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Supplementary Tables 
 

Table S1. Spike (RBD)/ACE2(19-615) inhibitors identified through AI-enabled VS.  

Name  ChemBridge ID  IUPAC NAME  
Binding 
scores 

#1 5609384 4-(1-naphthyl)-3,4-dihydrobenzo[h]quinolin-2(1H)-one 0.972 

#2 5979742 4-(2-naphthyl)-3,4-dihydrobenzo[h]quinolin-2(1H)-one 0.897 

#3 6238693 3'-[(9H-fluoren-2-ylcarbonyl)amino]-4-biphenylyl acetate 0.902 

#4 5635769 2-[2-oxo-2-(10H-phenothiazin-10-yl)ethyl]-1H-isoindole-1,3(2H)-dione 0.875 

#5 6954709 5-(4-biphenylyl)-4-phenyl-1,3-thiazol-2-amine 0.874 

#6 7226620 2-(4-biphenylylsulfonyl)-1,2,3,4-tetrahydroisoquinoline 0.857 

#7 6384272 1-[(4-methoxy-1-naphthyl)sulfonyl]-1H-1,2,3-benzotriazole 0.864 

#8 6431096 1-benzofuran-2-yl(4-biphenylyl)methanone 0.894 

#9 6996505 
2-[4-(2,2-dimethyl-4-oxo-1,2,3,4,5,6-hexahydrobenzo[a]phenanthridin-5-

yl)phenoxy]acetamide 0.881 

#10 5260662 1-(4-biphenylylcarbonyl)-1H-benzimidazole 0.916 

#11 5668688 
2,2,4-trimethyl-1,2-dihydro-6-quinolinyl (1,3-dioxo-1H-benzo[de]isoquinolin-

2(3H)-yl)acetate 0.868 

#12 5837562 5-(1,3-benzodioxol-5-yl)-1-benzoyl-3-phenyl-4,5-dihydro-1H-pyrazole 0.9 

#13 7262001 N-[2-(4-morpholinyl)phenyl]-2-naphthamide 0.857 

#14 5315079 1-[2-(9H-fluoren-2-yl)-2-oxoethyl]-2,3-dimethylpyridinium bromide 0.891 

#15 6085984 N-2-naphthyl-2-(2-naphthyloxy)acetamide 0.871 

#16 6541298 1,1'-(1,4-phenylene)bis[3-(1,3-benzodioxol-5-yl)-2-propen-1-one] 0.877 

#17 5465521 (1,3-benzodioxol-5-ylmethyl)(4-methoxy-3-biphenylyl)amine 0.857 

#18 5733393 
1,3-dioxo-2-[4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl]-5-

isoindolinecarboxylic acid 0.884 

#19 7306847 N-(4-{[(4,5-diphenyl-1,3-oxazol-2-yl)amino]sulfonyl}phenyl)acetamide 0.91 

#20 5524376 2-[(2-naphthylamino)(4-pyridinyl)methyl]cycloheptanone 0.895 

#21 7113299 5-[(8-quinolinyloxy)acetyl]-10,11-dihydro-5H-dibenzo[b,f]azepine 0.866 

#22 5755483 
2'-({[4-(3-oxo-3-phenyl-1-propen-1-yl)phenyl]amino}carbonyl)-2-

biphenylcarboxylic acid 0.865 

#23 5979349 1-(2-naphthylmethyl)-1H-benzimidazole 0.871 

#24 6038144 [4-(benzyloxy)phenyl](1-methyl-1H-benzimidazol-2-yl)methanol 0.885 



S4 
 

 

Table S2. RMSD values of the aligned protein structures of various SARS-CoV-2 strains.  

PDB entries 6m0j Å 

6m0j 0 

7ekf 0.248 

7ekg 0.210 

7ekc 0.229 

7wbq 0.298 

7tez 0.521 

7u0n 0.518 

7xo9 0.492 

7xb1 0.475 

7zxu 0.377 

 

 

 

                                           

  

#25 6104275 
1,3-dimethyl-5-phenyl-5,11-dihydro-1H-indeno[2',1':5,6]pyrido[2,3-

d]pyrimidine-2,4,6(3H)-trione 0.896 

#26 7154899 N-(4-methoxy-1-naphthyl)-4-biphenylcarboxamide 0.85 

#27 5160674 2-dibenzo[b,d]furan-3-yl-1,3-dioxo-5-isoindolinecarboxylic acid 0.862 

#28 6048589 4-{4-[(diphenylacetyl)amino]benzoyl}phthalic acid 0.905 

#29 6659989 3-(4-biphenylyloxy)-7-hydroxy-4H-chromen-4-one 0.889 

#30 6052953 2-({[4-(2-naphthyloxy)phenyl]amino}carbonyl)benzoic acid 0.924 

#31 6573636 N-(4-anilinophenyl)-2-naphthamide 0.884 
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Supplementary Figures 

 

Figure S1. Quantification of Spike-RBD/ACE2 (19-615) interaction, cytotoxicity of 
computationally-predicted compounds in HEK293T cells A) Establishment of cell-based LuTHy 
assay for the quantification of Spike-RBD/ACE2 (19-615) interaction. The positive control PA-
mCitrine-NL and the interacting proteins PA-mCitrine-Spike-RBD and NL-ACE2 (aa 19-615) 
show high corrected BRET (cBRET) ratios. Data are presented as mean ± SD. B-C) Viability of 
HEK293T cells treated with (B) hit compounds in a concentration of 100 μM or (C) the 
commercial inhibitor Emodin. Cell viability was measured 48 h later using an MTT assay Cells 
treated with DMSO were used as control. C) dvc sdcvsd 
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Figure S2. Concentration-dependent inhibition of Spike RBD/ACE2 (19-615) interaction by the 
active compounds and the positive control (Emodin), as determined by LuTHy assay. Data were 
presented as mean ± SD and fitted with standard sigmoid curves for IC50 determination.  
 

 

Figure S3. Effect of compounds in ATXN1/MED15 interaction. Validation of six compounds’ 
specificity as inhibitors to Spike RBD/ACE2 interaction. Compounds were checked for their 
inhibitory activity against ATXN1/MED15 interaction in LuTHy assay. cBRET ratios as 
compared to control DMSO are shown in diagram, confirming their interaction-based specificity. 
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Figure S4. A) Cytotoxicity of the active six compounds in SH-SY5Y cells. Cells were incubated 
with gradient concentrations of compounds for 48 h. Cell viability was measured by MTT assay. 
B) Concentration-response curve obtained for the inhibition of SARS-CoV-2 pseudovirus entry in 
a cell-based assay. Compound 6659989 blocks the entry of SARS-COV-2 pseudovirus with an 
IC50 of 3.2 μM.  Data are mean ± SD and fitted with standard sigmoid curves for IC50 

determination. 
 

 

Figure S5. Toxicity assessment of A) CKP-22 (7.25-100 μΜ final concentration) and B) its 
derivatives in Vero E6 cells. Cell viability was monitored at 48hrs post treatment using MTT assay.  
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Experimental procedures  
 

5-nitro-1H-benzo[d]imidazole (2) [1]                                                                             

To an ice-cold mixture of benzimidazole (1.0 g, 8.46 mmol) in conc. H2SO4 (6 

mL), fuming HNO3 (6 mL) was added dropwise and the resulting solution was 

stirred at 0 ℃ for 3h. Then, reaction mixture was poured slowly to ice-water 

with stirring. The precipitated product was filtered, washed with cold water and dried. White solid, 

1.38 g (quant.); Rf = 0.29 (DCM/MeOH 9:1 v/v); 1H-NMR (300 MHz, DMSO-d6): δ 12.35 (s, 1H), 

9.39 (unresolved d, 1H), 8.65 (s, 1H), 8.32 (dd, J = 9.0 and 2.4 Hz, 1H), 7.97 (d, J = 9.0 Hz, 1H); 
13C-NMR (75 MHz, DMSO-d6): δ 145.7, 144.6, 136.5, 132.6, 120.3, 115.5, 111.8. 

Synthesis of bromides S7 and S8 

 

Scheme S1. Synthesis of bromides S7 and S8. Reagents and conditions. (i) triethyl 

phosphonoacetate, LiCl, DBU, MeCN, rt, overnight; (ii) DIBAL-H (1.2 M in PhMe), PhMe, -78 

℃, 0.5-1 h; (iii) PBr3, Et2O, 0 ℃, 0.5 h.  

General procedure for the Horner-Emmons reaction [2].  

To an ice-cold suspension of LiCl (0.47 g, 11 mmol) in MeCN (30 mL), triethyl phosphonoacetate 

(1.98 mL, 10 mmol) and the appropriate benzaldehyde S1 or S2 (10 mmol) were added. After 5 

min, DBU (1.49 mL, 10 mmol) was added dropwise and the resulting mixture was allowed to 

attend slowly rt and stirred overnight. Upon completion, solvent was evaporated under reduced 

pressure and the residue was partitioned between diethyl ether and brine. The organic layer was 

washed with brine, dried over Na2SO4, filtered and evaporated. The residue was subjected to FCC 

to afford the desired ethyl ester S3 or S4 respectively, in pure form.  
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Ethyl (E)-3-(4-chlorophenyl)acrylate (S3). [3] 

 Prepared according to the above general procedure using 4-

chlorobenzaldehyde (S1) (1.41 g, 10 mmol) as starting material. 2.04 

g (97 %), colorless oil; Rf = 0.29 (Hexane/EtOAc 20:1); 1H NMR (300 

MHz, CDCl3): δ 7.60 (d, J = 16.1 Hz, 1H), 7.44 (d, J = 9.0 Hz, 2H), 7.34 (d, J = 9.0 Hz, 2H), 6.39 

(d, J = 16.1 Hz, 1H), 4.25 (q, J = 6.6 Hz, 1H), 1.32 (t, J = 6.6 Hz, 1H) ppm. 

Ethyl (E)-3-(4-nitrophenyl)acrylate (S4). [3] 

 Prepared according to the above general procedure using 4-

nitrobenzaldehyde (S2) (1.51 g, 10 mmol) as starting material. 1.94 

g (88%), yellow solid; mp. 136–138 ℃; Rf = 0.25 (Hexane/EtOAc 

5:1); 1H NMR (300 MHz, CDCl3): δ 8.25 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 16.1 Hz, 1H), 7.67 (d, 

J = 9.0 Hz, 2H), 6.56 (d, J = 16.1 Hz, 1H), 4.29 (q, J = 7.1 Hz, 1H), 1.35 (t, J = 7.1 Hz, 1H) ppm. 

 

General procedure for the synthesis of cinnamyl alcohols. [2]  

To a solution of the appropriate α,β-unsaturated ester S3 or S4 (8 mmol) in PhMe (65 mL) at -78 

℃, DIBAL-H (13.5 mL, 16 mmol, 1.2 M in PhMe) was added dropwise. When starting material 

was fully consumed (0.5 – 1h), the reaction was quenched with MeOH (3 mL) and a sat. aqueous 

NH4Cl solution (15 mL), it was allowed to warm slowly at rt and it was stirred for additional 20 

min. The resulting salts were passed through a Celite pad and the filtrate was transferred to a 

separatory funnel. The aqueous phase was extracted thrice with DCM and the combined organic 

layers washed with brine, dried over Na2SO4, filtered and evaporated. The desired allylic alcohols 

S5 or S6 respectively, were obtained in pure form after FCC purification.  

 

(E)-3-(4-chlorophenyl)prop-2-en-1-ol (S5) [4] 

 Prepared according to the above general procedure using ethyl ester S3 

(1.69 g, 8 mmol) as starting material. 1.35 g (quant.), yellow solid; mp. 

62–65 ℃; Rf = 0.20 (petroleum ether/Ethyl acetate 4:1); 1H NMR (300 MHz, CDCl3): δ 7.31–7.26 

(m, 4H), 6.58 (d, J = 15.9 Hz, 1H), 6.38–6.31 (m, 1H), 4.33 (dd, J = 5.6 and 1.5 Hz, 2H); 13C NMR 

(75 MHz, CDCl3): δ 135.3, 133.4, 129.9, 129.3; 128.9 (two C), 127.8 (two C), 63.7 ppm 
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(E)-3-(4-nitrophenyl)prop-2-en-1-ol (S6) [5] 

 Prepared according to the above general procedure using ethyl ester S4 

(1.77 g, 8 mmol) as starting material. 1.12 g (78%), yellow solid; mp. 

123–125 ℃; Rf = 0.14 (petroleum ether/Ethyl acetate 3:1); 1H NMR (300 MHz, CDCl3): δ 8.18 (d, 

J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 16.1 Hz, 1H), 6.54 (dt, J = 16.1 and 5.0 Hz, 

1H), 4.40 (d, J = 5.0 Hz, 2H); 13C NMR (75 MHz, CDCl3): δ 146.4, 143.6, 133.7; 128.4; 127.1 

(two C), 124.2 (two C), 63.3 ppm. 

General procedure for the synthesis of cinnamyl bromides. [6] 

To an ice-cold solution of cinnamyl alcohol S5 or S6 (5 mmol) in diethyl ether (12.5 mL), PBr3 

(0.62 mL, 6.5 mmol) was added. The reaction mixture was stirred at 0 ℃ until the full consumption 

of starting material (20-30 min), it was diluted with diethyl ether (12.5 mL) and it was carefully 

quenched with a sat. aqueous NaHCO3 solution (2-3 mL). The mixture was allowed to attain rt, 

stirred for additional 15 min and transferred to a separatory funnel. The layers were separated and 

the aqueous phase was extracted thrice with diethyl ether. The combined organic layers were 

washed with a sat. aqueous Na2S2O3 solution and brine, dried over Na2SO4, filtered and evaporated 

to afford cinnamyl bromides S7 and S8 respectively.  

 (E)-1-(3-bromoprop-1-en-1-yl)-4-chlorobenzene (S7) [6] 

Prepared according to the above general procedure using cinnamyl alcohol 

S5 (0.84 g, 5 mmol) as starting material. 0.83 g (72%), white solid; mp. 

60–61 ℃; 1H NMR (600 MHz, CDCl3): δ 7.35–7.28 (m, 4H), 6.60 (d, J = 15.6 Hz, 1H), 6.41–6.32 

(m, 1H), 4.14 (d, J = 7.8 Hz, 1H); 13C NMR (150 MHz, CDCl3): δ 134.3, 134.0, 133.2, 128.9 (two 

C), 127.9 (two C), 125.8, 33.0 ppm.   

(E)-1-(3-bromoprop-1-en-1-yl)-4-nitrobenzene (S8). [6] 

Prepared according to the above general procedure using cinnamyl 

alcohol S6 (0.90 g, 5 mmol) as starting material. 0.64 g (53%), yellow 

solid (recrystallized from Et2O/Hex 95:5); m.p. 76–78 ℃; 1H NMR (600 MHz, CDCl3): δ 8.19 (d, 

J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 6.70 (d, J = 15.6 Hz, 1H), 6.58 – 6.56 (m, 1H), 4.16 (dd, 

J = 7.8 and 0.8 Hz, 1H); 13C NMR (150 MHz, CDCl3): δ 147.6, 142.2, 132.1, 129.9 (two C), 127.3, 

124.0 (two C), 31.8 ppm.   

O2N

OH
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Synthesis of bromide S12. 

 

 

Scheme S2. Synthesis of bromide S12. Reagents and conditions. (i) conc. H2SO4, EtOH, reflux, 

72 h; (ii) DIBAL-H (1.0 M in DCM), THF, -78 to 0 ℃, 1.5 h; (iii) 33% HBr solution in CH3CO2H, 

reflux, overnight.  

Ethyl quinoline-7-carboxylate (S10)  

 To a solution of quinoline-7-carboxylic acid (S9) (0.5 g, 2.88 mmol) in 

EtOH (20 mL), conc. H2SO4 (1.1 mL) was added and the resulting mixture 

was refluxed for 72 h. The mixture was left to attain rt and all the volatile 

components were evaporated under vacuo. The residue was taken up in EtOAc and washed with a 

sat. aqueous NaHCO3 solution and brine. The organic layer was dried over Na2SO4, filtered and 

evaporated to furnish S10 which was used to the next step without further purification.  

0.6 g (quant.); off-white solid, mp. 55–56 ℃; 1H NMR (300 MHz, acetone-d6): δ 9.05 (unresolved 

dd, 1H), 8.74 m, 1H), 8.50 (m, 1H), 8.15 (m, 2H), 7.69 (m, 1H), 4.45 (q, J = 7.0 Hz 2H), 1.44 (t, 

J = 7.0 Hz, 3H); ESI-MS: 424.63 (2M+Na), 202.25 (M+H). 

 

Quinolin-7-ylmethanol (S11)  

A solution of ester S10 (0.5 g, 2.5 mmol) in THF (12.5 mL) was cooled to – 

78 ℃ and then a solution of DIBAL-H (1M in DCM, 7.5 mL) in THF (12.5 

mL) was added dropwise. Upon addition, the reaction mixture was stirred at 0 ℃ for 1.5 h, 

quenched with MeOH (12.5 mL) and CH3COOH (2.1 mL), stirred for 5 min and then a sat. aqueous 

sodium potassium tartrate solution (25 mL) was added. The resulting mixture was stirred for further 20 min 

and the EtOAc was added. The aqueous phase was extracted with EtOAc twice, and the combined organic 

layers were washed with brine, dried over Na2SO4, filtered and concentrated in vacuo. The residue was 

subjected to FCC (petroleum ether/EtOAc 1:1 to EtOAc) to afford alcohol S11 in pure form which was 

used directly to the next step. 0.16 g (40% or 84% brsm); white solid, m.p 58–60 ℃ 
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7-(bromomethyl)quinoline hydrobromide salt (S12)  

To a rb-flask containing alcohol S11 (0.16 g, 1.0 mmol) a 33% HBr solution in 

CH3CO2H (1.2 mL) was added and the mixture was heated at 70 ℃ overnight. The 

reaction mixture was evaporated to dryness and co-evaporated three times with 

PhMe to remove excess CH3CO2H until an off-white solid was formed.  

0.28 g (92%), off-white solid, m.p. 67–70 ℃; 1H NMR (300 MHz, DMSO-d6): δ 9.22 (dd, J = 5.0 

and 1.6 Hz, 1H), 8.95 (d, J = 8.4 Hz, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.25 – 8.23 (m, 1H), 7.95 (dd, 

J = 8.4 and 5.0 Hz, 1H), 7.90 (dd, J = 8.4 and 1.6 Hz, 1H), 5.02 (s, 2H). 
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Copies of 1H-NMR, 13C-NMR and HRMS spectra of final compounds. 
 

 

Figure S6. 1H-NMR of compound 3.  

 

 

Figure S7. 13C-NMR of compound 3.  
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Figure S8. HRMS of compound 3.  
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Figure S9. 1H-NMR of compound 4.  

 

Figure S10. 13C-NMR of compound 4. 
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Figure S11. HRMS of compound 4.  
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Figure S12. 1H-NMR of compound 5. 

 

Figure S13. 13C-NMR of compound 5. 
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Figure S14. HRMS of compound 5. 
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Figure S15. 1H-NMR of compound 6. 

 

Figure S16. 13C-NMR of compound 6. 
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Figure S17. HRMS of compound 6. 
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Figure S18. 1H-NMR of compound 11. 

 

 

Figure S19. 13C-NMR of compound 11. 
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Figure S20. HRMS of compound 11. 
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Figure S21. 1H-NMR of compound 12. 

 

Figure S22. 13C-NMR of compound 12. 
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Figure S23. HRMS of compound 12. 
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Figure S24. 1H-NMR of compound 13. 

 

Figure S25. 13C-NMR of compound 13. 
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Figure S26. HRMS of compound 13. 
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Figure S27. 1H-NMR of compound 14. 

 

Figure S28. 13C-NMR of compound 14. 
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Figure S29. HRMS of compound 14. 
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Figure S30. 1H-NMR of compound 15. 

 

Figure S31. 13C-NMR of compound 15. 
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Figure S32. HRMS of compound 15. 
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Figure S33. 1H-NMR of compound 16. 

 

Figure S34. 13C-NMR of compound 16. 
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Figure S35. HRMS of compound 16. 
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Figure S36. 1H-NMR of compound 28. 

 

 

 

Figure S37. 13C-NMR of compound 28. 
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Figure S38. HRMS of compound 28. 
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Figure S39. 1H-NMR of compound 29. 

 

Figure S40. 13C-NMR of compound 29. 
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Figure S41. HRMS of compound 29. 
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Figure S42. 1H-NMR of compound 30. 

 

 

Figure S43. 13C-NMR of compound 30. 
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Figure S44. HRMS of compound 30. 
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Figure S45. 1H-NMR of compound 31. 

 

Figure S46. 13C-NMR of compound 31. 
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Figure S47. HRMS of compound 31. 
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Figure S48. 1H-NMR of compound 32. 

 

Figure S49. 13C-NMR of compound 32. 
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Figure S50. HRMS of compound 32. 
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Figure S51. 1H-NMR of compound 33. 

 

Figure S52. 13C-NMR of compound 33. 



S44 
 

 

 

Figure S53. HRMS of compound 33. 
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Figure S54. 1H-NMR of compound 35. 

 

Figure S55. 13C-NMR of compound 35. 
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Figure S56. HRMS of compound 35. 
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Figure S57. 1H-NMR of compound 37. 

 

Figure S58. 13C-NMR of compound 37. 
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Figure S59. HRMS of compound 37. 
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Figure S60. 1H-NMR of compound 38. 

 

Figure S61. 13C-NMR of compound 38. 
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Figure S62. HRMS of compound 38. 
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Figure S63. 1H-NMR of compound 39. 

 

Figure S64. 13C-NMR of compound 39. 
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Figure S65. HRMS of compound 39. 
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Figure S66. 1H-NMR of compound 40.  

 

Figure S67. 13C-NMR of compound 40. 
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Figure S68. HRMS of compound 40. 
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Figure S69. 1H-NMR of compound 41. 

 

Figure S70. 13C-NMR of compound 41. 
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Figure S71. HRMS of compound 41. 
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Figure S72. 1H-NMR of compound 42. 

 

Figure S73. 13C-NMR of compound 42. 
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Figure S74. HRMS of compound 42. 
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Figure S75. 1H-NMR of compound 43. 

 

 

Figure S76. 13C-NMR of compound 43. 
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Figure S77. HRMS of compound 43. 
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Figure S78. 1H-NMR of compound 44. 

 

 

Figure S79. 13C-NMR of compound 44. 
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Figure S80. HRMS of compound 44. 
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Figure S81. 1H-NMR of compound 45. 

 

Figure S82. 13C-NMR of compound 45. 
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Figure S83. HRMS of compound 45. 
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Figure S84. 1H-NMR of compound 46. 

 

 

 

Figure S85. 13C-NMR of compound 46. 
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Figure S86. HRMS of compound 46. 
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HPLC chromatograms of final compounds 
Compound 3 

 

Figure S87. HPLC of compound 3. 

Compound 4 

 

Figure S88. HPLC of compound 4. 
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Compound 5 

 

Figure S89. HPLC of compound 5. 

Compound 6 

 

Figure S90. HPLC of compound 6. 
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Compound 11 

 

Figure S91. HPLC of compound 11. 

Compound 12 

 

Figure S92. HPLC of compound 12. 
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Compound 13 

 

Figure S93. HPLC of compound 13. 

Compound 14 

 

Figure S94. HPLC of compound 14. 
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Compound 15 

 

Figure S95. HPLC of compound 15. 

Compound 16 

 

Figure S96. HPLC of compound 16. 
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Compound 28 

 

Figure S97. HPLC of compound 28. 

Compound 29 

 

 

Figure S98. HPLC of compound 29. 
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Compound 30 

 

Figure S99. HPLC of compound 30. 

Compound 31 

 

Figure S100. HPLC of compound 31. 
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Compound 32 

 

Figure S101. HPLC of compound 32. 

Compound 33 

 

Figure S102. HPLC of compound 33. 
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Compound 35 

 

Figure S103. HPLC of compound 35. 

Compound 37 

 

Figure S104. HPLC of compound 37. 
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Compound 38 

 

Figure S105. HPLC of compound 38. 

Compound 39 

 

Figure S106. HPLC of compound 39. 
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Compound 40 

 

Figure S107. HPLC of compound 40. 

Compound 41 

 

Figure S108. HPLC of compound 41. 
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Compound 42 

 

Figure S109. HPLC of compound 42. 

Compound 43 

 

Figure S110. HPLC of compound 43. 
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Compound 44 

 

Figure S111. HPLC of compound 44. 

Compound 45 

 

Figure S112. HPLC of compound 45. 
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Compound 46 

 

Figure S113. HPLC of compound 46. 

Supplementary Charts 
Chart S1 

 

Chart S1, RMSD plot of the MD simulation results for CKP-25, the protein and the protein 
backbone with respective coloring provided. 
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Chart S2 

 

Chart S2. Atom fluctuation plot of the MD simulation results for CKP-25, the protein and the 
protein backbone with respective coloring provided. 

 

Chart S3 

 

Chart S3. Radius of gyration plot of the MD simulation results for CKP-25, the protein and the 
protein backbone with respective coloring provided. 
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Chart S4 

 

Chart S4. Number of hydrogen bonds plot for the MD simulation results regarding compound 
CKP-25. 
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