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Subcellular mRNA kinetic modeling reveals nuclear
retention as rate-limiting
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Abstract

Eukaryotic mRNAs are transcribed, processed, translated, and
degraded in different subcellular compartments. Here, we mea-
sured mRNA flow rates between subcellular compartments in
mouse embryonic stem cells. By combining metabolic RNA labeling,
biochemical fractionation, mRNA sequencing, and mathematical
modeling, we determined the half-lives of nuclear pre-, nuclear
mature, cytosolic, and membrane-associated mRNAs from over
9000 genes. In addition, we estimated transcript elongation rates.
Many matured mRNAs have long nuclear half-lives, indicating
nuclear retention as the rate-limiting step in the flow of mRNAs. In
contrast, mRNA transcripts coding for transcription factors show
fast kinetic rates, and in particular short nuclear half-lives. Dif-
ferentially localized mRNAs have distinct rate constant combina-
tions, implying modular regulation. Membrane stability is high for
membrane-localized mRNA and cytosolic stability is high
for cytosol-localized mRNA. mRNAs encoding target signals for
membranes have low cytosolic and high membrane half-lives with
minor differences between signals. Transcripts of nuclear-encoded
mitochondrial proteins have long nuclear retention and cytoplasmic
kinetics that do not reflect co-translational targeting. Our data and
analyses provide a useful resource to study spatiotemporal gene
expression regulation.
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Introduction

The life cycle of mRNA is a complex process involving multiple
steps in different subcellular compartments (Glisovic et al, 2008).
The precise regulation of mRNA dynamics in each step is critical
for cellular transcript homeostasis (Berry and Pelkmans, 2022). In a
typical mammalian cell, about 10,000 protein-coding genes are

expressed, producing thousands of mRNAs per minute (Schwan-
häusser et al, 2011). Protein-coding transcripts undergo maturation
in the nucleus through splicing and polyadenylation, followed by
export to the cytosol. Translation either occurs in the cytosol or at
membrane-bound organelles, predominantly the endoplasmic
reticulum (ER), culminating in their turnover. The resulting flow
of mRNAs affects cell function by shaping the dynamic amount of
mRNAs available for translation in the cytoplasm (Eisen et al, 2020;
Mor et al, 2010) and the ER (Das et al, 2021). The overall mRNA
abundance scales with cell size (Padovan-Merhar et al, 2015;
Kempe et al, 2015; Battich et al, 2015; Swaffer et al, 2023).

Notably, mRNA half-lives exhibit a remarkable variability
exceeding 100-fold among different protein-coding transcripts
(Herzog et al, 2017; Dölken et al, 2008; Friedel et al, 2009). To
unravel the nuanced regulation of individual processes in the
mRNA life cycle, a crucial need arises for time-resolved and
subcellular quantification.

Early studies on the subcellular dynamics of mRNA considered
either all poly(A) RNA collectively (Jelinek et al, 1973) or only a
few individual genes (Mor et al, 2010; Grünwald et al, 2011; Tutucci
et al, 2018). Recent technological advances have enabled global
measurements of mRNA dynamics and subcellular distribution.
Metabolic labeling of newly synthesized RNA with uridine analogs
has provided experimental means to monitor RNA dynamics with a
minimal perturbation to the cell (Dölken et al, 2008). Using
4-thiouridine for labeling, kinetic rates of mRNA have been
quantified on a transcriptome-wide level in a number of cell types
from different species (Chen and van Steensel, 2017; Herzog et al,
2017; Rabani et al, 2011; Rutkowski and Dölken, 2017; Schofield
et al, 2018). The first global measurement of global nucleocyto-
plasmic mRNA dynamics was achieved by Chen and colleagues in
Drosophila S2 cells (Chen and van Steensel, 2017). However,
metabolic labeling studies on mammalian cells have mostly
considered the total cellular mRNA to determine kinetic rates,
overlooking subcellular aspects (Herzog et al, 2017; Rabani et al,
2011; Rutkowski and Dölken, 2017). A recent study based on
single-cell in situ sequencing of 5-ethynyl uridine-labeled RNA
measured transcription, translocation and degradation of indivi-
dual transcript molecules, uncovering subcellular mRNA profiles
across time and space at the single-cell level for a collection of
almost 1000 genes (Ren et al, 2023). Furthermore, two independent

1Charite—Universitätsmedizin Berlin, Institute of Pathology, Berlin, Germany. 2Humboldt-Universität zu Berlin, Institute of Biology, Berlin, Germany. 3Max Delbrück Center for
Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology, Berlin, Germany. 4Core Unit Bioinformatics, Berlin Institute of Health at
Charité, Berlin, Germany. 5These authors contributed equally: David Steinbrecht, Igor Minia. ✉E-mail: nils.bluethgen@charite.de; markus.landthaler@mdc-berlin.de

1
2
3
4
5
6
7
8
9
0
()
;,:

© The Author(s) Molecular Systems Biology 1

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on N

ovem
ber 18, 2024 from

 IP 141.80.159.70.

http://crossmark.crossref.org/dialog/?doi=10.1038/s44320-024-00073-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44320-024-00073-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44320-024-00073-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44320-024-00073-2&domain=pdf
http://orcid.org/0000-0002-0976-7801
http://orcid.org/0000-0002-0976-7801
http://orcid.org/0000-0002-0976-7801
http://orcid.org/0000-0002-0976-7801
http://orcid.org/0000-0002-0976-7801
http://orcid.org/0000-0002-0171-7447
http://orcid.org/0000-0002-0171-7447
http://orcid.org/0000-0002-0171-7447
http://orcid.org/0000-0002-0171-7447
http://orcid.org/0000-0002-0171-7447
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
http://orcid.org/0000-0002-1075-8734
https://doi.org/10.1038/s44320-024-00073-2
mailto:nils.bluethgen@charite.de
mailto:markus.landthaler@mdc-berlin.de


works combined 4-thiouridine, cellular fractionation and RNA
sequencing to measure the rates at which RNAs are exported from
the nucleus in mammalian cells (Müller et al, 2024; Ietswaart et al,
2024), with one study additionally providing evidence for mRNA
degradation in the nucleus (Ietswaart et al, 2024).

Here, we combined metabolic RNA labeling with cellular
fractionation of mouse embryonic stem cells in nuclear and
cytosolic, also a membrane-bound fraction composed mostly of
the ER and mitochondria to produce mRNA sequencing data with
spatial and temporal resolution. We developed a mathematical
framework that enabled us to infer the kinetic rate constants of
nuclear pre-, nuclear mature, cytosolic and membrane-bound
mRNAs transcriptome-wide from our metabolic labeling and
fractionation time series sequencing data. In addition, we estimated
a transcript elongation rate to account for an observed labeling
incorporation bias. Our method provides subcellular half-life
information of the relative contributions of each step of the mRNA
life cycle to transcript steady-state levels. We provide evidence that
nuclear retention of mRNAs is the rate-limiting step in the life cycle
of protein-coding transcripts. In addition, it uncovers expected
differences in rates of mRNAs coding for distinct protein families,
such as transcription factors and proteins of the secretory pathway.
Comparison of the kinetic rate constants for these steps across
genes will provide novel insights into subcellular mechanisms of
differential gene regulation.

Results

Spatiotemporal measurement of newly
transcribed mRNA

To capture the nucleocytoplasmic kinetics of mRNA, we conducted
a time-resolved SLAM-seq experiment in combination with
subcellular fractionation in mouse embryonic stem cells (mESCs).
Briefly, mESCs were exposed to 4-thiouridine (4sU) for various
times to label newly synthesized RNA. Subsequently, we performed
subcellular biochemical fractionation to generate cytosolic, mem-
brane and nuclear fractions (Fig. 1A). 4sU concentrations were
carefully chosen for sufficient labeling rates while minimizing
potential toxicity elicited by 4sU, with higher concentrations of 4sU
(500 µM) for labeling periods from 15 min to 1 h, and lower
concentrations (100 µM) from 1 to 3 h. A differential gene
expression analysis confirmed that 4sU labeling caused none or
minimal perturbation of transcriptome (Fig. EV1A). The efficacy of
the fractionation procedure was confirmed by Western blot analysis
with antibodies against compartment-specific marker proteins. The
nuclear proteins histone H3, lamin A/C (LMNA) and TATA-
binding protein (TBP), the cytoplasmic proteins GAPDH and β-
tubulin (TUBB), and the ER marker protein BCAP31 were only
detectable or strongly enriched in their respective fraction. In
contrast, RPS6, a component of the 40S ribosomal subunit, was
found in all fractions (Fig. 1B).

To quantify the subcellular kinetics of mRNA globally, we next
extracted RNA from each fraction and from whole cells, followed
by iodoacetamide (IAA) alkylation and poly(A)-selected strand-
specific mRNA library preparation. Briefly, sequencing reads were
processed, aligned to the mouse genome and quantified for gene
expression, T and T2C conversion counts in both exons and introns

(see “Methods” for details). Based on a binomial mixture model
(Jürges et al, 2018), we determined the conversion rate
per sequenced RNA sample. With the conversion rates, T and
T2C conversion counts the share of new to total mRNA was
calculated on intron and exon level, which was used later on as an
input for the kinetic model (see Fig. 1A, bottom).

The experimental and computational complexity demanded an
evaluation of the effects of biological and technical variability on
mRNA quantification. Principal component analysis (PCA)
revealed that the largest differences in mRNA quantification were
a consequence of the assayed subcellular compartment rather than
the difference in biological replicates (Fig. 1C), indicating that the
data captured biological variability well with a low influence of
technical effects.

To convert relative to absolute subcellular RNA expression
ratios, we needed to quantify how the total amount of RNA is
shared between the subcellular compartments. Under the assump-
tion that the RNA expression in the whole cell can be reconstructed
by summing the subcellular RNA expression with a corresponding
factor for each, we fit the relative abundance of nuclear, cytosolic
and membrane mRNA with the constraint that they sum up to 1
(the whole-cell expression). We estimated that 39%, 15%, and 45%
of total mRNA is present in the nucleus, cytosol and membrane-
bound, respectively (see Fig. 1D). These relative abundances are
used to derive expression ratios mimicking absolute RNA levels
that are related to kinetic parameter ratios and can therefore be
used to constrain the parameter space (see Box 1).

Comparing gene expression in the cytosol and the membrane,
we observed a bimodal distribution, with 17% and 78% of the
transcripts being enriched at the membrane and in the cytosol,
respectively (Fig. 1E). Based on this distribution, we classified
mRNAs into cytosol- and membrane-localized, where membrane-
localized means that the cytoplasmic expression of a mRNA is
highly enriched in the membrane fraction compared to the majority
of mRNAs, and a small group of undefined transcripts not
belonging to these compartments. This classification determined
the particular model used in the fitting process (see bottom left
Fig. 1A).

In addition, the distribution of share of labeled mRNAs over all
quantified genes (n = 9809) reflected the cellular mRNA maturation
and showed expected trends for all subcellular compartments
(Fig. 1F). Collectively, these results showed that the quantification
of global mRNA kinetics in subcellular fractions of mouse ES cells
was of high quality.

Model of subcellular mRNA dynamics

To integrate the subcellular transcriptome and metabolic RNA
labeling data and to estimate half-lives as a description of subcellular
mRNA dynamics, we developed transcript-wise mathematical models
similar to previous work (Chen and van Steensel, 2017). Each
transcript was modeled by a linear, inhomogeneous system of ordinary
differential equations (ODE) containing three or four steps for cytosol-
or membrane-localized transcripts, respectively, describing the life
cycle from mRNA transcription to degradation (see Box 1). After
transcription in the nucleus, nuclear pre-mRNA is processed to
mature mRNA (pre-mRNA processing rate k1). From there, mature
mRNA can be exported to the cytosol or already be degraded (nuclear
export k2 and nuclear degradation γ2). By default, the nuclear
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degradation parameter is set to 0 and is only included as a variable
parameter in the model if fitting is significantly improved (see
“Methods” and Fig. EV5). In the 3-step model, mRNA is translated
and degraded in the cytosol (cytosolic decay γ3), whereas in the 4-step
model, mRNA is first localized to the ER membrane or other
membrane-bound organelles (cytosolic transport k3, no decay), where
it is translated and subsequently degraded (membrane decay γ4). We
derived a system of ODEs describing the relative amount of new

mRNA. The share of new to total mRNA estimated from the SLAM-
seq data is used as input in the solutions of this ODE system to fit the
parameters mentioned above.

For ease of interpretation, we will mainly use half-lives instead
of rates in both text and figures in the following (see Box 1),
namely: pre-mRNA processing (ln 2k1 ), nuclear retention ( ln 2

k2þγ2
),

cytosolic stability (ln 2γ3 or ln 2
k3
) and membrane stability (ln 2γ4 ). Nuclear

retention time is used as a general term to comprise the various

Figure 1. Newly transcribed mRNA is measured spatio-temporally using cell fractionation and metabolic labeling RNA sequencing.

(A) Schematic overview of experimental and computational steps. Mouse embryonic stem cells (mESCs) are labeled with 4sU for 15, 20, 30, 40, 60, 120, and 180min,
leading to T2C conversions in newly transcribed RNA (1). Cells are fractionated into nuclear, cytosolic and membrane-bound compartments (2). Ratios between new and
total mRNA are estimated in a Bayesian framework for exons and whole intronic regions (3) and given as input to a kinetic model to fit subcellular kinetic rate parameters
(4). See Methods for details on each individual step. (B) Results from Western blot analysis measuring nuclear, cytosolic, endoplasmic reticulum, and ribosomal protein
markers in the subcellular fractions and the whole-cell extract. (C) Principal component analysis of log-transformed bulk mRNA-seq data in transcripts per million (TPM)
using 500 most variable genes. Samples cluster by compartment. (D) Estimates of relative mRNA abundance in subcellular compartments. Subcellular TPM values are
fitted to whole-cell TPM values, resulting in estimates for the relative abundance of mRNA in each compartment, see equation in top left. The reduced chi-squared value is
shown in the bottom right. (E) Classification of membrane and cytosolic mRNA localization in mESCs through subcellular mRNA expression. Histogram of the ratio
between steady-state gene expression (TPM, mean over all time points) in membrane over cytosolic fraction, from here on membrane enrichment, for 11,711 most
expressed genes. Vertical gray lines indicate chosen cutoffs to classify mRNA localization. For membrane enrichment <1.5, <3, and >3: cytosol-localized, undefined, and
membrane-localized, respectively. Numbers of successfully fitted genes in each localization category are shown in the legend. (F) Time- and compartment-resolved box
plot of T2C labeling data (n= 9795). Center lines of box plots depict the median values. Medians of share of new to total mRNA increases with labeling time. Lower and
upper hinges of box plots correspond to the 25th and 75th percentiles, respectively. Lower and upper whiskers extend from the hinge to the smallest or largest value no
further than the 1.5× interquartile range from the hinge, respectively. Source data are available online for this figure.

Box 1. Kinetic model of the mRNA life cycle

The individual equations in Eq. (1) describe the change in absolute amount
of new nuclear pre- (x1, dark blue), nuclear mature (x2, light blue), cyto-
solic (x3, yellow) and membrane-bound (x4, red) mRNA. The biological
process of each parameter is illustrated in the sketch on the bottom left.
We rescale the system by dividing each compartment with its steady-state
solution, so that Eq. (2) describe the change in relative share of new
mRNA (~xi). The analytical solutions to Eq. (2) are shown in Box 2 in
“Methods”. We use the solutions of the first three (3-step model) and all
four equations (4-step model) to fit cytosol- and membrane-localized

mRNAs, respectively. The measured subcellular mRNA expression ratios,
multiplied by their corresponding relative mRNA amount factor (see
Fig. 1D), are used to constrain the parameter space via the steady-state
ratios (see middle right), allowing to distinguish nuclear export from
decay. By default, the nuclear decay γ2 was set to 0 and was only allowed
to vary if fitting was significantly improved by including it (see Fig. EV5).
The production rate of pre-mRNA p is not present in the rescaled system
and hence not fitted.
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events after maturation of a single transcript molecule until its
emergence into the cytoplasm, including chromatin dissociation,
nuclear diffusion, and binding to and transport across the nuclear
pore. The pre-mRNA processing rate describes the rate at which
introns present in polyadenylated RNA are removed. As splicing
already occurs co-transcriptionally, it is not the splicing rate that is
quantified here, but rather a post-polyadenylation mRNA matura-
tion rate. Figures that include both the elongation rate and
subcellular kinetic parameters display the corresponding rates (in
kb=min and min�1, respectively).

Modeling of transcriptional elongation rates

For mRNAs whose transcription is initiated prior to labeling with
4sU, but terminated after labeling start, we expected that only part
of the transcript was labeled. More specifically, we expect that
sequences at a distance of d to the 3’ end are only labeled after
t ¼ d=v, where v is the transcription elongation rate (see Fig. 2A).
Therefore, particularly for longer transcripts and shorter time
points, partial labeling affects our measurements and has to be
taken into consideration.

Our transcriptome sequencing data covers polyadenylated RNA,
and quantification of labeling includes sequences spanning the
entire transcripts. When we grouped exonic sequences by distance
to the 3’ end, we observed that the median share of labeled mRNAs
in the nuclear fraction decreased with increasing distance to the 3’
end, particularly for shorter time periods (see Fig. 2A). To account
for this bias, which would otherwise lead to an underestimation of
the subcellular mRNA flow rates, we incorporate a transcript
elongation rate in our model. Specifically, we modeled each
transcript with one variable per exon, where the dynamics of each
exon is modeled using the model described above but with a time
delay according to ~t ¼ t � d=v � δ with d being the distance of the
exon to the 3’ end (see Fig. 2B) and δ ¼ 5 min being an overall
delay until any labeling is experimentally observed, possibly due the
time required to add a poly(A) tail to an mRNA after transcription
termination. All exon models of one transcript share the same
kinetic parameters.

Our method of estimating the transcription elongation rate has
its caveats, particularly when compared to methods that more
directly measure those. Firstly, we noted that the T2C conversion
rate increases over time, even at constant 4sU concentrations (see
Fig. EV1E). For genes requiring more than 30 min to be fully
transcribed, exons near the 5’ end are labeled with lower efficiency
than those near the 3’ end, leading to an underestimation of
elongation rates. Secondly, our time resolution of 15min does not
allow estimation of elongation rates of shorter genes, which would
require more frequent sampling (e.g., at 8 and 12 min). Interest-
ingly, however, we observed that the average elongation rate
estimates are in agreement with previous reports using more direct
methods (see next section).

Model parameterization unveils length-
dependent elongation rate

To derive estimates of kinetic parameters and elongation rates, we
fitted the models to the time-resolved SLAM-seq data. More
specifically, we simultaneously optimized model parameters for
each transcript such that they best fit (a) the share of labeled mRNA

at the level of each exon for the different time points and (b) the
steady-state levels of the transcripts in the nucleus, cytoplasm and
membrane compartment. Out of 8501 transcribed genes with
sufficient labeling data in multiple exons, the elongation rate
estimation converged for 6494 genes with a mean of 1.6 kb/min and
a median relative error of 30% (see Fig. EV3A). For the remaining
multiple-exon genes, estimates were at the set boundaries and did
not converge. Boundary-limited estimates were deemed unreliable
and hence excluded from all analyses regarding the elongation rate.
Furthermore, we performed a sensitivity analysis and found that,
for the typical transcript, variation of the elongation rate within the
95% confidence interval changes the other subcellular kinetic
parameters by only 2–8% (see Fig. EV3D). For gene lengths shorter
than 12 kb, between 12 kb and 30 kb and longer than 30 kb, the
mean elongation rate is 1.0, 1.4, and 2.2 kb/min, respectively (see
Fig. 2C). Increases in the elongation rate of RNA polymerase II for
longer genes, as well as our quantitative range of values, coincide
with results from previous studies focusing specifically on
transcript elongation (Jonkers et al, 2014; Fuchs et al, 2014; Veloso
et al, 2014; Shao et al, 2022). The main point of estimating the
elongation rate here is to correct for the observed labeling bias. For
state-of-the-art quantifications, results from the studies cited above
should be considered.

Nuclear retention time is the rate-limiting step in the life
cycle of most mRNAs

For mRNAs derived from roughly 9800 genes, we observed three
common kinetic profiles: (i) for transcripts with fast turnover
labeled RNA dynamics are similar in all compartments (exempli-
fied by Myc, Fig. 3A), with the exception of nuclear pre-mRNA; (ii)
cytosol-stable transcripts show a slower accumulation of labeled
RNA in the cytosolic than in the nuclear mature compartment (e.g.,
Nf1, Fig. 3A), with overall turnover varying from fast to slow; (iii)
membrane-localized mRNAs, as defined earlier, accumulate labeled
RNA equally fast in nuclear mature and cytosolic compartments,
but significantly more slowly in the membrane than in the cytosolic
compartment (e.g., Tfrc, Fig. 3A). This distinct pattern is due to the
low cytosolic expression and the short cytosolic residence time of
these transcripts.

All kinetic parameters for transcripts in different compartments
were highly variable (see Fig. 3B). Nuclear pre-mRNA half-life
showed the narrowest distribution, ranging from 10 to 46 min (10th
and 90th percentile, resp.) with a median of 22 min. Cytosolic
transcript half-lives displayed the widest distribution and the
highest variability, ranging from 1 to 42 min (10th and 90th
percentile, respectively) with a median of 10 min. Membrane
mRNA half-lives range from 6 to 69 min with a median of 21 min.
Interestingly, our data suggest that the nuclear retention of mature
mRNAs is the rate-limiting step for most transcripts with a median
half-life of 78 min and ranging from 25 min to 236 min. This
observation agrees with findings by Müller and colleagues
describing the nucleus-to-cytosol step to be rate-limiting (Müller
et al, 2024).

Based on the Bayesian Information Criterion (BIC), we tested if
subcellular mRNA dynamics are better described by a model
including nuclear degradation of mature mRNA and found strong
support (difference in BIC >10) of nuclear degradation for 579
transcripts (see Fig. EV5A and “Methods”). Nuclear decaying
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transcripts show a median decay rate four times higher than the
median retention rate in the nucleus, longer pre-mRNA processing,
shorter nuclear half-lives and longer cytosolic and membrane
stability than other transcripts (see Fig. EV5B). Performing an
over-representation analysis we were able to associate roughly 100
genes with nuclear decaying mRNA to DNA processes (see
Fig. EV5C).

In summary, our analysis suggests that most mRNAs spend
more than half of their lifetime in the nucleus as mature spliced
transcripts. Recent results using metabolic labeling RNA sequen-
cing suggested that nuclear transcripts remain associated to DNA
for a longer time, and once dissociated they are exported rather
quickly (Ietswaart et al, 2024).

Functionally related transcripts tend to have similar
kinetic profiles

It has been previously shown that groups of mRNAs encoding
proteins with specific molecular functions display distinct kinetics
rates along the mRNA life cycle (Chen and van Steensel, 2017; Ren
et al, 2023). To this end, we performed gene set enrichment
analyses (GSEA) considering the pre-mRNA processing, nuclear
retention, cytosolic and membrane stability, respectively, to identify
groups of transcripts from the gene ontology (GO) that have
particularly short or long residence time in each compartment.
Each GSEA resulted in a large number of significantly enriched GO
terms, with a subset shown in Fig. 3C. For the nuclear retention

Figure 2. Transcript elongation rate is estimated to account for labeling delay in long genes.

(A) Left: Sketch to illustrate how exons (in longer genes) are labeled with a time delay that increases linearly with distance to 3’ end. As poly(A)+ sequencing was used,
transcripts close to being fully transcribed will contain T2C conversions first (close to the 3’ end), while it takes longer to observe conversions in the whole transcript.
Right: Pointplot of new over total exonic, nuclear mRNA binned by distance to 3’ end. Points show medians across exons per bin and time and are normalized to the 15 min
and <5 kb point. Lines connect points of equal time. Equal labeling efficiency is seen after 3 h. (B) Fit result of Slf1 (only nuclear mRNA) is shown to illustrate the fitting
procedure. Share of new to total mRNA per exon is plotted over the 4sU labeling time until cell harvesting. All exons of a gene share the same kinetic parameters, but each

exonic curve is time-delayed by ~t ¼ t� d=v � δ, with d being the mean exonic distance to 3’ end, v the elongation rate and δ the overall delay of 5 min (straight lines).
Typically, the closer an exon is to the 3’ end (indicated by color), the higher its ratio of new mRNA is (points). The time-delayed fit accounts for this bias. Gray squares
show the gene-level T2C data. Gray, dashed line shows a fit curve delayed by mean 3’ end distance weighted by expression of exons. (C) Histogram with kernel-density
estimation (KDE) of converged elongation rates (n= 6494) grouped by gene length (L). Mean rate per group is shown in the top right. Source data are available online for
this figure.
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time (see Fig. EV4B), mRNAs encoding transcription regulators
have a high positive enrichment score, i.e., short nuclear retention
time, while those involved in metabolic processes, specifically
translation, have a high negative enrichment score, i.e., a long
nuclear retention time. Most transcripts of mitochondrial and
ribosomal genes show particularly long nuclear half-lives. This may
mechanistically be explained by their enrichment in nuclear
speckles, where mRNA transcripts of both gene groups were found
to be retained and post-transcriptionally processed (McIntyre et al,
2023). However, part of the long nuclear retention for transcripts
encoding for mitochondrial proteins that are co-translationally
targeted to the outer mitochondrial membrane (n = 102) might be
due to a slight mitochondrial contamination in the nuclear fraction
(see Fig. EV1). Transcripts associated with transport or ion
homeostasis show short cytosolic and long membrane half-lives.
When focussing on membrane-localized transcripts, those asso-
ciated with regulating protein modifications showed the shortest
(~14 min), while those associated with calcium ion binding showed
the longest (~48 min) membrane half-lives (see Fig. EV4C).

Next, we investigated if kinetic parameters were correlated with
gene features, including gene length, number of exons, and length
of UTRs. The strongest association was observed with the
transcriptional elongation rate, as noted above, and presented a
rank correlation of more than 0.5 with gene length (see Fig. 3D).
Transcript length shows moderate negative correlation with nuclear
retention, cytosolic and whole-cell half-lives for cytosol-localized
transcripts, but only weak or no correlation for membrane-
localized transcripts. Interestingly, the number of exons seems to
play an important role in subcellular mRNA kinetics. Nuclear
retention and whole-cell half-lives are both positively correlated
with the number of exons in both cytosol- and membrane-localized
transcripts (see Fig. 3D). Therefore, mRNAs with many exons take
longer to be exported but are then overall more stable. However, for
cytosol-localized transcripts, the cytosolic half-life is not correlated
with exon number, while the membrane half-life for membrane-
localized transcripts is. mRNA derived from longer genes seem to
be degraded faster in the cytosol, but not at the ER (Fig. 3D). 3’
UTR length correlates moderately for cytosol- and weakly for
membrane-localized mRNAs with all subcellular parameters except
pre-mRNA processing, suggesting that the longer the 3’ UTR end,
the shorter the half-life as described previously (Spies et al, 2013).
Out of the subcellular parameters, nuclear retention is the best
predictor of whole-cell half-life (Spearman correlation of r = 0.92
and r = 0.87 for model-derived and directly-fitted whole-cell half-
life, respectively).

Differentially localized mRNAs exhibit distinct
dynamic behavior

To associate mRNA localization with function, we ranked
transcripts by membrane enrichment, which was also used to
classify mRNA localization, and performed a GSEA. The proteins
encoded by transcripts highly enriched in the membrane fraction
are located at the plasma membrane, cell surface and endoplasmic
reticulum and are involved in transmembrane transport and ion
homeostasis (Fig. 4A). Proteins of the more than 7000 cytosol-
localized transcripts are distributed across the cell and have a wide
range of biological functions, but those encoded by transcripts most
highly enriched in the cytosol are located primarily in the nucleus
and are involved in organization of chromatin and chromosomes
and transcription regulation (Fig. 4A).

Next, we investigated the relationship between subcellular
mRNA localization and dynamics. Membrane half-lives are high
for membrane-localized transcripts (median = 20 min), while cyto-
solic half-lives are high for cytosol-localized transcripts (median =
13 min), being quantitatively similar in both compartments with an
overall slightly higher membrane stability (see Figs. 4B and EV4A).
This seems to indicate that there is a slight, but no significant
difference of transcript stability between mRNAs that are translated
by ribosomes in the cytosol and mRNAs being targeted to and
translated at the ER. Once a membrane-associated transcript is in
the cytoplasm, it reaches the membrane-bound compartment
rather fast, with timescales ranging from less than a minute to
around ten minutes. The degree of membrane enrichment
influences dynamics, with higher membrane enrichment leading
to shorter cytosolic and longer membrane stability. On the other
hand, the degree of cytosolic enrichment seems to have little
influence on cytosolic stability.

We next examined if transcripts encoding different targeting
sequences show different behavior. We observed that the different
targeting signals have a similar median cytosolic half-life of around
2 min (see Fig. 4C). Membrane-localized mRNAs encoding no
known targeting signal surprisingly show the shortest median
cytosolic half-life, while transcripts encoding only a signal peptide
tend to have a slightly longer median cytosolic half-life. Distribu-
tions of membrane half-life vary slightly for different targeting
signals, with transcripts encoding transmembrane helices having
the lowest median (19 min) and transcripts encoding proteins with
signal peptides having the highest (32 min). mRNA encoding tail-
anchored proteins, with the first transmembrane helix close to the
C-terminus, have a much longer median cytosolic half-life than

Figure 3. Across the transcriptome, transcripts show a wide distribution and different combinations of subcellular kinetic parameters.

(A) Fit results of three exemplary genes. Ratio of new to total mRNA is shown over labeling time. Points with error bars depict means with standard errors of new to total
ratio across replicates per (n= 2–4, all fractions shown). Lines are fit results, delayed as the gene-level curve in Fig. 2B (only fitted compartments shown). Ratio between
steady-state expression in membrane and cytosolic compartments is shown in bottom right, indicating if 3-step or 4-step model was used (<1.5 or >1.5, respectively, see
Fig. 1E). (B) Histogram of nuclear pre-mRNA processing (n= 8515), nuclear retention (n= 9809), cytosolic stability (n= 9809) and membrane stability (n= 2131) mRNA
half-lives. Median half-life of each parameter is shown in legend. (C) Heatmap of results from five GSEAs based on the gene ontology (GO). Genes were ranked by log-
scaled, z-scored parameter rates. For each parameter, the two most up- and downregulated terms are shown. In addition, five terms with the lowest adjusted P values and
adjusted P values <0.05 in at least three columns are shown. P values were corrected using the Benjamini–Hochberg (BH) method. Gray indicates the term is not
significant. Values in heatmap are median half-lives (rate in the first column) of the union of leading edge genes across each row. (D) Heatmaps of correlation between
kinetic rates and gene features. Transcripts are split into cytosol- (left) and membrane-localized (right). Values in heatmap are spearman rank correlations. Transcript
length is the length of the most expressed isoform based on RSEM results. 3’ and 5’ UTR lengths are isoform-specific. Gene GC content is taken from Biomart and includes
both intronic and exonic regions. Source data are available online for this figure.
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other co-translationally targeted transcripts. This suggests that co-
translational targeting to the ER for transmembrane helix-
containing genes happens after the transmembrane helix is
translated. Cytosolic or membrane half-lives did not correlate with
the number of encoded transmembrane helices, further suggesting
that the distance of the first transmembrane helix to the
N-terminus influences cytoplasmic kinetics. Nuclear-encoded
mitochondrial transcripts are mostly cytosol-localized (661 out of
763) and tend to have similar kinetics to other cytosol-localized
transcripts except for nuclear half-lives, which are significantly
longer (median of 128 min). Only 74 mitochondrial transcripts are

membrane-localized and have similar cytoplasmic kinetics as ER-
localized mRNAs, suggesting that most mitochondrial proteins are
post-translationally targeted to mitochondria and only a small
fraction are co-translationally targeted to the outer mitochondrial
membrane.

Validation with external datasets and
independent approaches

mRNA half-lives have mostly been estimated on the whole-cell
level. To be able to compare our subcellular half-lives for mESC to

Figure 4. Differentially localized mRNAs exhibit distinct combinations of kinetic rate constants.

(A) Result of a GSEA ranking genes by the ratio of membrane over cytosolic RNA expression (membrane enrichment). False-discovery rates (FDR) are BH-corrected. (B)
Violin plot of cytosolic and membrane half-lives with transcripts binned by membrane enrichment (see Fig. 1E with cytosol- and membrane-localized further split at 0.8
and 8.7, respectively; from bin 1 to 5: n= 4409, n= 3254, n= 437, n= 844, and n= 844). Yellow, gray and red colors indicate cytosol, undefined and membrane
localization, respectively. Membrane half-lives of cytosol-localized transcripts from additional 4-step model fit are shown transparently. Center lines of violin plots depict
the median values. (C) Violin plot of nuclear mature, cytosolic and membrane half-lives with transcripts classified by encoded targeting signals (TS) as in (Zinnall et al,
2022). Classification from left to right: cytosol-localized transcripts with no TS (n= 6262), nuclear DNA-encoded mitochondrial proteins (n= 763 with 661 being cytosol-
localized), transcripts with tail-anchored transmembrane proteins (n= 78), membrane-localized transcripts with no known TS (n= 531), transcripts encoding signal
peptides (n= 310) or transmembrane helices (n= 956) or both (n= 47). Center lines of violin plots depict the median values. Yellow and red colors indicate cytosol and
membrane localization, respectively. Source data are available online for this figure.
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those whole-cell half-lives from previous studies, we used our
model to predict model-derived whole-cell half-lives from the
kinetic parameters and the estimated relative abundance of the
three fractions (see Fig. 1D and “Methods” for details). Herzog et al
estimated whole-cell RNA half-lives in mESCs as a proof-of-
concept when establishing SLAM-seq (Herzog et al, 2017). Our
model-derived and Herzog et al whole-cell half-lives show high
correlation (r = 0.81, see Fig. 5A). For transcripts with half-lives
longer than 4 h, values agree by ranking (90th percentile 4.6 h and
6.8 h for model-derived and Herzog et al, respectively). Interest-
ingly, we find a diverging trend for half-lives that are shorter than
2 h: the half-lives derived by Herzog et al show a high density
around 1.5 h, while our model-derived half-lives have a longer tail
with values ranging down to 0.5 h (10th percentile 0.9 h and 2.0 h
for model-derived and Herzog et al, respectively). This may
indicate a lower sensitivity of detecting shorter half-lives for the
whole-cell pulse-chase design.

In order to augment the robustness of our investigation into the
estimated half-lives, we further compared our model-derived half-
lives with a simple “one minus exponential decay” model that we fit
on SLAM-seq data of our whole-cell samples, referred to as “direct”
whole-cell half-lives in the following. Comparing the direct to the
model-derived whole-cell half-lives, we find a near-perfect rank
correlation (r = 0.97), but the values were systematically lower in
our compartment model (see Fig. 5B; mean half-life 2.4 h and 3.8 h
for model-derived and direct, respectively). This bias was most
likely a result of the length-dependent labeling bias as well as the
non-exponential nature of the process. Interestingly, the 90th
percentile value of the direct half-lives is higher compared to both
our model-derived half-lives and those estimated by Herzog et al
(7.6 h, 4.6 h, and 6.8 h, respectively).

To experimentally validate our metabolic labeling-derived
subcellular flow rates with an independent (but more interfering)
method, we inhibited transcription using flavopiridol (Chao and
Price, 2001) followed by subcellular fractionation and RNA
sequencing, resulting in a second set of subcellular rates (see
“Methods” for details). Reassuringly, we find high correlation
between the two sets of cytosolic, membrane and whole-cell half-
lives for both cytosol- and membrane-localized mRNAs. Interest-
ingly, the correlation was only moderate for nuclear mature half-
lives (see Fig. 5C, left) which may be due to stress-induced changes
in nuclear RNA turnover. When comparing the flavopiridol- and
metabolic labeling-derived whole-cell half-lives (Fig. 5C, right), we

find that for half-lives longer than 4 h, flavopiridol-derived half-
lives were generally longer than metabolic labeling-derived ones,
suggesting reduction in mRNA decay after transcription blockage.

As we used different models for cytosol and membrane-localized
mRNAs (3-step and 4-step model, respectively), we asked how model
choice influences the kinetic parameters. We therefore fitted both
mathematical models to our subcellular SLAM-seq data, and
compared the half-lives between the two models. We found a near-
perfect correlation for pre-mRNA processing (r = 0.98) and nuclear
retention (r = 0.98), which are modeled the same way in both models
(see Fig. 5D). However, for the cytosolic stability we find lower
agreement (r = 0.59), as here the 4-step model used additional
information to constrain the ratio between cytosolic and membrane
half-lives. This results in all membrane-localized, but also many
cytosol-localized transcripts exhibiting lower cytosolic half-lives in the
4-step than in the 3-step model. For the former, this was desired, as
T2C mutations are distinct between cytosol and membrane compart-
ments, whereas for the latter, this is undesirable, as the T2C mutations
are similarly frequent in both membrane and cytosol compartments
and the fit then systematically underestimates the cytosolic half-life to
accurately fit the membrane half-life.

Taken together, our validation efforts using our and published
datasets suggest that the compartment-derived rates provide a
high-quality quantitative assessment of mRNA turnover.

Discussion

Our study provides a comprehensive analysis of and resource for
nucleocytoplasmic mRNA kinetics in mESCs. Applying mathema-
tical modeling to time-resolved subcellular SLAM-seq data we were
able to quantify intracellular mRNA flow and offer valuable insight
into the dynamics of the mRNA metabolism. Previously, mRNA
kinetics were studied mostly on the whole-cell level, while our
approach yields information on subcellular kinetics, even dissecting
cytoplasmic into cytosolic and membrane dynamics, distinguishing
it from recent studies on subcellular mRNA kinetics (Ietswaart et al,
2024; Müller et al, 2024).

Here, we modeled subcellular mRNA kinetics using a linear,
inhomogeneous system of ordinary differential equations, accounting
for different steps in the life cycle of mRNA molecules. Incorporating
steady-state ratios in the fitting procedure allowed us to distinguish
between export and degradation in the nuclear compartment and

Figure 5. Validation of subcellular parameter estimates with external datasets and independent approaches.

(A) Comparison with results from first SLAM-seq experiment (Herzog et al, 2017). Scatterplot of model-derived (y axis) and Herzog et al (x axis) whole-cell half-lives
(n= 5475). Model-derived whole-cell half-lives are calculated from subcellular rates, see Appendix Fig. S2 and “Methods”. Mean half-life is annotated on the
corresponding axis. Spearman rank correlation is shown on top left. The dashed, gray line is the identity line. (B) Scatterplot of model-derived and directly-fitted whole-cell
half-lives (n= 9809). Model-derived whole-cell half-lives as in (A). Direct whole-cell half-lives obtained by fitting a simple “one minus exponential decay” model to the
share of new to total mRNA from whole-cell extract data. Mean half-life is annotated on the corresponding axis. Spearman rank correlation is shown on top left. The
dashed, gray line is the identity line. (C) Comparison of model- to flavopiridol-derived half-lives. Left: Correlation heatmap of model- with flavopiridol-derived subcellular
half-lives split into cytosol- (upper row) and membrane-localized transcripts (lower row). Values in heatmap are spearman rank correlations, also indicated by color. For
details on how half-lives using flavopiridol were derived, see “Methods” and Appendix Fig. S2. Right: Scatterplot of model-derived and flavopiridol whole-cell half-lives
(n= 6316). Model-derived whole-cell half-lives as in (A). Mean half-life is annotated on the corresponding axis. Spearman rank correlation is shown on top left. Dashed,
gray line is the identity line. (D) Comparison of 3-step and 4-step model, which model mRNA flow until cytosolic and membrane-bound compartments, respectively.
Scatterplot of pre-mRNA processing, nuclear retention and cytosolic half-lives with values from 3-step and 4-step model on x and y axis, respectively (n= 9369, all genes
were fit with both models). Black lines are 2-dimensional KDE to indicate density of points. For details on the models, see Model sections in “Results” and “Methods”.
Spearman rank correlation is shown on top left. Dashed gray line is the identity line. Source data are available online for this figure.
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ensured that the fitted parameters align with the measured subcellular
mRNA expression levels. The quantitative accuracy of the steady-state
ratios was ensured by accounting for the varying amounts of mRNA
present in the different cellular compartments in a manner similar to a
recently published method (Dai et al, 2022).

To account for an observed labeling bias toward the 3’ end of
transcripts when using poly(A)-selection and full-length transcript
sequencing, we included a transcript elongation rate in our model. This
modeling approach allowed for the estimation of kinetic parameters of
pre-mRNA processing, nuclear retention, cytosolic, and membrane
stability for mRNAs on a global level, including an approximation of
transcriptional elongation rates. Our estimated mean elongation rates of
1.0 to 2.2 kb/min for shorter and longer genes, respectively, are highly
similar to median elongation rate estimations of 1 kb/min measured
before in mESCs (Shao et al, 2022) and 1.25–1.75 kb/min measured
before in five different human cell lines (Veloso et al, 2014).
Furthermore, our analysis revealed that transcriptional elongation was
higher for longer genes, as observed previously (Veloso et al, 2014;
Jonkers et al, 2014). In both of these two studies, differences in gene
length-specific elongation rates were correlated with distinct histone
modifications, suggesting that gene structure and epigenetic modifica-
tion influence RNA polymerase II elongation rates. Although we have
good agreement with previous findings, our method to estimate
elongation rates has limits. It cannot consider the increase of labeling
efficiency early in the time series, for which a dataset with long-read
sequencing of transcripts would be better suited. Furthermore, a more
densely sampled time series would be required to improve the transcript
elongation estimate for shorter genes.

Across transcripts, the timescales of the subcellular kinetic
parameters span multiple orders of magnitude. One of the key findings
of our study was the observation that nuclear retention is the rate-
limiting step for most transcripts, as evidenced by the significantly
longer median half-life of 78min for mature mRNA in the nucleus
compared to the cytosolic half-life of 10min. This finding is consistent
with prior works applying imaging-based approaches, demonstrating
that nuclear retention of transcripts serves as an effective mechanism for
buffering noise (Battich et al, 2015; Bahar Halpern et al, 2015). Battich
and coworkers derived nuclear retention times between ∼5–90min for
close to 300 newly synthesized transcripts, with a median of ∼20min
(Battich et al, 2015). However, the authors argued that these nuclear
retention times are likely an underestimation for most other genes, since
these genes were fast-responding genes during stress signaling. More-
over, Halpern and colleagues showed that in mouse tissues spliced and
polyadenylated mRNAs are retained in the nucleus for many protein-
coding genes to reduce cytoplasmic gene expression noise (Bahar
Halpern et al, 2015). Ren and coworkers found that a substantial fraction
of newly synthesized transcripts was retained in the nucleus even after
6 h, corroborating the previous observation of nuclear mRNA retention
(Ren et al, 2023). Choi and colleagues conducted mRNA interactome-
capture experiments combined with pulse-chase labeling in HeLa cells
and found that export-competent and cytoplasmic translating mRNPs
are assembled mainly at 60–70min and 90–120min chase time,
respectively (Choi et al, 2024). Similarly, by applying sequencing of
metabolically labeled RNA in the nuclear and cytosolic compartments
followed by mathematical modeling, Müller et al recently reported that
mRNA molecules generally spend most of their life in the nucleus,
highlighting nuclear retention as a critical determinant of subcellular
mRNA dynamics (Müller et al, 2024). The relative amount of poly(A)
mRNA in the nucleus varies across cell types (Bahar Halpern et al, 2015;

Dai et al, 2022; Gondran et al, 1999). As the nucleus makes up a large
part of the cell volume in mESCs and we observe a high relative nuclear
mRNA amount, the nuclear retention half-lives estimated here are likely
to be higher than in other, differentiated cell types.

By comparing models excluding and including nuclear degrada-
tion, we found evidence for nuclear degradation of mature mRNA
for 6% of expressed genes. Most of the transcripts from those genes
are degraded in the nucleus, but those that are exported to the
cytoplasm show a high cytoplasmic stability.

To identify functional categories associated with genes exhibit-
ing extreme subcellular rates, we undertook gene set enrichment
analyses. mRNAs transcribed from genes involved in transcription
regulation were enriched among those with short nuclear half-lives.
Conversely, mRNAs from genes associated with translation and
metabolic processes, in particular mitochondrial and ribosomal
genes showed enrichment among those with longer nuclear half-
lives. Interestingly, mRNAs of nuclear-encoded mitochondrial
genes presented mostly similar cytoplasmic kinetics when com-
pared to cytosol-localized transcripts, suggesting mostly post-
translational targeting to the mitochondria with only around 10%
of transcripts being co-translationally targeted.

Using cytosolic and membrane mRNA expression levels, we were
able to identify cytosol– and membrane-localized transcripts with the
latter mostly being associated with the ER membrane. These membrane
transcripts were localized within two minutes to the ER, mostly
independent of the targeting signal, and then were stable for around
20min at the ER, with transcripts targeted by the signal recognition
particle having slightly longer half-lives. Cytosolic half-lives of cytosol-
localized transcripts were centered slightly below 20min, revealing that
cytosol- and membrane-localized mRNAs have similar cytoplasmic
stability, suggesting that differences in protein expression between
cytosol- and membrane-localized transcripts with similar mRNA levels
derive mainly from differences in translational efficiency (Voigt et al,
2017; Lashkevich and Dmitriev, 2021; Zinnall et al, 2022). An intriguing
prospect for future inquiry revolves around the impact of translation on
the subcellular localization of mRNA. Recent findings have shown that,
notably, when translation initiation is inhibited, the ER becomes the
predominant site for the localization of newly exported mRNAs,
prompting questions about the intricate relationship between translation
and subcellular mRNA localization (Child et al, 2023).

Since nuclear retention is the rate-limiting factor, it is harder to
correctly estimate all processes taking place afterward, especially if
they happen on a comparatively short time scale. Using the well-
measured steady-state ratios helps to essentially determine the
short and difficult to estimate cytosolic stability from the longer
and more easily determined membrane stability in the case of
membrane-localized transcripts, where slight contaminations
between nuclear and membrane compartment would further
hinder correct estimation.

Based on subcellular parameters, we calculated model-derived
whole-cell half-lives that correlate highly with previous experimentally
determined whole-cell half-life estimates. This analysis provided
confidence in the accuracy of the subcellular rates and their ability
to represent whole-cell mRNA kinetics. Both model-derived and direct
whole-cell half-lives were correlated highly with nuclear retention half-
lives. To validate the subcellular flow rates further, we inhibited
transcription and performed subcellular fractionation, generating a
second set of subcellular rates. These rates showed good agreement
with the original rates, further supporting the reliability of the findings.
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In conclusion, our findings offer deeper insights into the dynamics
of mRNA metabolism and uncover compartment-specific features of
post-transcriptional regulation, showing that mature mRNAs spend
most of their lifetime in the nucleus in mESCs. The relationship
between mRNA kinetics and gene functions give directions for further
investigation to analyze the RNA-binding proteins and molecular
processes, like translation, influencing subcellular mRNA dynamics.
These findings provide a foundation for future research into the
mechanisms of mRNA processing and localization within mammalian
cells, ultimately contributing to our broader understanding of gene
expression regulation in a subcellular context.

Methods

Reagents and tools table

Reagent/resource Reference or source
Identifier or
catalog number

Experimental models

E14TG2a mESCs
(M. musculus)

Iacovino et al, 2014

Recombinant DNA

Antibodies

Goat anti-rabbit HRP Agilent P044801-2

Goat anti-mouse HRP Agilent P044701-2

Mouse anti-beta-tubulin Sigma-Aldrich T8328-200UL

Mouse anti-GAPDH Sigma-Aldrich G8795

Mouse anti-TBP Abcam ab818

Mouse anti-Lamin A/C Invitrogen 14-9688-80

Rabbit anti-H3 Abcam ab1791

Rabbit anti-BCAP31 Proteintech 11200-1-AP

Rabbit anti-S6 Cell Signaling Technology 2217

Oligonucleotides and other sequence-based reagents

RT-PCR primer p21 gene This study Methods

Random hexamers ThermoFisher Scientific 48-190-011

Chemicals, enzymes, and other reagents

Advanced DMEM/F12 ThermoFisher Scientific 12634028

Neurobasal ThermoFisher Scientific 21103049

Knockout™ DMEM ThermoFisher Scientific 10829018

Fetal Bovine Serum qualified
for ES cells

Life Technologies 16141079

N2 Supplement ThermoFisher Scientific 17502048

B27 Supplement ThermoFisher Scientific 17504001

GlutaMax ThermoFisher Scientific 35050061

MEM non-essential amino
acid

ThermoFisher Scientific 11140050

Nucleosides Merck Millipore ES-008-D

β-mercaptoethanol ThermoFisher Scientific 21985023

CHIR99021 inhibitor Invitrogen SML1046-5MG

PD0325901 inhibitor Invitrogen PZ0162-5MG

Leukemia inhibitory factor Merck Millipore ESG1107

Reagent/resource Reference or source
Identifier or
catalog number

4-thiouridine (4sU) ChemGenes RP-2304

DPBS, no calcium, no
magnesium

ThermoFisher Scientific 14190169

Cycloheximide Biochemika A0879,0001

Complete Protease Inhibitor
Cocktail, EDTA-free

Roche COEDTAF-RO

RNaseOUT™ Recombinant
Ribonuclease Inhibitor

ThermoFisher Scientific 10777019

Digitonin Sigma-Aldrich D141-100MG

Amersham ECL Western
Blotting Detection Reagent

GE Healthcare RPN2209

Flavopiridol Biotrend HY-10005-
10mg

Trizol LS ThermoFisher Scientific 10296028

Nitrocellulose blotting
membrane

GE Healthcare 10600004

TruSeq Stranded mRNA
Library Prep Kit

Illumina 20020594

SuperScript III Reverse
Transcriptase

ThermoFisher Scientific 18080085

Random hexamers ThermoFisher Scientific 48-190-011

SYBR Green PCR Master Mix Applied Biosystems 43-643-46

IGEPAL Sigma-Aldrich 7365-45-9

1,4-Dithiothreitol (DTT) Sigma-Aldrich 10197777001

Dimethyl sulfoxide (DMSO) Sigma-Aldrich D8418-250ML

Iodoacetamide (IAA) Sigma-Aldrich I6125-5G

NuPAGETM NOVEXTM 4-
12% Bis-Tris

ThermoFisher Scientific NP0323BOX

Software

https://github.com/
steinbrecht/subcellular-
SLAM

This study

Adobe Illustrator https://www.adobe.com/
products/illustrator.html

STAR (v2.7.6) https://github.com/
alexdobin/STAR

HTSeq-count (v0.11.1) https://
htseq.readthedocs.io/en/
latest/

RSEM (v.1.3.3) https://deweylab.github.io/
RSEM/

DESeq2 (v1.40.2) https://github.com/
genepattern/DESeq2

Other

Centrifuge 5417R Eppendorf

Centrifuge Multifuge 3SR+ Thermo Scientific

Amersham Imager 680 GE Healthcare

HiSeq 4000 Illumina

NanoDrop One/Onec ThermoFisher Scientific

Qubit 2.0 Fluorometer ThermoFisher Scientific
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Mouse embryonic stem cell (mESC) culture

E14TG2a mESCs (Iacovino et al, 2014) were cultured in 0.1%
gelatin [w/v]-coated plates in “2i + LIF” ES medium [Advanced
DMEM/F12 (12634028, ThermoFisher Scientific)—Neurobasal
(21103049, ThermoFisher Scientific)—Knockout™ DMEM
(10829018, ThermoFisher Scientific) (1 :1:0.5), 14% Fetal Bovine
Serum qualified for ES cells (16141079, Life Technologies), 1× N2
(17502048, ThermoFisher Scientific), 1× B27 (17504001, Thermo-
Fisher Scientific), 1× GlutaMax (35050061, ThermoFisher Scien-
tific), 1× MEM Non-Essential Amino Acid (11140050,
ThermoFisher Scientific), 1× Nucleosides (ES-008-D, Merck
Millipore), 100 µM β-mercaptoethanol (21985023, ThermoFisher
Scientific), 3 μM CHIR99021 (SML1046-5MG, Invitrogen) and
1 μM PD0325901 (PZ0162-5MG, Invitrogen), 1000 U/ml Leukemia
inhibitory factor (ESG1107, Merck Millipore)], under a controlled
atmosphere at 5% CO2 and 37 °C. mESCs were seeded the day
before the experiments at a density of 3 × 105 cells/ml.

Metabolic labeling and cell fractionation

Independently passaged biological replicates of mESCs (~3.5 × 107

cells per replicate) were separately labeled in “2i + LIF” ES
medium supplemented with 500 µM (4 replicates for 20 and
60 min; 2 replicates for 15, 30, and 40 min; 3 replicates for 0 min)
or 100 µM (2 replicates for 60, 120, and 180 min) 4-thiouridine
(4sU, RP-2304, ChemGenes) and fractionated by sequential
detergent extraction, as described previously (Jagannathan et al,
2011) with minor modifications. Briefly, medium was aspirated, 5
ml of ice-cold PBS supplemented with 100 µM cycloheximide
(A0879,0001, Biochemika) was added to the plates, cells were
scraped from the plates, transferred to 15ml falcon and spun down.
Pellet was resuspended in 500 µl of ice-cold permeabilization buffer
(110 mM KOAc, 25 mM K-HEPES pH 7.2, 2.5 mM Mg(OAc)2, 1
mM EGTA with freshly added 0.015% digitonin, 1 mM DTT,
100 μg/ml cycloheximide, 1× Complete Protease Inhibitor Cocktail
and 40 U/mL RNaseOUT™). 100 µl of the sample was taken aside
as Total extract and rest was incubated for 10 min at 4 °C with
rotation, followed by centrifugation at 3000 × g 5 min at 4 °C.
Supernatant (corresponding to the Cytosolic fraction) was
transferred to new tube while the pellet was resuspended in 5 ml
of wash buffer (110 mM KOAc, 25 mM K-HEPES pH 7.2, 2.5 mM
Mg(OAc)2, 1 mM EGTA with freshly added 0.004% digitonin,
1mM DTT, 100 μg/ml cycloheximide) and spun down again at
3000 × g 5 min at 4 °C. After centrifugation washed pellet was
mixed with 500 µl of ice-cold lysis buffer (400 mM KOAc, 25 mM
K-HEPES pH 7.2, 15 mM Mg(OAc)2, 0.5% (v/v) NP-40 and freshly
added 1 mM DTT, 100 μg/ml cycloheximide, 1× Complete
Protease Inhibitor Cocktail, 40 U/mL RNase Out) and incubated
for 5 min on ice followed by centrifugation at 3000 × g 5 min at
4 °C to collect the supernatant (corresponding to the Membrane
fraction) and the pellet (insoluble and the nuclear fraction). For
additional purity nuclei were loaded on 10% sucrose cushion in
lysis buffer and centrifuged at 200 × g 5 min at 4 °C. The cytosolic
and membrane fractions were clarified at 7500 × g 10 min at 4 °C to
remove cell debris. In total, 20 µl of all fractions were taken for
western analysis while the rest were mixed with Trizol LS
(10296028, ThermoFisher Scientific) for subsequent RNA isolation.

RNA isolation, alkylation of 4sU-labeled RNA, and
SLAM-seq

RNA extraction was carried out by the manufacturer’s protocol but
including 0.1 mM DTT (final concentration) during isopropanol
precipitation and dissolving RNA in 1mM DTT to prevent
oxidation of thiol groups (Herzog et al, 2017). For a typical
SLAM-seq experiment, 5 μg of DNase-treated total RNA were
incubated in reaction mix (50 mM sodium phosphate pH 8.0, 50%
DMSO, 10 mM iodoacetamide) at 50 °C for 15 min. The reaction
was stopped by adding 1 μl of 1M DTT and RNA was ethanol
precipitated. One microgram of total RNA was used as an input for
TruSeq Stranded mRNA Library Prep Kit (20020594, Illumina)
following the manufacturer’s instructions. Briefly, poly-A contain-
ing mRNA molecules were captured from the total RNA sample
using magnetic beads. Following this selection, the mRNA was
fragmented, and complementary DNA (cDNA) was synthesized.
Illumina adapters with unique barcode sequences for each sample
were then attached, and the library is amplified through PCR. The
multiplexed, full-length transcript libraries were sequenced using
HiSeq 4000 (Illumina) for pair-end 75 cycles by the BIH Genomics
platform at the Max Delbrück Center for Molecular Medicine.

Western blotting

Protein lysates from cell fractionation experiments were separated
on 10% SDS PAGE, transferred to nitrocellulose blotting mem-
brane (10600004, GE Healthcare), blocked in 5% dry milk and
probed for cytosolic (beta-tubulin, GAPDH), membrane
(BCAP31), nuclear (Lamin A/C, TBP, H3) markers and S6
ribosomal protein. Antibodies were used at a dilution of 1:5000
for anti-beta-tubulin (T8328-200UL, Sigma-Aldrich, mouse),
1:25,000 for anti-GAPDH (G8795, Sigma-Aldrich, mouse), 1:2000
for anti-TBP (ab818, Abcam, mouse), 1:500 for anti-Lamin A/C
(14-9688-80, Invitrogen, mouse), 1:1000 for anti-H3 (ab1791,
Abcam, rabbit), anti-BCAP31 (11200-1-AP, Proteintech, rabbit)
and anti-S6 (2217, Cell Signaling Technology, rabbit) and detected
by 1:2000 dilution of respective secondary HRP-antibody-
conjugates (anti-rabbit, P044801-2, Agilent; anti-mouse, P044701-
2, Dako). Primary antibodies were incubated at room temperature
for one hour followed by three washing steps for 5 min and
incubation with secondary antibodies for one hour. Images were
acquired using Amersham ECL Western Blotting Detection
Reagent (RPN2209, GE Healthcare) on an Amersham Imager 680
(GE Healthcare).

Transcriptional inhibition by flavopiridol

Three independently passaged biological replicates of mESCs
(~3.5 × 107 cells per replicate) were cultured in “2i + LIF” ES
medium supplemented with 1 µM flavopiridol (HY-10005-10mg,
Biotrend) to block the transcription. Cells were harvested at 0, 30,
60, 120, and 180 min after addition of flavopiridol followed by cell
fractionation as described above. Obtained fractions were mixed
with Trizol LS and RNA was isolated following the manufacturer's
instructions. One microgram of total RNA was used as an input for
TruSeq Stranded mRNA Library Prep Kit according to the
instructions of the manufacturer. The multiplexed, full-length
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transcript libraries were sequenced using HiSeq 4000 for pair-end
75 cycles by the BIH Genomics platform at the Max Delbrück
Center for Molecular Medicine.

RT-qPCR

For assessment of stress response caused by 4sU toxicity mESCs were
incubated with 100, 250, 500 µM 4sU for 0, 60, 120, and 240min with
subsequent RNA isolation. Reverse transcription was performed by
SuperScript III Reverse Transcriptase (18080085, ThermoFisher
Scientific) and random hexamers (48-190-011, ThermoFisher Scien-
tific) following the manufacturer’s instruction. Around 100 ng of the
synthesized cDNA was used as an input for 20 μl qPCR reaction using
SYBR Green PCR Master Mix (Applied Biosystems) with the gene-
specific primer pairs targeting stress-responsive gene p21 (forward: 5’-
TCGCTGTCTTGCACTCTGGTGT-3’, reverse: 5’-
CCAATCTGCGCTTGGAGTGATAG-3’). The mean CT value was
calculated for three biological replicates.

Custom genome annotation for intronic regions

In order to sum up mutations separately for intronic gene regions,
we created a custom genome annotation containing intronic
regions based on the Gencode Release M14 (GRCm38.p5). Intronic
regions were determined from the gaps between exons and further
filtered by exonic regions from other genes. For alignment of exons,
the unaltered genome annotation from Gencode was used.

Alignment and read counting

After demultiplexing and adapter trimming, raw sequencing files
were aligned using STAR (v2.7.6), once for exons and once for
introns with the custom genome annotation. The following STAR
options were used: “outFilterMultimapNmax=10, alignSJDBover-
hangMin=3, outFilterMismatchNmax=35, alignEndsType=End-
ToEnd and seedSearchStartLmax=10”. To increase the
mappability of highly labeled fragments and avoid potential bias,
we lowered the parameter “seedSearchStartLmax” to 10 (from
default 50), which limits the maximal fragmented length to 10
bases. Reads in exons were counted with HTSeq-count (v0.11.1)
and TPM values were obtained by RSEM (v.1.3.3) using default
parameters.

Exclusion of SNPs from T2C mutation counting

VarScan’s (v2.3.9) mpileup2snp command was used with the options
minVarFreq=“0.4” and minCov=“10” to obtain SNPs from the BAM
files from all unlabeled samples (uniquely mapped reads only). We
created one pileup file containing only T2C and A2Gmutations, which
was used later on to exclude those SNPs from being erroneously
counted as 4sU labeling-induced T2C conversion.

T2C mutation counting and normalization

Mutations with respect to the reference sequence in each read were
determined using a customC program. Since the primary read maps to
the reference sequence and the secondary read to the reverse
complement, we searched for T2C and A2G mutations, respectively.
To quantify the sequencing error rate pe, we searched for A2G

mutations in the primary read and T2C mutations in the secondary
read. Mutations were separately counted in for exons and the intronic
region. For each region, the ratio between all T2C mutations in reads
mapping to that region and all Ts in reads mapping to that region was
computed. To confirm the validity of our metabolic labeling
sequencing data, we repeated the alignment and T2C counting with
SLAM-DUNK, which is an established pipeline that aligns only on the
3’UTR.When comparing labeling data from our customC program to
SLAM-DUNK, we find very high agreement (Spearman r >0.9) from
30min labeling time onwards (see Appendix Fig. S1). We conclude
that our data analysis pipeline matches the standard of published
metabolic labeling analysis pipelines.

The conversion rate corresponding to the random 4sU
incorporation rate into transcripts was estimated using a two step
process. For each sample, a frequency distribution was calculated
indicating the frequency of akn of k mutations in reads with n Ts.
We then generated an initial estimate for pconv using the
expectation-maximization (EM) algorithm described in (Jürges
et al, 2018). Subsequently, we fitted a binomial mixture model to
the observed mutation frequencies using the output of the EM
algorithm and the sequencing error rate as inputs for pconv and pe,
respectively. An overview of the conversion rates can be seen in
Fig. EV1E. Finally, the ratio of new to total mRNA was obtained
from the T2C/T ratio by dividing with the estimated conversion
rate. The ratio of new to total mRNA (per exon or for all intronic
regions of a gene) was used later on as input for the kinetic model
(see Fig. 1A, bottom, F).

Additional data analysis

Genes were defined as expressed if they had an average TPM value
≥1.5 in at least one subcellular fraction. Membrane-to-cytosol
enrichment was equal to the fold change between the average TPM
values of membrane and cytosolic samples. To define membrane-
bound and cytosolic mRNAs we used membrane enrichment
cutoffs ≥3.0 and ≤1.5, respectively, for all expressed mRNAs. Fitting
was performed throughout with the python package lmfit (v1.0.3)
using the Levenberg-Marquardt “least-squares” algorithm to
minimize the chi-squared unless otherwise specified. Gene set
enrichment analyses were performed with fgsea (v1.28.0) with gene
set sizes limited from 100 to 600. All rates used to rank the genes in
the GSEAs were taken from the 3-step model to ensure intrinsic
consistency, except the membrane decay rate, which was taken
from the 4-step model. For general data analysis purposes, Python
3.9 and R v4.3.2 were used. Read mapping, counting, T2C data
processing and model fitting was implemented in Snakemake
(Mölder et al, 2021).

Minimal effect of metabolic labeling on
the transcriptome

To assess the effect of the metabolic labeling on transcriptional
output, we performed a differential gene expression analysis on
RNA count data from whole-cell extracts using DESeq2 (v1.40.2).
Two different 4sU concentrations were used: 500 µM (from 0 min
to 180 min) and 100 µM (from 60 min to 180 min). Comparing all
subsequent time points to the t = 0 time point for the high 4sU
dose, we found that up until 40 min no genes, at 60 min one gene
(Kantr) and from 120 min onwards, more than 250 genes were
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differentially expressed (see Fig. EV1A, log2FC >0.5 and adjusted P
value <0.05). We decided to exclude all samples with 500 µM 4sU
labeling for more than 60 min and keep samples using 500 µM
labeling up until and including 60 min. Accordingly, Kantr was
removed from subsequent analyses. For samples labeled with
100 µM 4sU, the 120 min and 180 min time points were compared
to the 60 min time point (as no control measurements were done in
this batch). No genes were found to be differentially expressed (see
Fig. EV1A, log2FC >0.5 and adjusted P value <0.05). As the higher
dosage already has a minimal effect at 60 min, it can be assumed
that the lower dosage leaves the cells unperturbed at 60 min and
hence the 60 min 100 µM samples are a valid control. As the lowest
adjusted p value in the comparisons for the low dosage was 0.6, it
can be assumed that the transcriptional state of the cells does not
change during the 180 min labeling duration with 100 µM 4sU. All
in all, this shows a negligible effect of 4sU labeling on the
transcriptome in our samples.

Quantifying relative mRNA abundance of
subcellular compartments

To get a biologically accurate quantification of the RNA expression
ratio between different subcellular compartments, we need to
quantify how much RNA is present in those compartments. This
allows us to constrain the parameter space by steady-state
expression ratios and to reconstruct whole-cell dynamics from
subcellular kinetic parameters. Under the assumption that, in the
gene space containing all expressed genes, the RNA expression
vector of the whole-cell extract can be approximated by summing
the RNA expression vectors of the three subcellular fractions with a
corresponding factor for each, we fitted the model a � TPMnuc þ b �
TPMcyto þ c � TPMmem¼ 1 � TPMwhole�cell to the whole-cell RNA
expression with the constraint aþ bþ c¼ 1. Only highly expressed
genes were included (TPMwhole�cell>50, n = 2725). RNA expression
vectors (and their errors) were the mean (and the standard error)
across all replicates and time points of the corresponding fraction
in gene space. The inverses of the squared standard errors were
used as weights in the fitting procedure for both the independent
and the response variables. The “ODR” function from function
scipy (v1.11.2) was used to perform the total least-squares fit.

This resulted in the following values for the relative abundances:
nuclear factor = 0.39, cytosolic factor = 0.15 and membrane factor =
0.45 (see Fig. 1D). Relative errors on the fitted parameters were
equal to or smaller than 2%. It is of note that the cytosolic
abundance is the lowest. The averaged subcellular TPM counts are
multiplied by their corresponding factor before calculating the
steady-state ratios that are used to constrain the parameter space in
the fits (Box 1).

Model fitting of subcellular mRNA dynamics

Summarizing different models and genes, the following kinetic
rates were estimated: transcript elongation rate, pre-mRNA
processing rate, nuclear export rate, nuclear decay rate, cytosolic
decay rate, cytosolic transport rate and membrane decay rate (see
Box 1). The half-lives, calculated from those rates, were primarily
shown in the results section. Per gene, the analytical solutions of
the rescaled system, shown in Box 2, were used to fit all
corresponding kinetic rates simultaneously to the subcellular,

time-resolved labeling data. More specifically, the mean share of
new to total mRNA for exons and introns across replicates was
used as input data for the fit (see example gene with data from
cytosolic compartment in Fig. 2B). Each data point was weighted by
the inverse of a mixed standard error across replicates, with the
mixed standard error consisting half of the standard error per time
and compartment and half of the standard error averaged over time
per compartment. Acting as a variance-stabilization mechanism,
the minimum of the standard error for each exon was set to 0.06
(the mean standard error across all exons at t = 15 min). Per gene,
there is one set of subcellular parameters shared by all exons, with
each exonic fit curve being time-delayed by the elongation rate
proportionately to the distance to 3’ end. As parameter boundaries
a minimum of 0.001 min�1 and a maximum of 2 min�1 was set for
all kinetic rates (for the nuclear decay rate the minimum was set to
1e-06 min�1). For the elongation rate, minimum and maximum
boundaries were set to 0.1 kb=min and 10 kb=min. To further
constrain the parameter space, we used the measured mRNA
expression ratios via the equations shown in Box 1 and the “expr”
keyword from lmfit. The upper and lower limits between parameter
ratios were given by the steady-state ratios plus and minus five
times its standard error. Taking Tfrc as an example, its membrane/
cytosol expression ratio (plus/minus standard error) is given by
relmem�TPMmem
relcyto�TPMcyto

¼ 0:45�200:6
0:15�24:0 ¼ 25:1 ð± 1:1Þ, where the TPM values were

multiplied with their corresponding relative mRNA abundance to
obtain an absolute steady-state expression ratio. Hence, the lower
and upper limit of the ratio k3

γ4
were set to 25:1� 5 � 1:1 ¼ 19:6 and

25:1þ 5 � 1:1 ¼ 30:6, respectively (in other words: k3 has to be at
least 19.6 times larger than γ4, but not more than 30.6 times). Per
gene, the kinetic parameters were fit in logarithmic space 200 times
with random initial conditions using a computationally inexpensive
local fitting method. Out of the ten lowest chi-squared fits, the
result with parameter values farthest from the parameter bound-
aries was chosen as best and final fit. The quality control involved
three steps: genes were excluded if the best fit showed (a) reduced
chi-squared >4, (b) relative standard deviation of the ten least chi-
squared fits of any parameter >0.05, or (c) nuclear or cytosolic
(cytosol-localized) or nuclear and membrane (membrane-localized)
parameter values at the maximum allowed boundary (see
Figs. EV2A–C). Standard errors on the parameters were calculated
as the square root of the diagonal elements of the inverse Hessian
matrix (1σ uncertainty output by lmfit). Relative standard errors
were the standard errors divided by their corresponding parameter
values. 75% of parameter estimates have a relative error smaller
than 19% (see Fig. EV2D). Rank correlations between parameters
are shown in Fig. EV2E. The cell cycle rate of roughly 14 h for
mESCs (Herzog et al, 2017; Waisman et al, 2019) confounds our
rate estimation only minimally, as the estimated rates are typically
an order of magnitude smaller than the average cell cycle.

Discriminating models with and without nuclear
mRNA degradation

The role and contribution of nuclear decay of poly(A) mRNA has
been under discussion (Schmid and Jensen, 2018). In our analysis,
we fitted four models to the poly(A) selection-based metabolic
labeling sequencing data: the 3-step and 4-step models, as
described earlier, both once including and once excluding a
nuclear decay parameter. To test if the measured mRNA dynamics
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are better explained by a model including nuclear decay, we
compared the Bayesian Information Criterion (BIC) from fit
results of models excluding (γ2¼ 0) and including (γ2 ≠ 0) a
nuclear decay parameter. We calculated the BIC difference between
the null model excluding and the extended model including
nuclear decay for all 9809 transcripts (see Fig. EV5A). For cytosol-
localized transcripts, the BIC values from the 3-step models were
compared. For undefined and membrane-localized transcripts, the
BIC values from the 4-step models were compared. A BIC
difference >10 corresponds to a Bayes factor >150 and shows very
strong evidence for the extended model, including nuclear decay
(Raftery, 1995). If further the standard error on the nuclear decay
parameter is smaller than the parameter value itself, i.e., the
estimation uncertainty excludes the possibility of the nuclear decay
being 0, we chose the model including nuclear decay for that
particular transcript. Based on these criteria, 579 (6% of
successfully fitted) transcripts were modeled with nuclear degrada-
tion, with the ratio of cytosol- and membrane localization being
similar to the ratio seen in all other transcripts. To test if certain
biological processes are enriched in the nuclear decaying
transcripts, a GO analysis including Wikipathways of the 579
transcripts was performed with GProfiler2 (v.0.2.3) taking all
successfully fitted transcripts as background. The results from the
over-representation analysis are shown in Fig. EV5C.

Transcription inhibition-derived subcellular half-lives

To validate our metabolic labeling-derived subcellular flow rates, we
inhibited transcription in mESCs using flavopiridol for 0, 30, 60, 120, and
240min followed by subcellular fractionation and RNA sequencing (as
specified above). Reads were aligned with STAR (v2.7.6) and counted
with RSEM (v1.3.3). Library sizes were normalized using genes with
known half-lives greater than 14 h (Herzog et al, 2017). Samples of each
time series were further normalized to the corresponding t = 0 time point
(Appendix Fig. S2C). We fitted a simple exponential decay model per
compartment for roughly 10,000 genes, giving the aggregated subcellular
turnover rates (see example in Appendix Fig. S2D), in contrast to the
rates of transition from one compartment to the next. Transcription
inhibition-derived half-lives are shown in Fig. 5C and Appendix Fig. S2E.

Model-derived half-lives

To compare the transitional, metabolic labeling-derived half-lives to the
aggregated, flavopiridol-derived half-lives, we generated model-derived
pulse-chase data from the transitional rates using the equations in Box 2
and the fact that the share of oldmRNA is given by oneminus the share of
newmRNA. To the model-derived pulse-chase data (n= 9862) we fitted a
simple exponential decay model (see example fit for a single gene in
Appendix Fig. S2A). For the subcellular compartments, the equations in

Box 2. Analytical solutions of the rescaled system and their usage in the fitting procedure

The analytical solutions to the rescaled ODE system (see Box 1, top right)
are shown. For intron-containing genes (n= 8548), solutions of the first,
second, third and fourth step are used to fit nuclear pre-, nuclear mature,
cytosolic and membrane-bound mRNA, respectively, with the fourth step
being used only for membrane-localized and undefined transcripts
(n= 1726). As indicated on the top right, we incorporate the transcript
elongation rate v to time-delay the solutions: for mature mRNA we fit on
exon level and d is the distance of the exon to the 3’ end, and for pre-
mRNA we fit all intronic regions together and d is the gene length times

0.1, with this heuristic factor being the mean relative exon distance to 3’
end across genes weighted by expression. δ is the overall delay of 5 min
until any labeling is experimentally observed. The modified time is set to 0
for all negative values. For intron-less genes or genes with reliable T2C
data present only for one exon (n= 1314), the first, second and third
solutions are used to fit nuclear mature, cytosolic and membrane-bound
mRNA, respectively, with the third step being used only for membrane-
localized or undefined transcripts (n= 318). In this case, transcript elon-
gation and pre-mRNA processing rates are not fit and ~t ¼ t� δ.

Modified time:Analytical solutions of the rescaled system BOX 2
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Box 2 can be used as is, while for the whole-cell compartment the
subcellular solutions are summed with their corresponding relative RNA
abundance factors. Model-derived aggregated half-lives (subcellular and
whole-cell) are used in Appendix Fig. S2B and Fig. 5E. Model-derived
whole-cell half-lives are also used in Fig. 5A.

Targeting signal and gene group annotations

Signal peptide and transmembrane helix annotations were downloaded
from Ensembl Biomart. We defined tail-anchored proteins as those
transmembrane domain-containing proteins lacking signal peptide, for
which the first transmembrane helix started 50 or less amino acids from
the C-terminus. A list of mitochondrial proteins encoded in the nuclear
DNAwas obtained fromMitocarta 2. Transcription factors were defined
by a list of mESC transcription factors from the Gifford lab.

Data availability

Metabolic labeling RNA-seq data are accessible from the NCBI Gene
Expression Omnibus (GEO) under the accession number GSE252199.
Flavopiridol transcription inhibition RNA-seq data are accessible from
the NCBI GEO under the accession number GSE256335. Data
processing andmodel fitting scripts are publicly available on GitHub at
https://github.com/steinbrecht/subcellular-SLAM.

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00073-2.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00073-2.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44320-024-00073-2
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Expanded View Figures

Figure EV1. Overview of mRNA expression and T2C labeling data.

(A) Differential expression analysis of whole-cell extract RNA sequencing data. Volcano plots showing BH-adjusted p values against fold changes logarithmized to base 2.
Facets show subsequent 4sU labeling times tested against either t=0min labeling for the high 4sU dosage (500 µM) or t = 60min labeling for the low 4sU dosage
(100 µM). Differentially expressed genes (padj < 0.05 & log2fc > 0.5, indicated by horizontal and vertical dashed lines) are shown as red dots and stable genes are shown
as black dots. Brackets indicate that both subcellular and whole-cell samples of the time point and 4sU concentration tested in the facet were excluded from further
analysis. Considering only data included in our main analysis, only one gene, Kantr, is differentially expressed and was removed from subsequent analyses. (B) Gene
expression in subcellular fractions. Histograms show TPM values averaged over all time points and replicates for nuclear, cytosolic and membrane fractions. Vertical
dashed lines indicate an average TPM of 1.5. If a gene has an average TPM >1.5 in at least one subcellular fraction, it is considered expressed. (C) Mitochondrial
contamination of the nuclear fraction. The ratio of the summed counts from all mt-DNA-encoded over all nuclear-encoded transcripts is shown for all samples (black dots)
split by fraction. Orange lines depict the median across samples. (D) Box plot of ratio between membrane and cytosolic expression (membrane enrichment) with
transcripts classified by encoded TS as in Fig. 4C. Classification from left to right: cytosol-localized transcripts with no TS (n = 6262), nuclear DNA-encoded mitochondrial
proteins (n = 763 with 661 being cytosol-localized), transcripts with tail-anchored transmembrane proteins (n = 78), membrane-localized transcripts with no known TS (n
= 531), transcripts encoding signal peptides (n = 310) or transmembrane helices (n = 956) or both (n = 47). Center lines of box plots depict the median values. Notches
show the 95% confidence interval of median values acquired through boot-strapping (n = 1000). Lower and upper hinges of box plots correspond to the 25th and 75th
percentiles, respectively. (E) Estimates of T2C conversion rate. Conversion rates of individual samples are plotted over 4sU labeling time. Conversion rates were estimated
fitting a Binomial mixture model to T and T2C count data of each sample. Color indicates compartment. Shape indicates 4sU concentration. Conversion rate increases for
high dosage (roughly two-fold increase from 15 to 60min), but stays constant for low dosage. (F) Comparison between samples labeled with 500 µM or 100µM 4sU for
60min. Boxes show the share of new to total mRNA in subcellular compartments with colors indicating specific replicates. Center lines of box plots depict the median
values. Lower and upper hinges of box plots correspond to the 25th and 75th percentiles, respectively. Although 4sU conversion rates are different between samples, see
(D), the share of new mRNA is similar. (G) Principal component analysis of the T2C labeling data using 2,000 most variable genes. Samples cluster by exposure time to
4sU rather than replicate, with nuclear pre-mRNA being separated from other compartments. Source data are available online for this figure.
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Figure EV2. Quality control of fit results.

(A) First quality control step. Histograms of reduced chi-squared, which is minimized during fitting (optimal value is 1). Vertical dashed line shows cutoff of 4. If the best fit
for a transcript has a value higher than the cutoff, the transcript is excluded. (B) Second quality control step. Histograms of relative standard deviation, calculated by
dividing the standard deviation of the ten best-fit results by the value of the best fit. All values < 1e-07 were set to 1e-07. Vertical dashed line shows cutoff of 0.05. If the
relative standard deviation for a transcript has a value higher than the cutoff, the gene is excluded. (C) Third quality control step. Histograms of the boundary cost for all
kinetic parameters (left) and elongation rate (right). Boundary cost is near 0 if fit value is far away from upper and lower limits and increases drastically as the value
approaches the allowed limits. A high boundary cost therefore indicates that the fit was stuck at maximum or minimum allowed value. Vertical dashed line shows cutoff of
10. If the best fit for a transcript has a parameter cost higher than the cutoff, the transcript is excluded. Transcripts with a elongation rate cost higher than the cutoff are
only excluded for analyses specifically regarding the elongation rate. Colors indicate mRNA localization. (D) Accuracy of parameter estimations. Histograms of the relative
standard error colored by parameter. Relative standard errors are the square root of the diagonal elements of the inverse Hessian matrix (1σ uncertainty output by lmfit)
divided by the corresponding parameter value. Median relative standard errors of each parameter are shown in brackets as percentages in the figure legend. 75% of
parameter estimates have a relative error smaller than 19%. (E) Heatmaps showing the Spearman rank correlation between kinetic parameters for cytosol- (left) and
membrane-localized (right) transcripts. Source data are available online for this figure.
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Figure EV3. Quality control of the transcript elongation rate.

(A) Accuracy of elongation rate estimations. Histogram of the relative standard error of the elongation rate. Relative standard errors are the square root of the diagonal
elements of the inverse Hessian matrix (1σ uncertainty output by lmfit) divided by the corresponding parameter value. 75% of the converged fits (n = 6496) have a
relative error smaller than 63% with an overall median of 30%. For boundary-limited estimates (n = 2007) errors were high or could not be determined. For illustration
purposes, here, relative standard errors containing infinities or NAs were set to 1000. (B) Comparison of estimated transcription elongation rate to published data (Shao
et al, 2022). Scatterplot shows converged elongation rates and from Shao et al measured in serum-naive state mESCs. Spearman rank correlation is shown on top left.
Black lines are 2-dimensional KDE to indicate density of points. Dashed, gray line is the identity line. (C) Sensitivity analysis for the elongation rate parameter. Regression
plots for transcripts of two exemplary genes, Myc and Tfrc, are shown. For all multiple-exons transcripts that do not show nuclear decay, we repeated the fitting procedure
fixing the elongation rate at -50%, -10%, +10% and +50% of its best-fit value and initializing with the best-fit values of the remaining parameters. Then, for each
transcript and parameter, we fitted a linear regression y ¼ mx, where y is the change in the fitted parameter and x is the fixed relative change of the elongation rate. The
slope m gives a measure of how much a parameter is influenced by changes in the elongation rate. (D) Overview of the sensitivity analysis for the elongation rate
parameter. Box plots show the distribution of the slopes from linear regression (see D) for all fitted parameters and across all transcripts with multiple exons (n = 7935).
Slopes were multiplied by 100 to represent relative change in percent. When the elongation rate is increased by 100%, the median change in the other parameters ranges
from 4% for the membrane decay to 14% for the pre-mRNA processing rate. Transcripts that show nuclear degradation (n = 566) were excluded here due to simplicity
reasons. Source data are available online for this figure.
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Figure EV4. Kinetic differences between different gene groups.

(A) Violin plots of pre-mRNA processing, nuclear retention, cytosolic and membrane half-lives for cytosol- (n = 7677) and membrane-localized (n = 1693) transcripts. (B)
Violin plots of pre-mRNA processing, nuclear retention and cytosolic half-lives for primary response genes (PRGs, n = 56), secondary response genes (SRGs, n = 37),
transcription factors (TFs, n = 709) and all other (n = 6875) transcripts. Only cytosol-localized transcripts were included. Definitions of PRGs and SRGs are taken from
(Uhlitz et al, 2017). For definition of TFs, see Methods. (C) GSEA based on the GO using only membrane-localized transcripts and ranking by membrane decay. All
significant terms (BH-adjusted p values <0.05) are shown. Color indicates normalized enrichment score. Annotated values are the median half-lives of leading edge genes
of each term. Source data are available online for this figure.
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Figure EV5. Nuclear degradation of polyadenylated mRNAs.

(A) Comparison between models excluding and including the nuclear degradation parameter γ2. Scatterplot shows the value difference between the Bayesian Information
Criterion (BIC) from fit results of models excluding (γ2¼ 0) and including (γ2 ≠0) a nuclear decay parameter over the share of nuclear degradation at overall nuclear
dynamics from the γ2≠0 model (n = 9809). For cytosol-localized transcripts, the BIC values from the 3-step models are compared. For undefined and membrane-localized
transcripts, the BIC values from the 4-step models are compared. Based on (Raftery, 1995), the model including nuclear degradation is chosen if the BIC difference exceeds
10 (colored green), otherwise the model without nuclear degradation is chosen (colored black). Further selection is based on γ2 � sγ2 >0 with sγ2 being the standard error

on the nuclear decay parameter. This test (true or false indicated by shape) checks that the 0 value is not included within the standard error and only if true the model with
nuclear degradation is chosen. (B) Violin plots showing pre-mRNA processing, nuclear retention, cytosolic stability and membrane stability half-lives for transcripts

modeled with (n = 579) and without (n = 9230) nuclear decay. Nuclear retention half-life is calculated as τ2 ¼ ln 2
k2þγ2

. Center lines of violin plots depict the median values.

(C) Results from a GO analysis of all transcripts modeled with nuclear decay. All significant results (BH-corrected p value <0.05) are shown. Source data are available
online for this figure.
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