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Abstract

Objectives Introducing SPINEPS, a deep learning method for semantic and instance segmentation of 14 spinal
structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole-body sagittal
T2-weighted turbo spin echo images.

Material and methods This local ethics committee-approved study utilized a public dataset (train/test 179/
39 subjects, 137 female), a German National Cohort (NAKO) subset (train/test 1412/65 subjects, mean age 53, 694
female), and an in-house dataset (test 10 subjects, mean age 70, 5 female). SPINEPS is a semantic segmentation model,
followed by a sliding window approach utilizing a second model to create instance masks from the semantic ones.
Segmentation evaluation metrics included the Dice score and average symmetrical surface distance (ASSD). Statistical
significance was assessed using the Wilcoxon signed-rank test.

Results On the public dataset, SPINEPS outperformed a nnUNet baseline on every structure and metric (e.g., an
average over vertebra instances: dice 0.933 vs 0.911, p < 0.001, ASSD 0.21 vs 0.435, p < 0.001). SPINEPS trained on
automated annotations of the NAKO achieves an average global Dice score of 0.918 on the combined NAKO and in-
house test split. Adding the training data from the public dataset outperforms this (average instance-wise Dice score
over the vertebra substructures 0.803 vs 0.778, average global Dice score 0.931 vs 0.918).

Conclusion SPINEPS offers segmentation of 14 spinal structures in T2w sagittal images. It provides a semantic mask
and an instance mask separating the vertebrae and intervertebral discs. This is the first publicly available algorithm to
enable this segmentation.

Key Points
Question No publicly available automatic approach can yield semantic and instance segmentation masks for the whole
spine (including posterior elements) in T2-weighted sagittal TSE images.
Findings Segmenting semantically first and then instance-wise outperforms a baseline trained directly on instance
segmentation. The developed model produces high-resolution MRI segmentations for the whole spine.
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Clinical relevance This study introduces an automatic approach to whole spine segmentation, including posterior
elements, in arbitrary fields of view T2w sagittal MR images, enabling easy biomarker extraction, automatic localization of
pathologies and degenerative diseases, and quantifying analyses as downstream research.

Keywords Spine, Magnetic resonance imaging, Intervertebral disc, Vertebral body, Deep learning

Introduction
MRI is commonly used to evaluate the spine in clinical
practice, providing diagnostically valuable data on inter-
vertebral disc (IVD) degeneration, vertebrae pathologies,
and spinal canal/cord structures [1].
Segmentation is well-established in imaging techniques

such as computed tomography (CT). For instance, it can
be utilized in surgical and radiotherapy planning [2]. In
spinal MRI, segmentation is less common, primarily due
to missing resources as well as complex anatomy and poor
visualization of the posterior elements.
However, whole spine segmentation in MRI enables the

automatic extraction of biomarkers, [3] the automatic
detection of degenerative diseases such as IVD degen-
eration with Pfirrmann gradings, [4, 5] or quantifying
tumor load [6]. Additionally, quantitative analysis is
enabled, such as determining the level of scoliosis [7].
Thus, if whole spine segmentation is available in one of
the most frequently used MRI sequences in clinical rou-
tine, such as T2w sagittal turbo spin echo (TSE), it can
improve the quality of radiologic assessments and reduce
workload.
Machine learning is an established tool for solving the

problem of semantic or instance segmentation [8]. How-
ever, there is currently no automatic approach for MRI
images that segments the whole spine, including posterior
elements like the spinous processes of vertebrae. Most
existing methods for T2w image segmentation are limited

to the lumbar region and, therefore, are not designed to
segment the whole spine [9–14]. This can mainly be
attributed to the fact that MRIs have a low-resolution
plane compared to CTs, and structures such as the pos-
terior elements are more difficult to distinguish. This
imposes a significant workload on radiologists who per-
form manual annotations on MRI. Such annotations are
usually required to train automatic segmentation
approaches.
In contrast, segmentation is well-established for CT

imaging [15–17]. To overcome the issue of manual
annotations, Graf et al [18] successfully used image
translation to create artificial CT images from MR images.
They used existing segmentation models for CT to create
segmentation masks for MRIs and showed that this
translation works well enough to transfer CT-level seg-
mentation masks into MRIs. Our approach combines
these CT-level annotations with existing MRI-specific
ones to train our models without manually annotating a
single MRI. For this, the U-Net architecture, [19] the most
common deep learning approach for segmentation tasks,
is used. It is a convolutional neural network designed for
image segmentation, characterized by its encoder-decoder
structure and skip connections. However, we observed
from existing models that they struggle with instance
segmentation, as the different instance labels belong to
the same semantic structure and thus look similar to the
model, exemplarily described by Isensee et al [20]. This is

Table 1 Study cohort demographics

German national cohort [23] SPIDER dataset [22] In-house dataset

Subjects, (n) 2030 218 10

Modality T2w sagittal scans T1w and T2w sagittal scans T2w sagittal scans

MRI specification 3.0-T TSE 1.5-T and 3.0-T TSE 3.0-T TSE

Date range 2014–2016 2019–2022 2021–2022

Region Cervical, thoracic, and lumbar Lumbar only Cervical, thoracic, and lumbar

Sex, (% female) 49 (990/2030) 63 (137/218) 50 (5/10)

Mean age, (years) ± SD 52 ± 11 N/A 70 ± 19

Age range, (years) 21–72 N/A 20–88

Height range, (m) 1.47–2.02 N/A N/A

Weight range, (kg) 46–145 N/A 50–110

Subject population Mostly healthy individuals Clinical history of (chronic) back pain Clinical history of fractures or spinal degeneration

Demographics of the utilized cohorts
SD standard deviation
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unacceptable if such segmentation masks are used for
statistical analysis, registration, or medical intervention.
This study addresses this issue by first segmenting
semantically, allowing us to use spatially relative instance
labels for training and inference. Moreover, the avail-
ability of both semantic and instance masks enables

downstream tasks interested in the semantic structure
and the localization of individual instances, such as frac-
ture detection [21].
The purpose of this study is to present a spinal phase-

wise imaging network for paired segmentation (SPINEPS),
a two-phase approach to segment 14 spinal structures in

Fig. 1 Flow diagram of the investigated study cohort. Flow diagram for subject exclusion from top to bottom for the different datasets (n denotes the
number of subjects). Only subjects from the NAKO were excluded for which the automated annotation generation approaches failed

Fig. 2 Combination of the automated annotations. Showcase of the three automated annotations and their resulting combined annotation, as a 2D
segmentation overlay and a 3D snapshot. a Shows the segmentation made with the training data from Streckenbach et al [25], (b) the SpinalCordToolbox [27]
annotation, (c) the annotations derived from translation, and (d) the combination of all three. We observed that the manual segmentation from Streckenbach
et al [25] is primarily block-shaped and incomplete, while the translated annotations often segmented too many voxels around the vertebra corpus
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the cervical, thoracic, and lumbar regions of T2w sagittal
images, both semantically and instance-wise, to demon-
strate how a combination of annotations derived from
automated segmentation models and an MR-to-CT image
translation technique can be utilized for training, and to
make a pre-trained model publicly available to enable
researchers to generate spine segmentation masks for
their MR datasets.

Materials and methods
This study utilized three datasets: (1) public data, (2) a
prospectively collected external dataset (participants gave
informed consent), and (3) a retrospectively collected in-
house dataset (waived informed consent by the local
ethics committee, 593/21 S-NP).
In detail, this study utilized the public SPIDER dataset,

[22] a random German National Cohort (NAKO) subset,
[23] and an in-house dataset (Table 1). A random test split
of 18% (39/218) subjects from SPIDER was used. The
ratio of train/test for SPIDER is derived from a previous
study [22]. For a second test split, 65 random subjects
from the NAKO and the images of the in-house dataset of

ten subjects underwent manual correction divided among
three experts (J.S., H.S., and B.K.) with 3 years, 3 years,
and two years of experience, supervised by an expert
(J.S.K.) with 22 years of experience (Fig. 1). The high
manual effort and time consumption of this correction
process limited the size of this test split. The tool for
annotation was ITK-SNAP, [24] a cost-free and simple
software for viewing and editing 3D images and seg-
mentations. For training on the NAKO data, no manual
annotations were directly utilized. Instead, different
automated segmentations were combined as training
references.

Automated annotations
From a previous study by Streckenbach et al [25] manual
annotations containing the vertebra corpus, IVD, spinal
canal, and sacrum body semantic masks in 180 NAKO
subjects were obtained. We trained a default nnUNet
model, a widely recognized and powerful tool for image
segmentation, using the suggested hyperparameters [26]
to replicate this segmentation. This model, alongside the
Spinal Cord Toolbox [27] for spinal cord segmentation,

Fig. 3 Structure of our segmentation approach. The data flow of our proposed method of inference on new T2w sagittal scans. The semantic model
segments 14 different spine structures, regardless of field of view. Then, cutouts are made from the segmentation and fed into the instance model. The
results are predictions for the individual vertebrae, which are fused together for the vertebra instance mask. Then, using the first segmentation, each
voxel in the instance vertebra mask that is not present in the semantic mask is removed. Finally, IVDs and endplates are matched based on a center of
mass analysis. The examples shown are predictions of our model on the whole spine
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was employed to segment the 2030 NAKO subjects. The
Spinal Cord Toolbox encountered software issues we
could not fix for 543 subjects, which were excluded from
further usage, leaving 1477 subjects (1412 of which were
used for training).
Adopting Graf et al’s approach, [18] the NAKO training

data of T2w sagittal images were translated into artificial
CTs. The Bonescreen SpineR tool (Bonescreen GmbH)
based on Sekuboyina et al [28] was used to segment the
artificial CTs from the second cervical vertebra (C2) to the
last lumbar vertebra. These translated annotations yielded
nine vertebrae substructures segmentations (corpus, arcus
vertebrae, spinous processus, and processus articulares
inferiores, superiores, and costales/transversus, the latter
three divided into left and right).
The different segmentation masks were merged step by

step. Translation-based segmentations were added to the
Streckenbach-based ones. When adding, voxels already seg-
mented as a different structure were excluded. Next, the
spinal cord voxels were incorporated. Finally, holes between
the corpus and IVD regions were filled, and the transition
pixels were relabeled as endplates (Fig. 2). As the first cervical
vertebra (C1) is not segmented in any of our reference masks,
our approach cannot segment this particular vertebra.
This resulted in 14 spinal structures: ten for the vertebral

substructures (including endplate), spinal canal, spinal
cord, sacrum, and IVD. These automated segmentations

served as reference annotations for our training with the
NAKO train data.

Segmentation approach
Our approach operates in two phases (Fig. 3). Initially, a
semantic model segments the scan patch-wise into the
14 semantic labels. For this purpose, a nnUNet 3D
architecture [26] is employed.
The different instances cannot be trivially computed

from this semantic mask, e.g., due to the fusion of ver-
tebrae bodies. Therefore, this study utilizes a sliding
window patching approach with a second model (a 3D
U-Net [19]) trained to distinguish semantic labels into
vertebra instances. This allows us to train the instance
segmentation on spatially relative instance labels (i.e.,
the vertebra instance in the center of the patch) instead
of global ones (i.e., the vertebra instance third from the
top of the scan). To achieve this, the center of mass
position for each vertebra corpus in the semantic mask
is computed through connected components analysis.
Cutouts of fixed size (248, 304, and 64), with an up-
sampled resolution of (0.75, 0.75, and 1.65) and orien-
tation (posterior, inferior, and right), are created around
these centers. For each cutout, this second model pre-
dicts the three vertebrae around the cutout’s center.
During this process, each vertebra appears in multiple
cutouts (Fig. 4).

Fig. 4 Example of the instance model. Given the semantic segmentation, cutouts of the exact same size are created. Each of those cutouts (colored
boxes) is fed into the instance model. a–c Show the first three predictions of a semantic input. The instance model always predicts the center vertebra of
the cutout (green), as well as the one above (red) and below (blue), if visible. Therefore, assuming no erroneous predictions, we get three predictions for
all inner vertebrae and two for the outer ones. For example, the second to last vertebra in the figure is predicted thrice, once in each of the three
predictions (red, green, blue, from left to right). The combination of all cutout predictions is combined into a vertebra instance mask (d), uniquely
labeling each vertebra instance (different colors)
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We compute the average Dice score for each vertebra
across these appearances. Subsequently, vertebra instances
are integrated into the final instance mask from the highest
to lowest average Dice score. This approach ensures the
least consistent predictions are addressed last, minimizing
the potential impact of erroneous predictions on neigh-
boring instances. Notably, this reduces the likelihood of
skipping an entire vertebra or merging two vertebrae
instances. Significantly, our method relies solely on the
semantic mask as input to the instance model. Therefore,
the image data is not utilized during this stage. Finally,
IVDs and endplate structures from the semantic mask are
added to the instance mask and are given instance labels
based on the nearest vertebra instance above.
For the training, we used an Nvidia A40 for one GPU

day. The detailed configurations and pre-processing used
for training each model are shown in Appendix A (Elec-
tronic Supplementary Material). One inference run of
SPINEPS with both models on a whole-body scan of
NAKO with shapes (501, 914, and 16) takes about 50 s to
process. This was tested on a separate machine using
Ubuntu 22.04 with a GeForce RTX 3090, an AMD Ryzen
9 5900×, and 128 GB RAM. After both semantic and
instance segmentation, post-processing techniques are
employed.

Post-processing
Voxels in the instance mask that are zero in the semantic
mask are removed. Furthermore, each connected com-
ponent present in the semantic mask, but missing in the
instance mask, is assigned to the instance with the most
neighboring voxels. This ensures consistency in fore-
ground voxels between both masks. A bounding box
analysis is used to remove elements isolated from the
largest connected component (i.e., the target spine).
Additionally, for each articularis inferior and superior
connected component, the instances are relabeled based
on majority voting. The instance model mostly mixes the
neighboring vertebrae instances in those regions by just a
few voxels. This ensures consistency and clean edges.

Experiments
This study used the nnUNet approach from a previous
study as the baseline model [22]. We compared its per-
formance to our SPINEPS approach, training solely on the
SPIDER dataset and evaluating the SPIDER test split. As
the SPIDER ground truth contains only an instance mask,
we compare our instance mask output with it. To enable a
semantic evaluation, we derive the anatomic group by its
instance, i.e., all vertebra instances receive the same label,
before calculating the metrics.
Our approach trained only on the automated annota-

tions of the NAKO training data is evaluated on the

manually corrected NAKO test set and in-house data to
demonstrate the effectiveness of the automated annota-
tions. Additionally, the performance is compared to a
model trained on both NAKO training data and the
SPIDER dataset. As only the semantic masks were
manually corrected for the test set, only the semantic
output of the approach was evaluated. We also omitted
evaluations for the sacrum and endplate structure,
because they were not part of the manual annotation
process of the test data.

Statistical analysis
For evaluation, the Dice similarity coefficient (DSC) and
the average symmetric surface distance (ASSD), indicating
average distances from segmented edges to reference
annotations, is employed. Instance-wise metrics—recogni-
tion quality (RQ), segmentation quality (SQ), and panoptic
quality (PQ), as described in [29], calculated using

Table 2 Performance comparison to baseline

Structure Metric nnUNet

baseline

SPINEPS w/o

post-processing

(ours)

SPINEPS (ours)

Global structure-wise

Vertebra ↑ DSC 0.927 ± 0.026 0.942 ± 0.022 See SPINEPS w/o

post-processingIVD ↑ DSC 0.891 ± 0.036 0.907 ± 0.033

Spinal

canal

↑ DSC 0.924 ± 0.03 0.937 ± 0.025

Average ↑ DSC 0.91 ± 0.02 0.929 ± 0.019

Instance-wise

Vertebra ↑ DSC 0.911 ± 0.1 0.922 ± 0.081 0.933 ± 0.086

↑ RQ 0.972 ± 0.041 0.988 ± 0.033 0.992 ± 0.03

↑ SQ 0.85 ± 0.074 0.866 ± 0.041 0.882 ± 0.03

↑ PQ 0.827 ± 0.086 0.855 ± 0.049 0.882 ± 0.074

↓ ASSD 0.435 ± 0.872 0.28 ± 0.303 0.21 ± 0.175

IVD ↑ DSC 0.877 ± 0.095 0.901 ± 0.066 See SPINEPS w/o

post-processing↑ RQ 0.978 ± 0.04 0.983 ± 0.053

↑ SQ 0.794 ± 0.083 0.824 ± 0.054

↑ PQ 0.777 ± 0.091 0.819 ± 0.056

↓ ASSD 0.486 ± 1.08 0.261 ± 0.275

Average ↑ DSC 0.894 ± 0.024 0.912 ± 0.15 0.917 ± 0.023

↓ ASSD 0.461 ± 0.036 0.271 ± 0.013 0.236 ± 0.036

The performance comparison between the nnUNet baseline adapted from a
previous study [22] and our SPINEPS approach on the test split of the SPIDER
dataset. To fairly compare how much our post-processing systems contribute,
the metrics of SPINEPS without post-processing are also shown. We did not
employ any post-processing for the semantic model, and it does not influence
the IVD instance prediction. Our approach outperforms the baseline in every
metric, especially in the instance-wise metrics. The largest difference can be
seen in the instance-wise vertebra ASSD metric, where our approach plus one
standard deviation is still better than the average of the baseline. Mean and
standard deviations are reported. The arrows before the metric name indicate if
smaller or higher values are better. The best results in the comparison are
marked in bold
IVD intervertebral disc, DSC Dice similarity coefficient, RQ recognition quality, SQ
segmentation quality, PQ panoptic quality, ASSD average symmetric surface distance
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panoptica [30]—provided insights into instance prediction
performance. Instances with an intersection over a union
greater than or equal to 0.5 were considered true positives.
Statistical significance was determined using the Wil-

coxon signed-rank test on Dice and RQ metrics, with
p < 0.05 indicating statistical significance.

Results
Table 1 presents the demographic and clinical char-
acteristics of the subjects. Out of the total 2030 subjects
from the NAKO subset, automated annotations for 1477
(mean age 53, 49% female) were created. We observed no
disease-related pattern in our exclusion set, like strong

Fig. 5 Example from the SPIDER test set. Example subjects where the baseline (a) produces a typically found error: mixing different instance labels. Our
approach (b) is very close to the reference annotation (c). This type of error the baseline made did not occur with our approach
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scoliosis or hyper-intense spots. Data from the public
SPIDER or the in-house dataset were not excluded
(Fig. 1).

Performance
SPINEPS outperforms the baseline across all metrics and
structures (e.g., vertebra instance ASSD 0.21 vs 0.435; all
dice p < 0.001). This is true for both the semantic com-
parison (structure-wise) and the instance metrics
(Table 2). Even without the proposed optional post-
processing techniques, our two-phase approach outper-
forms the baseline (e.g., vertebra instance DSC 0.922 vs
0.911, p < 0.001). Contrary to the baseline, our model does
not produce global instance segmentation errors (Fig. 5).
Additionally, the lower standard deviation and the overall
lower ASSD values suggest a higher robustness of our
technique. Finally, our approach is not only better on
average, but consistently across all test samples.
A model trained on both the NAKO automated anno-

tations as well as the SPIDER dataset yields a DSC of

0.911 for vertebrae, 0.951 for IVDs, and 0.922 for the
spinal canal on our test set of 75 randomly chosen,
manually corrected subjects (Table 3). Training with both
datasets outperformed the model only trained on NAKO
(all dice p < 0.001). When evaluated on the individual
regions (cervical, thoracic, and lumbar), our approach
demonstrates its best overall performance in the thoracic
region and its weakest in the cervical region, as shown in
Appendix B: Performance by Region.
We also assessed the most common errors the models

trained on NAKO and SPIDER made (Fig. 6). The model
struggles to properly annotate the outermost slices in the
left/right dimension. This leads to pixel omissions in the
processus costalis/transversus structures. In highly aber-
rant cases, especially in merged vertebrae, the transition
between IVD and corpus often has local errors. Lastly, our
models struggle to fully segment the dens axis structure of
the C2.

Discussion
This work presents the first publicly available model for
whole spine segmentation in sagittal T2w MR images.
Training a model on a combination of automatically
generated annotations generalized with good perfor-
mance. Our approach yields both a semantic and an
instance mask. Additionally, this study demonstrated that
our two-phase approach yields improved semantic and
instance segmentation capabilities compared to a nnUNet
trained on instance references directly, as described in a
previous study [22].
Spinal segmentation has been addressed by a multitude

of approaches. The TotalSegmentator from Wasserthal
et al [31] enables the segmentation of more than a hun-
dred classes. However, it works only in CT, and according
to their assessment, the most common errors it produces
are the confusion of instance labels. They used a nnUNet
trained directly on instance labels similar to our baseline
[22, 26]. This study presents samples where the baseline
produces segmentation errors by confusing different
instance labels. We hypothesized that the different labels
have the same semantic structure and look similar to the
model. Our approach avoids this by first segmenting
semantically and using the proposed sliding window
technique on fixed cutout sizes. This simplifies the
instance segmentation task for the model and limits
possible prediction errors to a local influence. The sig-
nificant increase in metrics evaluating instance segmen-
tation confirms this.
The commercially available CoLumbo software [32]

segments the vertebral body, spinous and disc structures
among other in the lumbar region. By dividing each ver-
tebra into substructure labels, our approach enables a
more detailed automatic analysis of the whole spine. Most

Table 3 Performance on NAKO test set

Structure Metric SPINEPS (NAKO) SPINEPS

(NAKO+ SPIDER)

Global structure-wise

Vertebra ↑ DSC 0.894 ± 0.034 0.911 ± 0.034

IVD ↑ DSC 0.948 ± 0.02 0.951 ± 0.021

Spinal canal ↑ DSC 0.904 ± 0.045 0.922 ± 0.032

Spinal cord ↑ DSC 0.928 ± 0.072 0.939 ± 0.051

Average ↑ DSC 0.918 ± 0.024 0.931 ± 0.018

Vertebra substructures

Arcus vertebra ↑ DSC 0.835 ± 0.063 0.853 ± 0.061

↓ ASSD 0.365 ± 0.227 0.301 ± 0.186

Spinosus process ↑ DSC 0.781 ± 0.054 0.813 ± 0.056

↓ ASSD 0.5 ± 0.275 0.396 ± 0.24

Articularis inferior ↑DSC 0.747 ± 0.096 0.763 ± 0.096

↓ ASSD 0.54 ± 0.512 0.497 ± 0.44

Articularis superior ↑ DSC 0.735 ± 0.103 0.741 ± 0.103

↓ ASSD 0.569 ± 0.51 0.545 ± 0.431

Costal process ↑ DSC 0.639 ± 0.109 0.698 ± 0.108

↓ ASSD 1.39 ± 1.07 1.03 ± 0.898

Vertebra corpus ↑ DSC 0.934 ± 0.021 0.948 ± 0.023

↓ ASSD 0.398 ± 0.18 0.287 ± 0.36

Average ↑ DSC 0.778 ± 0.1 0.803 ± 0.09

↓ ASSD 0.626 ± 0.381 0.51 ± 0.277

The performance comparison between SPINEPS trained only on the NAKO
dataset and SPINEPS trained with both the NAKO and the SPIDER dataset.
Evaluation is done on the manually corrected test split from the NAKO and in-
house dataset. Incorporating the manually annotated SPIDER dataset improves
each metric. Mean and standard deviations are reported. The arrows before the
metric name indicate if smaller or higher values are better. The best results in
the comparison are marked in bold
IVD intervertebral disc, DSC Dice similarity coefficient, ASSD average symmetric
surface distance, NAKO German National Cohort
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Fig. 6 Typical SPINEPS errors. Showcase of the most common mistakes made by our approach trained on both NAKO and SPIDER. Arrows indicate the
area of erroneous prediction. a An axial snapshot that shows that our approach tends to miss the outermost voxels in the left/right direction, especially
for the coastal process structure (orange). In very aberrant cases with partially merged vertebrae (b), our approach tends to over-segment the IVDs. c The
dens axis structure of the C2 is not fully segmented. We hypothesize these issues mostly come from the imperfect translation of MR to CT and
subsequent loss of CT segmentation quality
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other approaches either work on a specific region, like the
SPIDER baseline [22], and fail to capture arbitrary fields of
views [12] or don’t include the posterior elements [14].
Using the translation approach, this study successfully
transferred vertebra substructure segmentations into MRI
without manually annotating a single image.
Our approach is trained on a large cohort of MRI data

from the NAKO [23]. Such a segmentation technique
enables further studies and essential analysis, such as
deriving normative values, as shown by Streckenbach et al
[25]. However, in that study, the proposed model only
segments the vertebra corpus, IVD, and spinal canal region
semantically. Unlike our method, further algorithms are
required to derive the instance masks from their semantic
outputs, rendering downstream tasks more challenging.
Nevertheless, our study has limitations. The population

of the NAKO is derived from an average, healthy German
population. Thus, compared to a typical hospital dataset,
pathologies may be under-represented, and despite
including pathological cases in our test data, the same
performance cannot be guaranteed on out-of-distribution
imaging data, such as post-operative MRI.
Our instance segmentation does not incorporate a

labeling step, meaning an instance label in SPINEPS
output does not correspond to the same vertebral body
across subjects. Instead, the instance labels are counted
from top to bottom regardless of the field of view or the
presence of enumeration abnormalities, such as 13 thor-
acic vertebrae [33]. Future research could entail a labeling
step after our two-phase segmentation approach to label
the vertebra instances anatomically correct, as it has been
similarly done in CT [34].
The T2w sagittal images from the NAKO often contain

only a few slices and have a slice thickness of 3.3 mm. Our
model occasionally encounters difficulty accurately seg-
menting the outermost voxels along the left/right
dimension. This leads to pixel omissions in the processus
costalis/transverse structures, making it the least profi-
cient substructure in our model’s performance. In a pre-
liminary test of training only on the manually corrected
test data, a reduction in these issues was observed. This
suggests that these errors arose from the training data
distribution. Therefore, to reduce those errors in the
future, we could fine-tune our model on manually cor-
rected data, preferably on wider MR images.
In conclusion, this study presented SPINEPS, a two-

phase semantic and instance segmentation approach,
which is superior to an nnUNet baseline trained for
instance segmentation. We demonstrated our approach
can generalize well using automatic annotations only,
partially derived from an MR-to-CT translation approach.
Finally, a whole spine model was presented to accurately
segment 14 spinal structures in T2w sagittal scans in

cervical, thoracic, and lumbar regions, both semantically
and instance-wise. The models and approaches are made
publicly available1.
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