stability data and assignment of the top expressed iso-

form sequence at a gene level is an approximation. We also decided to focus on two large datasets,

the ENCODE and PAR-CLIP compendia, which have been processed in a consistent way. While

additional RBP CLIP data is available and could be included as features, this still only covers a

fraction of all RBPs. DeepRiPe performance varies across different RBPs [18], influenced both by

experimental factors such as antibody quality, as well as the extent to which RBP target specifi-

cation is accurately represented by the model. Thus, the advantages of a hierarchical approach,

in which experimentally or computationally derived binding sites provide interpretable features to
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predict phenotypes, rather than prediction directly from the sequence, may be outweighed by the

limitations of available data [1]. This situation warrants a deeper investigation of DNA and RNA

foundation models [25, 9], which should represent a more complete picture of regulatory features

and could then be fine-tuned for cell-type specific predictions of molecular phenotypes.

3.6. Conclusion

Machine learning models are now routinely used to predict gene regulatory mechanisms such

as expression, chromatin states, or stability, either directly from sequence or, as we did here, from

features derived from data or model predictions. With increasing complexity, model interpretation

is deservedly gaining attention; caution is needed as the importance of a specific feature may not

be directly related to biological function but to underlying confounding factors. Thus, computa-

tional development needs to be complemented by orthogonal datasets that allow for independent

assessments, such as those from massively parallel reporter assays. Isolated sequence contexts

and mutational analysis are helpful in discriminating important features as a step towards fully

understanding the gene regulatory code in its native context.

4. Methods

4.1. Cell culture, metabolic labeling, RNA isolation

HeLa cells were cultured in low glucose DMEM (Thermo 31885023), HepG2 in high glucose

DMEM (Thermo 41965039), and K562 in IMDM (Thermo 12440053), all supplemented with 10%

FBS (Thermo 16000044), at 37°C with 5% CO2. Cells were passed every 2-3 days using TrypLE

(Thermo A1217701) and PBS (Thermo 10010015) for washing. Total RNA was isolated using Trizol

(Life Tech. 15596018) according to the manufacturer’s instructions Metabolic labeling was origi-

nally developed in [13]. 4-thiouridine (Enzo N-RP-2304-250) was added to the final concentration

of 500µM to the cell culture medium and cells were cultured for either 5 or 50 min. After that cells

were washed with PBS and RNA was isolated with Trizol. Between 30 and 150 µg RNA was used

for subsequent steps. Biotinylation reaction was carried out in biotinylation buffer (10mM Tris-HCl

pH 7.5 (Life Tech. 15567027), 1mM EDTA pH 8.0 (Life Tech. 15575020)) using 1µl of 0.1 mg/ml

Biotin-MTS stock solution (90066, Biotrend dissolved in DMF (Sigma D4551)) per µg RNA. After

rotating for 1.5h at room temperature, the RNA was extracted with chloroform using phase lock
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tubes (5 Prime 2302830) and re-precipitated using 1/10 vol. 5M NaCl (Life Tech. AM9760G) and

1 vol. isopropanol. To precipitate biotinylated RNA, it was denatured at 65°C for 10 min., placed

immediately on ice, and subsequently rotated at room temperature with 100µl streptavidin beads

(Miltenyi 130-074-101). Columns (µMACS streptavidin kit 130-074-101) were equilibrated with

washing buffer (100 mM Tris-Cl pH 7.5, 10 mM EDTA pH 8.0, 1 M NaCl, 0.1% Tween-20 (Sigma

P2287)). The sample was applied to the column and washed with 4x 1ml preheated (65°C) and 4x

room temperature washing buffer. RNA was eluted with 2x 100µl 100 mM DTT (Sigma 43816)

into 700 µl RNeasy MinElute RLT buffer (Qiagen 74204) and cleaned up using RNeasy MinElute

kit according to the manufacturer’s instructions.

4.2. Cytoplasmic RNA

For HEK293, the same cytoplasmic RNA was used as in [35]. For other human cell lines,

raw data for cytoplasmic RNA sequencing was downloaded from the ENCODE portal (https:

//www.encodeproject.org/) [32]. NCBI SRA IDs used were: SRR307929 for HepG2; SRR387661

for K562; SRR315334 for HeLa.

4.3. RNA sequencing

All RNA was processed with a RiboZero rRNA removal kit (Illumina MRZG12324). Subse-

quently, RNA sequencing libraries were prepared using NEXTflex RD qRNA-Seq Library Prep Kit

(NOVA-5130-02D) according to the manufacturer’s instructions and sequenced on Illumina NextSeq

500.

4.4. Processing of RNA sequencing data

The pipeline for RNA sequencing read mapping is modified from [35] and can be found under

https://github.com/slebedeva/rnaroids. The reference genome used for all human data is

Gencode v19. Briefly, after UMI extraction with umi-tools [42], the reads are quality-trimmed

using fastx-trimmer (http://hannonlab.cshl.edu/fastx_toolkit/). rRNA and ERCC reads are

removed using bowtie [28]. Reads are mapped to the genome using STAR [12] and subsequently

deduplicated with umi-tools. Deduplicated bam files were used to derive counts for degradation

rate calculation. For the derivation of cytoplasmic TPM used to determine the highest expressed
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isoform as well as to calculate translation efficiency, kallisto [4] was used on deduplicated reads

extracted after STAR alignment.

4.5. Derivation of degradation rates

Degradation rates were derived using the R package INSPEcT [11]. Gene-level degradation

rates for all cell lines except HEK293 were derived using read counts from aligned bam files for

total RNA and 50 min. labeled RNA. For HEK293, rates were averaged over 30, 45 and 60 min.

labeling times. All degradation rates were log10-transformed.

4.6. Derivation of translation level and translation efficiency

ORFs pM values representing translation levels were derived directly from [5] (Supplemental

Data 1). Translation efficiency (TE) was calculated by taking the log ratio of cytoplasmic RNA

TPM and ORF pM. For calculating TE we selected transcripts with both TPM and ORFs pM ex-

ceeding 0.1. Both translation level and translation efficiency were log10-transformed. Cytoplasmic

RNA TPM was obtained by running kallisto quantification on cytoplasmic RNA sequencing data

from ENCODE project.

4.7. Derivation of RBP features

We used ENCODE eCLIP [47] and a collection of PAR-CLIP [36] RBP binding sites. We

mapped RBP binding site centers to whole transcript or 3’UTR alone using the highest expressed

isoform as a representative transcript per gene. The transcript sequence was separated into bins

(200nt size for eCLIP and 150nt size for PAR-CLIP). To derive raw RBP features, we counted

how many bins have an RBP center mapped to them per transcript and RBP. For DeepRipe

features, we used pre-trained models from [18] to predict binding for each bin and RBP. Our model

allows different ways of aggregating bin-level RBP features to transcript level (summarizing, taking

maximum, or binarizing).

4.8. Partial correlation

Partial correlation between features and degradation label was derived with the python package

pingoin [45].
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4.9. Datasets

Depending on the selected configuration, our tool can predict either RNA degradation rate or

translation level as the label, from different sets of input features. The first group of features,

referred to as DeepRiPe RBP features, are the predicted binding scores from DeepRiPe for binding

of each RBP, aggregated as the maximum score across all bins for each given transcript. The second

group of features, if the binary score for binding of each RBP, according to the original CLIP data,

aggregated as the maximum score for each transcript across all bins, eCLIP and PARCLIP data.

We refer to this group as raw CLIP RBP features. Other features supported by our implementation

include RBP expression and exon density. All the results presented in this manuscript are produced

by taking DeepRiPe RBP features and raw CLIP RBP features jointly as input to the prediction

models unless stated otherwise. Beyond the specified settings, our tool can be configured to choose

from a variety of input data pre-processing options as well as model parameters.

4.10. Regression Models

We have benchmarked several of the most common regression machine learning models for

predicting RNA degradation rate and translation rate from RBP binding information. We have

experimented with training with k-fold cross-validation with multiple random seeds to assure the

stability of the prediction. Furthermore, we have evaluated all models with fixed trainset and

testsets split based on chromosome information to be reproducible and consistent with DeepRiPe’s

training strategy. This section describes the specification of the regression models that are sup-

ported by our tool.

4.10.1. Linear models

Linear models are our baseline for this prediction task, which include linear regression, lasso

regression, and ridge regression. we use scikit-learn [39] implementation of these models in python

together with minmax scaling of the input in the pipeline. We take the normalized coefficient of

the trained model as an indicator of the learned feature importance to investigate the role of RBPs

in the respective downstream task.
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4.10.2. Tree-based models

We use gradient boosting tree regressor (GBR) implemented by scikit-learn with min-max

scaling of the input (and alternatively with XGBoost libraries). GBR is trained with 300 estimators

with a maximum tree depth of 5 and early stopping of the training with a patience of 5.

4.10.3. Neural Networks

We implement neural network models with various architectures to account for different ways of

feeding input data into the model. Firstly, similar to our other model, we input concatenated and

min-max-scaled DeepRiPe and raw CLIP features into a multi-layer perception (MLP) implemented

using scikit-learn with min-max scaling. Second, we implement a two-legged neural network using

Tensorflow, to feed each group of features separately, i.e. one leg for DeepRiPe-generated features

and the other for raw CLIP features. Each leg has two hidden dense layers that are not shared

with the other leg, and the legs are concatenated and followed by one last dense layer. The third

implementation is a three-legged neural network, similar to the two-legged one, with an additional

leg to take in exon density information. In all architectures, we use ReLu activation for neurons

in the hidden layers and we train for a maximum of 50 epochs with early-stopping enabled with

a patience of 5. For MLP we use the Adam optimizer and for our multi-legged networks, we use

Nadam for optimization.

5. Code access

All code is freely available at https://github.com/sepidehsaran/rbp-based-stability-regressor.

6. Data access

All raw and processed sequencing data generated in this study will be made publicly available

through the NCBI Gene Expression Omnibus (GEO).
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Appendix A. Supplementary Materials
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Figure A.7: Correlation between prediction labels: degradation, translation and translation efficiency (TE) as well
as RNA abundance (represented by log10(transcripts per million (TPM)) derived from kallisto[4] ). Numbers denote
Pearson correlation coefficient.
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(a) (b)

Figure A.8: Performance of the two best model types (i.e. gradient boosted tree and ridge regression) on the
transfer learning task. All models were trained on HEK293 dataset and tested on isoforms specific for the denoted
cell line. (a) average pearson correlation for predicting Degradation rate over five random seeds. (b) average pearson
correlation for predicting Translation rate over five random seeds.
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