
5 Supplementary Material

5.1 Supplementary Methods

5.1.1 MRI acquisition and processing

The supplementary analyses made use of two additional MRI modalities that
have been acquired: T2-weighted FLAIR images (3D GRAPPA PAT 2, 1mm3

isotropic, 256x256 px, 192 sagittal slices, TR 5000ms, TE 394ms, TI 1800ms,
ca. 7min) and resting-state fMRI data (2D EPI, GRAPPA PAT 2, 3.5mm3

isotropic, 64x64 px, 47 slices, oblique axial/AC-PC aligned, TR 2580ms, TE
30ms, FA 80◦, 180 volumes with interleaved acquisition, ca. 8 min).

White matter hyperintensity (WMH) probability maps were obtained from
FLAIR scans with the Lesion Prediction Algorithm in the Lesion Segmentation
Toolbox.1 These maps underwent thresholding with a value of 0.2, and the total
WMH volume was determined by tallying the number of voxels that remained
after the thresholding process. To account for intracranial differences, fractional
WMH volumes were computed (i.e. total WMH volume divided by TIV).

Resting-state fMRI data processing and analysis were done with the CONN
Toolbox, SPM12 and Matlab R2022a. Preprocessing in CONN included realign-
ment and unwarping and slice time correction. Prior to further preprocessing
FDJenk was calculated as the root mean squared volume-to-volume displace-
ment of all brain voxels measured from the six head motion parameters2 and
used to exclude outlier subjects based on the following criteria adapted from
Parkes et al.3: if mean FDJenk was greater than 0.25 mm, if FDJenk of any EPI
was more than 5 mm, or if 33% of all the 180 EPIs had FDJenk above 0.25mm.
After coregistration and normalization to a study-specific template space (cre-
ated via Shoot in SPM), a customized denoising pipeline in CONN implemented
an anatomical component-based noise correction procedure. It comprised five
noise components from white matter and CSF,4 estimated subject-motion pa-
rameters using Friston-24 parameter model,5 identified outlier volumes (FDJenk

> 0.25 mm), and global signal regression. Temporal band-pass filtering (0.01-
0.08 Hz) was additionally applied to eliminate the effect of physiological noise
after regression as recommended.6 Subsequently, resting-state functional con-
nectivity within seven standard networks (see Yeo et al.7) was obtained using
CONN’s second-level analysis.

5.1.2 Quality control and sample cleaning

As another means to improve signal to noise ratio we chose strict criteria for
outlier exclusion based on behavioral and task fMRI metrics. Individuals were
excluded if either of the following was true: (1) They made more than 8 errors
in their indoor/outdoor judgment. This corresponds to individuals with ex-
treme outliers in the distribution of indoor/outdoor errors and could be related
to lack of attention or confusion. (2) Based on response bias in their confi-
dence rating during post-MRI retrieval, represented by the criterion location
c = − 1

2 (z(HR) + z(FAR)); z = normal inverse cumulative distribution function,
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HR = hit rate, FAR = false alarm rate. Individuals with absolute response
bias values above 1.5 were excluded, since strong bias could potentially render
the parametric modulation invalid for two reasons. First, the response category
would likely not correspond to the actual BOLD signal at the time of encoding.
Second, a reliable estimation of the subsequent memory regressor does require
some variability in the response categories. (3) Framewise displacement (FD)
was above 0.5mm in a single EPI or above 0.2mm in more than 2% of the EPIs.
This exclusion was supposed to limit motion effects on the data quality. (4)
An individual had extreme outliers in the β values of more than 10% of the
voxels of their (GM-masked) regressor image. This was indicative of inaccurate
estimations of the subsequent memory regressor in large parts of the brain and
could have skewed the results of subsequent modeling steps. 68 individuals (11
CN, 6 ADR, 20 SCD, 19 aMCI, 12 AD dementia) were excluded based on these
criteria, leaving an fMRI sample with 490 individuals.

5.1.3 One-dimensional pathological load score

Due to the nonlinearity of the disease progression trajectory along the AD con-
tinuum in 3D ATN space (Aβ42:40ratio, CSF p-tau, hippocampal volumes), a
nonlinear dimensionality reduction method called t-SNE8 was employed to re-
duce the dimension to one, yielding a single PL score per subject. Broadly
speaking, t-SNE converts the Euclidian distances between datapoints in the
high-dimensional space into conditional probabilities, which represent similar-
ities. Likewise, conditional probabilities are defined for the low-dimensional
counterparts. A perfect representation of the data in a lower-dimensional space
would retain the conditional probabilities from the high-dimensional space be-
tween all pairs of datapoints. Hence, an optimal solution is sought by minimiz-
ing the mismatch between the conditional probabilities in both spaces, which is
quantified via the Kullback-Leibler divergence. More details about the method
can be found in Van der Maaten and Hinton8. Assuming that the biomarker
progression profile across individuals is homogeneous, t-SNE would be able to
extract this progression profile faithfully by retaining the similarities between
datapoints from the ATN space as much as possible in the one-dimensional
output space.

As the name suggests, t-SNE is a stochastic algorithm. Hence, the random
seed was fixed to 617 to ensure reproducibility. The algorithm was applied to all
441 participants with complete ATN data available using a perplexity parameter
of 50. One individual was considered an outlier and removed from all analyses,
as visual inspection indicated that its assigned PL score was an erroneous rep-
resentation of its AD biomarker status, as assessed from comparison to all other
individuals’ PL scores (see Fig. S4 for a plot including the declared outlier).
Subsequently, the resulting score was scaled to fall into the range between 0
and 1 by subtracting the minimal value across participants and then dividing
it by the maximal value. For reasons of interpretability, the scale was reversed
such that increasing numbers of the PL score refer to increasing amounts of AD
pathology.
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Moreover, the algorithm was tested with five different choices of the perplex-
ity parameter (10, 25, 30, 50, 100) and the results were correlated with each
other to check stability. On average, the correlation was 0.950, indicating that
the obtained score does not exhibit substantial dependence on the selected per-
plexity parameter. Robustness of the PL score was further checked by applying
the t-SNE algorithm 1000 times, each time randomly holding out 10% of the
data. The mean correlation over 1000 iterations was 0.945, suggesting a high
robustness of the proposed PL score based on ATN.

5.1.4 Cross-validation to determine optimal number of principal com-
ponents

The optimal number of principal components P was determined in a 10-fold
cross-validation approach. Its results are shown in Fig. S8. Since not all partic-
ipants with functional data also had CSF measures and thus a PL score, the data
was stratified into two groups accordingly. This ensured similar proportions of
both groups within each fold, as participants with missing values for any of the
variables in the moderation model could still be used for principal component
analysis (PCA). PCA was performed separately on the training data in each of
the folds after mean-centering the masked functional (training) data. The coef-
ficients of the moderation model from Eq. 2 were then determined for different
numbers of principal components (1-25) using the least-squares method. With
these coefficients the held-out (test) data was predicted. Across the ten folds,
all data was predicted once based on the remaining 90% for each number of
principal components. The coefficient of determination (R2) between the true
and predicted PACC5 values (Box-Cox transformed) was calculated based on
the aggregated data, done once per number of principal components. In order
to ensure independence of a particular division into folds, this procedure was
repeated 10 times with different partitioning of the data into folds. The optimal
number of principal components was identified as the corresponding model with
the highest mean R2 value across the 10 predictions.

5.1.5 Alternative bootstrapping for voxel-wise inference

An alternative approach for voxel-wise inference via bootstrapping was inspired
by Chen et al.9 who presented it in the context of multivariate mediation. It
has been slightly adjusted for the multivariate moderation model. In contrast
to the employed inference approach presented in the main text, which considers
distribution of individual voxels to determine their significance, this approach
considers a global distribution that is assembled as follows. Again, it starts with
5000 iterations of bootstrapping:

1. Create a bootstrap sample of equal size as the original sample used in
the multivariate moderation model by randomly resampling subjects with
replacement from it.

2. Estimate bootstrap coefficients b̂3,p from Eq. 2 for the bootstrap sample.
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3. Obtain individual voxel bootstrap moderation coefficients ŵi.

The coefficients ŵj were then stacked into a 5000*13695 matrix. Subse-
quently, the bootstrap distribution of all voxels was sorted by their median
values and voxels whose median lies within the second or third quartile were
selected. 10 % of all coefficients ŵj from the selected voxels were randomly
sampled and combined to form a pseudo-null distribution. Finally, the pseudo-
null distribution was utilized to fit a normal distribution, which can be used to
obtain a p value for every voxel based on its coefficient wi. Voxels with p values
below 0.05 were regarded as significant. Please note that non-identifiability of
the sign of the coefficients is, unlike in the multivariate mediation approach, not
a problem in the multivariate moderation approach and thus the inference step
presented here deviates slightly from the one in Chen et al.9.

This approach had been utilized in a previous version of the paper, but
was changed for the current, more naive approach for multiple reasons. First,
it allowed us to quantify uncertainty in the estimations of the voxel-wise CR
weights (used to obtain confidence intervals in Fig. 5). Second, when considering
a multivariate model with 2 instead of 7 PCs, the distribution of CR weights
was not unimodal normal, but rather bimodal and slightly non-normal (see Fig.
S11E), making it insensible to fit a normal distribution for inference. Third, the
assessment of local distributions instead of a global distribution seemed more
sensible with the data. Significant brain regions according to this inference
approach are shown in Fig. S12 for a multivariate model with 7 or 2 PCs,
respectively.

5.2 Supplementary Results

5.2.1 Construction of a continuous one-dimensional pathological load
score

Based on the ATN framework that represents a biological characterization of
AD,10 a novel data-driven index for disease severity along the AD contin-
uum was constructed combining CSF and MRI biomarkers of ATN in a one-
dimensional score. The score ranges from 0 to 1, where 0 represents minimal
AD pathology and 1 means maximal AD pathology in reference to the under-
lying sample. As demonstrated in Fig. S1, the underlying continuum follows
a nonlinear pattern capturing dependencies across all three ATN biomarkers.
More specifically, low Aβ42:40 ratios (A), high p-tau measures (T), and small
hippocampal volumes (N) result in high PL scores. Figs. S1A and C suggest
that Aβ42:40 is generally the strongest contributor to the PL score.

In the lowest range of PL scores from 0 to about 0.2, lower Aβ42:40ratios
seem to be the main determinant of the PL score, which is thought to represent
disease severity (Fig. S1). From roughly 0.2 until 0.5, higher values of the PL
score are mainly characterized by lower hippocampal volumes (Fig. S1F). From
there until PL scores of ca. 0.75 it is again primarily lower Aβ42:40 ratios that
contribute to a higher PL score. On the upper end of the PL score above 0.8,
p-tau is the main dimension of variance (Fig. S1E).
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Additionally, the correlation between the PL score and its single components
was tested, to examine which dimension is (linearly) most strongly related to
the PL score. The cross-correlations are -0.862 for Aβ42:40, 0.670 for p-tau
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Figure S1: Relationship between ATN biomarkers and data-driven PL score. (A-C)
All three possible combinations of pairs of biomarkers are shown. The points are color-coded
based on the corresponding pathological load score. (D-F) Biomarkers plotted against the PL
score. Hippocampal volumes refer to bilateral hippocampal volumes corrected for TIV. Please
note that coloring of data points is redundant in panels D-F and was only done for illustrative
purposes. Source data are provided as a Source Data file. PL = pathological load, TIV =
total intracranial volume.
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and −0.684 for the TIV-corrected hippocampal volumes. This confirms the
impression that the A dimension had the biggest influence on the construction
of the PL score. P-tau and the hippocampal volumes are reflected in the PL
score to a similar extent, with different signs. This matches the observation that
AD severity is associated with higher p-tau measures and lower hippocampal
volumes.

In summary, the substantial correlations of the PL score with the ATN
measures suggest shared variance and hence a meaningful reduction of the AD
continuum to a single dimension.

5.2.2 Pathological load is associated with cognitive performance

As a marker for disease severity on the AD continuum, the PL score was
expected to show strong associations with the cognitive measures from neu-
ropsychological testing. Indeed, we found a strong association between PL and
PACC5 as measure of cognitive performance (p = 2.00 ·10−22, standardized re-
gression coefficient β = -0.469 [-0.559,-0.380], t(400) = -10.356). However, the
empirical associations suggested rather a nonlinear relation, i.e. an increasing
rate of cognitive decline with increasing pathology (Fig. 1). Hence, we further
tested whether cognitive performance follows a quadratic function of the PL
score. The association between (quadratic) PL and cognitive performance was
significant (p = 5.03 ·10−28, β = -0.516 [-0.602,-0.431], t(400) = -11.864). In
concordance with the differences in β, a comparison of the R2 values revealed
that the purely quadratic model fits the data better (R2 = 0.385) than the linear
model (R2 = 0.345).

5.2.3 Longitudinal validation model

In addition to the longitudinal model presented in the main text, which included
hippocampal atrophy to represent pathology and was available for 485 partic-
ipants with a total of 1544 observations, a similar LME was created for the
subsample with PL scores (722 observations for 229 participants). The model
showed an interaction of pathology with time (p = 0.006, β = -0.089 [-0.156,-
0.026], t = -2.795, df ≈ 87.6), a three-way interaction of the CR score with PL
and time (p = 1.46 · 10−4, β = 0.144 [0.073,0.217], t = 3.990, df ≈ 79.6) and a
simple interaction of the CR score with pathology (p = 4.35 · 10−11, β = 0.420
[0.300,0.539], t = 6.929, df ≈ 226.5).

Additionally, the longitudinal model of the main text was fit in the subsample
without PL scores, i.e. the participants that the multivariate moderation model
had not seen during training (822 observations for 256 participants in the LME).
The results were weaker but consistent with the results in the whole sample.
There was again an interaction of pathology with time (p = 6.60 · 10−7, β =
-0.182 [-0.255,-0.114], t = -5.314, df ≈ 992), a statistical trend for the three-
way interaction of the CR score with PL and time (p = 0.057, β = 0.083
[-0.003,0.170], t = 1.925, df ≈ 89.3) and a simple interaction of the CR score
with pathology (p = 1.77 ·10−4, β = 0.271 [0.131,0.411], t = 3.805, df ≈ 258.7).
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5.2.4 Association of the CR score with other variables

A

B

Figure S2: Correlation of CR score with other variables. (A) Pearson correlation
coefficients between the CR score and the other variables. (B) P values for the corresponding
correlations of panel A, illustrated on a logarithmic scale. Bars below the dashed line have
p < 0.05, below the solid line a Bonferroni-corrected p < 0.05. Functional connectivity (FC)
measures came from resting-state data. Mean global signal refers to task fMRI. Please note
that the sample sizes differed between comparisons: n = 231 for CSF(-related) measures, n
= 452 for all FC measures, n = 462 for white matter hyperintensities, n = 489 for the other
variables. CR = cognitive reserve, DMN = default mode network, DAN = dorsal attention
network, FPN = fronto-parietal network, GM = gray matter, Lim = limbic network, PL
= pathological load, SMN = somatomotor network, SN = salience network, VN = visual
network.

In an attempt to understand why certain participants are able to maintain
activation patterns, we investigated potential predictors and contributors of the
CR score. In this sample, neither resting-state functional connectivity within
seven standard networks nor mean global task-fMRI signal were significantly re-
lated to CR score variability (see Fig. S2). However, higher CR scores were as-
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sociated with less pathological measures of AD burden such as the (squared) PL
score (p = 2.84·10−5, r(229) = -0.272 [-0.387,-0.148]), its components Aβ42:40

(p = 2.93·10−4, r(229) = 0.189 [0.110,0.354]), p-tau (p = 0.017, r(229) = -
0.166 [-0.289,-0.037]) and hippocampal volume (p = 3.65·10−6, r(487) = 0.208
[0.121,0.291]), as well as lower global white matter hyperintensity volumes (p
= 0.035, r(460) = -0.098 [-0.188,-0.007]). The CR score was further weakly
positively correlated with total GM volumes in the regions with significant con-
tributions to CR (p = 0.013, r(487) = 0.112 [0.024,0.199]) and mean cortical
thickness (p = 0.023, r(487) = 0.103 [0.015,0.190]). Yet, it should be noted
that accounting for these structural differences as covariates had essentially no
effect on the observed results, neither in the multivariate moderation model nor
the validation analyses of the CR score (see Fig. S19) and Tab. S1. Taken
together, although AD pathology indices, tissue volumes and white matter le-
sions were slightly associated with individual CR score differences, the pattern
of CR-related brain areas and its predictive value for memory performance was
not mediated by atrophy alone or network connectivity at rest.

Due to the relationship between PL and the CR score, we also tested a
formal mediation, which indicated that the CR score mediates the effect of PL
(squared) on PACC5 (average causal mediation effect: -0.1566 [-0.3229, -0.0300],
p = 0.013).

5.2.5 Validation models for alternative CR scores

To study the robustness of the model, we recalculated the findings with a model
of significantly reduced complexity. When fitting a multivariate moderation
model with only 2 instead of 7 principal components for the functional data
(see Fig. S11) and deriving a new CR score based on the coefficients, the corre-
sponding validation models consistently indicated worse predictions of cognitive
performance compared to models with the CR score (based on 7 PCs) presented
in the main text. One exception was an analysis involving the domain-general
cognitive factor in the MRI-only sample. For the cross-sectional analyses in the
sample with available PL scores, the R2 values for the models with the interac-
tion between PL and CR score on cognition were 0.472 for PACC5, 0.486 for the
latent memory factor (f mem) and 0.416 for the global cognitive factor (f glob),
in contrast to R2 values of 0.534, 0.533 and 0.476, respectively, for the CR score
based on 7 PCs. In the MRI-only sample with hippocampal atrophy instead of
PL scores, the difference in R2 between 2 versus 7 PCs was less dramatic for
PACC5 and f mem (R2 = 0.425 for PACC5, 0.442 for f mem as compared to
0.441 for PACC5, 0.443 for f mem when using 7 PCs). R2 for f glob was slightly
higher with 0.363 when using 2 PCs in comparison to 0.353 when using 7 PCs.
In the longitudinal model with the three-way interaction of hippocampal atro-
phy with the CR score and time, the AIC was 2289.2 for a CR score based on
2 PCs as compared to 2267.5 for the CR score based on 7 PCs (reported in the
main text), once again indicating a worse model fit with similar interpretations
for the three-way interaction. In summary, the validation analyses suggest that
a CR score based on a multivariate moderation model in which the functional
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patterns are described using only 2 principal components instead of 7 is worse
at explaining the cognitive performance data, possibly increasing the risk for
bias (underfitting). This indicates that two components are likely to be insuf-
ficient to adequately represent cognitive reserve patterns in its complexity. On
top of that, seven components were superior to any other number of principal
components according to the cross-validation.

5.2.6 Inclusion of structural covariates in validation models

As seen in the previous section, there was a weak correlation of the CR score with
structural measures, namely mean cortical thickness (obtained from Freesurfer)
and mean gray matter volumes (from segmentation with SPM) in the voxels
with significant contributions to CR. To ensure that the CR score represents
reserve beyond mere structural integrity, we added a corresponding covariate
to the multivariate moderation model. The results were found to be essentially
the same as before, with correlations of 0.999 for mean cortical thickness and
0.995 for the mean GM volumes (see Fig. S19). Furthermore, we performed
additional analyses analogous to the validation analyses in the main text, but
with an additional morphometric covariate. Once again, the results were very
similar, with only minor differences in the p values of the interaction effect of
the CR score (see Tab. S1).

Table S1: Results of the models with the CR score. Shown are the p values of the interac-
tion effects of the CR score with pathology (either PL or hippocampal atrophy) on cognitive
performance (PACC5/latent memory factor/latent global cognitive factor). Column one in-
dicates which structural covariate has been used; no struct cov = original models, without
structural covariates; mean cth = mean cortical thickness (Freesurfer); mean GM vol = mean
gray matter volume (SPM) of voxels with significant contribution to CR. In the longitudinal
model, the p value refers to the triple interaction of the CR score with time and hippocampal
atrophy. The p values were calculated from two-tailed t tests of the regression coefficients
(degrees of freedom of the longitudinal models were implicitly estimated via Satterthwaite’s
degrees of freedom method with the lmertest package in R) and not corrected for multiple
comparisons. CR = cognitive reserve, PACC5 = Preclinical Alzheimer’s Cognitive Composite
5, PL = pathological load.

Cross-sectional Longitudinal
PL Hipp. volumes

PACC5 F mem F glob PACC5 F mem F glob PACC5
no struct cov 9.15·10−15 8.38·10−12 2.15·10−8 2.35·10−6 2.69·10−4 0.020 1.19·10−4

mean cth 1.42·10−14 1.20·10−11 2.88·10−8 1.18·10−6 1.49·10−4 0.015 1.30·10−4

mean GM vol 1.06·10−13 6.18·10−11 1.57·10−7 3.85·10−6 5.87·10−4 0.049 1.26·10−5

An alternative approach to creating a CR score, which is not based on the
consensus framework, was to quantify the similarity of the individuals’ brain
activity during successful memory encoding with the average activity of the
cognitively normal individuals (similar to previous approaches like the FADE11

or FADE-SAME scores12). Hence, a similarity score was calculated as a t-
weighted sum of the individuals’ parametric SM contrast with the group-level
t contrast of the cognitively normal individuals. Indeed, the similarity score
was correlated substantially with the CR score (r = 0.556). The results in the
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validation analyses were also similar, although the models with a similarity score
instead of the CR score explained slightly less variance in the cognitive outcomes.
For the cross-sectional analyses in the sample with PL scores, the R2 values were
0.460 for PACC5, 0.503 for the latent memory factor and 0.422 for the global
cognitive factor when using the t-weighted sum score (0.534, 0.533 and 0.476,
respectively, for the CR score). In the MRI-only sample with hippocampal
atrophy instead of PL scores, R2 values were lower for the t-weighted sum score
(R2 = 0.411 for PACC5, 0.426 for f mem, 0.351 for f glob as compared to R2 =
0.441, 0.443, 0.353, respectively). For the domain-general cognitive score, the
p value of the interaction of the similarity score with hippocampal atrophy was
not significant (p = 0.277). In the longitudinal model, the AIC was higher, i.e.
worse, when using the t-weighted sum score (2304.9 compared to 2267.5 for the
original CR score). While this is noteworthy, the disadvantages of the similarity
score compared to the proposed explicit approach are briefly addressed in the
discussion of the main text.

5.3 Supplementary Discussion

5.3.1 PL score

A cautionary note should be made about the PL score. One should be aware
that it is a purely cross-sectional construct that is agnostic for the order of events
along the disease progression towards Alzheimer’s disease. It has to be stressed
that biomarker levels at progressing PL scores hence cannot be interpreted as a
sequence of events. In fact, according to the prevailing model of the Alzheimer’s
pathological cascade, abnormal levels of Aβ are the initiating event in AD,13

followed by abnormal tau levels and neurodegeneration. However, we found that
hippocampal volumes already showed a strong contribution to increasing PL
scores at its lower levels, which would indicate atrophy as an early pathological
change.

The challenges for a dimensionality reduction method in this context are
many-fold. The t-SNE method used here tries to maintain neighborhood rela-
tionships between data points in lower-dimensional spaces. In a three-dimensional
space, one could potentially find four data points that are mutually equidistant.
There is no way to accurately retain these distances in a one-dimensional space.
This is part of a challenge known as the crowding problem.8 Given the com-
position of the sample, which has an over-representation of individuals devoid
of even early clinical symptoms, more severe AD biomarker profiles might not
be represented faithfully in the PL score, as the algorithm tries to the preserve
the distances beween the many less progressive AD biomarker profiles. On the
other side, also age-related and other non-AD related pathological changes (e.g.
hippocampal scleroris or vascular disease) might contribute to hippocampal at-
rophy, neurodegeneration and cognitive decline in our sample. This might be
responsible for the stronger contribution of hippocampal volumes to lower PL
scores. Furthermore, the influence of uncaptured covariates should not be un-
derestimated. However, even if the sample uniformly represented individuals
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across different stages of the AD continuum, recent evidence for distinguishable
AD subtypes (see e.g. Vogel et al.14) indicate the potential presence of multiple
differential biomarker trajectories. In concert, these challenges might explain
the unexpected pattern of trajectory reversals of the biomarkers with increasing
PL scores that can be observed in Fig. S1.

Nevertheless, for the aim of examining cognitive reserve we make the sim-
plified assumption that AD biomarkers can actually be represented by a single
variable. The strong associations with the three biomarkers as well as with cog-
nitive performance indeed suggest the PL score as a meaningful index of overall
disease severity (rather than disease progression) for our purpose.
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5.4 Supplementary Figures
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Figure S3: Venn diagram of the sample. Sample |A| refers to the participants with fMRI
data and was used to derive eigen-images of the subsequent memory contrast images via prin-
cipal component analysis. Sample |B| refers to the participants with CSF data, which was
used for creating the PL score. Sample |AB| is the union of both, i.e., the participants with
both fMRI and CSF data. Sample |AB| was used to derive the CR-related activity patterns.
The remaining participants of sample |B| that were not part of |AB| were used for further val-
idation of the CR score by determining its ability to moderate the effect of neurodegeneration
on individual measures of cognitive performance. AD = Alzheimer’s disease, CR = cognitive
reserve.
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Figure S4: Relationship between ATN biomarkers and data-driven PL score. Same
as Fig. S1, with the exception that one additional subject was included in the derivation
of the PL score, which was deemed an outlier and excluded from all analyses. It is marked
with a black circle and has a PL score of 0 despite its very low Aβ42:40ratio of 0.46, rather
high p-tau levels of 118 pg/ml and TIV-normalized hippocampal volumes of 3.52. (A-C) All
three possible combinations of pairs of biomarkers are shown. The points are color-coded
based on the corresponding pathological load score. (D-F) Biomarkers plotted against the PL
score. Source data are provided as a Source Data file. PL = pathological load, TIV = total
intracranial volume.
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Figure S5: Distribution of PL score. The displayed sample is the full CSF sample (|B| in
Fig. S3). Source data are provided as a Source Data file. PL = pathological load.
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Figure S6: Principal components of subsequent memory regressor images. Shown
are the loadings of each voxel onto each of the seven principal components (PC1-7) of the
regressor images of subsequent memory. Please note that the principal component analysis
has been restricted to regions with a significant subsequent memory effect in the baseline
sample (compare Fig. 2A) and hence does not include region outside of those 13695 voxels.
Source data are provided as a Source Data file.
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Figure S7: Variance explained by principal component (eigen-)images. Shown is the
amount of variance in the original subsequent memory regressor images that the individual
principal components explain as assessed via their eigenvalues. The black line symbolizes the
optimal number of principal components determined via a 10-fold cross-validation procedure.
Source data are provided as a Source Data file.

Figure S8: Cross-validation results. According to Eq. 2, PACC5 was predicted by varying
numbers of principal components (eigen-images) in a 10-fold cross-validation procedure that
was repeated 10 times with different partitioning of the data (see section 4.7 for details). The
boxplots refer to the cross-validation R2 (coefficient of determination) in PACC5 scores (Box-
Cox transformed) in the 10 independent test set predictions. The line shows the median, the
box limits the upper and lower quartiles, respectively, and the whiskers have a maximum length
of 1.5*IQR. There were no outliers. The magenta crosses (connected via lines) denote the mean
values across the 10 predictions and the olive-colored diamonds the individual coefficients of
determination. 7 principal components achieved the best cross-validation results. Source
data are provided as a Source Data file. IQR = interquartile range, PACC5 = Preclinical
Alzheimer’s Cognitive Composite 5.
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Figure S9: Significant CR regions across different numbers of principal compo-
nents. Like in the cross-validation procedure (Fig. S8), the multivariate model has been
fitted on the whole dataset using different amounts of principal components, ranging from
2 to 9. Subsequently, the corresponding voxelwise moderation effects (CR weights), voxels
with significant CR weights and individual CR scores have been determined. (A) Surface plot
of significant regions. (B) Same as A, but as slice views. Color bar indicates how many of
the 8 analyses determined a certain voxel as significant contributor to CR. (C) Heat maps
comparing the results in dependence of the number of principal components used in the mul-
tivariate model based on the correlation of the voxelwise CR weights (lower triangular part)
and Sørensen-Dice coefficient (upper triangular part). (D) Same as C, but for individual CR
scores obtained from CR weights and subsequent memory coefficients. It is important to note
that the CR pattern is multivariate in nature, interpretable as a whole and cluster descrip-
tives are reported for transparency of obtained non-negligible coefficients contributing to the
pattern. Source data are provided as a Source Data file. CR = cognitive reserve, PCs =
principal components.
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Figure S10: CR coefficients in whole gray matter. (A) Results of the same multivariate
model when extending the search space to all gray matter instead of only regions contributing
to successful memory encoding. (B) Mean beta values of the parametric successful memory
contrast. The correlation between A and B is 0.942. All values have been normalized by the
highest absolute value of the respective image. Source data are provided as a Source Data
file. CR = cognitive reserve.
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Figure S11: CR pattern in multivariate model with only 2 principal components.
Results of the same multivariate model using 2 instead of 7 principal components. (A) Voxel-
wise moderation coefficients (CR), normalized by the highest absolute coefficient. (B) Regions
with significant positive (red) and negative (blue) CR coefficients as indicated by bootstrap-
ping. It is important to note that the CR pattern is multivariate in nature, interpretable
as a whole and cluster descriptives are reported for transparency of obtained non-negligible
coefficients contributing to the pattern. Source data are provided as a Source Data file. CR
= cognitive reserve.
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Figure S12: Significant CR regions according to previous bootstrapping inference
approach. Regions with significant positive (red) and negative (blue) contributions to CR as
inferred from a bootstrapping inference approach adopted by Chén et al. (2018) and slightly
adjusted. (A) Results for the multivariate model with 7 PCs. (B) Results for the multivariate
model with only 2 PCs (compare with Fig. S11 for results with 2 PCs using the updated
bootstrap inference method). It is important to note that the CR pattern is multivariate
in nature, interpretable as a whole and cluster descriptives are reported for transparency of
obtained non-negligible coefficients contributing to the pattern. Source data are provided as
a Source Data file. CR = cognitive reserve, PCs = principal components.
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Figure S13: PCA-based PL score. Here we present an alternative PL score (r = 0.930
with t-SNE-based PL score) represented by the first component of a PCA on Aβ42:40, p-tau
and TIV-normalized bilateral hippocampal volumes. (A) Relationship of the PCA-based PL
score to AD biomarkers. (B) Voxelwise moderation coefficients (CR) for multivariate model
with PCA-based PL score (r = 0.907 with CR coefficients in main text), normalized by the
highest absolute coefficient. (C) Regions with significant positive (red) and negative (blue)
CR coefficients for multivariate model with PCA-based PL score. It is important to note that
the CR pattern is multivariate in nature, interpretable as a whole and cluster descriptives are
reported for transparency of obtained non-negligible coefficients contributing to the pattern.
Source data are provided as a Source Data file. CR = cognitive reserve, PCA = principal
component analysis, PL = pathological load, TIV = total intracranial volume, t-SNE = t-
distributed stochastic neighbor embedding.
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Figure S14: SE-based PL score. Here we present an alternative PL score (r = 0.951 with
t-SNE-based PL score) obtained as the first component a nonlinear dimensionality reduc-
tion method called spectral embedding (SE) on Aβ42:40, p-tau and TIV-normalized bilateral
hippocampal volumes. (A) Relationship of the SE-based PL score to AD biomarkers. (B)
Voxelwise moderation coefficients (CR) for multivariate model with SE-based PL score (r =
0.878 with CR coefficients in main text), normalized by the highest absolute coefficient. (C)
Regions with significant positive (red) and negative (blue) CR coefficients for multivariate
model with SE-based PL score. It is important to note that the CR pattern is multivariate
in nature, interpretable as a whole and cluster descriptives are reported for transparency of
obtained non-negligible coefficients contributing to the pattern. Source data are provided as a
Source Data file. CR = cognitive reserve, PL = pathological load, SE = spectral embedding,
TIV = total intracranial volume, t-SNE = t-distributed stochastic neighbor embedding.
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Figure S15: DPT-based PL score. Here we present an alternative PL score (r = 0.940 with
t-SNE-based PL score) obtained by a diffusion pseudotime (DPT)15 analysis on Aβ42:40,
p-tau and TIV-normalized bilateral hippocampal volumes. AD biomarkers of the 26 most
pathology-free participants with Aβ42:40> 0.12 and p-tau < 50 have been averaged and de-
fined as the “root cell” required by the algorithm. (A) Relationship of the DPT-based PL
score to AD biomarkers. (B) Voxelwise moderation coefficients (CR) for multivariate model
with DPT-based PL score (r = 0.909 with CR coefficients in main text), normalized by the
highest absolute coefficient. (C) Regions with significant positive (red) and negative (blue)
CR coefficients for multivariate model with DPT-based PL score. It is important to note that
the CR pattern is multivariate in nature, interpretable as a whole and cluster descriptives are
reported for transparency of obtained non-negligible coefficients contributing to the pattern.
Source data are provided as a Source Data file. CR = cognitive reserve, DPT = diffusion
pseudotime, PL = pathological load, TIV = total intracranial volume, t-SNE = t-distributed
stochastic neighbor embedding.
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Figure S16: PL score from Aβ42:40 and p-tau only. Here we present an alternative PL
score based only on Aβ42:40 and p-tau, excluding hippocampal volumes. (A) Relationship of
a t-SNE-based AT PL score with perplexity 25 (r = 0.845 with original PL score) to Aβ42:40

and p-tau. (B) Voxelwise moderation coefficients (CR) for multivariate model with t-SNE-
based AT PL score (r = 0.961 with CR coefficients in main text), normalized by the highest
absolute coefficient. (C) Relationship of a PCA-based AT PL score (r = 0.865 with original
PL score) to Aβ42:40 and p-tau. (D) Voxelwise moderation coefficients (CR) for multivariate
model with PCA-based AT PL score (r = 0.866 with CR coefficients in main text), normalized
by the highest absolute coefficient. Color scale below panel C applies to the PL score of both
panels A and C. Color scale below panel D applies to the CR coefficients in both panels
B and D. Source data are provided as a Source Data file. CR = cognitive reserve, PCA
= principal component analysis, PL = pathological load, t-SNE = t-distributed stochastic
neighbor embedding.
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Figure S17: Separate CR coefficients for CIs and CUs. (A) Results of the multivariate
model when applied only to cognitively impaired people (amnestic mild cognitive impairment,
Alzheimer’s disease dementia; N = 44; r = 0.150 with CR coefficients in main text). (B)
Results of the multivariate model when applying it to only cognitively unimpaired people
(cognitively normals, AD patient first-degree relatives, subjective cognitive decliners; N =
184; r = 0.891 with CR coefficients in main text). Please note the substantial difference
in sample sizes and many variables between the two groups. The CIs are older (72.52 vs
68.95 years, p = 2.30·10−5), have higher PL scores (0.637 vs 0.359, p = 2.52·10−8), lower
PACC5 scores (-1.76 vs -0.02, p = 2.40·10−12) and are less educated (13.36 vs 14.82 years, p
= 5.02·10−4). The latter might be another indication that CR not only may work differently
in CIs, but CIs might also simply have lower CR that made them more susceptible to cognitive
deficits in the first place. In consequence, they might not be a good model for examining CR.
Dedicated samples of cognitively impaired participants might be better suited to examine
the neural basis of CR in this special subgroup. CR coefficients were normalized by the
highest absolute coefficient, respectively. Source data are provided as a Source Data file. CI
= cognitively impaired, CR = cognitive reserve, CU = cognitively unimpaired, PACC5 =
Preclinical Alzheimer’s Cognitive Composite 5.
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Figure S18: Separate CR coefficients for females and males. (A) Results of the mul-
tivariate model when applying it to only female participants (N = 114; r = 0.282 with CR
coefficients in main text). (B) Results of the multivariate model when applying it to male
participants (N = 114; r = 0.879 with CR coefficients in the main text). CR coefficients were
normalized by the highest absolute coefficient, respectively. Source data are provided as a
Source Data file. CR = cognitive reserve.
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Figure S19: CR coefficients when accounting for morphometric covariates. (A) Re-
sults of the multivariate model when accounting for mean cortical thickness (from Freesurfer)
as an additional covariate (r = 0.999 with CR coefficients in main text). (B) Results of the
multivariate model when including mean GM volumes (from SPM segmentation) of the voxels
with significant CR contributions (according to the main model) as an additional covariate
(r = 0.995 with CR coefficients in the main text). CR coefficients were normalized by the
highest absolute coefficient, respectively. Source data are provided as a Source Data file. CR
= cognitive reserve.
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Figure S20: Correlations of CR score with other variables - part 1. Scatter plots
display the CR score on the x-axis and (A) education, (B) the (squared) PL score, (C)
Aβ42:40, (D) p-tau, (E) hippocampal volumes (bilaterally averaged and normalized with TIV),
(F) sum of GM volumes in the voxels with significant contribution to CR, (G) mean cortical
thickness or (H) white matter hyperintensities (log-transformed) on the y-axis. The correlation
coefficients and corresponding p values are depicted in Fig. S2. CR = cognitive reserve, GM
= gray matter, PL = pathological load, TIV = total intracranial volume.
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Figure S21: Correlations of CR score with other variables - part 2. Scatter plots
display the CR score on the x-axis and (A) the mean global signal from resting-state fMRI
in voxels with significant contribution to CR, and functional connectivity in the (B) DMN,
(C) DAN, (D) FPN, (E) limbic network, (F) SMN, (G) SN and (H) VN on the y-axis. The
correlation coefficients and corresponding p values are depicted in Fig. S2. CR = cognitive
reserve, DMN = default mode network, DAN = dorsal attention network, FC = functional
connectivity, FPN = fronto-parietal network, GM = gray matter, Lim = limbic network, SMN
= somatomotor network, SN = salience network, VN = visual network.
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5.5 Supplementary Tables

Table S2: Subsample characteristics. Means ± standard deviations are illustrated. P
values were obtained from two-sided two-sample t-test or Chi-square test and not corrected
for multiple comparisons. The group contingency of the five diagnostic groups was not signifi-
cantly different between both subsamples (p = 0.103). Hippocampal volumes were bilaterally
averaged and normalized to the total intracranial volume. 4 participants of the CSF subsam-
ple and 5 participants of the MRI-only subsample had no Preclinical Alzheimer’s Cognitive
Composite 5 (PACC5) scores. Source data are provided as a Source Data file.

CSF subsample MRI-only subsample p value
N 232 258
Age at baseline [years] 69.6±5.4 69.8±5.9 0.713
Sex [% female] 50.0 57.0 0.146
Education [years] 14.6±2.7 14.7±3.0 0.573
Hippocampal volumes 4.21±0.53 4.25±0.47 0.304
PACC5 scores -0.36±1.05 -0.05±0.87 5.67·10−4

Table S3: Significant clusters in CR activity pattern. Same as Tab. 2, but includes
smaller clusters with sizes between 30 and 50 voxels (all discordant). In two instances, the
peak voxel was not contained in the AAL atlas and is thus marked with a question mark.
AAL = Automated Anatomic Labeling, CR = cognitive reserve. Source data are provided as
a Source Data file.

# Mean wi Size [voxels] % concordant Peak[x,y,z] Peak Structure
8 0.056 48 0 35, 59, 7 Frontal Mid R
9 0.044 45 0 -4, 7, 70 Supp Motor Area L
10 0.053 42 0 42, 14, 39 Frontal Inf Oper R
11 0.058 42 0 7, 3, 73 Supp Motor Area R
12 0.051 37 0 49,14,14 Frontal Inf Oper R
13 0.05 36 0 -11,0,10 ? (Caudate L/Thalamus L)
14 0.045 34 0 -35,-66,-59 ? (near Cerebellum L)
15 0.043 30 0 49,-7,-32 Temporal Inf R
16 -0.068 30 0 -28,-21,-14 Hippocampus L
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Table S4: Correlation between different PL scores. All PL scores exhibit very high
correlations with each other, but show subtle differences in their patterns of nonlinearity (see
Figs. S14, S15, S13). Source data are provided as a Source Data file. DPT = diffusion
pseudotime, PCA = principal component analysis, PL = pathological load, SE = spectral
embedding, t-SNE = t-distributed stochastic neighbor embedding.

t-SNE PCA DPT SE
t-SNE 1.000 0.930 0.940 0.951
PCA 0.930 1.000 0.965 0.963
DPT 0.940 0.965 1.000 0.983
SE 0.951 0.963 0.983 1.000
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