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Cognitive reserve against Alzheimer’s
pathology is linked to brain activity during
memory formation

A list of authors and their affiliations appears at the end of the paper

The cognitive reserve (CR) hypothesis posits that individuals can differ in how
their brain function is disrupted by pathology associated with aging and
neurodegeneration. Here, we test this hypothesis in the continuum from
cognitively normal to at-risk stages for Alzheimer’s Disease (AD) to AD
dementia using longitudinal data from 490 participants of the DELCODE
multicentric observational study. Brain function is measured using task fMRI
of visual memory encoding. Using a multivariate moderation analysis, we
identify a CR-related activity pattern underlying successful memory encoding
that moderates the detrimental effect of AD pathological load on cognitive
performance. CR is mainly represented by a more pronounced expression of
the task-active network encompassing deactivation of the default mode net-
work (DMN) and activation of inferior temporal regions including the fusiform
gyrus.Wedevise personalized fMRI-basedCR scores thatmoderate the impact
of AD pathology on cognitive performance and are positively associated with
years of education. Furthermore, higher CR scores attenuate the effect of AD
pathology on cognitive decline over time. Our findings primarily provide evi-
dence for themaintenance of core cognitive circuits including the DMN as the
neural basis of CR. Individual brain activity levels of these areas during
memory encoding have prognostic value for future cognitive decline.

Alzheimer’s disease (AD) is biologically characterized by the accumula-
tion of amyloid-β (Aβ) plaques, neurofibrillary tangles consisting of
aggregated tau protein, and neurodegeneration1. Intriguingly, certain
individuals resist clinical progression to dementia in their lifetimedespite
significant AD pathology in their brains2. The cognitive reserve (CR)
hypothesis addresses this discrepancy. CR is conceptualized as a mis-
match between an individual’s brain pathology burden and level of
cognitive performance due to cognitive and functional brain mechan-
isms that are not necessarily accompanied by macroscopic structural
brain alterations. Recently, a comprehensive whitepaper presented a
unified framework for reserve research and defined CR as the “adapt-
ability (i.e., efficiency, capacity, flexibility) of cognitive processes that
helps to explain differential susceptibility of cognitive abilities or day-to-
day function to brain aging, pathology, or insult"3.

In alignment with its definition, the most recent research fra-
mework operationalizes CR in the form of a moderator variable4 (see
also https://reserveandresilience.com/framework/). As such, it states
the requirement of three components for CR research. First, it
requires a measure of changes in brain status like brain atrophy or
pathology. Second, a quantification of longitudinal changes in cog-
nition theoretically associated with brain status is needed. The third
component of this moderation approach is a proposed CR measure,
which should moderate the relationship between brain status and
cognitive changes. The use of functional neuroimaging methods
presents a viable avenue for investigating the neural implementation
of CR within this framework. For this purpose, the moderator vari-
able can be represented by the expression of brain activity during
cognition using fMRI.
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Previous studies have only partially been able to address these
aspects, even though awide range ofmethodologies has been utilized.
Most functional neuroimaging studies onCRhave identified regions or
networks contributing to CR by correlating their expression (activity/
connectivity) with a CR proxy like education or IQ instead of investi-
gating their ability to moderate the relationship between aging- or
pathology-related brain changes and cognitive performance. For
instance, resting-state functional connectivity profiles have been
associated with sociobehavioral CR proxies, manifesting at different
levels, including ROI-to-ROI5, global connectivity of a seed region6,7,
global functional connectivity within a network8 and employing
dimensionality reduction to an ROI-to-ROI connectome9. Notably, Van
Loenhoud et al.10 recently employed a task-potency method, examin-
ing the relationship between whole ROI-to-ROI connectomes in the
resting and task state and their association with CR proxies.

Several task-based fMRI investigations pertaining to CR have
relied on the Reference Ability Neural Networks Study, wherein parti-
cipants engaged in 12 cognitive tasks during MRI scanning10–13

encompassing three tasks each from the four reference abilities of
episodicmemory, fluid reasoning, perceptual speed, and vocabulary14.
This comprehensive approach first facilitated the identification of
overlapping regions of brain activity across tasks11–13 and activity pat-
terns exhibiting correlationswith IQ13 and education11. Moreover, Stern
et al.15 observed a distinctive spatial pattern of BOLD activity, the
expression of which displayed significant correlations with measures
of CR as task load increased.

Among the most notable findings, the default mode network
(DMN)9,10 emerged as a potential CR-related region, alongside its
individual components such as the left precuneus13,16, left posterior
cingulate16,17, precuneus and cingulate15, andmedial frontal gyrus13. Left
prefrontal cortex activity, bothwithin andoutsideof the frontoparietal
network6, as well as global connectivity of the left frontal cortex7, were
also related to CR. Additionally, there is some evidence for the invol-
vement of the anterior cingulate cortex (ACC) in CR13,17.

However, most previous attempts neglect that a network under-
pinning CR should be capable of altering the relationship between
aging- or pathology-related brain changes and cognitive performance3.
Moreover, functional neuroimaging studies on CR are more prevalent
in aging research, whereas very few investigations have explored CR in
the context of neurodegeneration and AD7,13. A major challenge in
addressing this gap is to obtain brain activity during cognition in large
longitudinal cohorts where AD-related pathological burden is thor-
oughly quantified.

The primary objective of this study was thus to investigate the
neural implementation of CR by identifying task fMRI activity patterns
associatedwith cognitive reserve in a large-scalemulticentric cohortof
nearly 500 older individuals along the AD spectrumwith the use of the
moderation framework. Notably, the cohort was enriched in indivi-
duals who still perform normally but are at increased risk for devel-
oping AD. To accomplish this, we employed a task fMRI paradigm on

memory formation to explore CR in the context of episodic memory
encoding. Given that episodic memory is among the earliest and most
frequently affected cognitive faculties in dementias like AD
dementia18,19, memory-related activity patterns hold particular rele-
vance in CR investigations. As the central hub of episodic memory
formation and due to its vulnerability in AD, the hippocampus is fur-
ther of distinct significance for quantification of AD-related
neurodegeneration20–22. Our study sought to complement previous
approaches by (1) adhering closely to the research framework4 while
(2) identifying a memory-related activity pattern capable of moderat-
ing the impact of AD pathology on cognitive performance. Drawing on
insights from prior functional neuroimaging studies on CR, we
expected that CR-related activity patterns might encompass regions
such as the DMN, frontal regions such as the ACC and task-specific
regions like the MTL23. Our approach takes advantage of a moderation
model in a multivariate fashion (utilizing principal component
regression) and effectively condensing the multidimensional AD
pathological process (reflecting fluid biomarkers and hippocampal
atrophy) into a single pathological load (PL) score. We further derived
a neuroimaging-based CR score from an individual’s expression of the
CR-related fMRI activity patterns and show its alignment with educa-
tional attainment, a well-established proxy for CR. Finally, we explored
the longitudinal implications of this CR index, meticulously examining
its potential to modify cognitive trajectories over time.

Results
Demographics
Our reserve analysis focused on a sample of 490 older participants of
cognitively normal (including first-degree relatives of AD patients and
individuals with subjective cognitive decline) and cognitively impaired
individuals (with amnestic mild cognitive impairment (aMCI) or Alz-
heimer’s disease dementia (ADD)) who performed task fMRI. Their
demographics arepresented inTable 1 (mean age: 69.7 ± 5.6 years).We
note that of the 68 participants (10.4% of the original sample) that had
been excluded from the analyses, the proportion of aMCI (n = 19; 22.9%
of the 83 in the original sample) and ADD (n = 12; 36.4% of the 33 in the
original sample) was disproportionately higher due to their greater
movement during fMRI, response bias, etc. (see Supplementary
methods). The sample included slightlymore females (53%) thanmales
and was comparably well-educated (14.6 ± 2.9 years of education). The
pathological load (PL) reflected biologically definedADpathology (Aβ,
tau, and hippocampal volume) in a single index ranging from 0 to 1
(see “Methods” for details). The sample’s mean PL was 0.42 ± 0.3. PL
was significantly higher in patients with ADD and aMCI compared to
other groups, suggesting its validity with respect to clinical diagnosis.

Pathological load is associated with cognitive performance
The PL score combines CSF measures of amyloid burden and tau
pathology with MRI measures of neurodegeneration into a single
score. As a robustmarker for disease severity along the AD continuum,

Table 1 | Demographics of the final fMRI sample

N Age (years) Sex (% female) Education (years) PACC5 PL

CN 152 68.89 (5.1) 63.2 14.57 (2.7) 0.21 (0.5) 0.33 (0.2)

ADR 51 66 (4.7) 56.9 14.49 (2.8) 0.14 (0.7) 0.3 (0.2)

SCD 202 70.01 (5.9) 44.6 15.2 (2.9) −0.04 (0.7) 0.4 (0.3)

aMCI 64 72.62 (4.8) 53.1 13.44 (2.8) −1.22 (0.8) 0.58 (0.3)

ADD 21 73.36 (5.4) 66.7 13.71 (2.8) −2.97 (1.2) 0.84 (0.2)

All 490 69.73 (5.6) 53.7 14.64 (2.9) −0.19 (1.0)a 0.42 (0.3)b

Values represent the mean (standard deviation).
Source data are provided as a Source Data file.
ADDmild Alzheimer’s diseasedementia,ADRADpatient first-degree relatives, aMCI amnesticmild cognitive impairment,CNcognitively normal,SCD subjective cognitive decline, PACC5 Preclinical
Alzheimer’s Cognitive Composite 5, PL pathological load.
aNine participants did not have PACC5 scores.
b258 participants did not have PL scores due to missing CSF data.
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the PL score exhibited substantial associations with cognitive mea-
sures derived from neuropsychological testing. Notably, empirical
findings indicated a nonlinear relationship (Fig. 1), prompting a com-
parison of models with linear and quadratic terms for PL. Both models
demonstrated a strong link between PL and PACC5, a composite
measure of cognitive performance in the memory domain. The model
incorporating a quadratic termdisplayed a superior fit (p = 5.03 ⋅ 10−28,
standardized regression coefficient β = −0.516 [95% confidence inter-
vals: −0.602,−0.431], t(400df) = −11.864, R2 = 0.385; Supplementary
information provides comprehensive details).

Since this work focuses on reserve as moderation in terms of
interactions with PL, we next tested whether education as a well-
established CR proxy moderated the impact of PL on cognitive per-
formance (p = 0.0001, β = 0.752 [0.374, 1.129], t(398) = 3.914), which
suggested the pivotal role of education in promoting factors that
might contribute to the relationship between AD pathology and cog-
nitive abilities (Fig. 1B). Additionally, in the interaction model, a main
effect of the (quadratic) PL score was evident (p = 2.94 ⋅ 10−4, β = −1.223
[−1.595, −0.851], t = −6.467), while no further independent main effect
of education was observed (p = 0.575, β = 0.033 [−0.082, 0.147], t =
0.561). The moderation model demonstrated an R2 value of 0.441,
further affirming its predictive capability.

Identification of a CR-related activity pattern
We illustrate brain regions exhibiting heightened activity during
encoding for subsequently remembered scenes (Fig. 2A, warm colors)
or later forgotten ones (cool colors). In exploring cognitive reserve, we
aimed to identify those spatial patterns (in terms of local voxel-level
weights) from this parametric activity contrast that might moderate
the impact of a subject’s AD pathological load on cognitive perfor-
mance using a multivariate moderation approach that predicts per-
formance (see “Methods”). Through cross-validation, we determined
that the optimal number of principal components (PCs) for the model
was 7, yielding a mean cross-validation R2 of 0.3436 (see Fig. S8 for
cross-validation results).

Our investigation unveiled patterns of brain regions contributing
both positively (depicted in Fig. 2B, warm colors) or negatively (cool
colors) to the moderation of the relationship between AD pathology

and cognitive performance. The former indicates that greater
memory-related encoding activity (more positive or less negative) is
linked to superior cognitive performance despite the presence of
pathology. Conversely, in regions contributing negatively to the
moderation patterns,more negative or less positive activity alignswith
better cognitive performance amidst increased pathological burden.
In other words, individuals with elevated pathology demonstrated
better-than-expected cognitive performance when their BOLD signal
differences between subsequently remembered and forgotten stimuli
were substantial within regions bearing corresponding colors in
Fig. 2A, B. These findings highlight the complex interplay between
neural activation patterns and cognitive resilience.

To validate and explore the obtained CR-related activity pattern,
we then identified clusters with significant contributions (to modera-
tion of the relationship between pathology and cognitive perfor-
mance) using bootstrapping (Fig. 3 and Table 2). Brain regionswith the
most positive moderation effects were located bilaterally in the
inferior temporal and inferior occipital cortices, including the fusiform
gyri and small parts of the right parahippocampal cortex (clusters 1
and 2). To a weaker extent, parts of the frontal cortex also contributed
positively to CR, especially bilateral inferior frontal gyri, including
opercular, triangular and orbital parts (clusters 3 and 4) as well as parts
of right PFC (cluster 8 in Table S3). The strongest negative contribu-
tions to moderation were observed in bilateral precuneus, cuneus,
posterior cingulate cortex (PCC; cluster 5). Slightly weaker nega-
tive coefficients were found in the bilateral inferior parietal cortex
around the angular gyrus (clusters 6 and 7).

Interestingly, CR-related activity patterns did not predominantly
reflect regions showing atrophy in the DELCODE cohort (mostly found
in the hippocampus and medial temporal lobe, Fig. 2C), with minor
overlaps in left hippocampus, precuneus and PCC. Overall, this lack of
overlapbetween identifiedCR-related regions and regions of strongest
atrophy was supported by a low correlation of −0.102 (Fig. 2B, C).

To delve deeper into our comprehensionof the identified pattern,
we conducted an examination of the overlap between the CR-related
activity pattern and the generic subsequent memory activity pattern
(illustrated in Fig. 2A). A substantial concurrence between these pat-
terns was observed in the most extensive clusters of CR-related

Fig. 1 | Cognitive performance declines with higher AD pathological load.
Cognitive performance is represented by the baseline PACC5 score, which was
normalized to the unimpaired sample (cognitively normal individuals, subjective
cognitive decliners, first-degree relatives of Alzheimer’s disease patients).
A Quadratic model: PACC5 = b0 + b1 ⋅ PL

2 + c ⋅ COV. The black line depicts the
predictions of a regression model (with 95% confidence intervals) with a quadratic
effect of PL. B Same model as in panel (A), but with additional terms for years of
education and its interactionwith the quadratic PL score. Red andblue dots refer to

individualswith high and loweducation, respectively, as obtainedby amedian split.
Red and blue lines are the predictions of regression models for an individual with
average covariate values and 17 (median of the high education group) or 12 years of
education (median of the low education group), respectively. Shaded areas refer to
the respective 95% confidence intervals. Source data are provided as a Source Data
file. COV covariates (see “Methods”), PACC5 Preclinical Alzheimer’s Cognitive
Composite 5, PL pathological load.
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deactivations, notably in regions such as the precuneus, posterior
cingulate cortex (PCC), angular gyrus and ACC, and activations, par-
ticularly in inferior temporal areas (Fig. 4, blue).Within those regions, a
higher reserve is reflected by an increase in the amplitude of the task-
related activation/deactivation. However, it was also apparent that
reserve is not uniformly contributing across this task-active network
and that certain regions exhibiting significant (de)activation during
successful memory encoding did not substantially contribute to cog-
nitive reserve at all (such as portions of the parietal, frontal, temporal,
particularly occipital cortex, as well as the cerebellum and basal
ganglia).

Moreover, a striking observation emerged in a few brain regions
where the valence of the coefficients did not align, a phenomenon

we term “discordant" (Table 2, Fig. 4). For instance, voxels sur-
rounding the calcarine sulci (parts of the bigger cluster 5), bordering
the cuneus and precuneus, displayed activation during successful
encoding but exhibited a negative contribution to CR (CR-SM+,
green in Fig. 4). This trend was also observed in the left hippo-
campus and medial orbitofrontal regions. Conversely, positive
contributions to CR were evident in certain right frontal areas, such
as the insula and mid/superior orbitofrontal cortex (e.g., parts of
clusters 3 and 4; CR+SM-, yellow in Fig. 4), despite subsequent
memory-related deactivation. Taken together, the correlation
between the voxelwise CR coefficients and SM contrast values was
found to be 0.384. This suggests that predominantly showing acti-
vation patterns closer to the typical activation/deactivation might

Fig. 2 | CR-related activity pattern that moderates effects of pathology.
A Activation (hot colors) and deactivation (cool colors) during encoding of sub-
sequently remembered compared to subsequently forgotten stimuli as identified
by t-contrasts of the subsequent memory regressor in the whole fMRI sample. T
values of voxels with pFWE < 0.05 are shown. B Group-level CR-related activity
pattern that when expressed minimizes effects of AD pathology on cognitive per-
formance as identified via a multivariate approach. The net contribution

(moderation coefficient; positive/hot and negative/cool colors) of every voxel to
the CR pattern is displayed (unthresholded). C Atrophy pattern in the whole
baseline DELCODE sample as obtained by a VBM GM analysis of CN participants vs
ADD patients. T values of voxels with pFWE < 0.05 are shown. Source data are
provided as a Source Data file. ADD Alzheimer’s disease dementia, CN cognitively
normal, CR cognitive reserve, GM gray matter, VBM voxel-based morphometry.
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support cognitive functioning. On the other hand, more complex
region-specific multifaceted relationships between these neural
signatures and cognitive reserve might exist, indicated e.g., by dis-
cordant voxels.

Next, we exemplify how subsequent memory-related activity
moderates the detrimental effect of pathology (PL score) on cognitive
performance in twobrain regions located in the right inferior temporal
cortex (Fig. 5A) and around bilateral cuneus/precuneus/PCC (Fig. 5B),
respectively (taking clusters 1 and 5 from Fig. 3 and Table 2). The
moderation effect has unveiled a notable phenomenon: as levels of
pathological load (PL) rise, the disparities in cognitive performance
between individuals with high and low levels of (de)activation become
increasingly apparent. Among individualswith high PL, thosewith high
SMcontrast values have cognitive ability at the level of individualswith
low PL.

CR score moderates effects of pathology on cognitive perfor-
mance, also longitudinally
Utilizing the CR-related activity pattern that we identified above, we
next derived individualized CR scores. To ascertain its validity as an

indicator of cognitive reserve, weexpected it to (1)moderate the effect
that pathology has on independent cognitive performance measures,
(2) moderate longitudinal cognitive decline, and (3) be correlated with
sociobehavioral proxies of CR according to the consensus research
criteria3.

Our results affirm the first criterion, demonstrating a moderation
effect of the CR score on the relationship between the (quadratic) PL
score and cognitive performance across various cognitive tests
(Fig. 6A). This moderation effect was evident for the latent memory
factor (p = 8.38 ⋅ 10−12, β = 0.381 [0.277, 0.485], t(218) = 7.224), the
domain-general factor (p = 2.15 ⋅ 10−8, β = 0.325 [0.215, 0.435], t(218) =
5.814) and the PACC5 score (p = 9.15 ⋅ 10−15, β = 0.447 [0.341, 0.552],
t(214) = 8.338), which was originally used in identifying the CR-related
activity pattern. Importantly, this moderating effect was not only
observed in individuals with cognitive impairment, i.e., aMCI and AD
patients but also when analyzing the same models only in cognitively
unimpaired individuals (memory factor: p = 3.91 ⋅ 10−5, β = 0.273 [0.145,
0.400], t(171) = 4.223; domain-general factor: p = 0.0010, β = 0.220
[0.091, 0.349], t(171) = 3.358; PACC5: p = 3.77 ⋅ 10−6, β = 0.301 [0.177,
0.426], t(170) = 4.781). This emphasizes that the fMRI activity patterns
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Fig. 3 | Significant regions in the CR-related activity pattern. Several clusters of
voxels were determined via bootstrapping whose contribution to the CR pattern
(wi) was found to be significant (p < 0.05, see “Methods”), displayed as A mosaic
(multislice) view, B 3D view and C surface view. Displayed numbers refer to the
clusters described in Table 2 with peaks in the following brain structures. 1: right

inferior temporal cortex, 5: left precuneus. In panel (B), small clusters have been
removed for illustrative purposes. It is important to note that the CR pattern is
multivariate in nature, interpretable as a whole and cluster descriptives are
reported for transparency of obtained non-negligible coefficients contributing to
the pattern. Source data are provided as a Source Data file. CR cognitive reserve.

Table 2 | Significant clusters in CR-related activity pattern

# Mean wi Size (voxels) % concordant Peak (x, y, z) Peak structure

1 0.100 623 100 49, −63, −17 Temporal_Inf_R

2 0.085 594 100 −49, −66, −17 Occipital_Inf_L

3 0.055 149 79.19 49, 14, 28 Frontal_Inf_Oper_R

4 0.075 119 93.28 −49, 25, 24 Frontal_Inf_Tri_L

5 −0.105 873 90.38 0, −60, 32 Precuneus_L

6 −0.067 235 97.45 −45, −63, 35 Angular_L

7 −0.048 213 100 52, −56, 39 Parietal_Inf_R

Structures and peak voxels were identified in MRIcroGL, using the AAL (Automated Anatomical Labeling) atlas76. wi refers to the CR coefficient of a voxel i. % concordant refers to the proportion of
voxels in thecluster that have the samevalence (sign) for theCRcoefficient and theparametric subsequentmemorycontrast coefficient as shown in Fig. 4. A concordant region is onewherea higher
(lower) activity reduces effects of pathology and which is typically activated (deactivated) during the task. Clusters smaller than 50 voxels (voxel size: 3.5 × 3.5 × 3.5 mm3) have been omitted. It is
important to note that the CRpattern ismultivariate in nature, interpretable as a whole and cluster descriptives are reported for transparency of obtained non-negligible coefficients contributing to
the pattern. Source data are provided as a Source Data file.
CR cognitive reserve.
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associated with CR might benefit a broad spectrum of cognitive
abilities.

Furthermore, the sameCR score exhibited aweaker yet significant
moderation effect on the association between AD pathology and
cognitive performance (see Fig. 6B) for the latent memory factor (p =
1.17 ⋅ 10−6, β = 0.202 [0.094, 0.310], t(244) = 3.697), domain-general
factor (p = 0.020, β = 0.138 [0.022, 0.254], t(244) = 2.346) and PACC5
score (p = 1.35 ⋅ 10−6, β = 0.271 [0.163, 0.378], t(240) = 4.958) in the
remaining sample without a PL score (due to missing CSF data). Here,
the PL score was replaced by hippocampal atrophy (squared, as the
PL score).

In a longitudinal context, lower hippocampal volumes at baseline
worsened cognitive decline rates in the PACC5 score (p = 5.24 ⋅ 10−8, β =
−0.140 [−0.191,−0.092], t(158.6) = −5.717) in the whole sample. The CR
score attenuated this relationship (three-way interaction of CR score,
atrophy and time; p = 1.19 ⋅ 10−4, β = 0.118 [0.060, 0.179], t(124.5) =
3.974), suggesting that activity patterns duringmemory encoding hold
the potential to influence cognitive trajectories in the face of pathol-
ogy (Fig. 6C, D). There was also an interaction of the CR score with
hippocampal atrophy (p = 3.28 ⋅ 10−11, β = 0.338 [0.240, 0.436], t(487.6)
= 6.790) as in the cross-sectional models. Results for these analyses
when using the PL score instead of hippocampal atrophy in the CSF-
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Fig. 4 | CR pattern and the subsequent memory contrast predominantly align.
A The scatter plot displays the CR coefficientswi and subsequentmemory contrast
coefficients (beta) for every voxel with significant contribution to CR. They form
three groups: 1. A concordant where both coefficients have the same sign (blue); 2.
positive CR coefficient, but negative subsequentmemory beta (CR+SM-; yellow); 3.
negative CR coefficient, but positive subsequent memory beta (CR-SM+; green).
The histograms display the frequency of the voxels in the corresponding groups.

The gray dashed lines separate the four quadrants. B The CR-related activation
pattern is shown color-coded corresponding to the colors in panel (A). It is
important to note that the CR pattern is multivariate in nature, interpretable as a
whole and cluster descriptives are reported for transparency of obtained non-
negligible coefficients contributing to the pattern. Source data are provided as a
Source Data file. CR cognitive reserve, SM subsequent memory.

Fig. 5 | Subsequent memory-related activity moderates the relationship
between PL and PACC5. The relationship between the PL score and the PACC5
score (Box-Cox transformed and residualized for covariates) is moderated
depending on the subsequent memory-related activity in two previously identified
clusters (see Table 2 or Fig. 3).AModeration effect of activation in cluster 1 located
around the inferior temporal cortex including fusiform gyrus (positive moderation
coefficients). B Moderation effect of deactivation in cluster 5 including bilateral
cuneus and precuneus as well as posterior cingulate (negative moderation

coefficients). The red lines in both panels depict the predicted PACC5 score for a
hypothetical individualwith an activation 1 SD above themean, the blue lines for an
activation 1 SD below the mean in the respective cluster. The shaded areas repre-
sent the 95% confidence intervals. Black dots represent the individual subjects'
values for PL and (transformed + residualized) PACC5. Source data are provided as
a Source Data file. PACC5 Preclinical Alzheimer’s Cognitive Composite 5, PL
pathological load.
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subsample are presented in the Supplementary information. More-
over, the CR score exhibited a positive correlation with education
across the entire sample (p = 0.012, r(487) = 0.114 [0.025, 0.201]).
Collectively, these findings robustly support the contention that the
obtained CR score is intimately associatedwith cognitive reserve, both
in cross-sectional and longitudinal assessments.

Discussion
In this study, we combined multiple ideas to investigate the neural
implementation of cognitive reserve utilizing task fMRI data from a
substantial sample comprising 490 participants. First, we employed
themost contemporary research criteria governing CR assessment via
functional neuroimaging3,4. Second, in order to enable thismoderation
approach, we reduced the dimensionality of AD biomarkers in a non-
linear fashion, introducing a novel data-driven index quantifying Alz-
heimer’s disease-related pathological load. Third, we pioneered a

novel multivariate approach to modeling reserve, which uncovered a
task-related functional activity pattern capable of moderating the
impact of brain pathology on cognitive performance. Fourth, we
provided both cross-sectional and longitudinal validation of the pro-
posed activity pattern of cognitive reserve. Our findings illuminate a
compelling connection: older individuals whose brain responses dur-
ing successfulmemory encodingmore closely alignwith this identified
pattern exhibit diminished cognitive deficits when faced with AD
pathology. Moreover, a more pronounced expression of this activity
pattern was associated with a slower rate of cognitive decline over
longitudinal follow-ups and especially attenuated the detrimental
effect of pathology on cognitive trajectories. On top of that, the
activity patterns also reflected the amount of ADpathology to a certain
degree, linking it to cognitive performance in an intricate relationship.

In healthy young individuals and older adults, episodic memory
encoding is associated with a highly replicated canonical pattern of

Fig. 6 | CR score is linked to cognitive performance cross-sectionally and
longitudinally. A The relationship between the PL score and cognitive perfor-
mance at baseline is moderated by the CR score. Cognitive performance is repre-
sented by three different scores: a global cognitive factor score, a memory factor
score and the PACC5 score (previously used for identification of the CR-related
activity pattern). Cognitive performance was predicted using the respective
regression model for an average individual with high (above median; red curve) or
low (belowmedian; blue curve) CR score. B In the sample without PL score, the CR
score moderates the relationship between hippocampal atrophy and cognitive
performance. Predictionprocedure equivalent to the one inpanel (A), but basedon
amodel thatwasfit in the samplewithout PL scores and thus contains hippocampal
atrophy instead of the PL score as an independent variable. C The pathology-
dependent differences in longitudinal trajectories of cognitive performance are

ameliorated by the baseline CR score. The PACC5 scores at a 5-year follow-up were
predicted using the previously described LME (see “Methods” section) fitted on the
original longitudinal data for an average individual with high (above median; red
line) or low (below median; blue line) CR score and high or low pathology (here
represented by high and low hippocampal atrophy corresponding to the 25th and
75th percentile). D Predictions of all individual cognitive trajectories. Individuals
were categorized as high/low CR based on their above/below average CR scores
and as low/high pathology based on their below/above average hippocampal
atrophy. Shaded areas in panels (A–C) denote 95% confidence intervals. Source
data are provided as a Source Data file. CR cognitive reserve, LME linear mixed-
effects model, PACC5 Preclinical Alzheimer’s Cognitive Composite 5, PL
pathological load.
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brain activation in some regions and deactivation in other regions24,25.
We found that a more pronounced expression of this canonical acti-
vation/deactivation pattern was associated with higher cognitive
reserve. CR was especially characterized by a stronger activation dur-
ing memory encoding in inferior occipital and inferior temporal areas
including the fusiform gyrus, i.e., parts of the ventral visual stream.
Some frontal areas showed a similar contribution to CR, though to a
smaller extent. CR was further characterized by stronger deactivation
in the posterior cingulate cortex, precuneus, cuneus and lateral par-
ietal cortex including angular gyrus, regions that are considered to be
part of the DMN26. This combined pattern of inferior temporal acti-
vations and DMN deactivations has previously been associated with
better memory performance in older adults25,27,28 and, more recently,
with severity across the Alzheimer’s risk spectrum29.

These findings shed new light on the neural implementation of
CR. As themajority of brain regions showed concordant activity for CR
and successfulmemoryencoding, cognitive reserveprimarily seems to
be associated with continued recruitment of core cognitive circuits.
This indicates that some individuals are able to maintain functional
integrity in parts of the core cognitive circuitry despite the presenceof
AD pathology. Generally, significant decreases in fMRI activity in
regions of the DMN have been shown to co-occur with amyloid
deposition in older adults30,31. Furthermore, AD has been characterized
by impairment of regional cerebral blood flow and regional glucose
metabolism during resting-state, predominantly in temporo-parietal
regions32,33. Hence, the ability to maintain core functional circuits
might represent resilience against pathological changes like neuro-
degeneration and Aβ accumulation, possibly accompanied by con-
servation of glucose metabolism. Our findings suggest that this ability
is central to CR. The neural mechanisms underlying this ability are still
unclear. An attempt to identify additional factors related to the CR
score (see Supplementary information and Fig. S2) did not reveal
associations with resting-state functional connectivity within the DMN
or other large-scale networks nor mean task signal, although a partial
moderation of the DMN BOLD signal by resting-state fluctuation
amplitude cannot be excluded34. One possibility is that pathology
within core circuitry can be counteracted by non-affected neural
populations. The weak yet significant relationship between the CR
score and GM volumes in CR-related regions indeed suggests it has a
small contribution (Fig. S2). This possibility is further supported by the
pattern of spread of tau pathology within brain tissue where selective
cellular vulnerability leads to dysfunction in specific neuronal
subpopulations35,36. Another possibility is that there are individual
differences in pathology thatwere not quantified in the PL score. These
include inflammation, vascular supply and clearance37–40. It is possible
that individuals who are capable of maintaining function in core cir-
cuitry despite of tau, amyloid and hippocampal neurodegeneration
have less expression of these additional pathologies. A weak negative
correlation between white matter hyperintensity volumes and the CR
score supports this hypothesis (see also Fig. S2). In conclusion, our
findings primarily support the notion that some CR factors might
operate within core circuits themselves above compensatory activity
discordant with successful encoding activity.

Besides themoderation effect, the CR score, which represents CR-
related activity during successful memory encoding, was also weakly
correlated with different measures of pathology and mediated the
effect of PL on PACC5 scores (see Supplementary information). These
findings point to a more intricate relationship between pathology,
brain activity and cognitive performance, where low CR/hyperactivity
and pathology could promote each other in a vicious cycle30,41–45.

Some brain regions within the canonical episodicmemory activity
network were not associated with CR. Visual areas showed strong
activation in the subsequentmemory contrast due to the visual nature
of the memory task but did not contribute substantially to cognitive
reserve. These regions have not been discussedmuch in the context of

CR, although there has been scattered evidence for a contribution of
inferior and middle occipital regions12.

Encoding-related activity in the hippocampuswas discordantwith
cognitive reserve. Thus, although the hippocampus is well-known to
be activated during successful memory encoding, weaker left hippo-
campal activity during encoding was associated with better cognitive
performance in the presence of AD pathology. This aligns with
observations regarding hyperactivity of the hippocampus in an Aβ-
and especially tau-dependent manner that is not related to better
cognitive performance30,46,47. An absence of pathology-related over-
activation in the hippocampus might actually be beneficial for cogni-
tive performance and clinical progression. The calcarine sulci (part of
cluster 5) and rightmedial orbitofrontal regions show the same kind of
discordant activity for successful memory encoding versus CR. Some
frontal regions, including the insula and mid/superior orbitofrontal
cortex, were deactivated during successful memory encoding and
have positive moderation coefficients, indicating better cognitive
performance with weaker deactivation. Yet, it is also conceivable that
decreased activity in these regions itself is not actually beneficial for
cognitive performance but systematically co-occurs with beneficial
activity changes in other regions. Similar to our findings regarding
discordant regions, previous reports have identified comparable
phenomena. For instance, Elman et al.48 discovered a cluster in the
medial parietal cortex in which deactivation was parametrically
modulated by the level of memory encoding detail across the entire
sample of young and older adults with and without Aβ. In this cluster,
greater deactivation was associated with higher detail recall. However,
young adults exhibited no such deactivation, resembling our obser-
vations of discordant regions.

Generally, the strongest negative contributions to CR were
observed in the cuneus, angular gyri, PCC and particularly the pre-
cuneus. This is in line with a large body of evidence highlighting the
role of the DMN in cognitive reserve. For instance, deactivations of the
left precuneus13,16 and posterior cingulate16 were associated with CR in
previous studies. Moreover, the precuneus, together with the cingu-
late gyrus, contributed negatively to someaspects of a CR-related fMRI
pattern15. Connectivity-basedmethods provide additional evidence for
DMN contribution. For instance, using a task-potency method, which
captures a brain region’s functional connectivity during task perfor-
mance after adjusting for its resting-state baseline, the DMN has been
found to be the predominant contributor to a task-invariant CR
network10. Furthermore, inhibitory information flow from the inferior
temporal cortex, which showed a positive contribution to CR in this
study, to the precuneus has been associated with better memory
performance in an independent cohort of older adults using the same
encoding task49. Additionally, Stern et al.9 suggested that connections
involving the DMN might be weaker at rest in individuals with higher
IQ. Our findings provide further evidence that stronger deactivation of
some DMN regions is related to CR.

The ACC has also previously been identified in the context of
cognitive reserve, e.g., as part of the task-invariant CR pattern of Stern
et al.13. Moreover, greater volume and metabolism in the ACC were
found to be related to higher levels of education5. It was further
identified as part of a “resilience signature" whose metabolism was
associated with global cognitive performance in cognitively stable
individuals over 80 years50. Here, we only find a few significant voxels
around the ACC with negative contributions to CR, providing weak
additional evidence for the involvement of the ACC in cognitive
reserve.

The strongest positive contributions to CR were observed in the
fusiform gyri and surrounding temporal to inferior occipital regions.
With respect to the fusiform gyrus, there has been both evidence for
negative as well as positive contributions to CR12,15. Further, some
frontal regions have been proposed to play a role in cognitive reserve.
For instance, Franzmeier et al.7 discovered that global connectivity of
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the left frontal cortex attenuated the relationship of precuneus FDG-
PET hypometabolism (as proxy for AD severity) on lower memory
performance in amyloid-positive individualswith aMCI. The left frontal
cortex also showed positive contributions to CR in our study (cluster 4
in Table 2; see also Fig. 3). Likewise, left prefrontal cortex connectivity
both within and outside the frontoparietal network has been found to
correlate with fluid intelligence as a proxy of CR6.

The expression of this CR activity pattern in an individual, as
represented by the task-derived CR score, further fulfills the latest
research criteria on CR. First, the CR score moderates the effect of
pathological load on cognitive performance. Hence, individuals with
lower cognitive reserve scores show a stronger nonlinear decline in
their cognitive abilities with increasing pathological burden compared
to individuals with higher levels of cognitive reserve. Analogously,
individuals with higher pathological burden benefit more from higher
levels of CR compared to the ones with low pathology. The CR score
retains its disease-moderating characteristic in the context of multiple
different cognitive scores like an independent composite memory
measure aswell as a verybroadmeasure of cognitive abilities spanning
learning and memory, language, visuospatial abilities, executive
function andworkingmemory. This reveals a certain robustness of the
moderating effect of the CR score and supports its validity. Impor-
tantly, the CR score ameliorated the negative influence that baseline
pathology had on cognitive trajectories over longitudinal follow-ups,
stressing its significance not only for present cognitive abilities but
also for their development over time. Furthermore, the CR score was
related to education, even though the correlation was found to be
rather low tomoderate. On the one hand, this couldmean that our CR
score might capture cognitive reserve incompletely due to the
apparent task dependency. On the other hand, the correlation should
not be close to 1 either, since education itself is only a proxy of CR.
Thus, education and CR, as identified via functional neuroimaging
approaches, do share parts of their variance but are also partially
independent.

Taken together, the moderating effect of the obtained CR score
and its relation to another sociobehavioral CR proxy suggest it as a
valid, even though incomplete representation of overall cognitive
reserve. It also provides evidence that the underlying network indeed
contributes to CR, at least in context of the incidental encoding task
at hand.

This study has a number of limitations. The approachwas enabled
by dimensionality reduction of ATN via the t-SNE method, which
provided us with a useful tool for quantifying pathological load. Yet,
thePL score is apurely cross-sectional construct that is agnostic for the
order of events along the disease progression towards Alzheimer’s
disease, and it may be an oversimplification to represent the ATN
system of AD biomarkers by a single variable. Likewise, while hippo-
campal atrophy is a key feature of AD, it is an oversimplification to
represent neurodegeneration solely by hippocampalmeasures. Strong
associations with the three biomarkers (see Supplementary informa-
tion) aswell aswith cognitive performancenevertheless suggest the PL
score as a meaningful index of overall disease severity (rather than
disease progression) for the purpose of this study. In fact, usage of
three alternative methods (PCA, spectral embedding, diffusion
pseudotime51) produced highly correlated PL scores that in turn yiel-
ded very similar CR coefficients (see Figs. S13, S14), indicating that,
within reason, the method for obtaining a PL score has only a minor
influenceon the results. Regional quantification of taupathology using
tau-PET, rather than the regionally agnostic fluid biomarker-based tau
measurement here, could, in future, help to determine to what extent
the recruitment of the CR regions depends on the absence of tau
pathology in those regions. Despite its limitations, t-SNE or other
nonlinear dimensionality reduction tools like spectral embedding and
Laplacian Eigenmaps among many others (see e.g., Van Der Maaten
et al.52 for an overview) or even trajectory inference methods like

diffusion pseudotime (see e.g., Saelens et al.53) might be useful inmany
other studies investigating multidimensional disease-related phe-
nomena. Furthermore, our multivariate regression approach relied on
reducing the complexity of fMRI data via PCA. As a consequence, the
moderation analysis might represent an incomplete characterization
of CR in the context of successful memory encoding. As the difference
in mean cross-validation R2 was small in comparison to its variability,
other choices for the number of principal components (from 2 to 9)
also appear reasonable. Consequently, we would like to note that this
model hyperparameter is a non-negligible determinant of the results,
susceptible to the bias-variance tradeoff. In particular, a model with
only two PCs was found to be too restrictive considering the obtained
worsemodel generalization (in cross-validation) and further validation
analysis results (see Supplementary results and Fig. S11). To support
the confidence in the presented results, we provide an illustration of
the overlap of CR regions in dependence of the number of PCs and a
comparison of models with different numbers of PCs in Fig. S9.

Of note, an ad hoc definition of a similarity score representing an
individual’s activity similarity to group-level successful encoding
activity in cognitively normal individuals (similar to the idea of the
FADE54 or FADE-SAME score25) also shows considerable moderation
effects of pathology on cognitive performance in our sample (see
Supplementary information). Yet, our proposed approach offers some
advantages. First, it explicitly assumes and tests the moderation as
specified in the recent consensus framework on the level of brain
activity patterns using task fMRI. Second, thismultivariatemoderation
approach allows formore specificfindings, such as the identificationof
above presented discordant regions. Third, the moderation approach
can be extended to other indicators of pathology, memory-
independent contrasts, multi-task data or other forms of reserve-
related imaging features such as resting-state fMRI.

The approach was applied under the simple working assumption
that pathology is the initial driver of cognitive decline and that indi-
vidual variations of task-related activity potentially affect this rela-
tionship. However, since the proposed main approach using cross-
sectional data exploits simple correlations and symmetric interaction
terms, it does allow for several alternative causal interpretations with
inter-changed roles of key variables. Future longitudinal studies might
focus deeper on the empirical plausibility of these alternative patterns
of interplay.

Moreover, one might consider learning the moderating function
of brain activity f(A) and its interactionswith pathology (see “Methods”
Eq. (1)) more directly using neuronal nets and other data-driven
approaches55. Additionally, CR is treated as a static measure in this
study, contrasting with CR’s conceptualization as a dynamic entity,
susceptible to variation over time56,57. However, our approach theo-
retically allows to represent CR in a dynamic manner by incorporating
longitudinal fMRI data. Furthermore, the current study focuses on an
approach that assumes sample-level identification of reserve patterns,
while ignoring the possibility that CR might actually be implemented
differently across different subpopulations or disease stages. For
instance, CR-related activity patterns might differ between early and
late disease stages58 or males and females (see Figs. S17, S18). Our
search (or model input-) space was limited to the widespread suc-
cessful encoding network, restricting our ability to identify regions
that show compensatory activity to these areas. An analysis extending
this search space to all graymatter indicatedCR regions essentially as a
resemblance of the successful encoding network (Fig. S10). However,
we also advise against overinterpretation of these findings since we
cannot exclude the possibility of compensatory activity in other tasks
or fMRI contrasts. Last, we remark on the dependency of the CR-
related activity pattern on the task and contrast at hand. We recognize
the efforts of task-invariant approaches to identify an underlying pat-
tern of CR that is task-independent. Nonetheless, apart from task-
specific components, thepresentedCRactivity patternmost likely also
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contains task-invariant components, e.g., the DMN and ACC. Further-
more, since our contrast probes memory, which is the earliest and
most strongly affected faculty in AD, our specific CR-related activity
pattern is of great significance in the context of (AD) dementia.

In summary, using a multivariate approach to modeling CR, we
have identified amemory encoding-based activity pattern of cognitive
reserve in the context of successfulmemory encoding according to the
latest research definitions. We provide further evidence for the
hypothesis of a generic role of the DMN and potentially ACC in cog-
nitive reserve. Additionally, we identified regions less commonly
associated with cognitive reserve like the fusiform gyrus and some
frontal regions. Overall, our findings suggest an enhanced main-
tenance of core cognitive circuits as the primary neural implementa-
tion of cognitive reserve. Consequently, interventional efforts should
incorporate methods to maintain the functionality of core cognitive
circuitry, for instance, through direct brain stimulation, in order to
ameliorate future cognitive decline. However, adequate judgment
about compensation in the context of cognitive reserve should be
based on further studies specifically designed for its investigation,
involving multi-task and -contrast information as well as manipulation
of task demand.

Ultimately, more longitudinal studies are necessary to assess the
degree of dynamics of CR over time and its ability to modulate tra-
jectories of cognitive decline. Furthermore, CR patterns have only
been assessed on the group level, assuming CR works similarly across
all individuals. Upcoming approaches should account for individual
differences in functional (re)organization, considering individual-level
expressions of cognitive reserve.

Methods
Sample
The sample is part of the DZNE-Longitudinal Cognitive Impairment
and Dementia Study (DELCODE) study, a multicentric observational
study of the GermanCenter for Neurodegenerative Diseases (DZNE). It
focuses on the characterization of subjective cognitive decline (SCD)
in patients recruited from memory clinics, but additionally enrolled
individuals with amnestic mild cognitive impairment (aMCI), mild AD
dementia patients, AD patient first-degree relatives (ADR), and cogni-
tively normal (CN) control subjects. Participants were scheduled for
annual follow-up appointments over five years. More detailed infor-
mation about the study has been provided previously59. Our analyses
were based solely on the baseline measures of the participants, with
the exception of annually acquired cognitive data, which was used to
assess cognitive trajectories and how they might be modified
depending on an individual’s cognitive reserve. The whole baseline
sample comprised 1079 participants, of which 558 participants had
undergone an MRI session including the fMRI task. 442 participants
had cerebrospinal fluid (CSF) data available and could thus be used for
creating the PL score. The final fMRI sample used in the subsequent CR
analysis consisted of 490 participants after quality control and outlier
exclusion, of which 232 had CSF measures and thus a PL score. Of the
490 participants, 152 were CN, 202 had SCD, 64 aMCI and 21 had a
clinical diagnosis of AD dementia. The sample also contained 51 first-
degree relatives of AD patients.

CNwasdefined as havingmemory test performanceswithin 1.5 SD
of the age-, sex-, and education-adjusted normal performance on all
subtests of the CERAD (Consortium to Establish a Registry of AD test
battery). ADR had to achieve unimpaired cognitive performance
according to the same criteria. SCD was defined as the presence of
subjective cognitive decline as expressed to the physician of the
memory center and normal cognitive performance as assessed with
the CERAD60. Participants were classified as aMCI when displaying an
age-, sex-, and education-adjusted performance below −1.5 SD on the
delayed recall trial of the CERAD word-list episodic memory tests.
aMCI patients were non-demented and had no impairment in daily

functioning. Finally, only participants with a clinical diagnosis of mild
AD dementia61 obtaining ≥18 points on the Mini Mental State Exam-
ination (MMSE) were included in DELCODE. All participants were 60
years or older, fluent speakers of German and had a relative who
completed informant questionnaires. Exclusion criteria are described
in Jessen et al.59.

The study protocol was approved by the Institutional Review
Boards of all participating study centers of the DZNE59. The process
was led and coordinated by the ethical committee of the medical
faculty of the University of Bonn (trial registration number 117/13). All
relevant ethical regulations were complied with. All participants pro-
vided written informed consent. DELCODE has been registered with
the DRKS (accession number: DRKS00007966).

Disaggregated sex and gender data have not been collected. They
were not considered in the studydesign. Sexwas self-reported, and the
distributions were 263 females and 227 males in the analyzed sample.
Sex and gender-based analyses were not performed, as the over-
arching goal of the study was to determine a general fMRI-based pat-
tern of cognitive reserve. A brief additional disaggregated analysis for
males and females on cognitive reserve is presented in the Supple-
mentary information.

Cognitive tests
An extensive list of all neuropsychological tests administered in DEL-
CODE is provided elsewhere59. In our analysis we use composite scores
from those tests, namely the Preclinical Alzheimer’s Cognitive Com-
posite 5 (PACC5)62, a neuropsychological compositemeasuredesigned
to index cognitive changes in the early phase of AD, and a latent
memory factor derived from a confirmatory factor analysis (details in
Wolfsgruber et al.63). The factor analysis yielded five factors for dif-
ferent cognitive domains: learning andmemory, language, visuospatial
abilities, executive function and working memory. These were further
combined to a domain-general global cognitive factor in the form of
their mean value. The PACC5 scores were calculated as a mean of the
PACC5’s five subitems (see Papp et al.62 for a specification of the
subtests). Prior to calculation of the PACC5 scores, the five subitems
were z-transformed using the mean and standard deviation of the
cognitively unimpaired sample consisting of CN, ADR and SCD parti-
cipants. Nine of the fMRI participants lacked PACC5 test scores. One of
them also had missing factor scores. In terms of the PACC5 score, for
most of the subjects data frommultiple time points was available (68,
125, 72, 107, 96, 17 participants with 1, 2, 3, 4, 5, 6 time points,
respectively), which was used to model the cognitive trajectories
longitudinally.

CSF measures
AD biomarkers were determined using commercially available kits
according to vendor specifications: V-PLEX Aβ42:40 Peptide Panel 1
(6E10) Kit (K15200E) and V-PLEX Human Total Tau Kit (K151LAE)
(Mesoscale Diagnostics LLC, Rockville, USA), and Innotest Phospho-
Tau(181P) (81581; Fujirebio Germany GmbH, Hannover, Germany).
Here, we focused on Aβ42:40 and phospho-tau181 (p-tau) as CSF mea-
sures of amyloid-β and tau pathology. Of note, these were used as
continuous measures.

MRI acquisition
MRI data was acquired with Siemens scanners (3 TIM Trio systems, 4
Verio systems, one Skyra and one Prisma system) at 10 different
scanning sites. The current analysis was performed using T1-weighted
images (3D GRAPPA PAT 2, 1 mm3 isotropic, 256 × 256 px, 192 sagittal
slices, TR 2500 ms, TE 4.33 ms, TI 1100 ms, FA 7°, ca. 5min), T2-
weighted images (optimized for medial temporal lobe volumetry,
0.5 × 0.5 × 1.5 mm3, 384 × 384 px, 64 slices orthogonal to the hippo-
campal long axis, TR 3500 ms, TE 353 ms, ca. 12min) and a task fMRI
protocol (2D EPI, GRAPPA PAT 2, 3.5 × 3.5 × 3.5 mm3 isotropic, 64 × 64
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px, 47 slices, oblique axial/AC-PC aligned, TR 2580 ms, TE 30 ms, FA
80°, 206 volumes, ca. 9min). For more details, see previous
publications59,64. For task fMRI, all sites used the same 30-inch MR-
compatible LCD screen (Medres Optostim) matched for distance,
luminance, color and contrast constant across sites, and the same
response buttons (CurrentDesign). All participants underwent vision
correction with MR-compatible goggles (MediGlasses, Cambridge
Research Systems) according to the same standard operating proce-
dures. SOPs, quality assurance and assessment were provided and
supervised by the DZNE imaging network.

Subjects performed a modified version of an incidental visual
encoding task using pictures of indoor and outdoor scenes54,64. After
familiarization with two so-called Master scenes (one indoor, one
outdoor) outside of the scanner, participants were presented with 44
repetitions of the Master scenes (22/22) and 88 novel scenes (half
outdoor, half indoor) in the MRI scanner using the software Pre-
sentation (Neurobehavioral Systems Inc.). Participants were instructed
to classify each scene as either indoor or outdoor by pressing a button.
Each scene presentation lasted 2500 ms, with an optimized inter-trial
jitter for statistical efficiency. After a retention delay of 60min,
memory was tested outside of the scanner with a 5-point recognition-
confidence rating for the 88 former novel scenes and44newdistractor
scenes, to assess successful incidental memory encoding. A response
of 1 referred to “I am sure I have not seen this picturebefore", a 5meant
“I have definitely seen this picture before" and 3 referred to “I
don’t know".

Image processing
FreeSurfer 6.0 (http://surfer.nmr.mgh.harvard.edu/) was used to
obtain measures for hippocampal volumes by combining T1- and T2-
weighted images using a multispectral analysis algorithm65. Mean
cortical thickness was also acquired via FreeSurfer 6.0. Total intra-
cranial volumes (TIV) were derived using the CAT12 toolbox (version
12.6)66 in SPM12 r7771 (Wellcome Center for Human Neuroimaging,
University College London, UK). Total gray matter volumes were cal-
culated as cumulative sums of the gray matter probability maps from
SPM segmentation (see step 3 of fMRI data processing).

fMRI data processing and analysis were performed using SPM12
and Matlab_R2016b/Matlab_R2018a. The image preprocessing fol-
lowed standard procedures: (1) Slice time correction; (2) realignment
and unwarping using voxel-displacement maps derived from the
fieldmaps; (3) segmentation into gray matter, white matter and CSF;
(4) coregistration of functional images to the structural; (5) normal-
ization of the functional images to a population standard space via
geodesic shooting nonlinear image registration; (6) normalization to
MNI space via an affine transformation; (7) spatial smoothing of the
functional images with a 6-mm isotropic Gaussian kernel.

In this study, we focused on reserve patterns based on the so-
called subsequent memory effect, also referred to as successful
(memory) encoding, which considers the BOLD-activation during
encoding of a stimulus as a function of its subsequent remembering.
Following recent methodological research, we decided to model the
subsequent memory effect parametrically (see Soch et al.23) as
opposed to categorically. Higher beta values of the subsequent
memory contrast images indicate a stronger modulation of the local
voxel-based BOLD signal according to the form of the parametric
modulator (here arcsine; see below), i.e., a larger difference in BOLD
during encoding of later remembered compared to neutral or later
forgotten stimuli.

In the first-level general linearmodel (GLM), all novel scenes were
collected into a single onset regressor and a parametric modulator
with an arcsine-transformation was applied, resulting in the sub-
sequent memory regressor: arcsine ðx�3

2 Þ � 2π for a given confidence
rating x. A previous study has revealed evidence that this parametric
modulator, which puts higher weights on definitely forgotten (1) or

remembered (5) items in comparison to probably forgotten (2) or
remembered (4) items, is the best choice for a theoretically derived
parametric modulator in the same task-design23. The first-level GLM
further included the onsets of the Master scenes and covariates,
including the six motion regressors from the realignment and a CSF-
based nuisance regressor. Including nuisance regressors from regions
with noise/artifact signal has been shown to increase the sensitivity of
BOLD-fMRI studies67. In order to obtain a time series for the CSF nui-
sance regressor, the first eigenvariate of the BOLD time series was
extracted from an anatomical CSF mask. The CSF mask was obtained
by thresholding the MNI shoot template of CSF tissue probabilities
with a conservative value of 0.9 and eroding it once.

Additional smoothingwith a 6-mmGaussian kernel was applied to
the subsequent memory contrast images to improve the signal-to-
noise ratio in the heterogeneous large clinical sample. In view of the
multivariate setting of our analysis and the required dimensionality
reduction of the (high-dimensional) memory contrast images, inclu-
sion of potential noise components seemed particularly problematic.
Hence, we focus on regions with significant subsequent memory
contrast activation and deactivation (pFWE < 0.05; illustrated in Fig. 2A;
13695 voxels) and therefore excluded regions that might reflect more
substantial noise. The obtained task-activemaskwasused to restrict all
subsequent fMRI-based reserve analyses.

To enhance the signal-to-noise ratio, we opted for stringent out-
lier exclusion criteria, predicated on behavioral and task-related fMRI
metrics. Individuals were excluded if either of the following was true:
(1) Errors in the indoor/outdoor judgment >8. (2) Absolute response
bias >1.5 in their confidence rating. (3) Framewise displacement (FD),
calculated as mean absolute difference in the six head motion para-
meters between subsequent EPIs68, was above 0.5mm in a single EPI or
above 0.2 mm in more than 2% of the EPIs. (4) An individual had
extremeoutliers (1st quartile - 3*IQRor 3rdquartile + 3*IQR) in the beta
values of more than 10% of the voxels of their (GM-masked) regressor
image. 68 individuals were excluded based on these criteria, leaving an
fMRI sample with 490 individuals. More comprehensive details
regarding this selection process can be found in the Supplementary
methods.

One-dimensional pathological load score
We base our multivariate reserve model of CR on a dimensional
approach to individual pathological load. More specifically, we here
extend the ATN classification system69 to continuous measures by
focusing on joint variation across A, T and N simultaneously. This
enables a simplified biological assessment of the individual patholo-
gical state, which is likely to be on the continuum from healthy to AD
and also avoids difficult a-priori choices for cut-offs. The utilized ATN
measures were the following: CSF Aβ42:40 ratio (A), CSF p-tau (T) and
hippocampal volumes (N). The latter were represented by the sum of
their bilateral volumes, divided by the subject’s TIV.

All three variables were normalized with their respective means
and standard deviations to ensure similar scaling. Due to the potential
nonlinearity of the disease progression trajectory along the AD con-
tinuum in 3DATN space, a nonlinear dimensionality reductionmethod
called t-distributed stochastic neighbor embedding (t-SNE)70 was
employed in order to reduce the dimension to one, yielding a single PL
score per subject (for more details, see Supplementary information).
For this purpose, the scikit-learn library 0.23.2 in Python 3.7 was uti-
lized. The resulting PL score was normalized to range from 0 (minimal
AD pathology) to 1 (maximal AD pathology in the sample).

Multivariate reserve model of brain activity patterns
According to the recent consensus definition, a network that underlies
CR should moderate the effect of brain pathologies on cognitive
performance3. The examination of this moderation effect represents
the essence of our multivariate model of CR. More specifically, we
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further study CR in the context of fMRI activity patterns during
memory encoding as represented by first-level GLM contrast images,
one per subject, quantifying their encoding success (for details, see
“Image processing” section).

First, if one assumes (scalar) brain activity in a region is given by A
and pathological load by PL, then a trivial (linear) moderation model
that enables testing a CR effect of activity on cognitive outcomes y
could be described as

y=b0 +b1 � A+ fðAÞ � PL + ϵ ð1Þ

with intercept b0, main effect of activity b1 and some function f(A). For
CR to improveperformance, theremight be (1) a (linear) additive effect
of activity (e.g., b1 > 0 for activations) and/or (2) a (per se nonlinear/
multiplicative)moderation effect where pathology affects cognition in
terms of the slope of PL being a function of activity (f(A) ≠ const). In
principle, it would follow that regional brain activity could (by means
of intervention or individual predispositions) be optimized with
respect to showing improved performance and/or minimize the det-
rimental effect of pathology. We are aware that most biological pro-
cesses aremore complex, but for reasons of simplicity, wehere further
focus on the case where the above slope is a simple linear function of
activity, i.e., f(A) = b2 + b3 ⋅ A with main effect of pathology b2 and
interaction/moderation effectb3. Please note that inwhat follows, PL is
just used as a quadratic term, as it has been identified as a better
predictor of PACC5 compared to a linear term (see “Pathological load
is associated with cognitive performance” section).

Second, it would be feasible to implement this approach in a
mass-univariate (voxel-based) manner that enables testing whether a
region (in isolation) contributes to CR in above described ways (1)
and/or (2). However, since the subsequent memory contrast activity
represents spatially correlated patterns in many brain areas reflect-
ing distributed information processing we opt for a multivariate
approach (also avoiding multiple testing and increasing sensitivity).
We therefore further assume the above activity A that might con-
tribute to CR (via f(A)) to be reflected by patterns of voxelwise sub-
sequent memory contrast images (in task-active areas), i.e.,
b3 ⋅ A = ∑wiβi with linear (group-level) weights wi describing a voxel’s
potential contribution to CR and its contrast value βi. Please note that
we assumed free weight parameters to be positive or negative,
enabling potentially enhanced and reduced activations serving
reserve processes. This approach generalizes the above ideas of
univariate CR as well as brain-based multivariate cognition-
prediction models by asking if there is any activity pattern (which a
subject could more or less express) that facilitates CR by means of a
moderation of pathology effects.

Third, due to the large number of parameters (wi) we implement
the multivariate reserve model by means of representing the sub-
sequent memory contrast images by projections on P-order principal
components basis functions (images) obtained from PCA. This
resembles an application of principle components regression with
principal components being used for quantification of patterns of (1)
main effects as well as (2) the moderation effect representing CR in a
narrower sense. The finally applied multivariate reserve model is a
prediction model of cognitive performance, including main effects of
activity patterns and their interactions with pathology:

y=b0 +
XP

p= 1

b1,p � PCp + b2 +
XP

p= 1

b3,p � PCp

 !
� PL2 + c � COV+ ϵ ð2Þ

with PACC5 cognitive performance scores y, individual pathological
load score PL, component scores PCp for corresponding (PCA) eigen-
images p and COV representing the covariates age at baseline, sex, TIV
and multiple binary dummy variables indicating MRI acquisition at a
specific site. Since PL scores were dependent on the availability of CSF

measures, themodel was restricted to a subsample of 232 participants
(see Fig. S3). Age and TIV were mean-centered. Education was
deliberately not chosen as a covariate in this context due to its role
as a CR proxy. PACC5 scores were transformed with a Box-Cox
transformation (lambda = 2.8) in order to achieve a closer approxima-
tion of the model’s residuals to the normal distribution. The
coefficients b3,p represent the moderation effect indicative of CR
according to the consensus framework3. The optimal number of
principal components P required to characterize reserve patterns
based on subsequent memory contrast images is a free hyperpara-
meter in the multivariate reserve model. It was optimized using a 10-
fold cross-validation approach described in the Supplementary infor-
mation. In the next step, PCA was performed on the complete (mean-
centered) functional data using the optimized value of P. The
multivariate reserve model (Eq. (2)) with the previously identified
optimal number of principal components was estimated on the whole
data set, obtaining coefficients for each principal component. While
the model was not cross-validated during model fitting, validation
occurs in later stages in multiple forms (see “Validation of the CR
score” section). We additionally note that our aim was not to build a
predictive (AI) model with a primary focus on predictive capabilities
for new data but to build an explanatorymodel that helps to elucidate
the neural implementation of cognitive reserve (see Shmueli71 for a
comparison).

Then, the approach enables us to project the obtained modera-
tion coefficients b3,p for the PCs back into the image space for the
purpose of illustration and to determine the net moderation effect
wi =

PP
p= 1 b3,pVp, i of all voxels i with eigen-images Vp obtained from

PCA. Therefore, wi represents how (strong) the local subsequent
memory contrast in voxel i (i.e., the activity associated with successful
memory encoding) contributes to moderation of the effect that
pathology has on cognitive performance differences and thus its
potential role for cognitive reserve. Finally, we introduce a useful
reserve score as the amount of howan individual’s successful encoding
activity aligns with the reserve pattern we identified on the group level
by aggregating individual contrast images using the reserve weights
over all voxels in the mask: CRscore =

P
wiβi.

Statistical analyses
PL score. For validation purposes, the association between the
retrieved PL scores and PACC5 cognitive test scores was examined,
including education and the covariates age at baseline, sex and site of
data acquisition. Both models with PL as a linear and a higher-order
quadratic predictor of PACC5 were tested and their performance was
compared in terms of their explained variance (R2 value). The quad-
ratic predictor was tested due to visual indications for a quadratic
relationship between PL and PACC5. Furthermore, such quadratic
relationships have been observed in similar contexts, for example,
between age andbrain structure (e.g., Ziegler et al.72). Insteadof testing
a full quadratic model including a linear term, we restricted ourselves
to finding a single predictor of disease severity in order to avoid a
further increase in the complexity of the subsequent multivariate
reserve model and thus aid its interpretability. Furthermore, the
inclusion of an additional linear term did not provide substantial
increases in explained variance (ΔR2 = 0.014; in comparison: ΔR2 =
0.040 between the quadratic-only and linear-only model). An addi-
tional model assessed an interaction of the PL score with education as
a CR proxy according to the assumption that cognitive reserve mod-
erates the effect that brain pathology (PL) has on cognitive out-
comes (PACC5).

Multivariate reserve model—voxel-wise inference. Inference on the
voxel-level in the context of the multivariate moderation analysis was
performed using a bootstrapping procedure. The following steps were
done in 5000 iterations of bootstrapping:
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1. Create a bootstrap sample of equal size as the original sample
used in the multivariate moderation model by randomly resam-
pling subjects with replacement from it.

2. Estimate bootstrap coefficients b̂3,p fromEq. (2) for the bootstrap
sample.

3. Obtain individual voxel bootstrap moderation coefficients ŵi.

For every voxel, the coefficients ŵi were then sorted in ascending
order. 95% confidence intervals were obtained by specifying the lower
boundas the 126th value (=2.5th percentile + 1) and the upper boundas
the 4875th value (=97.5th percentile). Voxels whose 95% confidence
intervals did not contain 0 were then judged as significant. Apart from
inferring significance, this allowed us to estimate uncertainty in the
voxels’ coefficients. An alternative approach similar to the one pre-
viously presented in the context of multivariate mediation analysis of
Chen et al.73 is presented in the Supplementary information.

Validation of the CR score. In order to ensure the validity of the CR
score (see “Multivariate reserve model of brain activity patterns” sec-
tion), its moderating effect between the PL score and cognitive per-
formance was tested in a separate moderation model using different
cognitive scores on top of PACC5.

Performance=b0 +b1 � BAE+b2 � PL2 +b3 � CRscore � PL2 + c � COV+ ϵ

ð3Þ

where CRscore represents the subject-level weighted sum of moderation
coefficients (b3,p). Moreover, BAE reflects the simpler additive effect of
brain activity on performance, i.e., a score calculated analogously to the
CR score but aggregating the additive components b1,p from Eq. (2)
instead. In addition to PACC5 we here used amemory factor and a global
cognitive factor score as dependent variables to demonstrate that the
main result obtained from learning reserve patterns based on PACC5
generalizes to other cognitive scores. This validation analysis was not
possible in the subset of participantswithout a PL score (due to biomarker
unavailablility). We instead performed a similar analysis for these
participants in which the PL score (in Eq. (3)) was replaced solely by
hippocampal atrophy (squared). Please note that we (imprecisely) use the
term hippocampal atrophy for convenience to denominate a variable that
has higher values for lower hippocampal volumes instead of actual
longitudinal changes in hippocampal volumes, as the namemight suggest.
Hippocampal atrophy ranged from 0 to 1, like the PL score, with higher
values representing smaller volumes, andwas obtained bymultiplying the
TIV-corrected hippocampal volumes with −1 and then re-scaling them.
Additionally, the correlation between the CR score and education as a
typical CR proxy was assessed across the whole sample. Since the above
model training and analyses were cross-sectional, as a final validation step,
we utilized linear mixed-effects modeling (package lme4 in R) to test the
moderation effect between pathology and the CR score longitudinally.
The model included a subject-specific intercept and slope, as a model
comparison had suggested amodelwith both random intercept and slope
as superior compared to one with a random intercept alone. The model
examined the three-way interaction effect between the CR score,
hippocampal atrophy (squared) and time between measurements
(continuous variable). It also included the corresponding two-way
interactions. Hippocampal atrophy was used to maximize sample size
for the longitudinal analysis. However, results for a similar model in the
CSF-subsample using PL (squared) as pathology measure are presented
in the Supplementary information. Age at baseline, sex, site of data
acquisition, BAE and aBAEby time interactionwere includedas covariates.
One individual was considered an extreme outlier based on their CR score
(>Q3+3*IQR) andwas thus excluded fromanalyses involving theCRscore.

Effect sizes. Effect sizes of correlational analyses are presented in the
formof the Pearsoncorrelation coefficient r. Theywerecalculatedwith

the cor.test function of the stats package in R 4.2.2. For all regression
models, standardized regression coefficients β (change in standard
deviations of a dependent variable for a one standarddeviation change
in the independent variable, while holding all other predictors con-
stant) have been calculated with the functions lm.beta and stdCoef.-
merMod of the package lm.beta in R 4.2.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data collected in the study “DELCODE—DZNE-Longitudinal
Cognitive Impairment and Dementia Study (BN012)" cannot be made
openly available without violation of the data protection concept of
the DZNE. The same applies to the processed individual (f)MRI images.
Access to the relevant study data can be obtained by submitting an
application to the Clinical Research Platform of the DZNE. The tem-
plate for the application for the submission of data and biomaterial
samples is available on the DZNE homepage (https://www.dzne.de/en/
research/research-areas/clinical-research/databases-of-the-clinical-
research/). The expected timeframe for response to access requests is
1 month. Access will be granted for 10 years. All processed data used
for the analyses involving theCR score (“CR scoremoderates effects of
pathology on cognitive performance, also longitudinally” section) are
provided in Zenodo (https://doi.org/10.5281/zenodo.12820807) along
with Source Data files containing all Source data and (group-level)
NIfTI images inMNI spacewith the CR coefficients displayed in various
figures (e.g., Fig. 2B)74. Source data are provided with this paper.

Code availability
The code for the multivariate moderation model can be found on
Github under https://github.com/znerp/NI_moderation_mv75.
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