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Abstract

Pathology has always been fueled by technological advances.Histology pow-
ered the study of tissue architecture at single-cell resolution and remains a
cornerstone of clinical pathology today. In the last decade, next-generation
sequencing has become informative for the targeted treatment of many
diseases, demonstrating the importance of genome-scalemolecular informa-
tion for personalizedmedicine.Today, revolutionary developments in spatial
transcriptomics technologies digitalize gene expression at subcellular reso-
lution in intact tissue sections, enabling the computational analysis of cell
types, cellular phenotypes, and cell–cell communication in routinely col-
lected and archival clinical samples. Here we review how such molecular
microscopes work, highlight their potential to identify disease mechanisms
and guide personalized therapies, and provide guidance for clinical study
design. Finally, we discuss remaining challenges to the swift translation of
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Next-generation
sequencing (NGS):
high-throughput DNA
sequencing methods
for rapid, cost-effective
analysis of nucleotide
sequences

Omics: large-scale
studies of biological
molecules or systems,
such as genomics,
transcriptomics,
proteomics, or
metabolomics

Tissue dissociation:
process of breaking
down tissue into single
cells while preserving
molecular integrity for
analysis

high-resolution spatial transcriptomics technologies and how integration of multimodal readouts
and deep learning approaches is bringing us closer to a holistic understanding of tissue biology
and pathology.

BACKGROUND

Technological innovation is a driving force of breakthroughs in medicine. For example, mi-
croscopy has been one such disruptive technology, enabling the analysis of tissue architecture at
single-cell resolution and playing a central role in the development of modern pathology. In the
19th century, early spatial investigations of healthy and diseased tissues by Rudolf Virchow and
others revealed how alterations in cellular ecosystems give rise to diseases (1). Today, histology is
still at the cornerstone of clinical pathology, underlying the power of tissue morphology in dis-
criminating between different disease entities, predicting patient outcomes, and guiding treatment
decisions.

Nevertheless, linking tissue architecture and the underlying (dys)function is far from trivial.
In fact, the identification of disease mechanisms and therapeutic targets greatly benefited from
molecular readouts about tissue genetic makeup, gene expression, and protein levels. In 2003,
the completion of the Human Genome Project (2) represented a turning point in molecular bi-
ology, fostering the development of high-throughput assays that can simultaneously assess entire
genomes, epigenomes, and transcriptomes. Such next-generation sequencing (NGS) technologies
then became the foundation for precision medicine, enabling accurate diagnosis and personalized
treatment strategies. Especially in oncology, NGS approaches refined tumor molecular subtyp-
ing, improved treatment efficacy, and reduced treatment-related side effects (3).NGS technologies
thus represent another prime example of the impact that novel technologies have on clinical care.
However, current applications mostly rely on bulk readouts, which average gene expression across
millions of cells from different cell types and are unable to distinguish clinically relevant disease
heterogeneity.

In the last decade, an ever-growing arsenal of single-cell omics emerged as powerful tools
in biomedical research, providing more and more detailed information about cellular molecular
biology. Highly parallel, multiomic profiling of cellular genomes, epigenomes, and transcrip-
tomes revolutionized our ability to characterize cellular heterogeneity (4), identifying rare cell
types and uncovering a multitude of cellular phenotypic states (5). Single-cell omics enabled the
precise reconstruction of cellular trajectories and lineages in development, homeostasis, and dis-
ease of tissues and even whole organisms (6). Analyzing experimental models and clinical samples
at single-cell resolution revealed the diversity and remodeling of disease-related cell types and
molecular states with important implications for patient stratification and personalized therapy.
As an example, the LifeTime initiative launched in 2022 aims to leverage single-cell technologies
for mapping how cells deviate from their healthy trajectory toward disease states, enabling the
early detection and timely interception of complex diseases (7).

Despite the power of single-cell technologies, the need for tissue dissociation and the lack of
standardized protocols for isolating living cells have so far limited their clinical translation on
a broader scale (8). With the exception of hematology, where standardized protocols were al-
ready introduced in the 1980s for flow cytometry, single-cell applications have so far remained
mostly confined to the research space. Furthermore, tissue dissociation can alter both cellular
(e.g., depletion of specific cell types) and molecular readouts [e.g., activation of stress responses
(9)], hindering the development of robust and reproducible protocols needed for clinical applica-
tions.While single-nucleus extraction from fresh-frozen (FF) (10, 11) and, recently, formalin-fixed
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Cellular
neighborhoods:
regions in tissue where
cells interact closely,
influencing their gene
expression profiles and
functional properties

High-resolution
spatial
transcriptomics (ST)
technologies:
methods that provide
readouts at cellular or
even subcellular
resolution (i.e., at
approximately or less
than 10 µm)

Cell-cell
interactions:
communication and
physical contacts
between individual
cells, vital for tissue
function and
development

paraffin-embedded (FFPE) (12) clinical samples represents a promising alternative to living cell
isolation, tissue dissociation inevitably leads to the loss of spatial information. However, the spa-
tial organization of cells in complex tissues is central to understanding how molecular phenotypes
emerge, are regulated, and affect tissue function (13). While computational tools for the spatial
reconstruction of single-cell data with little or no prior knowledge exist (14–16), they rely on
the assumption that transcriptomic profiles in neighboring cells are more similar than those that
are farther apart, which does not always hold true when tissue organization is disrupted by dis-
eases. Finally, local interactions in cellular neighborhoods drive coordinated cellular processes,
and the loss of spatial positions following tissue dissociation prevents their mapping, limiting our
mechanistic understanding of disease processes.

In recent years, novel technologies for quantifying RNA and protein abundance in intact tis-
sues emerged, bridging the gap between histology and single-cell omics. Such spatial omics are
rapidly expanding and now enable the systematic investigation of the molecular phenotypes of
millions of cells in their tissue context (17). In particular, high-resolution spatial transcriptomics
(ST) technologies, which profile billions of individual transcripts at subcellular resolution (18), en-
able the systematic mapping of cell–cell interactions in clinical samples and hold great potential
to advance biomedical research and patient care (19).

Given that low-resolution ST approaches,which aggregate transcriptomic readouts across tens
of neighboring cells, do not allow single-cell resolved analysis and have been extensively reviewed
elsewhere (20, 21), here we focus on high-resolution methods and their clinical usefulness. By
charting cell–cell interactions and disease-related molecular phenotypes in clinical samples, these
molecular microscopes are bringing us closer to a mechanistic understanding of disease processes.
In the same way that hematology was primed for the translation of single-cell omics, we argue
that pathology will champion the initial adoption of high-resolution spatial omics, as standard-
ized protocols for tissue collection, processing, and morphological analysis are already in place
worldwide. Importantly, the clinical translation of high-resolution ST methods is accelerated
by their compatibility with FFPE samples, enabling the retrospective analysis of large archived
clinical cohorts and the personalized reconstruction of therapeutic responses from longitudinal
samples.

In this review, we present early preclinical studies showcasing the potential of high-resolution
ST to inform mechanism-based personalized therapies, identify novel therapeutic targets, and
bring us closer to a holistic understanding of tissue biology. As large-scale clinical studies are ur-
gently needed to link spatial biomarkers with patient outcomes, we present key considerations for
the design of clinical ST projects and discuss current challenges to the swift clinical translation
of these methods. Finally, the digitalization of both cellular transcriptomics and morphologies is
generating thematchedmolecular and histological data needed to train the next generation of pre-
dictive deep learning algorithms in pathology, opening up exciting avenues for the prediction of
spatial biomarkers from routine hematoxylin and eosin (H&E) images. This will not only increase
accessibility of patients worldwide to molecular-directed therapies but also reveal which histolog-
ical features are predictive of specific gene-expression patterns, shedding light on the intricate
relationship between tissue structure and function.

HIGH-RESOLUTION SPATIAL TRANSCRIPTOMICS TECHNOLOGIES

High-resolution ST technologies aim to localize individual transcripts at subcellular resolution in
intact tissues. Existing approaches are classified into imaging-based and sequencing-based meth-
ods, relying on either direct imaging or sequencing of spatially barcoded molecules, respectively.
As comprehensive comparisons of the different ST technologies have been performed elsewhere
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Probe: a molecular
tool, such as a DNA or
RNA sequence,
designed to bind
specifically to a target
molecule, allowing
detection in spatial
transcriptomics

In situ hybridization:
a method that allows
the detection and
localization of specific
nucleic sequences in
tissue sections

In situ sequencing: a
technique that enables
the detection and
spatially resolved
sequencing of nucleic
acids directly within
intact tissue samples

Computational
pipeline: a series of
interconnected steps
or processes designed
to analyze data,
typically including
preprocessing, analysis,
and interpretation

Cell segmentation:
the process of
identifying and
delineating individual
cells within ST data,
typically performed
through image
processing or
computational analysis

(22), here we focus on their functioning principles (Supplemental Figure 1) and usefulness for
clinical pathology.

Quantifying Transcripts in Space at High Resolution

Imaging-based methods operate by probe hybridization. Probe design requires a priori knowl-
edge of target sequences, and, as discussed below, companies typically provide predesigned panels
for commercial imaging-based platforms and assist users in their customization. The detection of
hybridized probes is then achieved either by in situ hybridization [e.g., seqFISH (23) by the Cai
lab, MERFISH (24) by the Zhuang lab (now MERSCOPE by Vizgen), CosMx Spatial Molecular
Imager (25) by NanoString Technologies, and Molecular Cartography by Resolve Biosciences]
or by in situ sequencing [e.g., CARTANA (26) by the Nilsson lab (now Xenium In-Situ by
10x Genomics) and STARmap (27) by the Wang, Nolan, and Deisseroth labs], as reviewed in
Reference 19.

On the other hand, sequencing-based STmethods rely on the local capture and spatial barcod-
ing of transcripts followed by NGS approaches to decode both the encoded gene and its spatial
position. Examples include high-definition ST (28) developed by the Lundeberg, Ståhl, and Regev
labs, DBiT-Seq (29) by the Fan lab, Slide-seq (30) by the Chen and Macosko labs (now Curio
Seeker by Curio Bioscience), Stereo-seq (31) by BGI (now STOmics), Visium HD by 10x Ge-
nomics, Seq-scope (32) by the Lee lab, and Open-ST (33) by our lab. Sequencing-based methods
typically employ an array of spots, each featuring a multitude of molecules with the same barcode
and a polyT stretch for mRNA capture. As the tissue section is placed on the array, transcripts are
released upon enzymatic permeabilization and locally captured by hybridization of their polyA
tails. Regardless of the barcoding strategy, both the transcript (or probe) sequence and the bar-
code are included in the same molecule during library preparation so that high-throughput NGS
can be used to reveal both transcript and barcode identity of billions of transcripts in parallel.

Following data acquisition, computational pipelines enable automated and standardized data
preprocessing for the generation of a large transcript-by-position matrix featuring the spatial co-
ordinates of detected transcripts. These include both proprietary software released by companies
with their commercial platforms and open-access pipelines developed by the research commu-
nity that can be tailored to a range of applications, such as Starfish (34) for imaging-based data or
Spacemake (35) for sequencing-based data.

While the intrinsic strengths and limitations of imaging- and sequencing-based approaches
are discussed further below, it is worth mentioning that sequencing-based methods, capturing
potentially all polyadenylated transcripts, are better poised for hypothesis generation,while probe-
based methods, which feature a higher detection efficiency but are restricted to the targeted genes,
are more suitable for hypothesis testing.

From Transcripts to Cellular Phenotypes

Following their spatial quantifications, transcripts are typically assigned to individual cells.When
high-resolution tissue images are available, state-of-the-art deep learning tools for cell segmen-
tation successfully perform this task [e.g., Cellpose (36)]. While nuclei can be already segmented
fromH&E images, combining nuclear (e.g., DAPI) with cytoplasmic (e.g., rRNA) and membrane
(e.g., Na+/K+-ATPase) immunostainings improves the identification of cytoplasmic boundaries.
Tissue images then have to be precisely aligned with the detected transcript, which is favored by
the microscopy set up in imaging-based methods. On the other hand, images need to be inde-
pendently acquired before tissue permeabilization and later aligned with the barcoded spots in
sequencing-based methods, which may result in imprecise alignments. Alternatively, transcripts
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Clustering: a
computational method
grouping similar
entities based on
defined features,
commonly used in
spatial transcriptomics
to identify cell
populations

Gene expression
marker: a specific
gene or set of genes
whose expression
levels indicate the
presence or identity of
a particular cell type or
cellular state

Spatial patterns:
distinct arrangements
or distributions of
gene expression within
tissue regions,
revealing spatial
organization and
functional
relationships in spatial
transcriptomics

Multicellular niches:
groups of cellular
neighborhoods sharing
a similar cellular
composition

Receptor–ligand
interactions:
molecular binding
events between
signaling molecules
(ligands) and their
corresponding
receptors, crucial for
cell communication
and tissue organization

can be grouped in cell-sized bins (e.g., 10 µm2 pseudocells) or segmentation can be performed
directly from transcriptomics data using dedicated computational tools [e.g., Baysor (37)].

Following segmentation, low-quality cells are discarded before proceeding with downstream
analyses, either setting empirical cutoffs (e.g., on the minimum number of detected genes) or
using recent denoising methods that do not require arbitrary thresholds [e.g., STARLING (38)].
Similarly, genes detected in a small fraction of cells can be removed to increase signal-to-noise
ratio. Furthermore, the detection of negative probes targeting alien sequences and system controls
(i.e., barcodes that are not white listed) can be employed in imaging-based ST to detect nonspecific
probe binding and image decoding errors, respectively.

Unbiased clustering of single-cell transcriptomes can then identify distinct molecular pheno-
types, which are typically annotated as different cell types and states via the literature-based anal-
ysis of their corresponding gene expression markers. These steps, which are shared with single-
cell RNA sequencing (scRNA-seq) data analysis, are now streamlined and largely automated
following the best practices that have been formulated for the scRNA-seq field (39). Never-
theless, ST datasets carry their intrinsic biases (e.g., due to inaccuracies in cell segmentation or
transcript displacement during sectioning or capture) (40), requiring the development of ad hoc
computational frameworks to address these challenges [e.g., Voyager (41)].

Following single-cell analysis, preprocessed datasets can be stored, explored, and used for
downstream applications based on the spatial coordinates of individual cells. Although infrastruc-
ture (e.g., scalable file formats and structures) and ST-specific databases exist [e.g., STOmicsDB
(42)], a unified ecosystem and a set of best practices are still lacking. Particular emphasis should
be put on developing software for interactive visualization of cellular morphologies, individual
transcripts, and cellular annotations, as illustrated in Figure 1, which will be essential for the
exploration and validation of ST data by pathologists in clinical applications.

From Single Cells to Virtual Tissue Blocks

Knowledge of cellular coordinates in high-resolution ST datasets enables ad hoc analyses that
have not been possible with scRNA-seq data alone. These include (a) identifying spatial patterns
in the distribution of cell types and their molecular states, (b) defining the organization of cell
types and molecular states in multicellular niches, and (c) investigating receptor–ligand interac-
tions mediating cell–cell communication in local neighborhoods. While a discussion of specific
computational tools is beyond the scope of this review, we would like to point out how best prac-
tices still have to be established at this stage. For example, more than 100 different tools exist
to map cell–cell interactions (43), and the field still has to converge on standardized approaches,
which are urgently needed for clinical applications of ST methods.

While spatial analyses are possible in individual 2D sections, cells live and communicate in
3D. Therefore, reconstructing tissue three dimensionally can improve our understanding of dis-
ease mechanisms. As illustrated in Figure 2, it is possible to computationally align the 2D digital
imaging and molecular data from consecutive sections using dedicated software [e.g., STIM (44)
and PASTE (45)] to create a 3D virtual tissue block. Following alignment, x, y, and z cellular co-
ordinates enable the identification of 3D multicellular niches and the mapping of receptor–ligand
interactions in 3D, potentially unveiling aspects that would otherwise be missed when studying
only 2D datasets, for instance, gene programs at the tumor boundary (33, 46).

APPLICATIONS

Despite being in their infancy, high-resolution ST methods have been already successfully em-
ployed for building atlases of complex healthy and diseased tissues (Supplemental Table 1).
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Morphological annotations

Molecular clustersTranscript mappingCellular morphology

Routine histology Digital molecular histology

Figure 1

Exploring clinical samples with molecular microscopes. (Top row) High-resolution spatial transcriptomics methods work as molecular
microscopes, digitalizing gene expression and contextual tissue morphology in intact tissue sections. This enables the interactive
exploration of tissue molecular features and their comparison with pathologist annotations. The gray box is the region of interest
analyzed; the black square is the inset shown in the bottom row. (Bottom row) Cell segmentation from tissue images is coupled with
mapping of millions of transcripts at subcellular resolution (different colors indicate different genes) for the unbiased identification of
cell types and states (different colors indicate different transcriptomic clusters). Figure adapted from images created with
BioRender.com and from Reference 33 with permission from the authors.

Thanks to the systematic mapping of cell–cell interactions and cellular phenotypes, high-
resolution ST methods identified coordinated cellular responses driving disease processes and
therapeutic responses in situ. High-resolution ST can pinpoint active disease mechanisms in clin-
ical samples, paving the way for mechanism-based personalized therapies (Figure 3). At the same
time, high-resolution ST can identify novel disease mechanisms, leading to novel therapeutic tar-
gets. Besides mapping gene expression, high-resolution ST can quantify noncoding genes and
transcript isoforms, map cellular clones and microorganisms in tissue space, and, combined with
additional omics, deepen our understanding of tissue biology. Finally, digitalizing tissue molecular
features facilitates the next generation of predictive models in pathology.

Building Cellular and Molecular Atlases of Complex Tissues

Anatomical and histological atlases have proven essential for modern medicine, serving as refer-
ences to distinguish physiologic interindividual variations from pathological changes. Atlases also
represent shared frameworks that are essential to standardize communication and education in
both research and clinical settings. Similarly, spatial molecular atlases will be required to stan-
dardize the analysis and guide the interpretation of novel ST data, which are central to advancing
our understanding of health and disease. As roughly 37 trillion cells compose the human body,
mapping their molecular heterogeneity and spatial relationship represents a formidable challenge
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Figure 2

Investigating tissue organization in 2D and 3D virtual tissue blocks. (a,b) High-resolution spatial transcriptomics methods enable the
study of tissue organization. Analyzing the composition of cellular neighborhoods reveals how cells live in multicellular niches
(different colors indicate different niches) and which receptor–ligand interactions (color gradient indicates interaction strength as a
function of receptor-ligand coexpression in neighboring cells) orchestrate communication in situ. (c) The computational alignment of
consecutive 2D sections enables the reconstruction and exploration of 3D virtual tissue blocks. Abbreviation: STIM, Spatial
Transcriptomics Imaging Framework. Figure adapted from images created with BioRender.com. Panels a and b adapted from
Reference 46 with permission from the authors. Panel c adapted from Reference 33 with permission from the authors.

that the international research community is starting to tackle thanks to the systematic application
of high-throughput single-cell and spatial technologies.

As a prime example of organ complexity, the brain displays an outstanding diversity of cell
types with unique molecular features and connectivity. While single-cell technologies reveal the
extent of cell types and states across different brain regions (47, 48), they cannot accurately map
the spatial organization of neuronal and nonneuronal cells into layers and circuits (49). Moffit
and colleagues (50) showcased the power of high-resolution technologies by profiling more than
1 million cells in the mouse brain using their MERFISH platform.Mapping 70 different neuronal
populations in the hypothalamic preoptic region and examining the expression of immediate early
genes, they revealed the composition of distinct nuclei and their links with parenting, mating,
and aggression behaviors. Today, large-scale collaborative efforts, such as the BRAIN Initiative –
Cell Census Network (51) and the Allen Brain Cell Atlas (52) combine single-cell technologies,
functional assays, and retrograde tracing with high-resolution ST to build a multimodal atlas of
the whole brain (53).

At the same time, scientists have been leveraging high-resolution ST to build detailed atlases
of major body organs. These efforts range from the 3D reconstruction of the developing heart
(54) to the assembly of a stomach encyclopedia (55). Beyond individual efforts, spatial mapping of
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Figure 3

Clinical applications of high-resolution ST methods. Conceptual diagram depicting a potential workflow for the clinical
implementation of high-resolution ST methods, enabling molecularly guided personalized therapies and providing a deeper
understanding of disease mechanisms in the future. Abbreviations: AI, artificial intelligence; FF, fresh-frozen; FFPE, formalin-fixed
paraffin-embedded; ST, spatial transcriptomics. Figure adapted from images created with BioRender.com.

healthy and diseased cells lies at the core of large consortia, including the Human Cell Atlas (56)
and the Human BioMolecular Atlas Program (57), which integrate high-resolution spatial meth-
ods with single-cell multiomics to generate a “three-dimensional molecular and cellular atlas of
the human body, in health and under various disease conditions” (57, p. 187). The assembly of the
human breast cell atlas (58), which “revealed an unexpectedly rich ecosystem of tissue-resident
immune cells, as well as distinct molecular differences between ductal and lobular regions,”
(58, p. 181) represents a notable early step in this direction. Furthermore, the recent spatial at-
lases of myocardial infarction (59), metaplastic stomach (55), and injured kidneys (60) highlight
their ability to identify cellular neighborhoods related to homeostasis versus injury, pathways
linked to successful versus maladaptive repair, and signaling driving recovery versus degenerative
states.

Unveiling Coordinated Cellular Responses Driving Disease Processes

High-resolution spatial technologies are already revolutionizing our ability to characterize disease
processes at unprecedented resolution, enabling the precise spatiotemporal dissection of disease
progression.

By identifying coordinated cellular responses to amyloid plaques in Alzheimer’s disease mouse
models and postmortem human samples, Chen and colleagues (61) were among the earliest to
showcase the power of spatial omics to interrogate disease processes. To investigate the relation-
ship between amyloid plaques and neurodegeneration, they combined the discovery power of un-
biased but low-resolution ST with the high-resolution but low plexy of in situ sequencing. In this
way, they identified plaque-induced genes, a set of coexpressed genes upregulated within 100 µm
from amyloid plaques, and mapped gene programs to specific cell types. Recently, increasing mul-
tiplexing capacity of imaging-based ST technologies and finer resolution of sequencing-based ST
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provided a more detailed picture of the cellular and molecular characterization of the amyloid
plaque niche (62, 63).

Besides neurodegeneration, cellular communication orchestrates a wide variety of tissue pro-
cesses including inflammation and tissue repair. While low-resolution ST methods enabled the
first unbiased analyses of inflammatory processes in intact tissues (64, 65), their lack of single-cell
resolution required ad hoc methods to reconstruct cellular networks (66). Today, high-resolution
ST technologies enabled the molecular heterogeneity and spatial niches of colitis-associated
granulocytes to be resolved (eosinophils in 66, macrophages and neutrophils in 67) and captured
the proinflammatory cross talk between keratinocytes and fibroblasts in psoriasis (68). Recently,
Cadinu and colleagues (69) reconstructed the remodeling of cellular neighborhoods during injury,
inflammation, and repair in a mouse colitis model and revealed how inflammation-associated
fibroblasts orchestrate tissue remodeling through receptor–ligand interactions with neighboring
epithelial, stromal, and immune cells.

Cellular networks also shape the tumor microenvironment (TME), determining the balance
between tumor growth and regression, immune recognition and escape, and tissue invasion or
confinement (70).Despite their limitations, early low-resolution ST studies highlighted the spatial
heterogeneity of the TME in multifocal prostate cancer (71) and histologically homogeneous
regions in melanoma metastases (72). Furthermore, Moncada and colleagues (73) integrated low-
resolution ST with matched scRNA-seq data to quantify the abundance of cell types and states in
100-µm ST spots, capturing the colocalization of inflammatory fibroblasts with a transcriptomic
subset of cancer cells expressing stress-related genes.

While early ST studies profiled thousands of genes, even large-scale efforts have been typi-
cally limited to few patients and relied on matched scRNA-seq data to mitigate their multicellular
resolution (74). On the other hand, developments in spatial proteomics methods, such as imaging
mass cytometry (75) and multiplexed ion beam imaging (MIBI) (76), enabled the measurement of
30–40 genes at single-cell resolution in large FFPE clinical cohorts. This provided key evidence
of TME spatial heterogeneity in breast cancer (77, 78) and the importance of cellular neighbor-
hoods in driving remodeling of the TME in breast and colorectal cancer (79, 80). MIBI was also
successfully integrated with low-resolution ST to map a tumor-specific keratinocyte population
identified by scRNA-seq to a fibrovascular niche in human squamous cell carcinomas (81). Simi-
larly, Karras and colleagues (82) leveraged low-plex but high-resolution ST to map a population
of mesenchymal-like tumor cells identified by scRNA-seq to a perivascular niche in a melanoma
mouse model.

While these methods have proven powerful to identify the spatial architecture and heterogene-
ity of complex tissues, they were limited in either resolution or gene coverage and often required
combination with scRNA-seq data (20, 21). Recently, we demonstrated how high-resolution ST
instead captures both the precise arrangement of tumor gene expression programs, such as the ac-
tivation of cholesterol metabolism at the invasion front, and the colocalization of these programs
with cell–cell communication hot spots defined by spatially informed receptor–ligand interactions
in a metastatic head and neck squamous cell carcinoma (HNSCC) sample (33).

Similarly, Wu and colleagues (83) leveraged Stereo-seq to study tumor phenotypes and in-
tercellular cross talk in 53 primary and metastatic hepatocellular carcinomas (HCCs), revealing
the presence of damaged hepatocytes expressing serum amyloid proteins at the invasive mar-
gin. Furthermore, a combination of CosMx and in situ sequencing also revealed the preferential
colocalization of infiltrating T cells in both high-grade gliomas (84) and high-grade serous tubo-
ovarian carcinomas (85). Finally, Yeh and colleagues (85) leveraged a high-content CRISPR
screening (Perturb-seq) to pinpoint the genetic regulators able to upregulate such tumor-intrinsic
phenotypes and sensitize ovarian cancer cells to immune-mediated killing in vitro.
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Leveraging Multicellular Niches as Personalized Biomarkers

In the era of personalized medicine, clinicians face the challenge of identifying the most effective
drug from among an arsenal of cytotoxic molecules, targeted agents, antibody-based therapeutics,
and cellular therapeutics for individual patients.While immunohistochemistry (e.g., to detect hor-
mone receptors) and molecular techniques (e.g., to detect cancer-specific mutations) are able to
accurately identify patients presenting specific drug targets,PD-L1 (programmed cell death ligand
1) positivity is not sufficient to predict patient responses to anti-PD-1 agents (86). Anti-tumoral
immunity is a highly coordinated response across different components of the TME, which may
be only partially captured by the detection of one immune checkpoint molecule. By capturing
such multicellular cross talk, high-resolution ST holds great promise for predictive pathology.

Magen and colleagues (87) compared a subset ofHCCpatients with high intratumoral immune
infiltration enrolled in a neoadjuvant anti-PD-1 trial showing variable responses to immunother-
apy. Using a combination of MERFISH with scRNA-seq and T cell receptor (TCR) sequencing,
they suggest that the local differentiation of PD-1+ TCF-1+ CD8+ T cells occurred only in
responders due to their interaction with CXCL13+ T helper cells and dendritic cells in cel-
lular triads. Similarly, Chen and colleagues (88) identified spatially localized immunity hubs to
be predictive of immunotherapy benefit in lung cancer. Combining multiplexed immunofluores-
cence and CosMx, they identify the colocalization of macrophages expressing T cell–recruiting
chemokines with PD-1+ TCF-7+ CD8+ T cells and CCR7+ LAMP3+ dendritic cells in these
multicellular niches and quantify their enrichment in preimmunotherapy lung cancers that will
benefit from checkpoint blockade.

Besides immune interactions, tumor phenotypes and tumor-stromal cross talk also play critical
roles in disease progression and therapeutic responses. Sharma and colleagues (89) previously
identified the fetal-like reprogramming of endothelial cells and macrophages in HCC using
scRNA-seq. Recently, they leveraged CosMx and Stereo-seq to characterize the cellular cross talk
in such oncofetal niches and identified POSTN+ cancer-associated fibroblasts (CAFs) as promi-
nent oncofetal signaling hubs (90). Importantly, they linked the presence of oncofetal niches with
relapse and immunotherapy responses in HCC patients, paving the way for the use of oncofe-
tal signatures for therapeutic stratification. High-resolution ST enabled the analysis of cell–cell
communication in oncofetal niches, pinpointing which receptor–ligand pairs could potentially
drive the expression of the oncofetal program. Inhibiting such interactions (e.g., with blocking
antibodies) could represent an effective therapeutic strategy in these patients.

NGS has enabled the coverage of a broad spectrum of actionable mutations, so that a single
druggable mutation can be found for an increasing number of patients (91). Similarly, we envi-
sion that the spatial mapping of cell types and their transcriptomic phenotypes [e.g., oncofetal
programs or cell-type-specific progression biomarkers (92)] together with the expression of drug
targets [e.g., hormone receptors (93)] and cell–cell interactions (e.g., cellular triads and immune
checkpoint receptor–ligand interactions) will improve patient stratification and guide therapeutic
choices in the future.

Deciphering Novel Disease Mechanisms for Drug Development

Besides being predictive pathology tools, ST technologies are currently being evaluated for appli-
cability in the drug development process, both for identifying novel therapeutic targets (94) and
for elucidating mechanisms of drug response and resistance.

Hwang and colleagues (95) profiled 43 pancreatic adenocarcinoma (PDAC) patients who
underwent surgical resection either with or without receiving various regimens of adjuvant
(chemo)therapy. By combining single-nucleus RNA sequencing (snRNA-seq) with ST (GeoMx),
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they identified three multicellular communities distinguished by specific malignant and CAF
programs, including one composed by neuroendocrine-like malignant and neurotropic CAF pro-
grams and infiltrated by CD8+ T cells. Interestingly, this community was enriched following
neoadjuvant treatment, suggesting that the receptor–ligand interactions spatially restricted to this
niche could serve as novel therapeutic targets to block the emergence of such aggressive pheno-
types. Similarly, Cui Zhou and colleagues (96) combined sc/snRNA-seq and ST to identify the
enrichment of inflammatory CAFs expressing metallothioneins in PDAC samples treated with
neoadjuvant chemotherapy. As interleukin-1 receptor (IL-1R) blockade has been added to stan-
dard chemotherapy to target inflammatory CAFs (iCAFs), metallothioneins could represent an
additional therapeutic target for iCAFs in the TME following chemotherapy. On the other hand,
Oyoshi and colleagues (97) focused on the microenvironment responses following radiotherapy
in esophageal squamous cell carcinoma.Combining scRNA-seq with ST (Visium) and proteomics
(CODEX), they uncovered the infiltration of immunosuppressive myeloid cells expressing both
PD-L1+ and numerous additional immunomodulatory and tumor-promoting genes, which could
constitute targets for combination therapies.

Finally, Derry and colleagues (98) proposed a unique combination of high-resolution ST with
trackable intratumor microdosing to evaluate drug responses in situ and in vivo. In this first-of-its-
kind phase 0 clinical trial, 12 patients with HNSCC received either a SUMOylation inhibitor or
a vehicle control through a percutaneous injection 1–4 days before surgery. Local drug responses
were then evaluated by combining GeoMx and CosMx, revealing how SUMO pathway inhibition
occurred in a spatially graded manner and colocalized with cell cycle arrest restricted to the tumor
epithelium. Contextually, SUMO inhibition stimulated interferon responses that shifted the lo-
cal microenvironment from immunosuppressive to immunopermissive. The localized evaluation
of drug responses in arguably the most translationally relevant setting, an in situ human tumor,
may revolutionize not only the testing of novel drug agents, as showcased in this study, but also
the screening for effective personalized combination therapies (e.g., by implanting devices that
simultaneously release multiple drugs).

Beyond Protein-Coding Genes: Mapping Tumor and Immune Clones, the Full
Transcriptome, and Host-Microbial Interactions

Besides mapping gene expression in space, several tools developed for scRNA-seq have been
applied to high-resolution ST data. For example, we leveraged the concept of pseudotime to
reconstruct tumor transcriptomic evolution in a non–small cell lung cancer (NSCLC) patient
(46). Spatial mapping of pseudotime scores revealed a region of the tumor bed where tumor cells
acquired proinvasive properties. Analysis of receptor–ligand interactions in this niche revealed the
convergent cross talk of SPP1+ macrophages and myofibroblasts onto tumor integrin receptors,
which could drive the induction of tumor invasion in this niche. Furthermore, inferring copy
number variants (CNVs) from the simultaneous up- or downregulation of multiple genes located
within the same chromosomal region is a popular method to identify and characterize tumor
cells in scRNA-seq datasets (99, 100). Transferring the same approach to low-resolution ST data,
Erickson and colleagues (101) mapped the phylogenetic hierarchy of histologically benign, pre-
neoplastic, and neoplastic clones in an organ-wide study of a multifocal prostate carcinoma. Sim-
ilarly, Heiser and colleagues (102) inferred CNVs in space for tumor phylogeographic mapping
in 31 colorectal cancer patients. Performing laser capture microdissection and whole-exome se-
quencing on the different clones identified through spatial CNV analysis, they could then capture
the epithelial and microenvironment transcriptomic programs activated during the genetic pro-
gression of individual tumors. Furthermore, Chen and colleagues (103) leveraged point mutations
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captured by sequencing-based methods to visualize allelic imbalance and somatic mutations in
cancer samples.

The detection of somatic variants also allows reconstructing the clonal dynamics of T and
B cells by analyzingTCR and BCR variable sequences. Single-cell studies demonstrated the power
of simultaneously profiling adaptive immune receptors and transcriptional phenotypes to under-
stand immune responses in health and disease (104, 105). As VDJ (variability–diversity–joining)
sequences are located within 500 nucleotides away from the 5′ end of the transcript, they are rarely
included in short-read sequencing of polyA-captured mRNAs due to their inherent 3′ bias (106).
For this reason, either deep sequencing (107) or target enrichment of the VDJ region through
polymerase chain reaction (108–110) has been applied to study T cell infiltration in tumors. As
full-transcript information is required to resolve different gene isoforms, long-read sequencing
has been applied to characterize immunoglobulin isotype switching and chain pairing together
with somatic hypermutation and B cell clonal distribution in germinal centers (111). Moreover,
Boileau and colleagues (112) leveraged long-read sequencing to spatially map∼20,000 isoforms in
a mouse model of myocardial infarction. Combining Visium and Nanopore sequencing revealed
clinically relevant but yet unexplored modes of transcription, such as higher intron retention, iso-
form switching in muscle contraction genes, and overall lower transcriptome complexity in the
infarct area.

Spatial technologies are also revolutionizing our ability to detect host–pathogen interactions
in colonized and infected tissues. Multiple strategies have been adopted to identify and localize
pathogens in tissues, including pathognomonic tissue changes [e.g., granulomas inMycobacterium
tuberculosis infection (113)], staining for pathogen-specific proteins (114), or designing pathogen-
specific probes (115, 116). As we and others demonstrated in scRNA-seq studies, polyadenylated
microbial transcripts are well captured by sequencing-based methods and can be used to profile
cellular responses and microbial transcriptomic states [e.g., herpes simplex virus 1 (HSV-1) infec-
tion cycle (117, 118)]. Alternatively, metagenomic strategies tailored to the capture of microbial
RNA can be integrated in sequencing-based ST methods to identify microbes and contextual
host responses. Given the low abundance of microbial transcripts compared with host mRNA,
these strategies are preferable to increase assay sensitivity. Recently, Lötstedt and colleagues (119)
developed a protocol to capture 16S bacterial sequences and host transcripts to map the cellu-
lar composition and commensal geography along the mouse gut. At the same time, Saarenpää
and colleagues (120) even included probes for fungal internal transcribed spacers for a richer
metagenomic readout.

Finally, in situ polyadenylation strategies are attractive to capture both nonpolyadenylated
host and microbial RNA molecules (121). McKellar and colleagues (122) leveraged this approach
both to map noncoding transcripts during skeletal muscle regeneration and to profile local host
responses around viral mRNAs in a myocarditis mouse model.

Besides expanding the transcriptomic coverage, in situ polyadenylation has also been leveraged
to increase the sensitivity of sequenced-based transcriptomicmethods when applied to FFPE sam-
ples. Although ST successfully identified major cell types when applied to fixed tissues, the data
were sparse due to the fragmentation of RNAmolecules following formalin fixation (123). Bai and
colleagues (124) recently reported high-sensitivity, full-transcriptome profiling of clinical tumor
FFPE tissues stored for five years following in situ polyadenylation and polyA-based capture.

Beyond Gene Expression: Multimodal Spatial Omics

While gene expression is highly informative for identifying cellular types, states, and molecu-
lar functions, a holistic understanding of disease processes would benefit from the integrative
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analysis of cellular genomic, epigenomic, transcriptomic, proteomic, and metabolic layers. Sev-
eral methods exist for the robust profiling of individual and combined modalities at single-cell (5)
and spatial (125) resolution.One approach to multimodal spatial profiling is the independent pro-
filing of consecutive tissue sections with different spatial technologies, followed by computational
registration and integration of the resulting high-dimensional images. Androvic and colleagues
(126) employed this approach to integrate electron microscopy and MERFISH readouts. Study-
ing transcriptomic and ultrastructural responses in a mouse model of brain injury, they revealed
the accumulation of lipid-laden foamy microglia in lesions during remyelination.

As mechanical interactions with the surrounding extracellular matrix (ECM) govern cellular
activities in solid tissues, we recently integrated CosMx and second-harmonic imaging readouts
to quantify collagen and elastin fiber abundance in cellular neighborhoods (46). Rather than an-
alyzing adjacent cells in consecutive sections, true multimodal profiling of the same cells would
be desirable to directly relate features across modalities. For example, ST capture of polyadeny-
lated antibody-derived tags [developed for surface epitope profiling in single cells (127)] has been
leveraged for the simultaneous profiling of the whole transcriptome and dozens of proteins in
space (128, 129). Similarly, a combination of ST with mass spectrometry–based proteomics and
metabolomics (MALDI-MSI) has been applied to correlate neurotransmitter levels with gene
expression in Parkinson’s disease (130) and to study tumor metabolic heterogeneity and im-
munometabolic rewiring at the invasion margin in gastric cancer (131). Finally, paired histological
or immunofluorescence images are typically available for more accurate assignment of captured
transcripts to single cells, and cellular morphology can be integrated with gene expression to
resolve cellular subpopulations missed by either modality alone, as demonstrated by Bao and
colleagues (132).

Toward Affordable Molecular Digital Pathology

In the last decade, technological developments in whole-slide imaging (WSI) scanners enabled the
digitization of large numbers of pathology slides at high resolution (133). The growing availabil-
ity of digitized H&E slides paired with sample-level clinical, histologic, and molecular metadata
formed large datasets for the training of predictive deep learning models (134). Today, deep learn-
ing approaches can accurately classify different cancer histologies (135), grade prostatic tumors
(136), and predict breast cancer hormone receptor status—although with lower accuracy com-
pared with that of immunohistochemistry (137) from H&E images alone.When paired histology
andmolecular data are available, deep learning approaches can also identify microsatellite instabil-
ity in colorectal cancer (138) and recurrent mutations in NSCLC frequently mutated genes (139).
Pairing H&E images with RNA-seq profiling in large-scale collaborative projects, such as The
Cancer Genome Atlas (TCGA) (140), enabled the training of deep learning models that predict
gene expression profiles from matching whole-slide images (141). However, the bulk nature of
these gene expression measurements, which average across millions of cells in the TME, limited
the prediction accuracy of these HE2RNA models. Furthermore, while advances in explainable
artificial intelligence (AI) can point to which image regions are relevant for gene expression predic-
tions (e.g., by generating explanatory heatmaps) (142), the spatial agnostic nature of bulk RNA-seq
limited both the interpretability and the validation of such tools, both of which are central to their
clinical application and the advancement of scientific knowledge. In this regard, ST methods pro-
vide the missing link between gene expression and H&Emorphology and hold great potential for
the training of the next generation of deep learning models in pathology.

Deep learning analysis of low-resolution ST and coregistered H&E images already demon-
strates the feasibility and power of this approach by successfully predicting local and bulk-like
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gene expression patterns in breast cancer (143). Models can also be used to impute missing data
and artificially increase assay resolution using high-resolution tissue images (144). Furthermore,
Zeng and colleagues (145) used ST data to validate the predictions of a deep learning model
trained on TCGA data to predict how HCC patients would respond to a combination of immune
checkpoint and angiogenesis inhibitors (atezolizumab-bevacizumab). They matched prediction
heat maps with ST data to understand whether the morphological structures relevant for model
predictions had any biological significance. Interestingly, their research revealed that regions with
high prediction scores not only featured higher expression of a gene signature previously linked
with atezolizumab-bevacizumab response but also identified the local upregulation of immune
effector genes, hinting at an unexpected immune-mediated mechanism as key to drug response.

Today, H&E histology remains at the cornerstone of clinical pathology as a well-established,
highly informative, and cost-effective diagnostic tool.While molecular signatures are powerful in
guiding patient treatment, the needs for patient material, specialized equipment, costly reagents,
and technical expertise represent barriers to their routine application (146). Just as WSI provided
the training data for large deep learning models, we envision that high-resolution ST datasets will
power the next generation of predictive models in pathology. Importantly, these models could
predict the expression of relevant gene/signatures from H&E images alone, enabling widespread
access to molecular diagnostics at low cost.

CONSIDERATIONS FOR THE DESIGN OF HIGH-RESOLUTION
SPATIAL TRANSCRIPTOMICS CLINICAL STUDIES

While early studies showcased the potential of high-resolution ST methods to improve clinical
care, the translation of these recently developed technologies currently requires clinical studies
to link spatial biomarkers with patient outcomes and ultimately demonstrate their usefulness in
different therapeutic contexts. As high-resolution STmethods differ significantly in terms of their
inherent parameters, we discuss here a number of key considerations that researchers and clini-
cians should keep in mind to maximize the information obtained and optimize the study outcome.

Sample Preservation

Given the rapid degradation of RNA molecules at room temperature, sample fixation is required
for high-resolution ST analyses. Together with RNA, preserving tissue morphology is also central
to downstream analyses, such as integrating high-resolution ST with histologic annotations and
improving the accuracy of cell segmentation.Currently, either FFPE or FF samples are compatible
with high-resolution ST methods. As tissue preservation limits the choice of applicable down-
stream ST methods and, in turn, the molecular readouts, it is a key step in experimental design.

In clinical routines, formalin fixation followed by paraffin embedding is by far the most com-
mon fixation protocol. Formalin fixation accurately preserves tissue and cellular morphologies, al-
lows sample storage at nonfreezing temperatures, and permits the cutting of 5-µm-thick (and even
thinner) sections. Such a thickness mostly spans part of a single cell along the z-axis, thereby limit-
ing the number of misassigned transcripts upon 2D segmentation. As FFPE samples are routinely
collected for diagnostics, high-resolution ST profiling can be easily integrated in clinical work-
flows andmatched withH&E histology, immunohistochemistry, andmolecular diagnostics.How-
ever, cross-linking proteins and nucleic acid results in RNA fragmentation, which prevents the
use of ST methods that rely on the capture of polyadenylated transcripts. Until in situ polyadeny-
lation or alternative capture methods become well established, FFPE tissues are best processed
with imaging-based methods or sequencing-based methods relying on the capture of hy-
bridized probes (e.g., Visium HD). Alternatively, snap-freezing in liquid nitrogen and embedding
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in optimal cutting temperature (OCT) medium or alternative cutting media can be used to pre-
serve samples. The integrity of RNA molecules is mostly preserved in such FF samples, enabling
the use of sequencing-based methods for the unbiased capture of polyadenylated transcripts.

As for all omic assays, sample quality is of paramount importance. Therefore, screening RNA
quality,measuring either the RNA integrity number (RIN) in FF samples or DV200 in FFPE sam-
ples, represents a central step in sample selection and guides the optimization of sample fixation
and storage protocols.While standardized protocols for collection, preservation, cutting, and stor-
age are well established for FFPE samples in hospitals worldwide, FF tissue preservation is far less
common and requires additional biological materials besides those used for diagnostic purposes,
which could represent a limit tomany applications (e.g., the profiling of diagnostic biopsies).At the
same time, FF samples need to be snap-frozen with minimal postmortem/resection time and kept
at freezing temperatures during transport, storage, and processing to prevent RNA degradation.
In particular, processing requires optimal conditions to avoid tissue melting or cracking during
cryosectioning. It is thus essential to establish adequate standard operating procedures to guide
FF sample preservation and document time intervals for each specimen to ensure consistency and
quality control.

Method Selection

Besides their compatibility with FFPE and FF samples, imaging- and sequencing-based methods
carry their own intrinsic strengths and limitations. Once optimized for FF sample collection and
processing, sequencing-based methods are ideal for discovery and hypothesis-generation studies.
Not only do they enable the genome-wide investigation of gene expression through the unbiased
capture of polyadenylated transcripts but they also retain sequence information, which can be
leveraged for the identification of somatic variants, transcript isoforms and noncoding genes,TCR
and BCR clones, bacteria, viruses, etc., as discussed above. Furthermore, sequencing-based meth-
ods can be combined with single-nucleus extraction protocols to generate single-cell multiomic
data from consecutive sections.

Imaging-basedmethods, on the other hand, are best suited for hypothesis validation and clinical
testing. Their discovery potential is indeed limited by the reliance on predesigned probes, which
restricts measurements to target genes and determines the loss of sequence information. At the
same time, gene panels have several advantages, including higher sensitivity, shorter turnaround
times, and improved result interpretability, making them particularly suitable for clinical applica-
tions. Furthermore, the nondestructive nature of imaging-based methods facilitates the profiling
of the same section with different modalities. This ranges from immunohistochemistry for the
diagnostic validation of high-resolution ST results to label-free imaging (e.g., second-harmonic
imaging) for the simultaneous profiling of collagen and elastin fibers in the ECM. Even more
relevant is the combination of imaging-based ST methods with H&E histology to match high-
resolution ST results with pathologist annotations and enable the training of the next generation
of predictive deep learning models. Furthermore, imaging-based methods by design acquire data
at single-molecule resolution, while the resolution of sequencing-based methods is limited by the
spot size, which can vary from 0.6 µm in Open-ST to 10 µm in Curio Seeker. On the other hand,
imaging-based methods require automated microscopy systems for data acquisition, which can
be complex to set up or expensive to purchase, while sequencing-based methods leverage widely
available high-throughput sequencers for their readouts. Relying on a microscopy setup also typ-
ically limits both the size of the imaged area to a routine glass slide and the number of slides that
can imaged simultaneously, while capture areas in sequencing-based methods are limited only to
the size of the array used, which can be easily customized in noncommercial solutions, and allow
the simultaneous processing of tens of samples.
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Table 1 Comparison of commercial high-resolution spatial transcriptomics methods

Technology Spatial resolution Input material Gene panel
Estimated
cost/section Equipment required

CosMx Spatial
Molecular Imager

Single molecule FFPE Yes $$$ Proprietary scanner

Curio Seeker 10 µm FF No $$ – $$$ Nob

MERSCOPE 500 nm FF and FFPE Yes $$$ Proprietary scanner
Molecular Cartography Single molecule FF and FFPE Yes $$$ Proprietary scanner
STOmics 0.5 µm FF No $$ – $$$ Nob

Visium HD 2 µm FFPE Yesa $$$$ Proprietary device
Xenium In-Situ Single molecule FF and FFPE Yes $$$ – $$$$ Proprietary scanner

Abbreviations: FF, fresh-frozen; FFPE, formalin-fixed paraffin-embedded.
aGenome-wide (∼18,000 genes) but probe-based.
bSequencer required.

Finally, when choosing a high-resolution ST method, it is worth noting that costs can vary
widely. Besides the equipment needed, cost is impacted by the number of targeted genes and the
need for panel customization in imaging-based methods and by the size of the capture area and
the depth of sequencing in sequencing-based methods. Furthermore, commercial platforms offer
a trade-off between higher pricing and easier implementation; however, such costs may become
prohibitive when profiling large clinical cohorts.

Ultimately, the local availability of samples annotated with clinically relevant metadata, in-
strumentations, and trained personnel represents a key limiting factor to the range of methods
and experimental designs that can be leveraged. Especially in this early phase, collaborations with
core facilities and research labs specializing in spatial technologies would greatly benefit clinical
projects.

To help investigators select the most suitable study design, key features of various high-
resolution ST methods are presented in Table 1 (commercial) and Table 2 (noncommercial),

Table 2 Comparison of noncommercial high-resolution spatial transcriptomics methods

Technology
Spatial

resolution
Input

material Gene panel
Estimated
cost/section Availability

DBiT-seq 10, 20, 50 µm FF and FFPE No $ Methods described in the published
paper and in an additional STAR
protocol (29)

HDST 2 µm FF No NA Methods described only in the published
paper (28)

Open-ST 0.6 µm FF No $ Continuously updated experimental
protocol, open-source software, and
discussion board (https://rajewsky-
lab.github.io/openst/latest/)

SeqFISH Single molecule FF Yes NA Methods described only in the published
paper

Seq-scope 0.6 µm FF No $ Methods described in the published
paper and in a dedicated protocol (32)

STARmap 1 µm FF Yes NA Methods described only in the published
paper (27)

Abbreviations: FF, fresh-frozen; FFPE, formalin-fixed paraffin-embedded; NA, not applicable; STAR, structured, transparent, accessible, reproducible.
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DESIGNING A TARGETED GENE PANEL FOR CLINICAL APPLICATIONS

Probe-based assays restrict measurements to a panel of target genes. Panel design requires both prior knowl-
edge about which sequences to target with gene-specific probes and large-scale unbiased readouts to inform gene
selection. For commercial imaging-based platforms, companies offer both fully customized panels and several pre-
designed panels to which users can add specific genes of interest. Predesigned panels are typically organ-specific
(e.g., brain) or application-specific (e.g., immuno-oncology) and feature well-established cell-type markers and
receptor–ligand pairs.While probe design is largely based on platform-specific proprietary databases, gene selection
and panel evaluation benefit from matched unbiased single-cell or spatial transcriptomics data. With a single-cell
reference at hand, several computational tools can identify the smallest number of genes to either capture most
transcriptomic variation in the dataset [e.g., geneBasis (154)], or distinguish annotated cell types with high accuracy
[e.g., scGeneFit (155) and NS-Forest (156)].When paired spatial data are available, gpsFISH (157) can account for
platform-specific effects in detecting individual genes. gpsFISH can also evaluate the performance of preexisting
panels and use a genetic evolution approach to suggest the smallest number of custom genes to be added to better
distinguish specific cell types. Finally, probes targeting pathogen-specific sequences, such as bacterial 16S or viral
specific sequences, may be added for infectious disease studies.

SPATIAL POWER ANALYSIS FOR CLINICAL APPLICATIONS

Conducting a power analysis is central to designing clinical studies. Similarly to clinical single-cell studies, a sample’s
cellular composition, sensitivity, accuracy, and depth of gene expression profiling are critical to identify statistical
differences in cell types (158). In spatial studies, investigators should additionally consider the smallest region of
interest (ROI) to be analyzed in each sample. Directly related to the number of cells profiled, ROI size is the most
critical factor for detecting cell types and a key determinant of assay cost per patient, thereby determining the total
number of patients that can be analyzed. High-resolution ST approaches drastically increase the number of cells
profiled from each sample.However, tissue composition is inhomogeneous, and cells are organized in tissue domains
and multicellular niches. Therefore, ROI positioning is central to minimizing the ROI area while preserving study
power. For sequencing-based methods, ROI selection must be performed upon placing the section on the capture
area,while imaging-basedmethods can distribute fields of view following low-resolutionwhole-slide imaging before
data acquisition. Moreover, FFPE-compatible methods are compatible with tissue microarrays, which enable the
parallel analysis of dozens of ROIs from different tissue blocks on the same section. A priori knowledge from
pilot studies is beneficial to estimate the impact of tissue architecture on spatial power using dedicated tools for in
silico tissue modeling (159). Finally, screening samples with routine histology and immunofluorescence followed
by manual annotation, deep learning–aided analysis of WSI images (46), or automated ROI placement with vision
transformers (160) can all be used for ROI selection.

and considerations for the design of targeted gene panels and spatial power analysis for clinical
applications are discussed in the sidebars titled Designing a Targeted Gene Panel for Clinical
Applications and Spatial Power Analysis for Clinical Applications.

CURRENT CHALLENGES IN THE CLINICAL TRANSLATION
OF HIGH-RESOLUTION SPATIAL TRANSCRIPTOMICS METHODS

As showcased in several preclinical applications, high-resolution ST approaches hold the potential
to revolutionize clinical practice. At this early stage, however, high-resolution ST technologies
have been mostly limited to the research space.While their compatibility with routinely collected
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Figure 4

Current challenges in the clinical translation of high-resolution spatial transcriptomics methods. Conceptual roadmap of translational
challenges categorized by technique ( 1⃝), actionability/interpretation ( 2⃝), and implementation ( 3⃝).

FFPE samples and avoidance of tissue dissociation, which still represent major obstacles to the
clinical implementation of single-cell approaches today (8), will favor their swift translation,
several limitations need to be overcome for their implementation in routine clinical workflows.
These can be classified as ( 1⃝) challenges inherent to ST methods, ( 2⃝) challenges related
to the data and their interpretation, and ( 3⃝) challenges related to implementation in clinical
environments (Figure 4).

Challenges Related to the Methods Themselves

In the last several years, rapid technological advancements have greatly improved the performance
of high-resolution ST methods, and further improvements are to be expected. However, sev-
eral challenges still exist. First, sample preservation strategy imposes a trade-off between sample
availability and depth of the molecular readouts: Formalin fixation is well established in routine
workflows but inevitably results in RNA fragmentation, while snap-freezing allows the study of
intact RNA molecules but requires the implementation of novel sample procedures and prevents
the study of archived samples. Second, there is currently a trade-off between the number of genes
studied and their detection efficiency. On the one hand, imaging-based approaches feature higher
sensitivity but are limited to predefined targeted genes, and detection efficiency decreases with in-
creasing panel size.On the other hand, sequencing-basedmethods can—in principle—capture the
whole polyadenylated transcriptome; however, they are biased toward the detection of highly ex-
pressed genes. Furthermore, scalability represents another limit to the implementation of current
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methods in diagnostic routines. On the one hand, imaging-based methods are largely automated,
but they are limited to two to four slides per run and feature long acquisition times, especially when
large tissue areas or numerous targets are imaged simultaneously. On the other hand, sequencing-
based approaches can process several samples in parallel, but automated workflows are not yet
commercially available. Finally, best practices for accurate cell segmentation, data normalization,
clustering, and downstream computational data analyses are still areas of active research.

Challenges Related to Result Interpretation and Actionability

To accurately interpret and generate actionable insights from ST data, large-scale healthy and
disease references are required. Investigating disease states will be feasible only after the interindi-
vidual variability in healthy states has been clearly described (147). International consortia, such
as the Human Cell Atlas (56), have begun undertaking such efforts, and ST studies on specific tis-
sues are being published by individual labs. It is imperative to expand and integrate these studies
into a single, unified database, as has been done, for instance, in the AllenMouse Brain Atlas (148).
Naturally, human primary material from healthy individuals is, for several tissues, not as accessible
as it is for model systems, but several steps can assist in that direction: (a) commencing with tis-
sues that are more accessible (skin, colon, liver, etc.); (b) acquisition of nondiseased samples from
large tissue resections; (c) increasing awareness of organ donors in society; and (d) computational
integration of other modalities, such as scRNA-seq datasets.

Apart from the existence of a healthy tissue reference, extracting actionable insights from
ST data will require the existence of a large pool of similarly processed datasets for the tissue
and disease under study. Amassing data from patient cohorts bears substantial benefits, including
(a) more accurate characterization of the disease states and more precise classification of disease
subtypes; (b) identification of molecular components responsible for the generation and progres-
sion of the disease, when these are present; (c) amelioration of interpatient heterogeneity within
the same indication, potentially leading to identification of trends; (d) identification of persistently
modified molecular readouts, which could potentially serve as disease biomarkers; (e) identifica-
tion of persistently active signaling pathways within the disease, paving the way for discovering
new drug targets; and ( f ) systematic characterization of molecular readouts across distinct ther-
apies and their correlation with treatment response, leading to better evaluation of survival and
prognosis.

Finally, large-scale trials are required to link spatial features to clinical factors and demonstrate
the benefit of molecularly guided personalized treatments.

Challenges Related to Clinical Implementation

Besides solving technical challenges and demonstrating the utility of spatial biomarkers, the
recommendation of spatial methods by international guidelines and the accreditation within
national regulatory frameworks will ultimately be needed for the routine implementation of
high-resolution ST methods in the clinic. This will require standardized operating procedures
controlling all steps from tissue extraction inside the operating room to the generation of the ST
datasets and subsequent evaluation of the spatial biomarkers to ensure robust and reproducible
readouts for clinical decision-making. Furthermore, integration of spatial readouts in action-
able clinical reports and in electronic health records will be central to ensuring accessibility to
pathologists, clinicians, and researchers.

Overall, themultidisciplinary collaboration between experimental and computational scientists
along with clinical researchers, healthcare personnel, and ethical/regulatory bodies will ultimately
drive the swift translation of spatial omics for the benefit and safety of patients.

www.annualreviews.org • Clinical Translation of Spatial Transcriptomics 423



PM20_Art17_Rajewsky ARjats.cls December 27, 2024 14:18

Foundation models:
large-scale models
pretrained on vast
amounts of data,
serving as the basis for
a wide range of use
cases through
fine-tuning

OUTLOOK

While the rapid growth of the ST field is yielding novel and more sophisticated experimental
and computational methods every day, the principles discussed here will likely remain valid as will
the need for clinical translation of ST technologies to improve patient care. Importantly, clinical
trials are urgently needed to demonstrate both the feasibility and the efficacy of ST approaches.
In this regard, we outlined a roadmap for the design of clinical projects aimed at linking spatial
patterns with patient outcomes. At the same time, international efforts should also be directed to-
ward the benchmarking of different sample collection and preservation protocols, the balancing of
molecular readouts with costs, and the identification of personnel and infrastructure required for
different experimental methods. Furthermore, the standardization of data analysis and reporting
pipelines leveraging publicly available tools and large-scale atlases of healthy and disease sam-
ples will be central to the generation of robust clinical reports. Even if the current challenges are
overcome, ST methods will still be limited to a single snapshot, highlighting the continued need
for experimental models to link clinical trials with perturbation studies to move from hypotheses
generated by these high-dimensional assays to mechanistic insights. In this regard, the ability to
combine organoids with optogenetic perturbations of tissues in time and space, as recently show-
cased in human brain organoids (149), represents an attractive avenue to link cause and effect
in patient-derived models (150). Ultimately, the integration of ST and proteomic readouts with
emerging spatial genomics, epigenomics, and metabolomics technologies will provide a holistic
representation of complex tissues in 2D and 3D (151).

Finally, STmethods offer the unique opportunity of digitalizing tissue gene expression and the
contextual morphology at high resolution. Recently, the availability of extensive digital imaging
and transcriptomic datasets enabled the self-supervised training of large-scale AI models, such as
Virchow (152) and RudolfV (153), which were trained on billions of histological images, and
scGPT, which was trained on more than 33 million single-cell profiles. Fine-tuning these
foundation models for several downstream applications can then improve the robustness and gen-
eralizability of deep learning predictions when limited training data are available. This can be
especially relevant for ST, as it could provide a unique opportunity to bridge tissue histology and
molecular readouts, improving our ability to predict gene expression for routinely collected H&E
images and increase access to spatial biomarkers worldwide.

SUMMARY POINTS

1. High-resolution spatial transcriptomics (ST) methods work as molecular microscopes,
profiling gene expression at subcellular resolution in tissue sections.

2. ST technologies can be broadly classified into sequencing-based methods and imaging-
based methods, each bearing unique strengths and limitations that must be taken into
account during the design of clinical projects.

3. ST methods capture both the heterogeneity of cell types and molecular phenotypes and
their spatial organization in multicellular tissue niches.

4. ST methods have been successfully applied to build cellular and molecular atlases and
to systematically investigate local cell–cell interactions in healthy and diseased tissues.

5. ST methods have already identified how coordinated cellular processes orchestrate dis-
ease progression and therapeutic responses, revealing novel mechanisms across a range
of pathologies.
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6. Albeit still at an early stage, preclinical studies have started to link spatial biomarkers
extracted by ST technologies with patient outcomes in selected oncologic diseases.

7. Digitalizing molecular readouts from patient samples via ST methods holds great
potential to revolutionize clinical care, informing mechanism-based, personalized
therapies.

8. Computational breakthroughs culminating in explainable artificial intelligence together
with the amassing of paired histology images and digital spatial molecular atlases will
transform fundamental and clinical research.
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