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impairment 12 months after stroke
Friederike A. Arlt 1,2,30✉, Pia S. Sperber 1,3,4,5,30✉, Regina von Rennenberg1,2, Pimrapat Gebert6, Bianca Teegen7,
Marios K. Georgakis 8, Rong Fang 8, Anna Dewenter 8, Michael Görtler9,10, Gabor C. Petzold11,12, Silke Wunderlich13,
Inga Zerr 14,15, Martin Dichgans 8,16,17,18, Harald Prüss 1,2, Matthias Endres 1,2,5,19,20 On behalf of the DEMDAS Investigators*

© The Author(s) 2024

Patients suffering from strokes are at increased risk of developing post-stroke dementia. Serum anti-NMDA receptor autoantibodies
(NMDAR1-abs) have been associated with unfavorable post-stroke outcomes. However, their effect on specific cognitive domains
remains unclear. We used data from the prospective multicenter DZNE—mechanisms after stroke (DEMDAS) cohort, and measured
NMDAR1-abs in serum at baseline. Cognitive function was assessed with a comprehensive neuropsychological test battery at 6- and
12-months follow-up. We employed crude and stepwise confounder adjusted linear and logistic regression models as well as
generalized estimating equation models (GEE) to determine the relevance of NMDAR1-abs seropositivity on cognitive function after
stroke. 10.2% (58/569) DEMDAS patients were NMDAR1-abs seropositive (IgM:n= 44/IgA:n= 21/IgG:n= 2). Seropositivity was not
associated with global cognitive impairment after stroke. However, NMDAR1-abs seropositive patients performed lower in the
memory domain (βadjusted=−0.11; 95%CI=−0.57 to −0.03) and were at increased risk for memory impairment (ORadjusted= 3.8;
95%CI= 1.33–10.82) compared to seronegative patients, 12 months after stroke. Further, NMDAR1-abs were linked to memory
impairment over time in GEE from 6- to 12-months follow-up (ORadjusted= 2.41; 95%CI= 1.05–5.49). Our data suggests that
NMDAR1-abs contribute to memory dysfunction 1 year after stroke while not affecting other cognitive subdomains. Hence,
antineuronal autoimmunity may be involved in distinct mechanisms of post-stroke memory impairment. Clinical trial name and
registration number: The Determinants of Dementia After Stroke (DEMDAS; study identifier on clinical trials.gov: NCT01334749)

Molecular Psychiatry; https://doi.org/10.1038/s41380-024-02744-w

INTRODUCTION
A stroke is a devastating event with far-reaching consequences for
further life of the affected person. Despite the development of
highly effective treatments in recent decades, the global impact of
stroke on individuals, care takers, and economy remains enormous
[1]. While modern treatments have significantly reduced death
and physical disability after stroke, the burden of cognitive
impairment increases with increased survival and aging [2]. A
deterioration of cognitive abilities is commonly observed after
stroke, including after minor events and even after transient
ischemic attacks [3]. However, the precise mechanisms that lead

to cognitive impairment are not known. Hence, effective
prevention and treatment strategies are lacking [4]. Serum anti-
NMDA-receptor GluN1 (NR1) autoantibodies (NMDAR1-abs), pri-
marily of immunoglobulin (Ig) A and IgM isotype, have been
observed in presumably healthy individuals and in patients with
various diseases [5–8]. While previously thought to have beneficial
effects on ischemic brain lesion evolution in stroke [9, 10], they
have been associated with unfavorable post-stroke clinical
outcomes, including cognitive outcomes [7, 11, 12]. Recent work
suggests impaired neuropsychiatric outcomes after stroke, includ-
ing cognitive dysfunction, particularly in those with high titers as
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assessed by screening tests [12, 13]. Interestingly, similar findings
have been reported in NMDAR1-abs seropositive patients with
other diseases (e.g., cancer patients), suggesting a cross-disease
pathophysiological relevance of these antibodies [14–16]. It was
suggested previously that serum NMDAR1-abs may enter the
brain after blood-brain barrier disruption and exert pathological
effects [17, 18], which may explain cognitive dysfunction after
stroke. However, detailed and differentiated neuropsychiatric data
elucidating a potential link between NMDAR1-abs seropositivity
and cognitive impairment for stroke outcome are not available. In
the present study, we estimated the impact of NMDAR1-abs
seropositivity on global cognitive function and various subdo-
mains of cognitive function using high-quality prospective data
from the Determinants of Dementia After Stroke (DEMDAS) study.

SUBJECTS AND METHODS
Study design, registrations, and patient population
DEMDAS (study identifier on clinical trials.gov: NCT01334749) is an ongoing
national multicenter, prospective observational study with the aim to
investigatemechanisms leading to cognitive dysfunction and dementia after
stroke. Participating centers are listed in Supplementary (Suppl.) Table 1.
Within the study, 600 patients with ischemic or hemorrhagic stroke are
followed over time in person at seven different sites in Germany. A detailed
protocol of the study design has been published previously [19]. In brief,
patients aged at least 18 years with stroke defined by a new neurological
deficit within the previous 5 days and a new lesion on magnet resonance
imaging (MRI) or computer tomography are included. Patients with prior
dementia, defined as >64 sum points in the short version of the ‘Informant
Questionnaire on Cognitive Decline in the Elderly’ (IQCODE) [20], and
patients with a life expectancy of less than 3 years due to malignancy were
excluded. The total follow-up duration for study completion is planned for 5
years. For this investigation, data from the 6- and 12-months follow-up (FU)
visits were used. A detailed characterization of study participants was
performed at baseline.

Antibody measurements
Blood serum samples were taken from each participant at study inclusion
and stored at −80 °C before first-time ever thawing for antibody
measurement. NMDAR1-abs were measured at the Clinical Immunological
Laboratory Prof. Stöcker using reagents of the EUROIMMUN AG with fixed
cell-based assays using GluN1 transfected Human Embryonic Kidney 239
cells, and indirect immunofluorescence as previously described in detail
[21]. We measured IgM, IgA, and IgG isotype NMDAR1-abs, and any titer
above or equal 1:10 was considered seropositive. Titer dilution steps were
1:10, 1:32, 1:100, 1:320, and 1:1000.

Assessment of cognitive function and definition of outcome
parameters
Cognitive abilities in five different domains (language, memory, visuospa-
tial function, executive function, and attention) were assessed by a
comprehensive neuropsychological testing. Mainly, the Consortium to
Establish a Registry for Alzheimer’s Disease Plus (CERAD-Plus) battery in
addition to other tests were used, in line with a previous work [22, 23].
CERAD-Plus includes a test for language-specific function, “Semantic and
Phonemic Fluency” and “Boston Naming” [22], and additionally we used
the language items from Mini Mental State Examination (MMSE) [24].
Furthermore, to examine memory function, CERAD-Plus includes Word List
Learning/Recall, Recognition, and Figure Recall. Immediate and delayed
recall was tested by the Rey-Osterrieth Complex Figure (ROCF) [25]. To
examine visuospatial function, CERAD-Plus includes the Figure Drawing
Test and we applied additionally the copy test of ROCF [22, 25]. For
executive function, CERAD-Plus uses the Trail Making Test Part B and the
Stroop-Colour-Word-Interference Test [26]. We tested attention with the
Trail Making Test Part A from CERAD-Plus and additionally with the Digit-
Symbol-Substitution Test of the Wechsler Intelligence Scale [27]. Age, sex,
and education standardized z-scores were calculated from a reference
normative population, as previously described [23]. Next, a domain-specific
z-score was averaged for each domain and subsequently, these were
calculated into a global cognitive score as previously described, defining
the global cognitive function in our study [23]. Performance of less than
−1.5 z-score points was used to define impairment in any cognitive

domain or in global cognitive function, respectively [28]. At baseline,
cognitive impairment was assessed using Montreal Cognitive Assessment
(MoCA) and (if MoCA was unavailable) MMSE scores [29]. Impairment was
defined as <26 points in MoCA, or <24 in MMSE [30, 31].

Neuroimaging
Cranial MRI scans (3 Tesla, Siemens Healthineers, Erlangen, Germany) were
conducted at baseline. The MRI protocol included 3D T1-weighted
magnetization prepared rapid gradient echo (MPRAGE), 3D fluid-
attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI)
with various diffusion directions, T2-weighted turbo spin echo, and T2*-
weighted fast low angle shot (FLASH) gradient echo. Intracranial volumes,
total brain volumes, and stroke lesion size were derived as previously
described [23]. Hippocampal volumes were assessed using the FreeSurfer
software (version 5.3; http://surfer.nmr.mgh.harvard.edu/). Normalized
brain volumes were adjusted to total intracranial volumes to account for
differences in head size (normalized brain volume= [total brain volume+
infract volume]/total intracranial volume). Hippocampal volumes were
likewise adjusted to intracranial volumes (normalized hippocampal
volume= [right hippocampal volume+ left hippocampal volume]/total
intracranial volume). Hippocampal volumes were calculated for patients
without acute stroke lesions in the hippocampal area.

Statistics
Continuous data is presented as mean with standard deviation (SD) and
median along with interquartile range (25th and 75th percentile), while
categorical variables are displayed as absolute counts (N) and correspond-
ing percentages (%). We calculated absolute standardized mean differ-
ences to evaluate how well the groups of NMDAR1-abs seropositive and
seronegative patients are balanced regarding baseline characteristics [32].
To estimate effects of NMDAR1-abs serostatus on global and domain-
specific test performance at 6- and 12-months FU, we used linear
regression models. Regarding the binary cognitive outcomes at both
timepoints, we used logistic regression models. We calculated beta effects
and odds ratios (OR) with corresponding 95% confidence intervals (95%CI),
respectively. To estimate the effects of NMDAR1-abs seropositivity on
cognitive outcome over two timepoints, i.e., 6 to 12 months after stroke,
we calculated ORs from generalized estimating equation (GEE) models,
comparing seropositive vs. seronegative participants, while encountering
the dependency of observations (within subject measurements). To adjust
for confounding factors, we conducted a stepwise adjustment: the first
model was to explore the unadjusted association (crude, model 1), a
partially adjusted model was built with age (continuous), sex (dichot-
omous), and education (in school educational years, continuous) (model 2),
and a fully adjusted model incorporating a propensity score (model 3). The
propensity score was calculated from logistic regression models including
age (continuous), sex (dichotomous), education (continuous), ever smoking
(dichotomous), habitual alcohol consumption (dichotomous), severe
chronic disease leading to retirement, obligate support in daily life, or
manifest reduction of life quality (dichotomous), previous stroke or
transitory ischemic attack (dichotomous), cardiovascular diseases (dichot-
omous), and other organic brain diseases including other cerebrovascular
events excluding stroke or transitory ischemic attack (dichotomous), with
NMDAR1-abs serostatus as dependent variable. All confounders were
considered to have a potential impact on NMDAR1-abs serostatus at time
of assessment and on the respective cognitive outcome.
We additionally investigated post-hoc whether our observed results may

be influenced by other neuropsychiatric sequelae: To measure the severity
of depressive symptoms, we used the 20-item center for epidemiological
studies depression (CES-D) scale, which has been validated for use in
German and in stroke patients [33, 34]. To measure fatigue, we used the
first 20 items (excluding the visual analog scales, i.e., item 21–24) of the
Fatigue Assessment Questionnaire (FAQ), which was also validated for the
use in stroke patients [35, 36]. We visually inspected the linear relationship
of these measures with z-scores from the memory domain at 6- and 12-
month post-stroke and calculated correlation coefficients. Additionally, we
investigated whether the observed effects on the memory domain may be
explained by hippocampal volume at baseline. Therefore, we correlated
baseline hippocampal stroke volumes with the z-scores of the memory
domain at 6- and 12-month post-stroke.
Data preparation and statistical analyses were conducted using SPSS

Statistics 28.0.1.0 (IBM, Armonk, NY, USA). Data visualization was
conducted using R version 4.2.3 with the ggplot2 package and Prism
Version 9.4.1 (GraphPad Software, San Diego, CA, USA).
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Ethics and standard protocol approvals
The DEMDAS study was conducted in accordance with the guidelines of
the Declaration of Helsinki and was approved by the local ethics
committees of the participating centers. All participants gave written
informed consent to participate in the study and to the analysis of serum
biomarkers. Our reporting follows the Strengthening the Reporting of
Observational Studies in Epidemiology (STROBE) guidelines [37].

RESULTS
Patient population
Between January 2014 and January 2019, DEMDAS recruited a
total of 600 patients, of whom 569 patients were tested for any
serum NMDAR1-abs and were thus eligible for our analysis. The
median day of blood sampling after index stroke was 1 (IQR: 1–2).
The flowchart depicted in Fig. 1 describes the inclusion and

exclusion of patients and provides an overview of the number of
neuropsychological examinations after 6 and 12 months. The most
common reason for omission of serological antibody testing was
patient refusal to have blood drawn, and missing complete
autoantibody testing in four patients was due to limited serum
amounts. The lack of a complete neuropsychological examination
was mainly due to lost follow-ups, patients’ inability to complete
the examination for health reasons, or because the patient
preferred to be followed by mail or telephone, which did not
include comprehensive neuropsychological testing. Overall, 450
patients at 6 months (80.7% of seronegatives vs. 63.8% of
seropositives) and 423 patients at 12 months (75.5% of
seronegatives vs. 62.1% of seropositives) received a complete
neuropsychological assessment that allowed calculation of a
global cognitive score. An incomplete cognitive assessment
testing at least one cognitive domain was obtained in 471
patients at 6-months FU and 438 patients at 12-months FU,
respectively. A total of 13 patients died (2 seropositive and
11 seronegative), corresponding to 2.3% of the missing data.

Baseline characteristics
Baseline characteristics of the original study group (n= 569) are
shown in Table 1, stratified by NMDAR1-abs serostatus, and with
corresponding absolute standardized mean differences. Overall,
the cohort included 66.4% men and had predominantly ischemic
strokes (97.4%). The majority of patients had mild to moderate
strokes with a median NIHSS score of 3 (IQR: 1–5). At baseline
autoantibody testing, 58 patients (10.2%) were seropositive for any
form of NMDAR1-abs, with IgM (n= 44) and IgA (n= 21)
predominating and only 2 patients having NMDAR1-abs of the
IgG isotype. Seropositive patients were generally older with a
median age of 74 (IQR: 67–80) vs. 68 years (IQR: 60–75). In addition,
seropositive patients had more cardiovascular risk factors, includ-
ing a history of previous ischemic cerebrovascular events (19.0% vs.
12.3%). Imaging data showed similar stroke lesions size in both
groups (mean of 0.20% in seropositive vs. 0.15% in seronegative
patients). However, hippocampal volumes and total brain volumes
(normalized to intracranial volumes) were slightly smaller in
seropositive patients (4.3‰ vs. 4.7‰; mean difference: 0.4; 95%
CI= 0.2 to 0.6 and 66% vs. 68%; mean difference: 2.4; 95%CI= 0.76
to 3.98). Overall, 24.4% of patients received intravenous thrombo-
lysis therapy, with more seronegative than more seropositive
patients (25.0% vs. 17.2%). Cognitive impairment at baseline
assessed with bedside screening tests (i.e., <26 points in MoCA, and
<24 in MMSE) was noted in 53.4% of the total cohort, without major
differences between seropositive and seronegative patients (52.9%
of seronegative vs. 58.2% of seropositive patients). Apolipoprotein
E genotyping and history of depression at baseline also revealed no
differences between seronegative and seropositive patients.

NMDAR1-abs and cognitive outcome—descriptive data
Overall, cognitive test performance (global and domain specific)
improved from 6 to 12 months after stroke as shown in Fig. 2.
Z-scores for global cognitive function improved in both groups
with similar total score point differences (Δ= 0.13 score points in
seronegative and Δ= 0.14 in seropositive patients, Fig. 2A).
However, seropositive patients started with lower global z-scores
at 6 months (mean of −0.31 [SD= 0.64] vs. −0.18 [SD= 0.65],
Fig. 2A) thereby also reaching a lower mean global z-score at 12-
months FU compared to seronegative patients (mean of −0.17
[SD= 0.72] vs. −0.05 [SD= 0.67]). Likewise, relative amounts of
patients with global cognitive impairment were different at
6-months FU with 18/409 (4.4%) seronegative compared to 3/37
(8.1%) seropositive patients. Moreover, at 12-months FU, global
cognitive impairment decreased in seronegative to only 11/371
(2.9%) while 3/37 (8.1%) seropositive patients remained impaired
(Suppl. Table 2). In cognitive test performance of the memory
domain, NMDAR1-abs seropositive patients showed also lower

Fig. 1 Flowchart of patient inclusion and exclusion. Gray boxes
indicate that participants were included in the analysis, while red
boxes represent participants that were excluded from the analysis.
Autoantibody indicates anti-NMDAR1 (GluN1) autoantibodies. MFU
months follow-up.
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Table 1. Baseline characteristics of DEMDAS patients stratified upon anti-NMDAR1 autoantibody serostatus.

Baseline characteristics Total Seronegative Seropositive ASMD

DEMDAS participants, anti-neuronal
antibody testing, n (%)

569 (100) 507 (89.1) 58 (10.2)

Blood sampling days after index
stroke, median (IQR)

1 (1–2) 1 (1–2) 2 (1–2) 0.110

Demographic variables

Age in years, median (IQR) 69 (60–76) 68 (60–75) 74 (67–80) 0.528

Male sex, n (%) 378 (66.4) 335 (66.1) 42 (72.4) 0.138

Years of education, median (IQR) 13 (12–16) 13 (12–16) 13 (12–17) 0.056

Cardiovascular risk factors and previously existing diseases

Systolic blood pressure in mmHg,
median (IQR)

139 (128–151) 139 (129–151) 139 (122–149) 0.141

Diastolic blood pressure in mmHg,
median (IQR)

80 (70–89) 80 (70–89) 79 (70–85) 0.287

Body mass index in kg/m2, median
(IQR)

26.6 (24.3–29.2) 26.5 (24.2–29.2) 27.5 (24.6–29.4) 0.018

Habitual alcohol consumption, n
(%)

419 (73.9) 375 (74.3) 41 (70.7) 0.116

Ever smoker, n (%) 342 (60.1) 307 (60.6) 31 (53.4) 0.144

History of hypertension, n (%) 318 (55.9) 282 (57.0) 35 (62.5) 0.113

History of diabetes, n (%) 84 (14.8) 72 (14.2) 12 (20.7) 0.171

History of any hyper-/
dyslipidemia, n (%)

165 (29.7) 141 (28.5) 23 (39.7) 0.236

History of peripheral artery
disease, n (%)

16 (2.8) 13 (2.6) 3 (5.3) 0.139

History of coronary artery disease,
n (%)

32 (5.6) 25 (5.0) 7 (12.1) 0.257

History of myocardial ischemia, n
(%)

31 (5.4) 26 (5.1) 5 (8.6) 0.138

History of angina pectoris, n (%) 14 (2.5) 13 (2.6) 1 (1.8) 0.057

History of atrial fibrillation, n (%) 63 (11.2) 55 (11.0) 8 (14.3) 0.100

History of any cardiovascular
disease, n (%)

392 (70.0) 347 (69.4) 44 (77.2) 0.177

Previous stroke or TIA, n (%) 74 (13.1) 62 (12.3) 11 (19.0) 0.185

History of other organic brain
diseasea, n (%)

18 (3.2) 15 (3.0) 3 (5.2) 0.070

History of severe diseaseb, n (%) 68 (12.0) 58 (11.5) 9 (15.5) 0.119

History of depression, n (%) 35 (6.1) 33 (6.5) 2 (3.4) 0.209

APOE genotype 0.195

0 ε4 allele, n (%) 383 (78.6) 346 (78.6) 35 (81.4)

1 ε4 allele, n (%) 96 (19.7) 86 (19.5) 8 (18.6)

2 ε4 alleles, n (%) 8 (1.6) 8 (1.8) 0 (0.0)

Index stroke classification 0.070

Ischemic stroke, n (%) 554 (97.4) 493 (97.2) 57 (98.3)

Hemorrhagic stroke, n (%) 15 (2.6) 14 (2.8) 1 (1.7)

TOAST, n (%) 0.276

Large artery atherosclerosis 155 (28.0) 134 (27.2) 19 (33.4)

Cardio embolism 126 (22.7) 113 (22.8) 13 (22.8)

Small vessel disease 66 (11.9) 59 (12) 7 (12.3)

Dissection 20 (3.6) 19 (3.9) 1 (1.8)

Other etiologyc 42 (7.6) 56 (11.4) 5 (8.8)

Undetermined etiology 105 (18.8) 96 (19.5) 7 (12.3)

Diagnostic workup incomplete 41 (7.4) 35 (7.1) 6 (10.5)

Intravenous thrombolysis, n (%) 139 (24.4) 127 (25.0) 10 (17.2) 0.224
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z-scores at both timepoints with similar total score point
differences (Fig. 2C). In line, relative amounts of memory
impairment were higher in seropositive compared to seronegative
patients at 6-months FU (6/40 (15%) vs. 32/425 (7.5%), Suppl.
Table 2). Similar to global cognitive impairment, seronegative
patients showed less memory impairment with only 15/396
(3.8%), while 6/38 (15.8%) seropositive patients remained
impaired after 12 months (Suppl. Table 2). The observed
differences in memory performance at the 12-month FU between
seropositive and seronegative patients appeared to be mainly
driven by those with IgA antibodies. In this subgroup of
seropositive patients, z-scores showed only minimal improvement
from the 6- to the 12-month FU, in contrast to patients with IgM
antibodies (Suppl. Fig. 1C). Z-scores and counts of cognitively
impaired individuals in other cognitive domains are shown in
Fig. 2B, D, E, F, Suppl. Fig. 1, and Suppl. Table 2.

NMDAR1-abs and cognitive outcome—inferential analyses
With these striking descriptive differences in cognitive test
performance, we next analyzed the effect of NMDAR1-abs
serostatus on cognitive outcome in stepwise adjusted multiple
regression models. Here, neither an effect of NMDAR1-abs
serostatus on global cognitive performance, as estimated by
linear regression, nor on global cognitive impairment, as
estimated by logistic regression models was evident at either
timepoint (6-months FU performance: βModel3=−0.05; 95%CI=

−0.03 to 0.12, p= 0.36 and 6-months FU impairment: ORModel3=
1.7; 95%CI= 0.46 to 6.19, p= 0.39; 12-months FU performance:
βModel3=−0.04; 95%CI=−0.34 to 0.14, p= 0.40 and 12-months
FU impairment: ORModel3= 2.8; 95%CI= 0.74 to 11.06, p= 0.13).
For detailed data, please refer to Fig. 3A, B and Suppl. Tables 3−6.
In domain-specific analyses, at 6-months FU, seropositive patients

performed worse in the memory domain compared to seronegative
patients (βModel1=−0.10; 95%CI=−0.55 to −0.03, p= 0.03; βMo-

del2=−0.09; 95%CI=−0.53 to −0.01, p= 0.04; βModel3=−0.09; 95%CI=−0.49
to 0.04, p= 0.09) (Suppl. Table 3). However, we observed no distinct
effect on memory impairment (ORModel3= 1.7; 95%CI= 0.64 to 4.63,
p= 0.28) (Fig. 3A and Suppl. Table 5) as determined by our statistical
models. NMDAR1-abs serostatus was not associated with any other
domain-specific cognitive outcome at 6-months FU, such as
language (βModel3= 0.03; 95%CI=−0.18 to 0.36, p= 0.52; Fig. 3A
and Suppl. Table 3-4). 12 months after stroke, seropositive patients
performed lower in the memory domain (βModel1=−0.10; 95%
CI=−0.55 to −0.02, p= 0.03, βModel2=−0.10; 95%CI=−0.54 to
−0.01, p= 0.04, βModel3=−0.11; 95% CI=−0.57 to −0.3, p= 0.03),
and were at increased risk for memory impairment across all models
(ORModel1= 4.8; 95% CI= 1.73 to 13.12, p= 0.01, ORModel2= 3.7; 95%
CI= 1.28 to 10.41, p= 0.02, ORModel3= 3.8; 95%CI= 1.33 to 10.82,
p= 0.01; Fig. 3B and Suppl. Tables 4+ 6). This association was
exclusively evident for the memory domain (Fig. 3B and Suppl.
Table 4+ 6). In addition, over 6- to 12-months FU together, the effect
of NMDAR1-abs on memory impairment remained consistent

Table 1. continued

Baseline characteristics Total Seronegative Seropositive ASMD

MRI variables

Stroke lesion volume in mm3,
median (IQR)

2248 (528–12,652) 2144 (528–13,136) 2804 (402–9936) 0.073

Normalized stroke lesion volumed

in %, median (IQR)
0.15 (0.03–0.78) 0.15 (0.03–0.78) 0.20 (0.03–0.61) 0.078

Total brain volumee in mm3,
median IQR

1,042,817
(953,040–1,138,041)

1,048,148
(957,922–1,143,259)

1,015,360
(936,025–1,094,772)

0.324

Normalized brain volumed in %,
mean SD

68 (5.4) 68 (5.4) 66 (5.2) 0.464

Total hippocampal volume
(left+ right) in mm3, median IQR

7203 (6566–7955) 7252 (6684–7981) 6617 (5742–7430) 0.510

Normalized hippocampal volumed

in ‰, mean SD
4.7 (0.6) 4.7 (0.6) 4.3 (0.7) 0.505

Hippocampal stroke, n (%) 41 (7.7) 38 (8.0) 3 (5.7) 0.093

White matter lesionsf, n (%) 349 (61.4) 307 (60.7) 38 (65.5) 0.190

Chronic stroke lesions, n (%) 161 (29) 144 (29.1) 15 (26.8) 0.051

Clinical/cognitive assessment

NIHSS, median (IQR) 3 (1–5) 2 (1–5) 3 (1–5) 0.139

Baseline MoCA, median (IQR) 25 (22–27) 25 (22–27) 24 (22–27) 0.286

Cognitive impairment at baselineg,
n (%)

291 (53.4) 257 (52.9) 32 (58.2) 0.107

IQCODE score, median (IQR) 48 (48–50) 48 (48–49) 48 (48–50) 0.052

Baseline mRS, median (IQR) 2 (1–3) 2 (1–3) 2 (1–2) 0.005

Due to rounding, values might not add to 100%. Missing values were <10% except for APOE Genotyping, (n= 487), Baseline MoCA (n= 505).
ASMD absolute standardized mean difference, TIA transitory ischemic attack, APOE Apolipoprotein E, NIHSS National Institutes of Health Scale, MMSE Mini
Mental State Examination, MoCA Montreal Cognitive Assessment, IQCODE Informant Questionnaire on Cognitive Decline in the Elderly, mRS modified ranking
scale.
aincluding other cerebrovascular events (excluding ischemic stroke and transitory ischemic attack).
bsevere disease that led to retirement or obligate support in daily life or manifest reduction of quality of life.
cother defined causes, and several potential causes.
ddivided by total intracranial volume.
ebrain volume+ infarct volume.
gany white matter lesions: punctual, early confluent, wide confluent.
gMoCA < 26 or MMSE < 24 if MoCA was not available (n= 64).
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(ORModel3= 2.4; 95%CI= 1.05 to 5.49, p= 0.04; Fig. 3C and Suppl.
Table 7). Again, this link was not observed in any other cognitive
domain (e.g., language ORModel3= 0.98; 95%CI= 0.21 to 4.52,
p= 0.98; Fig. 3C and Suppl. Table 7). Although the point estimate
of the GEE analysis suggested that NMDAR1-abs seropositive patients
have an increased risk for global cognitive impairment, this direction
was not conclusively confirmed by the confidence interval, and the
data were too imprecise to draw conclusions (ORModel3= 2.11; 95%
CI= 0.65 to 6.88, p= 0.22) (Fig. 3C). The complete data are presented
in Suppl. Table 7.

Post-hoc exploration of the relationship between other
neuropsychiatric outcomes and baseline hippocampal volume
with memory performance during follow-up
Mean CES-D and mean FAQ appeared to be similar in seropositive
and seronegative patients during follow-up (Suppl. Table 8). We
visually explored the linear relationship of depressive symptoms
(CES-D) and fatigue symptoms (FAQ) with z-scores of the memory
tests and calculated correlation coefficients, which rendered low
correlation of these two other neuropsychiatric outcomes at both
timepoints (Fig. 4). Additionally, hippocampal volumes at baseline
did not show a strong correlation with memory z-scores at both
follow-up timepoints (Fig. 5).

DISCUSSION
In this analysis of the DEMDAS stroke cohort, serum prevalence of
NMDAR1-abs, mainly of the IgM and IgA isotype, was 10.2%.
Seropositivity for NMDAR1-abs was associated with poorer
memory performance compared to seronegative patients and
with memory impairment at 12 months post-stroke, as well as
from 6 to 12 months combined. In contrast, seropositivity was not

associated with global cognitive function or impairment, nor with
any of the other cognitive subdomains.
While the proportion of NMDAR1-abs serum prevalence varied

between 13 and 23% in other stroke cohorts [12, 38], the
prevalence of NMDAR1-abs in our study (10%) was somewhat
lower. Similar to another study, serum prevalence was higher in
older and in male patients [39]. The high frequency of NMDAR1-
abs in healthy individuals and patients with different diseases,
calls into question a pathological significance of seropositivity
per se. Following ischemic stroke the blood brain barrier is at least
focally disrupted, potentially allowing antibodies to access the
brain [40]. In agreement with others, we therefore hypothesize
that damage to the blood brain barrier may be an additional
necessary factor for NMDAR1-abs to exert pathological effects
[41–43].
Our data extend recent findings linking serum prevalence of

NMDAR1-abs and neuropsychiatric outcome following stroke
[11, 12]. In contrast to a recent work [12], we found no clear
association of seropositivity with global cognitive function after
stroke in this study. This could be explained by a different duration
of follow-up (3 years vs. 1 year), as in our study, effects became
only clearly apparent after 12 months (not yet after 6 months). Our
current and previous data therefore suggest that effects of serum
NMDAR1-IgAs and -IgMs may manifest only over time after stroke.
A possible explanation could be an antibody-mediated down-
regulation of NMDA-receptors with subsequent effects on
synaptic plasticity and thereby on long-term regenerative
processes after stroke [44–46].
An association between NMDAR1-abs and decreased cognitive

abilities has been established in several other cohorts and various
disorders [8, 14–16]. It is plausible though that previously
observed associations of NMDAR1-abs with global cognitive

Fig. 2 Global and subdomain scoring from the Consortium to Establish a Registry for Alzheimer’s Disease Plus’–battery (CERAD-Plus)
from anti-NMDAR1 autoantibody seronegative and seropositive patients. Red dots represent single participants’ z-scores of anti-NMDAR1
autoantibody seronegative patients while blue dots display single participants’ z-scores of anti-NMDAR1 autoantibody seropositive patients,
with a boxplot overlay and emphasized zero-line (red dashed line). A Global cognitive test performance. B Test performance in the language
domain. C Test performance in the memory domain. D Test performance in the visuo-spatial domain. E Test performance in the executive
domain. F Test performance in the attention domain. Age, sex, and education standardized z-scores were calculated from a reference
normative population. MFU months follow-up.
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performance are mainly attributable to dysfunction in the memory
domain, as supported by findings regarding immediate memory,
from one respective study [12].
The link between NMDAR1-abs seropositivity and reduced

memory function is particularly intriguing and biologically plausible
given the high density of NMDA-receptors in the hippocampus. In
fact, we found slightly smaller hippocampal volumes in seropositive
patients already at baseline. However, the effect of seropositivity on
the memory impairment was only evident after 12 months, and
correlations of memory z-scores at follow-up timepoints and

hippocampal volumes at baseline were low. Baseline hippocampal
volumes therefore do not appear as the main factor for memory
function in the long term after stroke. However, whether
seropositivity impacts hippocampal volumes over time upon blood
brain barrier impairment due to stroke remains to be determined.
While some studies question whether NMDA-receptors are inter-
nalized after binding of IgA/M NMDAR1-abs [47, 48], evidence
shows at least IgA binding to hippocampal NMDA receptors,
however, with lower affinity than IgG, possibly leading to local
‘latent’ autoimmunity [14, 41, 49]. Effects on memory performance
may be primarily attributed to NMDAR1-abs IgA antibodies, as
observed differences in our cohort were most pronounced in
patients with IgA isotype antibodies. However, the sample size was
too small to further investigate the effects by isotype stratification.
NMDAR1-abs seropositive patients in our study were more likely

to have ischemic cerebrovascular events before the index stroke
compared with seronegative patients (19% vs. 12%). This may
suggest that seropositive patients have a higher baseline risk of
cerebrovascular events [7], or that NMDAR1-abs formation is
induced by cerebrovascular events, although other studies have
challenged this notion [7, 11, 43].
Cardiovascular risk factors as potential confounders did not

lead to major changes in point estimates in our memory domain
analyses. In line with previous work [50], this suggests that
vascular risk factors do not particularly influence memory
function. In contrast, intravenous thrombolytic therapy could
modify the effect of NMDAR1-abs on cognitive outcomes, as
tissue-type plasminogen activator (tPA) has been shown to
affect blood brain barrier integrity and neuroinflammation as
well as neuronal survival by altering NMDAR signaling in
endothelial and neuronal cells [51]. Since our analysis revealed
too large CIs after excluding patients treated with rtPA (data not
shown), future studies with larger cohorts should investigate the
role of rtPA in this context.
Interestingly, neuropsychiatric outcomes (i.e., depression, fati-

gue) did not appear to be substantially different in NMDAR1-abs
seropositive compared to seronegative patients at either follow-
up timepoint, which is in contrast to previous study results
[12, 52]. Since these outcomes were generally only weakly
correlated with memory function in our study, we infer that
memory function is not majorly impacted by these conditions,
highlighting a specific and independent mechanisms despite
additional neuropsychiatric findings.
In a previous analysis of the DEMDAS cohort, we found a robust

connection between small vessel disease burden in baseline MRI
and cognitive impairment at follow-up timepoints at global and
subdomain levels, with exception of the memory domain [23]. This
again suggests distinct underlying mechanisms leading to
memory impairment vs. impairment in other cognitive domains
after stroke. Taken together, our data might reveal a novel
subtype of post-stroke cognitive impairment characterized by
memory dysfunction, however exact mechanisms of post-stroke
inflammation and potential autoimmunity remain unclear [53].

Strengths and limitations
A clear strength of the study is the detailed neuropsychological
testing with the CERAD battery and the size of the prospectively
analyzed cohort. However, the relatively small number of
seropositive patients (n= 58) limits the precision of our estimates
as indicated by large CIs. Another major limitation is the short
follow-up time and the limited access to imaging data as no MRI
was acquired after 12 months. Future investigation of domain-
specific cognitive outcomes and concurrent data on hippocampal
volumes over time might elucidate imaging correlates of memory
impairment in NMDAR1-abs seropositivity after stroke. The
frequency of missing data from patients at 6 and 12 months
was 16.8% and 22.8%, respectively, which is not unusual in
observational studies. Although baseline characteristics were not

Fig. 3 Global and domain-specific cognitive impairment in
association to anti-NMDAR1 autoantibody serostatus. Forest plots
representing odds ratios (dots) and corresponding 95% confidential
intervals (lines) assessing the association of anti-NMDAR1 autoanti-
body seropositivity and global and domain-specific binary outcomes
in propensity score-adjusted logistic regression models at 6-months
follow-up (A), at 12-months follow-up (B), and in logistic GEE analysis
from 6- to 12-months follow-up (C). Propensity scores were calculated
from logistic regression models including age (continuous), sex
(dichotomous), education (continuous), ever smoking (dichotomous),
habitual alcohol consumption (dichotomous), severe disease (dichot-
omous), previous stroke or transitory ischemic attack (dichotomous),
cardiovascular diseases (dichotomous), and other organic brain
diseases (dichotomous), with NMDAR1-abs serostatus as dependent
variable.MFUmonths follow-up. * Indicates statistical significancewith
the p-value threshold set at <0.05.
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different between patients who dropped out of the study and
those who remained in the study, lost-to-follow-up may be
differential. In this line, follow-up rates were higher in seronega-
tive participants than in seropositive patients.
Our data add to a growing body of evidence derived from

clinical observations pointing towards a functional relevance of
NMDAR1-abs for cognitive outcomes after stroke, particularly
memory function. The underlying distinct pathophysiological
mechanisms need to be studied in the future using experimental
stroke models and large patient cohorts.

DATA AVAILABILITY
All primary data and analyses scripts are available from the responsible principal
investigator (matthias.endres@charite.de) upon reasonable request.
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