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Abstract 

Proteins cooperate, regulate and bind each other to achie v e their functions. Understanding the comple x netw ork of their interactions is essential 
f or a sy stems-le v el description of cellular processes. T he S TRING database compiles, scores and integrates protein–protein association informa- 
tion drawn from experimental assays, computational predictions and prior knowledge. Its goal is to create comprehensive and objective global 
networks that encompass both ph y sical and functional interactions. A dditionally, S TRING pro vides supplementary tools such as network cluster- 
ing and pathw a y enrichment analy sis. T he latest v ersion, S TRING 12.5, introduces a ne w ‘regulatory netw ork’, f or which it gathers evidence on 
the type and directionality of interactions using curated pathw a y databases and a fine-tuned language model parsing the literature. This update 
enables users to visualize and access three distinct network types—functional, ph y sical and regulatory —separately, each applicable to distinct 
research needs. In addition, the pathw a y enrichment detection functionality has been updated, with better false discovery rate corrections, 
redundancy filtering and impro v ed visual displa y s. T he resource now also offers improved annotations of clustered networks and provides users 
with do wnloadable netw ork embeddings, which f acilitate the use of S TRING netw orks in machine learning and allow cross-species transfer of 
protein information. The STRING database is available online at https:// string-db.org/ . 
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Introduction

The function of every living cell is primarily governed by a
complex network of interacting proteins, with each protein’s
role determined not only by its molecular activities but also
by its position within this network ( 1 ,2 ). Connected proteins
work together to contribute to common biological processes
through various interaction types, such as physical binding,
genetic interactions and regulatory influences. These interac-
tions can collectively be categorized as functional associa-
tions , which serve as fundamental operational units within bi-
ological systems. Unraveling protein networks in their various
modalities remains a significant research focus. Consequently,
numerous databases have been developed over the years to
meet specific research needs. These range from carefully cu-
rated pathway databases such as Reactome ( 3 ) and KEGG
( 4 ), to databases of experimental interaction evidence curated
from literature such as BioGRID ( 5 ), IntAct ( 6 ) and MINT
( 7 ), and to those centered on specific modes of interactions,
including Complex Portal for protein co-complexes ( 8 ) and
SIGNOR for regulatory interactions ( 9 ). Finally, composite
databases such as STRING ( 10 ), GeneMANIA ( 11 ), FunCoup
( 12 ) and HumanNet ( 13 ) not only incorporate data from these
sources but also employ an array of computational methods
to predict additional associations, striving to provide the most
comprehensive views of the interactome. 

Among these databases, STRING is notable for its many
sources of evidence, its robust scoring system, user-friendly
interface and comprehensive suite of enrichment features. It
is dedicated to assembling a broad set of associations among
proteins for the complete proteomes of thousands of organ-
isms across all domains of life. STRING charts interactions
ranging from highly confident, well-documented associations
to more speculative ones, which are crucial for exploratory
and computational analyses. The scoring system ensures that
data from diverse sources—including automatic text mining,
high- and low-throughput experimental data, and compu-
tational predictions—are directly comparable and weighted
consistently, regardless of their origin. Additionally, STRING
extends and maps networks across species by predicting in-
terologs, thereby broadening the scope of functional associa-
tions to encompass a diverse range of organisms. This includes
uncultured novel bacterial species derived from metagenomic
samples, and even unpublished proteomes uploaded by users.

The development of interaction databases has so far been a
trade-off between detailing the exact mode of an interaction—
whether physical or functional, signaling or structural, stable
or transient—and maintaining a comprehensive set of interac-
tions. Given the limitations of the available data and method-
ologies, STRING has historically focused on broadly defined
functional associations, which provided the most useful set
of interactions for proteome-wide analysis. While these net-
works continue to perform well in downstream tasks ( 14 ,15 ),
they often lack fine-grained resolution, leaving more special-
ized databases better equipped to offer detailed insights into
specific interactions if needed. However, the growing vol-
ume of data and advancements in text-mining technologies
have since enabled the composite, general-purpose databases
to catch up, offering more detailed maps of the interac-
tion space. Recently, the STRING database introduced a co-
complex (physical) interaction network mode, which details
multi-protein assemblies. With the latest update, the database
now also includes the largest set of regulatory (directed) inter-
actions, highlighting the flow of information within cells. This 
major enhancement greatly expands the analytical capabilities 
of the database, enabling new types of studies that were not 
previously possible with nondirected interaction networks. 

Interaction and pathway databases are frequently used to 

gain insights into the functional context of individual pro- 
teins or to understand the biological organization of an entire 
protein dataset. Many of these databases enhance the inter- 
pretation of protein datasets beyond simple interaction anno- 
tations by incorporating an enrichment analysis toolset. This 
type of analysis involves comparing observed data against ex- 
pected distributions, enabling researchers to identify statisti- 
cally significant features or patterns. Enrichment tools typi- 
cally utilize established ontologies and annotations, such as 
Gene Ontology ( 16 ), MSigDB hallmark sets ( 17 ) or OMIM 

( 18 ). A few databases also leverage their annotated datasets 
to help understand the functional context of a user’s input.
For example, KEGG ( 4 ) employs pathway and module ab- 
stractions to organize genes into datasets for overrepresenta- 
tion analysis, while Reactome maps interconnected proteins 
into hierarchically nested modules. Uniquely, STRING uses 
an unsupervised procedure to hierarchically precluster its en- 
tire proteome-wide networks into functional modules. Incor- 
porating these network-derived gene sets into the enrichment 
analysis facilitates the identification of novel modules, espe- 
cially in areas of the proteome where manual curation has 
been less comprehensive so far. 

Database content

The basic interaction scope in STRING is that of a ‘functional 
association’ between pairs of proteins. A functional associa- 
tion is defined as a contribution of two non-identical proteins 
to a common function ( 19 ,20 ). This can take many forms; 
functionally associated proteins can be in physical proxim- 
ity to each other, regulate each other, exhibit genetic epistasis 
or even work antagonistically (as long as this occurs in the 
context of a common function). For the purpose of defining 
functional associations, the concept of a common function is 
crucial, but difficult to define—it should broadly be thought 
of as corresponding to the notion of a ‘pathway’ or ‘function 

module’. In practice, STRING roughly follows the functional 
granularity of the pathway maps in the KEGG database ( 4 ). 

From the set of all functional associations in STRING, sub- 
sets are derived that are more specifically annotated with re- 
gard to their mechanism of association. Currently, two such 

more specific subsets are implemented: ‘physical’ and ‘regula- 
tory’. The physical mode refers to pairs of proteins that either 
bind directly or are at least subunits of the same complex ( 21 ).
The regulatory mode refers to associated protein pairs that are 
known to regulate each other’s activity in at least one direc- 
tion. This mode is described in more detail further below; for 
the first time in STRING, such connections are annotated not 
only with confidence scores but also with a directionality. 

All protein–protein associations in STRING are annotated 

with ‘confidence scores’. These scores are fully precomputed; 
they scale between 0 and 1 and describe the estimated like- 
lihood of a postulated association being correct, given the 
available evidence. Separate confidence scores are provided 

for physical and regulatory modes—these scores provide es- 
timates of the likelihood that the proposed association is tak- 
ing place and is indeed of the postulated type. The two spe- 
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ific network modes are fully consistent with the functional
etwork, such that if an interaction is present in either the
hysical or regulatory network, it will, by definition, also be
resent in the full functional association network (with an
qual or higher confidence score). To compute the various con-
dence scores, the available evidence supporting a given inter-
ction is first separated into ‘evidence channels’, by the type
f evidence. For the basic functional association confidence
core, seven such channels are used. These include three that
re based on genomic context predictions—neighborhood, fu-
ion and gene co-occurrence—as well as channels dedicated to
o-expression, experimental data, curated databases and text
ining. 
The genomic context channels focus on associations in-

erred from genome sequences alone, detecting evolution-
ry patterns such as gene proximity, fusion events and co-
ccurrence across different organisms. For instance, the neigh-
orhood channel assigns an association score to gene pairs
hat are located close to each other on the chromosome in
he same orientation (in prokaryotic genomes) ( 22 ). The fu-
ion channel identifies open reading frames that result from
ene fusion events ( 23 ), while the co-occurrence channel ex-
mines whether genes have a nontrivial but shared distribu-
ion across genomes ( 24 ), implying a shared history of hori-
ontal transfers, losses or duplication events and thus likely
elated functions. The co-expression channel compiles data
rom gene expression studies, analyzing both transcript and
rotein abundances across various conditions. By comparing
xpression profiles, it identifies gene pairs with similar expres-
ion patterns, suggesting functional linkage ( 10 ,25 ). The ex-
eriments channel aggregates interaction evidence from labo-
atory assays, including biochemical, biophysical and genetic
ssays. Data are imported from primary repositories such as
ioGRID ( 5 ) and the IMEx consortium ( 26 ), and the confi-
ence scores are estimated by globally benchmarking the accu-
acy of annotated experimental techniques, as well as within-
ataset performance and consistency for the case of high-
hroughput experiments ( 10 ). The database channel is based
n well-described, curated protein–protein associations from
xpert-compiled resources, such as KEGG ( 4 ), Reactome ( 3 )
nd Gene Ontology Complexes ( 16 ). These resources provide
ell-established pathways, complexes and functional relation-

hips, offering a high level of reliability. Unlike other chan-
els, the database channel assigns a uniformly high confidence
core to associations, reflecting their established nature. Fi-
ally, the text-mining channel utilizes a large corpus of sci-
ntific literature, including PubMed abstracts and full-text ar-
icles, to identify co-mentions of protein names ( 27 ). By statis-
ically analyzing the frequency of these co-mentions in various
extual contexts, this channel uncovers potential associations
hat may not be evident from structured data alone. In addi-
ion, for the more specific association modes, dedicated large
anguage models are employed to detect sentences supporting
ither physical ( 21 ) or regulatory associations (see below). 

For each evidence channel, the available interaction evi-
ence is translated into a confidence score by first quantifying
he evidence using channel-specific metrics and then convert-
ng these metrics into likelihoods using calibration curves de-
ived from prior knowledge (from pathway-map memberships
n KEGG). For the more specific association modes ‘physical’
nd ‘regulatory’, only channels and evidence that are appli-
able to these modes are considered. After this, all channel
cores that have been computed for a given protein pair in
a given organism are transferred onto related protein pairs
in other organisms, based on the ‘interolog’ concept ( 27 ,28 ).
Lastly, a final, combined confidence score is computed by inte-
grating the channel-specific subscores probabilistically, under
the assumption that evidence in different channels is largely
independent. Users of STRING can directly rely on this com-
bined score for browsing and filtering networks, or they can
alternatively customize their analyses by enabling or disabling
specific channels separately, after which the combined score is
recomputed according to their chosen settings. 

All primary evidence underlying a given interaction can
be inspected interactively, in dedicated evidence viewers on-
line. Furthermore, accessory information is available for
each protein, such as its three-dimensional structure, do-
main composition, annotation and cross-references. Apart
from its core protein-network functionality, STRING also
implements features that allow extensive analysis of up-
loaded user data. These include functional enrichment de-
tection ( 29 ), experimental bias detection ( 21 ), homology
searches, and clustering and organizing large query pro-
tein sets. All data contained in STRING are freely avail-
able for download, under a Creative Commons BY 4.0 li-
cense. Apart from its website, STRING can also be accessed
via a dedicated Cytoscape plugin ( 30 ), through an applica-
tion programming interface (API) ( 31 ), as well as through
an R / Bioconductor package ( https://www.bioconductor.org/
packages/ release/ bioc/ html/ STRINGdb.html ). 

Regulat ory netw orks

Molecular networks, like those available through STRING,
have become invaluable tools in biomedical research, offering
powerful insights into how molecules work together within
cells. The functional association networks, while useful for
many applications, do not specify the interaction type (e.g.
complex formation or transcriptional regulation) nor the di-
rection of interaction (i.e. who regulates whom). Constructing
networks with more detailed interaction types and directions
can significantly expand their utility, particularly for building
mathematical models of biological systems or for making log-
ical inferences. The directionality of interactions is essential
for interpretation of omics data, which typically reveals more
about downstream effects of conditions such as diseases than
it does about the upstream events that led to it and thus could
be targeted therapeutically. 

To incorporate interactions with specific directionality, sign
and type into STRING, we leveraged the novel dataset and
deep learning-based relation extraction method described in
RegulaTome ( 32 ). The RegulaTome corpus provides a rich
and diverse dataset that includes 16 961 relations between
54 951 entities annotated across over 2500 documents. This
corpus is utilized to train a deep learning-based method used
to annotate and extract the regulatory events throughout the
entire available literature. 

On top of undirected physical interactions—which are al-
ready included in STRING—the following types of directed
interactions can be extracted using the system developed for
RegulaTome: Regulation , with the signed subtypes of Posi-
tive Regulation and Negative Regulation , Regulation of Gene
Expression , Regulation of Degradation and Catalysis of Post-
Translational Modifications , covering six subtypes: Catalysis
of Small Protein Conjugation , Catalysis of Small Protein Re-
moval , Catalysis of Phosphorylation , Catalysis of Dephospho-

https://www.bioconductor.org/packages/release/bioc/html/STRINGdb.html
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Figure 1. Illustration of the new ‘regulatory network’ mode in STRING, where the network edges visually indicate the direction, confidence and sources 
of each regulatory interaction. Clicking on an edge within the network brings up a pop-up window with a detailed o v ervie w of the a v ailable e vidence and 
the annotated type of regulation. Users can further explore the data behind the interactions by accessing the specific evidence viewers linked within the 
pop-up, including the text-mining evidence viewer. This viewer presents excerpts from literature pertaining to the inspected interactions, as well as an 
automatically generated large language model summary of the presented e x cerpts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rylation , Catalysis of Small Molecule Conjugation and Cataly-
sis of Small Molecule Removal . To enhance the interoperabil-
ity of the annotations, these chosen relation types align with
Gene Ontology ( 32 ). 

To identify and classify a wide array of interaction types, we
fine-tuned the RoBERT a-large-PM-M3-V oc language model,
a transformer-based model well suited for biological tasks.
This model was trained on the RegulaTome dataset for multi-
label extraction of the directed, typed and signed interactions
mentioned above, and achieved an average F 1 score of 73.5%
(with a precision of 75.2% and a recall of 71.8%) on a held-
out test set, although the exact performance varied across dif-
ferent types of relationships. This level of accuracy is substan-
tial, considering the complexity of the underlying task. Using
this model, we processed over 1.2 billion sentence-level pairs
extracted from all available PubMed abstracts and PMC Open
Access full-text documents, and assigned 3.5% of them ( ∼43
million, of which ∼18 million in human) with at least one
positive label indicating directed (72.9%) or signed (33.1%)
relationships among the proteins. Furthermore, we made use
of the existing curated knowledge of regulatory interactions in
the database channel, by parsing regulatory information from
the SIGNOR, KEGG and Reactome databases. 

To integrate these interactions into STRING, we followed
a similar score aggregation and benchmarking approach as
for physical interactions ( 21 ). Here, we perform benchmark-
ing in five categories for which we can derive gold stan-
dard datasets of known human regulatory interactions from
SIGNOR: regulation , upregulation , downregulation , tran-
scriptional regulation and phosphorylation . The resulting
calibration functions are then applied to extracted regula-
tions of all types to produce the final regulatory confidence
scores. 

The new regulatory network has been seamlessly integrated
into the existing STRING framework, complementing the
‘functional’ and ‘physical’ network types. Directional edges
within this network are visually represented by arrows, depict-
ing both bidirectional and unidirectional relationships. The
network visualization can show varying confidence levels be-
tween directions (in the ‘confidence’ view) or the specific di-
rectionality of the sources (in the ‘evidence’ view). The user
interface retains its intuitive design, enabling users to access
the type of regulatory event and the evidence for the interac-
tion by clicking on the edge (Figure 1 ). Additionally, all API 
functions have been updated to fully support the new net- 
work type, which can be accessed by specifying the parameter 
netw or k_type = regulatory in the API call. 

Expanded co-expression networks

The co-expression channel in STRING identifies genes with 

similar expression profiles across various tissues and condi- 
tions, revealing their involvement in shared biological pro- 
cesses. It compiles data from large-scale gene expression stud- 
ies, analyzing transcript and protein levels to detect gene pairs 
with coordinated expression. This method highlights poten- 
tial functional relationships between genes. Importantly, the 
analysis is free from study bias, as it directly uses raw omics 
data instead of relying on manually curated or experimental 
datasets, providing a more precise and objective view of gene 
interactions. 

For the upcoming version 12.5, we are expanding the 
co-expression channel by generating additional networks 
through the application of FAVA (Functional Association of 
Variational Autoencoders) ( 25 ) on a wider range of single- 
cell RNA sequencing data. Specifically, we are incorporating 
single-cell data from the cellxgene Atlas ( 33 ) to enhance the 
human and mouse networks and from the EBI Single Cell Ex- 
pression Atlas to extend coverage to more model organisms 
( 34 ). This expansion will provide more detailed, organism- 
specific co-expression maps, enabling more precise identifi- 
cation of gene co-expression patterns and cross-species com- 
parisons, particularly for development, immune response and 

disease-related gene expression dynamics. 

Impro v ed enric hment analysis

Gene set enrichment analysis is a critical component of high- 
throughput biological studies, providing key insights into the 
biological characteristics of datasets. This analysis is pivotal in 

identifying essential aspects such as biological processes, path- 
ways and phenotypes, which are crucial for understanding the 
biological implications of experiments. Typically, overrepre- 
sentation analysis is employed, wherein a subset of data ex- 
ceeding a specific cutoff (empirical or customary) is compared 

against an experimental background. By default, STRING 
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modifications.
ses the whole genome / proteome background; however, it
s recommended that users provide a custom background
ist representing a more realistic universe of genes / proteins
etected by their assay ( 35 ). Alternatively, the entire sorted
ataset can be analyzed using gene set enrichment analysis to
etermine whether the distribution of genes at the top, bottom
r both ends deviates significantly from what would be ex-
ected by chance. STRING supports both of these enrichment
ethods. The most recent update to STRING introduces vari-
us improvements, including a new false discovery rate (FDR)
orrection, enhanced filtering options and a new graphical vi-
ualization. 

DR correction

n its analyses, STRING performs a test for each path-
ay (‘term’) within a given pathway collection (‘category’).
ike many other enrichment tools, STRING employs the
enjamini–Hochberg correction ( 36 ) to adjust for multiple
ypothesis testing. This statistical correction is essential for
anaging the FDR effectively. However, the larger the term

ount and the greater the diversity of the terms, the higher
he required correction and the lower the chance of exceed-
ng the alpha level (significance threshold) for a given term.
ne method used to address this issue involves restricting the

nalysis to a subset of terms, such as ‘GO slims’ that focus
n broad, high-level terms with a simplified ontology struc-
ure ( 16 ). However, this approach has some disadvantages: it
ight exclude terms particularly relevant to a tested gene set,

t may not cover all functions by design and it is mainly ap-
licable to hierarchical classification systems such as the Gene
ntology. 
STRING utilizes several hierarchical ontologies, such as

he Brenda Tissue Ontology, Disease Ontology, Human Phe-
otype Ontology and the aforementioned Gene Ontology;
hey typically contain many more leaf-ward nodes than nodes
loser to the root. The parental nodes must contain all the
enes included in the child terms, creating an imbalance in
he ontology with many more smaller terms and fewer larger
erms. Removing smaller terms can substantially increase sta-
istical power . However , simply eliminating all small terms
ould negatively impact discoverability, especially for small
uery gene sets where the smaller terms might be the most rel-
vant for biological interpretation. The ontologies are usually
arge, with > 10 000 terms (and therefore tests) in the Biolog-
cal Process branch of the Gene Ontology tree. Such strong
orrections have the effect that for larger query gene sets, or
or backgrounds that cover only part of the proteome, it might
ot be statistically possible to detect enrichments for a subset
f the terms; these can therefore be removed from considera-
ion. 

In its new version, STRING takes a more flexible
pproach—by only testing terms that have a priori any statis-
ical potential for enrichment. This decision is based on sev-
ral parameters: the size of the term, the size of the query set,
he background size and the number of tests conducted. By
alculating the smallest and largest term sizes that could the-
retically be enriched given the FDR correction, STRING can
etermine which terms are viable for inclusion in the anal-
sis. Terms outside these bounds are excluded from testing.
his methodical exclusion significantly enhances the statisti-
al power of the enrichment analysis, without omitting any
erms that could be enriched. For smaller query sets, this strat-
egy will maintain all terms, as even the smallest tested sets
(term size = 2) might still be theoretically enriched. How-
ever , for larger , less specific sets or for tests against a cus-
tom smaller background, this approach markedly improves
the statistical power, enabling STRING to perform more fo-
cused analyses without the drawbacks of increased false posi-
tive rates or omitting potentially biologically interesting terms.
Although this method leverages the characteristics of ontolo-
gies, it does not require a hierarchy (parent–child relationships
between the terms) to function and can be applied to any
pathway / term collection with an imbalance of small terms,
such as PMID-derived gene sets and STRING neighborhood
clusters. 

Term filtering

One key insight from our online user surveys is that the of-
ten overwhelming number of enrichment results can make it
challenging to discern the most relevant enriched terms. We
have thus enhanced the display of enrichment results, allow-
ing users to filter and sort them based on (i) FDR, (ii) strength,
(iii) signal, (iv) term size and (v) term similarity.

The newest addition to our filtering options are the ‘term
similarity’ and ‘signal’ filters. The ‘term similarity’ filter uses
the Jaccard index to measure the similarity between the gene
sets of terms within the same category. The method proceeds
by sorting the terms according to their P -values, prioritizing
those with the strongest statistical significance. The algorithm
then iterates through the list of terms; any term that exhibits
a similarity exceeding a predetermined, user-defined threshold
relative to terms already included in the results is subsequently
excluded. This approach requires no additional information
beyond what is already available in the dataset and can be
uniformly applied across all categories of terms. The ‘signal’
filter is defined as a weighted harmonic mean between the ra-
tio of observed to expected gene occurrences in an enriched
term and its −log(FDR), respectively. This filter balances the
impact of both metrics and provides a more intuitive ordering
of enriched terms and has been implemented as the default
sorting criterion. 

These filters are designed to exclude potentially less relevant
results, such as terms that are marginally significant, small or
show significant overlap in terms of gene content. This en-
hancement streamlines the search for relevant observations,
helping users focus on the most meaningful results. 

Graphical visualization

In response to user feedback requesting more intuitive, graph-
ical visualizations of the detected enrichments, STRING now
has adopted an interactive dot plot as a primary display
method for enrichment analysis outcomes. We chose the dot
plot for its clarity in representing enriched functions across
three dimensions: (i) enrichment signal along the X -axis, (ii)
the FDR indicated through the color coding of the dots and
(iii) the term’s protein count in the network represented by the
size of each dot. The terms (listed on the Y -axis) are ranked
by their enrichment signal or, if grouped by similarity, by the
enrichment signal of their group first (Figure 2 ). This visual-
ization reflects all filter settings chosen by the user to manage
the volume of results displayed. These plots can be addition-
ally customized in the interface and the resulting graphs can be
downloaded as PNG for immediate use or as SVG for further
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Figure 2. Enrichment analysis interface from the STRING database website. Lef t: Sc hematic of the enrichment analysis tab highlighting various sections 
of the webpage. Top right: A zoomed-in view of the analysis table with two user-highlighted terms (colored lines). Bottom right: A visualization of the 
enrichment depicting the two terms highlighted in corresponding colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, a distinctive feature of STRING’s visualiza-
tion is the incorporation of similarity groups, which visually
group related terms on the plot, adding an additional dimen-
sion to the enrichment results. These groups utilize computed
similarities to cluster terms together, highlighting relationships
between the terms and aiding the analysis. The clustering em-
ploys the average linkage method based on the Jaccard index,
with a user-specified cutoff applied to form groups that, on
average, share the specified similarity. The groups are sorted
by the maximum signal of their terms, with each term within a
group subsequently sorted by its individual signal. This group-
ing is visually highlighted on the right side of the plot. 

S TRING clust ering and g ene set descriptions

STRING offers network clustering options for user-submitted
gene lists. This feature visually connects nodes that are more
interconnected to each other than to other nodes, reflecting
the functional modularity of the user’s gene list. By grouping
proteins that closely interact, clustering aids in the discovery
of functional modules and facilitates hypothesis generation.
Clustering is based on the connectivity between nodes, incor-
porating edge weights (combined scores) reflecting the confi-
dence level of the interactions. Only visible edges—those cor-
responding to active channels with confidence higher than the
user-specified cutoff—are considered, ensuring that clustering
is consistent with the network being shown. 

Users have the choice of two different clustering algorithms.
‘ K -means clustering’ is implemented via the k -medoids algo-
rithm [pyclustering package ( 37 )], allowing users to specify
the desired number of clusters ( k ). This method forms clusters
based on a distance matrix derived from the most probable
paths between nodes. In case of multiple disconnected compo-
nents within the network, STRING aims for a balanced distri- 
bution of cluster sizes by iteratively dividing the largest com- 
ponents first. In contrast, ‘MCL clustering’, implemented with 

standalone binaries (release 14-137), automatically generates 
natural divisions based on the network’s inherent structure. It 
utilizes the Markov cluster algorithm ( 38 ) to simulate stochas- 
tic flow in graphs, identifying groups of highly interconnected 

nodes as clusters based on their combined STRING scores.
The user-controlled inflation parameter influences the granu- 
larity of the clustering. This method is particularly effective 
in capturing the true modular nature of biological networks,
allowing for intuitive groupings that correspond to biological 
functions and relationships. 

Researchers often analyze the biological context of the ob- 
tained clusters to interpret and draw conclusions from net- 
work data. To aid this process, we have developed a novel 
gene set naming feature that significantly enhances the inter- 
pretability of cluster analyses. This feature automatically as- 
signs the best description for each cluster based on STRING’s 
robust statistical enrichment analysis, simplifying the often 

cumbersome task of manually interpreting cluster data. It 
ranks the enriched terms by their enrichment signal (see 
the ‘Improved enrichment analysis’ section), choosing the pri- 
mary, secondary and tertiary names among various enrich- 
ment categories. This prioritization ensures that the names re- 
flect the most statistically significant and biologically pertinent 
attributes of each cluster, providing a clear, immediate under- 
standing of its functional characteristics. The enrichment pri- 
marily draws from categories such as Gene Ontology Biolog- 
ical Processes, while incorporating a range of other categories 
for broader annotations. In case the enrichment analysis yields 
no significant results or if the cluster contains only one gene,
STRING assigns canonical gene names as descriptions to en- 
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ure that clusters are easily identifiable. This functionality ex-
ends beyond cluster analysis and is applicable to any gene set.
s such, it is also available through an API, complementing
ur suite of other API methods. The new API function, named
eneset_description , requires only a set of genes as input and
utomatically performs enrichment analysis. It returns up to
hree descriptions—primary, secondary and tertiary—based
n relevance and availability, identical to the cluster naming
n the user interface. These descriptions are filled sequentially,
ith the ‘primary’ always representing the most relevant term.
ne application of this API is in the stringApp Cytoscape plu-

in, which utilizes it to automatically overlay the assigned de-
criptions onto each network cluster after clustering is exe-
uted. 

etwork and protein embeddings

o facilitate the use of STRING in machine learning applica-
ions, users can now directly download precomputed ProtT5
 39 ) sequence and cross-species protein network embeddings
erived from STRING, for all eukaryotes, and utilize the em-
eddings on their own labeled datasets. The embeddings en-
ode information from two aspects. Sequence embeddings can
apture protein domains and shorter sequence motifs, while
etwork embeddings can complement these with information
n cellular organization such as protein complexes and path-
ays that may not be evident from sequence data alone. 
While protein sequence embeddings are inherently compa-

able across species due to the universal nature of amino acid
equences, the primary obstacle to using network embeddings
s ensuring that network embeddings from different species
re directly comparable. This challenge arises because pro-
ein networks are independent for each species, and tradi-
ional network embedding methods are not designed to ad-
ress cross-species comparability. The lack of comparability
etween network embeddings prevents the effective transfer
f knowledge and findings across different species. To address
his, we developed a method to align eukaryotic network em-
eddings across species using orthologous relationships based
n FedCoder ( 40 ). This alignment technique creates a uni-
ed embedding space where proteins from different eukary-
tic species can be directly compared. As a result, it enhances
ross-species protein predictions, particularly in tasks such as
ubcellular localization and function prediction. 

In the protein machine learning field, having precomputed
equence embeddings and cross-species compatible network
mbeddings from STRING enables researchers to use these re-
ources directly, eliminating the need to calculate embeddings
hemselves. This strategy not only reduces the energy footprint
esulting from redundant calculations across research groups,
ut also enhances reproducibility in computational biology re-
earch promoting more sustainable and consistent scientific
ractices. 

ata availability

he STRING database is freely available online at https://
tring-db.org/. 
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