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Abstract 

Introduction  Endothelial dysfunction (ED) promotes the development of atherosclerosis, and studies suggest 
an association with age-related neurocognitive disorders. It is currently unclear whether ED is also associated 
with the risk of perioperative neurocognitive disorders.

Method  We included 788 participants aged ≥ 65 years of the BioCog study. Patients were scheduled to undergo 
elective surgery with expected duration > 60 min. Blood was collected before surgery for measurement of 5 biomark-
ers of ED: asymmetric and symmetric dimethylarginine (ADMA; SDMA), intercellular and vascular adhesion molecule 
(ICAM-1, VCAM-1), and von Willebrand factor (vWF). Patients were monitored for the occurrence of postoperative 
delirium (POD) daily until the 7th postoperative day. 537 (68.1%) patients returned for a 3-month follow-up. Post-oper-
ative cognitive dysfunction (POCD) was defined from the change in results on a battery of 6 neuropsychological tests 
between baseline and 3 months, compared to the change in results of a control group during the 3-month interval. 
The associations of each of the 5 ED biomarkers with POD and POCD respectively were determined using multiple 
logistic regression analyses with adjustment for age, sex, surgery type, pre-morbid IQ, body mass index, hypertension, 
diabetes, HbA1C, triglyceride, total and HDL cholesterol.

Results  19.8% of 788 patients developed POD; 10.1% of 537 patients had POCD at 3 months. Concentrations of ED 
biomarkers were not significantly associated with a POD. A higher VCAM-1 concentration was associated with a reduced 
POCD risk (adjusted odds ratio 0.55; 95% CI: 0.35–0.86). No further statistically significant results were found.

Conclusion  Pre-operative concentrations of ED biomarkers were not associated with POD risk. We unexpectedly 
found higher VCAM-1 to be associated with a reduced POCD risk. Further studies are needed to evaluate these 
findings.
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Introduction
Around 313 million surgeries are performed annu-
ally worldwide [1] and, particularly in older adults, they 
are often accompanied by  perioperative neurocogni-
tive disorders. Post-operative delirium (POD) is a clini-
cal diagnosis characterized by a disturbance of attention, 
consciousness, perception, and cognition [2, 3]. POD 
occurs in a substantial proportion of older patients 
within the first days following surgery [4]. Post-operative 
cognitive dysfunction (POCD) is defined as a decline in 
neuropsychological test performance between pre- and 
post-operative assessment [5]. The methods used to 
define POCD are extremely heterogeneous, complicat-
ing comparisons across studies [6]. Three to six months 
after surgery, POCD has been described in 10% to 25% 
of patients [7]. Both POD and POCD may be associated 
with premature mortality [8–10] and reduced quality of 
life [11, 12], making them important public health issues 
that warrant investigation. In the epidemiology of POD 
and POCD, a number of risk factors have been identified 
to date, including advanced age, pre-existing neurocogni-
tive disorders, and metabolic factors [13–15].

The endothelium plays a major role in cardiovascu-
lar homeostasis, functioning both as the barrier and the 
bridge between blood, the vascular wall, and surrounding 
tissues. It controls the exchange of biomolecules, signal-
ing chemicals, and nutrients [16]. A healthy endothelium 
ensures that blood is delivered to all parts of the vascular 
tree [17] and regulates platelet adhesion [18]. Endothelial 
dysfunction (ED), on the other hand, is characterized by 
the deposition of lipids, fatty streaks, and lipid-rich ath-
erosclerotic plaques [18]. ED additionally leads to ath-
erosclerosis through nitric oxide (NO) depletion, which 
in turn promotes inflammation at the endothelium, set-
ting the body into a pro-inflammatory state. The latter 
can become exacerbated by surgery with trial evidence in 
fact to suggest a potential causal effect on cognitive risk 
[19–21]. The brain has a large endothelial surface [22]. 
Its function can therefore likely be compromised by pro-
longed systemic ED.

Given the fact that the endothelium is a complex sys-
tem, a panel of markers could be reflective of endothe-
lial physiology and pathology [23]. Known biomarkers of 
systemic ED include asymmetric and symmetric dimeth-
ylarginine (ADMA, SDMA), intercellular adhesion mol-
ecule 1 (ICAM-1), and vascular cell adhesion molecule 
1 (VCAM-1) as well as von Willebrand factor (vWF). 
ADMA is known as an inhibitor of NO synthase. SDMA 
is a regioisomer of ADMA; however, does not inhibit the 
synthesis of NO. ICAM-1 and VCAM-1 promote the 
adherence of leukocytes and the influx of macromole-
cules through the vessel wall [24]. Finally, vWF is a pro-
tein involved in the coagulation pathway [25]. Elevated 

concentrations of the biomarkers above in circulation, 
which all tend to correlate positively with one another, 
are indicative of systemic ED.

Concentrations of circulating ED biomarkers have been 
linked to brain degenerative processes that manifest in 
age-related neurocognitive disorders [26–28] including 
dementia [29–31]. They may additionally correlate with 
the severity of brain disease [29, 32–35]. It is unclear 
whether ED is also related to perioperative neurocogni-
tive disorders. To the best of our knowledge, no study 
has reported on ED and POCD and three studies on ED 
and POD risk have produced conflicting results [36–38]. 
These studies have also been limited by small sample 
sizes and have focused on individual ED biomarkers 
rather than concurrently assessing several ED biomark-
ers for direct comparison and evaluation of their inter-
dependence in the associations with POD. On the other 
hand, previous findings indicate an association between 
elevated levels of ED biomarkers with the presence or 
progression of white matter hyperintensities (WMH) 
[39, 40] and white matter lesions [29, 41–43], while white 
matter lesions are associated with an increased risk of 
POD [44] and POCD [45]. These findings suggest a pos-
sible mediatory role for the presence of WMH and white 
matter lesions in the hypothesized association of ED with 
POD and POCD risk.

Here, we used data from a large cohort of older surgical 
patients firstly to investigate the association of pre-oper-
ative concentrations of ED biomarkers in circulation with 
the risk of i) POD during the hospital stay and ii) POCD 
at 3-month follow-up. We compared results for five bio-
markers (ADMA, SDMA, ICAM-1, VCAM-1, and vWF) 
and determined the interdependence in their relation-
ships with POD/POCD. We additionally adjusted for 
potential confounding and, separately, for mediating fac-
tors, including the presence of pre-operative WMH, and 
white matter lesions. We hypothesized that higher pre-
operative  concentrations of the 5 ED biomarkers are 
associated with an increased POD and POCD risk and 
that the respective association may in part be driven 
by WMH and white matter lesions (such that statisti-
cal adjustment for these factors would lead to statistical 
non-significance).

Method
Study design
We used data and biomaterial from the Biomarker Devel-
opment for Postoperative Cognitive Impairment in the 
Elderly (BioCog) study [46]. BioCog is an EU-funded 
prospective cohort study that tracked the cognitive 
development of older surgical patients who had been 
recruited between 2014 and 2017 in Utrecht, the Neth-
erlands, and Berlin, Germany (for full inclusion and 
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exclusion criteria, see [47]). In brief, patients were ≥ 65 
years old, Caucasian, and scheduled to undergo elective 
surgery of any type (e.g., orthopedic, abdominal, periph-
eral surgery) with expected duration ≥ 60 min under 
regional, local or general anesthesia. Exclusion criteria 
were (among others)  Mini-Mental State Examination 
(MMSE) ≤ 23 and presence of a neuropsychiatric disease 
affecting the ability to perform cognitive tests. Patients 
underwent cognitive and clinical examination includ-
ing magnetic resonance imaging (MRI) during the days 
before surgery. They were followed up during the hospital 
stay until 7 days after surgery/discharge and returned to 
the clinic for follow-up at 3 months. 933 participants met 
the inclusion criteria and were included in the BioCog 
cohort (see Supplementary Fig. 1).

Pre‑operative sociodemographic, clinical, and cognitive 
assessment
Sociodemographic information and medical history 
including history of diabetes, transient ischemic attack 
(TIA), and stroke, were self-reported. Clinical assess-
ments included the measurement of height and weight 
for the calculation of body mass index (BMI) and the 
measurement of systolic and diastolic blood pressure. 
Pre-morbid intelligence quotient (IQ) was measured 
using the German version of the Mill-Hill vocabulary 
test (German patients) and the Dutch adult reading test 
(Dutch patients). Scores on both scales were converted 
to IQ based on published norms and merged to derive a 
single variable ‘pre-morbid IQ’.  Pre-operative cognitive 
assessments of ’fluid ability’ (further outlined below) were 
used to calculate a g factor of global cognitive ability for 
each patient. 

Pre‑operative blood collection and routine lab analysis
Blood was collected following an overnight fast imme-
diately before surgery and shipped to immediate labs 
adjacent to the respective hospital site. Samples were 
additionally stored at -80° in a central biobank. Routine 
laboratory parameters were measured in serum (triglyc-
erides, high-density lipoprotein, HDL-C, total choles-
terol, interleukin-6 (IL-6)) and whole blood (HbA1c) at 
immediate labs; for a subsample of patients, triglycerides 
and HDL-C were later measured from biobank serum for 
logistical reasons. When we repeated our final analyses 
with adjustments for the analysis lab, none of the results 
reported here were changed (data not shown).

Pre‑operative ED biomarkers
We measured each of the 5 ED biomarkers from biobank 
plasma using enzyme-linked immunosorbent assay 
(ELISA) kits described as follows: ADMA fast ELISA (CE 
IVD), SDMA ELISA (CE IVD), sICAM-1, Human ELISA 

(RUO), sVCAM-1 Human ELISA (RUO) and IMUBIND 
vWF ELISA (RUO). The analyses were performed accord-
ing to the manufacturer’s instructions. The only excep-
tion was ELISA for vWF, where the dilution factor of 300 
was used instead of the recommended dilution factor of 
100.

The intra and inter-assay coefficients of variation 
(CV) were as follows: ADMA, intra-assay CV 7.9% and 
inter-assay CV 15.9%; SDMA, 12.0% and 18.8%, ICAM-
1, 4.4% and 14.5%, VCAM-1, 5.3% and 12.0%, for vWF, 
2.4% and 5.5%. To derive a single component explaining 
the highest variance among all included ED biomarkers, 
we applied principal component analysis. The standard-
ized regression score resulting from this PCA was saved 
(‘ED factor’) and used as an additional exposure variable 
in our main analyses.

Brain imaging data
Patients underwent 3T MRI during the days before sur-
gery. In Berlin, 3T MagnetomTrio by Siemens was used; 
in Utrecht, 3T Achieva by Philips was used. Raw images 
were assessed for indicators of cerebrovascular damage 
by automated programs and/or trained radiologists. All 
images (both from Berlin and Utrecht) were processed 
at a single center. The MRI markers of cerebrovascular 
damage included volume of WMH (mL), cerebral infarc-
tions, and gray matter cerebral blood flow (arterial spin 
labeling).

Postoperative neurocognitive disorders
Postoperative delirium (POD) was defined according to 
the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-5) criteria. Patients were considered as hav-
ing POD if any one of the following criteria were met; 
i) ≥ 2 cumulative points on the nursing delirium screen-
ing scale (Nu-DESC), ii) a positive confusion assessment 
method (CAM) score, iii) a positive CAM for the inten-
sive care unit (CAM-ICU), iv) patient chart review that 
shows descriptions of delirium (e.g. confused, agitated, 
drowsy, disorientated, delirious, received antipsychotic 
therapy for delirium).

Postoperative cognitive dysfunction (POCD) was based 
on six age-sensitive neuropsychological tests of ‘fluid 
ability’ [48] which were administered before surgery and 
again at 7 days and 3 months. Four tests were adminis-
tered on handheld tablet devices from the CANTAB® 
battery (Verbal Recognition Memory; Paired Associates 
Learning; Spatial Span; Simple Reaction Test) and two 
were conventional tests (Trail-Making; Grooved Peg-
board). Scores were imputed for patients with missing 
data on individual tests using the random forest impu-
tation technique. In exceptional cases, where missing 
data were accompanied by free-text comments such as 
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“impaired concentration”, missing data were replaced by 
worst-case performance. A non-surgical control group 
of ≥ 65 year olds was recruited at the study centers [49]. 
Next, according to Rasmussen criteria [50], POCD 
was defined for the patient sample as a  composite  reli-
able change index (RCI) from all cognitive tests of  > 1.96 
across and/or an RCI > 1.96 on any one individual cogni-
tive test.

Treatment of missing data and outliers
Missing data were imputed as follows: i) for continuous 
variables including HbA1C (n = 95), triglyceride (n = 34), 
total cholesterol (n = 94), HDL-C (n = 28), missings were 
replaced as the respective median of the distribution, ii) 
for categorical variable including hypertension (n = 13), 
diabetes (n = 21), stroke (n = 17), TIA (n = 22), the miss-
ing covariate were assumed as absent for the respective 
patient, and iii) missing data on surgery type (n = 17) 
were assigned as the most frequent surgery type (periph-
eral surgery). Missing data on MRI variables were not 
imputed given the high proportion of patients with miss-
ing data (60.65%).

The outliers in the concentrations of ED biomarkers 
were defined and dealt with as follows:  i) values which 
were 1.5 times of interquartile range (IQR) above the 
third quartile (Q3) were replaced with (1.5 × IQR + Q3) ii) 
values which was 1.5 times of IQR below the first quartile 
(Q1) were replaced with (1.5 × IQR– Q1).

Statistical analyses
Sociodemographic and clinical characteristics were 
described for the total analysis sample on the outcome 
POD (N = 788), on the analysis sample on the outcome 
POCD (n = 542), and stratified according to the pres-
ence or absence of POD and POCD respectively. Group 
differences between POD and no-POD groups and 
between POCD and no-POCD groups were assessed 
using Mann–Whitney U tests for continuous variables 
and chi-square tests for binary variables. Principal com-
ponent analysis (PCA) was applied to data on the five ED 
biomarkers to derive a principal component (PC) of ED. 
In PCA analysis, a single component with Eigenvalue > 1 
was found and the standardized regression score result-
ing from this PCA was saved and used as an additional 
exposure variable (‘ED factor’).

The associations among ED biomarkers and those of 
ED biomarkers with demographic and health-related 
characteristics were assessed using Spearman correlation 
and chi-square tests.

Logistic regression analyses determined the associa-
tions of each ED marker and the ED factor (as continuous 
variables and as quartiles) with POD and POCD risk, in 
three models with hierarchical adjustment for covariates. 

Separate models were run for each ED marker and the 
outcomes POD and POCD respectively. The covariates 
used for adjustments were selected based on their roles 
as candidate confounders or mediators in the associa-
tion of ED with POD/POCD. Adjustment was identical 
for POD and POCD for consistency and comparability of 
results. Model 1 was adjusted for age (continuous), sex, 
surgery type (intracranial, intrathoracic, peripheral), and 
pre-morbid IQ (continuous) as potential confounding 
factors with potential links both to ED biomarkers and 
POD/POCD outcomes. For instance, a lower pre-morbid 
IQ has been associated with poorer lifestyle choices [51, 
52] which can cause ED and is potentially also linked to 
POD/POCD [53, 54]. Such  links could lead to spurious 
associations of ED with POD/POCD in our analysis, thus 
we controlled for pre-morbid IQ. Model 2 was addition-
ally controlled for BMI (continuous), hypertension (yes/
no), diabetes (yes/no), HbA1c (continuous), triglycerides 
(continuous),  total cholesterol (continuous)  and HDL-C 
(continuous), HbA1C (continuous). These vascular risk 
factors too could function as confounders to the associa-
tions under investigation here. In model 3 and model 4, 
we controlled for potential mediating factors that could 
link ED with POD/POCD. Specifically, in model 3, TIA 
(yes/no) and stroke (yes/no) as clinical cerebrovascu-
lar disease were further controlled for. Finally, to assess 
whether the association between ED biomarkers and 
POD/POCD was mediated by subclinical cerebrovascu-
lar damage, in a subset of patients with complete MRI 
data, MRI markers (WMH volume, cerebral infarction, 
gray matter cerebral blood flow) model 3 was repeated, 
and next MRI markers were added to the model (model 
4). In a post-hoc analysis, the fully adjusted model on ED 
biomarkers and POD was repeated with restriction to 
patients who returned at 3 months. To assess the inter-
dependence of ED biomarkers in association with subse-
quent POD/POCD development, Model 2 was repeated 
with inclusion of all 5 ED biomarkers. Also, the fully 
adjusted model for POCD was controlled for POD to 
assess a possible mediatory role of POD in the associa-
tion between ED biomarkers and POCD. Analyses were 
conducted in SAS 8.3 Update 2 (8.3.2.140), SAS Institute 
Inc., Cary, NC, USA.

Results
Sample characteristics
Of 933 participants, 788 (%) had complete data on POD 
and ED biomarkers and provided the sample for the anal-
ysis of the outcome POD. Of those, 537 (%) returned for 
a 3-month follow-up and had complete cognitive and ED 
biomarkers data, and were thus included in our analysis 
of POCD (Supplementary Fig.  1). No statistically sig-
nificant differences were found in pre-operative clinical 
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and surgery-related characteristics including age, sex, 
surgery type, pre-morbid IQ, global cognitive ability (g), 
BMI, hypertension, diabetes, history of stroke and TIA, 
between patients who were included, and those who were 
excluded in the analyses of POD and POCD respectively 
(Supplementary Table 1A & 1B).

Of 788 patients included in the analysis of POD, the 
median age was 72 years (IQR: 68–76) and 42.5% of the 
study population was female. Of the 788 patients, 19.7% 
developed POD. 537 patients were included in the analy-
sis of POCD with a median age of 74 years (IQR: 70–78) 
with 50% females. Of these 537 patients, 10.1% developed 
POCD.

Four hundred seventy-two participants had avail-
able data on the pre-operative volume of WMH with a 
median of 2.54 ml (interquartile range, IQR, 1.07–6.00 
ml). 478 patients had data on the pre-operative pres-
ence or absence of cerebral infarctions (31% with cerebral 
infarction) and 378 patients had their pre-operative gray 
matter cerebral blood flow measured with a median of 
106.41 ml/100g/min (IQR, 86.20–127.15 ml/100g/min).

Pre‑operative ED biomarkers and pre‑operative 
sociodemographic and clinical characteristics
All five ED biomarkers were strongly positively 
associated with one another (Spearman’s correla-
tion ranging 0.13 to 0.40; p < 0.001, Supplementary 
Table  2A&2B). In PCA analysis, a single component 
explained 45% of the variance in the data (factor load-
ings: VCAM-1 = 0.74; ICAM-1 = 0.72; SDMA = 0.62; 
vWF = 0.62; ADMA = 0.60).

ADMA was not statistically significantly associated 
with any sociodemographic and clinical characteristics. 
SDMA was weakly positively associated with age, and 
weakly negatively associated with  the global ability fac-
tor g (p < 0.01). ICAM-1 was weakly negatively correlated 
with HDL-C and positively correlated with g, HbA1c, and 
IL-6 (p < 0.001). VCAM-1 and vWF were weakly posi-
tively correlated with age, BMI, and IL-6 and negatively 
correlated with g (p < 0.01). No significant difference was 
detected for the levels of ED biomarkers once partici-
pants were grouped based on sex, hypertension, or diabe-
tes status (Supplementary Table 2A& 2B):

The associations of ED biomarkers with cerebrovas-
cular damage, defined by MRI markers, can be found 
in Supplementary Tables  3A & 3B. One SD increment 
in concentrations of ADMA and SDMA was associated 
with 0.11(ml) and 0.13 (ml) increase in mean volume of 
WMH (p < 0.05). No further associations of ED biomark-
ers with MRI parameters were detected.

Pre‑operative sociodemographic and clinical 
characteristics of POD and POCD groups
POD patients were older (p < 0.01) and more likely to 
have intrathoracic/abdominal surgeries (61.7% vs 38.4%, 
p < 0.01) compared with no-POD patients (Table 1).

POCD patients were significantly older in comparison 
to those who did not develop POCD (p < 0.01, Table 2).

Association of pre‑operative ED biomarkers and POD risk
In a model adjusted for age, sex, surgery type  and 
pre-morbid IQ, a significant association was detected 
between higher concentrations of pre-operative SDMA, 
ICAM-1, and VCAM-1 and an increased risk of POD 
(model 1, per one standard deviation (SD) higher concen-
tration of ED biomarkers were associated with a 1.19-fold 
increased risk; 95% CI: 1.01–1.42 for SDMA, with a 1.22-
fold increased risk; 95% CI: 1.03–1.45 for ICAM-1;  and 
with a 1.22-fold increased risk; 95% CI: 1.04–1.45 for 
VCAM-1).

Furthermore, each SD increment in ED factor was 
associated with a 1.26-fold increased risk of POD (model 
1, 95% CI: 1.04 to 1.52). However, after further adjusting 
for BMI, hypertension, diabetes, HbA1C, triglycerides, 
total cholesterol, and HDL-C, no statistically significant 
associations of levels of ED biomarkers with POD were 
found (model 2, Table 3). Further adjustment for history 
of stroke or TIA (model 3, Table 3) as well as repeating 
model 3 for patients with available data on MRI, and in 
the next step adding parameters of subclinical cerebro-
vascular damage from brain imaging to the model, pro-
duced similar results (model 3&4, Table 4).

When restricting the analysis to POD patients who 
returned at 3 months follow-up (n = 537), the results 
remain similar but no longer significant in model 1 for 
ICAM-1, and VCAM-1 (data not shown). Results stayed 
similar for model 2 and model 3. Additionally, when 
repeating in all models with the inclusion of all ED bio-
markers in the model, the results remained mostly simi-
lar (data not shown).

Association of pre‑operative ED biomarkers with POCD risk
In the model adjusted for age, sex, surgery type  and 
pre-morbid IQ, higher VCAM-1 and a higher ED fac-
tor  were each statistically significantly associated with 
a reduced POCD risk (model 1, one SD increase in 
VCAM-1 levels was associated with a 0.64-fold POCD 
risk; OR, 0.64 95% CI: 0.43 to 0.95, and one SD increase 
in ED factor was associated with a 0.82-fold POCD 
risk; OR, 0.82 95% CI: 0.69 to 0.98). For VCAM-1, the 
association was also statistically significant in quartile 
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analyses,  persisted after adjusting for BMI, hyperten-
sion, diabetes, HbA1C, triglyceride, total cholesterol, 
HDL-C, stroke and TIA (model 2&3), and after repeat-
ing model 3 for patients with available data on subclini-
cal cerebrovascular damage from brain imaging as well 

as after further adjustments for cerebrovascular dam-
age on MRI (model 3&4, Table 6). In the fully adjusted 
model, the risk of POCD in the highest VCAM-1 quar-
tile was 0.17-fold (95% CI 0.03 to 0.84) compared with 
the lowest quartile (Table  6). No other significant 

Table 1  Participants’ sociodemographic and clinical characteristics at pre-operative assessment (before surgery) according to POD 
development

Abbreviations: ADMA asymmetric dimethylarginine, BMI body mass index, ICAM-1–1 intercellular adhesion molecule-1, ICU intensive care unit, IL-6 interleukin 6, IQR 
Interquartile range, POD post-operative delirium, SD Standard deviation, SDMA symmetric dimethylarginine, VCAM-1 vascular cell adhesion molecule-1, vWF von 
Willebrand factor
1 P-value shown for Mann Whitney U test for continuous variables and by chi2-square test for categorical variables

Characteristics Patients with POD
(n = 156)

Patients without POD
(n = 632)

P-value1

Age

  Years (IQR) 74.0 (71.0–76.0) 71.0 (68.0–75.0) 0.006

Sex

  Women (N, %) 73 (46.8) 262 (41.4) 0.19

Surgery type (N, %) 0.008

  Intracranial 2 (1.3) 8 (1.3)

  Intrathoracic 97 (61.7) 243 (38.4)

  Peripheral 58 (37.0) 381(60.3)

BMI (kg/m2) 0.80

  Median (IQR) 26.5 (23.6–29.8) 26.7 (24.2–29.4)

Hypertension (N, %) 104 (66.7) 392 (63.2) 0.42

Diabetes

  Type 1 (N, %) 26 (16.7) 85 (13.7) 0.32

  Type 2 (N, %) 42 (27.4) 107 (17.4) 0.006

HbA1C (mmol/mol)

  Median (IQR) 34.9 (30.6–38.2) 34.9 (31.7–39.0) 0.68

Triglyceride (mmol/l) 0.01

  Median (IQR) 1.5 (1.1–2.2) 1.5 (1.0–1.9)

Total cholesterol (mmol/l) 0.01

  Median (IQR) 4.60 (3.7–5.2) 4.88 (4.2–5.7)

HDL cholesterol (mmol/l)

  Median (IQR) 1.1 (0.9–1.50) 1.3(1.1–1.6) 0.01

LDL cholesterol (mmol/l)

  Median (IQR) 2.8 (2.2–3.5) 3.0 (2.3–3.7) 0.03

IL-6 (pg/ml)

  Median (IQR) 2.6 (0.8–6.8) 1.7 (0.0–4.4) 0.001

SDMA

  Median (IQR, SD) 0.7 (0.3, 0.3) 0.7 (0.3, 0.3) 0.23

ADMA

  Median (IQR, SD) 0.8 (0.3, 0.2) 0.7 (0.2, 0.2) 0.02

ICAM-1

  Median (IQR, SD) 658.1 (222.8, 173.3) 649.6 (178.1, 152.3) 0.03

VCAM-1

  Median (IQR, SD) 849.1 (358.8, 398.4) 798.7(305.0, 336.0) 0.007

vWF

  Median (IQR, SD) 832.1 (842.9; 748.7) 861.4 (717.3, 679.6) 0.47

History of transient ischemic attack (N, %) 8 (5.3) 21 (3.4) 0.30

History of stroke (N, %) 10 (5.5) 43 (5.6) 0.63
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associations were found for ICAM-1, ADMA, SDMA 
and vWF, and POCD risk (Tables 5 and 6). The results 
remained similar after the inclusion of all ED biomark-
ers or after additionally controlling for POD  (data not 
shown).

Discussion
Principal findings
In the first study to assess ED in the context of POD and 
POCD with consideration of neuroimaging data, we 
found that higher pre-operative concentrations of SDMA, 

Table 2  Participants’ sociodemographic and clinical characteristics at pre-operative assessment (before surgery) according to PCOD 
development

Abbreviations: ADMA asymmetric dimethylarginine, BMI body mass index, ICAM-1 intercellular adhesion molecule-1, ICU Intensive care unit; IL-6, interleukin 6; IQR, 
interquartile range, SDMA symmetric dimethylarginine, VCAM-1 vascular cell adhesion molecule-1, vWF von Willebrand factor
1 P-value shown for Mann Whitney U test for continuous variables and by chi2-square test for categorical variables

Characteristics1 Patients with POCD
(n = 54)

Patients without POCD
(n = 483)

P-value1

Age

  Years (IQR) 74.0 (70.0–78.0) 72.0 (68.0–75.0) 0.002

Sex

  Women (N, %) 27 (50.0) 182 (37.8) 0.10

Surgery type 0.08

  Intracranial 2 (3.7) 3 (0.6)

  Intrathoracic 20 (38.9) 199 (42.3)

  Peripheral 30(57.4) 268 (57.0)

BMI (kg/m2)

  Median (IQR) 27.1 (25.0–31.8) 26.5 (24.1–29.1) 0.09

Hypertension (N, %) 36 (66.7) 290 (60.8) 0.40

Diabetes

  Type 1 (N, %) 6 (11.1) 63 (13.5) 0.60

  Type 2 (N, %) 11 (20.4) 90 (19.0) 0.80

HbA1C (mmol/mol)

  Median (IQR) 34.9 (30.6–40.0) 34.9 (2.0–38.2) 0.50

Triglyceride (mmol/l) 0.93

  Median (IQR) 1.4 (1.1–1.8) 1.4 (1.0–1.8)

Total cholesterol (mmol/l) 0.19

  Median (IQR) 4.7 (4.2–5.4) 5.0 (4.3–5.7)

HDL (mmol/l)

  Median (IQR) 1.3 (1.1–1.6) 1.3 (1.1–1.6) 0.54

LDL (mmol/l)

  Median (IQR) 2.9 (21–3.3) 3.1 (2.4–3.8) 0.06

IL-6 (pg/ml)

  Median (IQR) 3.2 (0.6–7.3) 1.6 (0.0–4.0) 0.02

SDMA 0.36

  Median (IQR) 0.7 (0.3) 0.7 (0.3)

ADMA

  Median (IQR) 0.7 (0.3) 0.8 (0.2) 0.22

ICAM-1

  Median (IQR) 621.9 (211.7) 644.5 (163.9) 0.41

VCAM-1

  Median (IQR) 757.5 (208.7) 821.6 (309.3) 0.05

vWF

  Median (IQR) 868.6 (694.2) 819.0 (766.0) 0.94

History of stroke (N, %) 3 (5.7) 25 (5.2) 0.90

History of transient ischemic attack (N, %) 2 (3.7) 19 (4.0) 0.92
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Table 3  The association between pre-operative ED biomarkers with POD risk in study participants (n = 788)

Results are shown for logistic regression analyses with outcome POD. The p-value for trend (2-sided) is based on the Wald chi2 statistic. OR per 1-SD increment refers to 
the change in risk of POD per 1 SD increment in ED biomarker. For instance, an OR 1.5 would mean that for each 1 SD increment in ED biomarker exposure, the risk of 
the outcome is 1.5-fold. OR in quartiles 2, 3 and 4 refer to the risk of POD relative to quartile 1 as reference quartile

Following the limitation of the outliers to the upper or lower control limits, for ADMA (n = 13), SDAM (n = 19), ICAM-1 (n = 28), VCAM-1 (n = 35), vWF (37), results 
remained largely unchanged

Model 1: adjusted for age (continuous), sex, surgery type (intracranial: 1.3% in both patients with and without POD, intrathoracic: 63.8% in patients with POD vs 31.5% 
in patients without POD. peripheral: 34.9% in patients with POD vs 59.5% in patients without POD), pre-morbid IQ (continuous)

Model 2: Model 1 + BMI (continuous), hypertension (yes/no), diabetes (yes/no), HbA1C (continuous), triglyceride (continuous), total cholesterol (continuous), HDL-C 
(continuous)

Model 3: Model 2 + stroke (yes/no), TIA (yes/no)

Addition of quadratic terms to the respective Model 2 led to the following results: ADMA2, p = 0.58; SDMA2, p = 0.40; VCAM-12, p = 0.28; ICAM-12, p = 0.76; vWF, p = 0.34

Abbreviations: ADMA asymmetric dimethylarginine, CI confidence interval, ICAM-1 intercellular adhesion molecule, OR odds ratio, POD post-operative delirium, SDMA 
symmetric dimethylarginine, TIA transient ischemic attack, VCAM-1 vascular cell adhesion molecule-1, vWFvon Willebrand factor

Quartiles P-Trend Continuous Variable

1 2 3 4 OR P-value

per one-SD increment

ADMA

  Cut point (μmol/l)  ≤ 0.65 0.66–0.76 0.77–0.90  ≥ 0.91

  N with POD/ N total 36/ 197 27/ 197 50/ 197 44/ 198

  Model 1 OR (95% CI) Ref 0.68 (0.39 to 1.19) 1.51 (0.92 to 2.50) 1.14 (0.68 to 1.91) 0.15 1.17 (0.92 to 1.41) 0.06

  Model 2 OR (95% CI) Ref 0.65 (0.36 to 1.17) 1.35 (0.79 to 2.29) 1.04 (0.61 to 1.79) 0.34 1.12 (0.93 to 1.36) 0.11

  Model 3 OR (95% CI) Ref 0.64 (0.35 to 1.15) 1.32 (0.77 to 2.24) 1.04 (0.61 to 1.79) 0.09 1.13 (0.93 to 1.36) 0.21

SDMA

  Cut point (μmol/l)  ≤ 0.60 0.61–0.74 0.75–0.90  ≥ 0.91

  N with POD/ N total 40/ 197 36/ 197 33/ 198 48/ 197

  Model 1 OR (95% CI) Ref 0.77 (0.46 to 1.30) 0.66 (0.39 to 1.13) 1.03 (0.63 to 1.70) 0.97 1.19 (1.01 to 1.42) 0.04

  Model 2 OR (95% CI) Ref 0.68 (0.39 to 1.19) 0.60 (0.34 to 1.06) 0.84 (0.49 to 1.45) 0.54 1.14 (0.96 to 1.35) 0.11

  Model 3 OR (95% CI) Ref 0.71 (0.40 to 1.24) 0.54 (0.30 to 0.96) 0.87 (0.51 to 1.50) 0.27 1.14 (0.96 to 1.35) 0.12

ICAM-1

  Cut point (ng/ml)  ≤ 566 567–647 648–743  ≥ 744

  N with POD/ N total 40/ 197 34/ 197 33/ 198 48/ 197

  Model 1 OR (95% CI) Ref 1.09 (0.64 to 1.85) 1.27 (0.75 to 1.14) 1.37 (0.81 to 2.30) 0.18 1.22 (1.03 to 1.45) 0.01

  Model 2 OR (95% CI) Ref 1.21 (0.63 to 1.96) 1.16 (0.66 to 2.04) 1.21 (0.69 to 2.13) 0.49 1.16 (0.96 to 1.40) 0.09

  Model 3 OR (95% CI) Ref 1.16 (0.63 to 1.96) 1.17 (0.66 to 2.06) 1.23 (0.70 to 2.17) 0.89 1.17 (0.96 to 1.41) 0.10

VCAM-1

  Cut point (ng/ml)  ≤ 681 682–807 800–986  ≥ 987

  N with POD/ N total 32 /197 36/ 197 42/ 198 47/ 197

  Model 1 OR (95% CI) Ref 0.98 (0.57 to 1.68) 1.17 (0.69 to 1.98) 1.47 (0.88 to 2.46) 0.09 1.22 (1.04 to 1.45) 0.01

  Model 2 OR (95% CI) Ref 0.72 (0.40 to 1.28) 0.93 (0.53 to 1.64) 1.10 (0.63 to 1.93) 0.46 1.15 (0.96 to 1.38) 0.10

  Model 3 OR (95% CI) Ref 0.70 (0.39 to 1.25) 0.94 (0.53 to 1.66) 1.11 (0.63 to 1.94) 0.42 1.16 (0.97 to 1.39) 0.10

vWF

  Cut point (mU/ml)  ≤ 569 570–853 854–1308  ≥ 1309

  N with POD/ N total 46/ 197 45 / 197 29/ 198 46/ 197

  Model 1 OR (95% CI) Ref 1.16 (0.70 to 1.93) 1.04 (0.60 to 1.79) 0.97 (0.56 to 1.68) 0.93 1.01 (0.84 to 1.21) 0.87

  Model 2 OR (95% CI) Ref 1.06 (0.61 to 1.83) 0.59 (0.33 to 1.05) 0.98 (0.57 to 1.70) 0.50 0.95 (0.77 to 1.16) 0.66

  Model 3 OR (95% CI) Ref 1.05 (0.61 to 1.82) 0.59 (0.33 to 1.04) 0.99 (0.57 to 1.71) 0.16 0.92 (0.78 to 1.17) 0.70

ED factor

  N with POD/ N total 32/ 197 36/ 197 37/ 197 51/ 197

  Model 1 OR (95% CI) Ref 1.05 (0.61 to 1.80) 1.10 (0.64 to 1.88) 1.62 (0.97 to 2.70) 0.19 1.26 (1.04 to 1.52) 0.01

  Model 2 OR (95% CI) Ref 0.91 (0.51 to 1.64) 1.04 (0.59 to 1.85) 1.27 (0.73 to 2.21) 0.66 1.51 (0.93 to 1.45) 0.18

  Model 3 OR (95% CI) Ref 0.93 (0.52 to 1.57) 1.04 (0.59 to 1.85) 1.30 (0.74 to 2.27) 0.63 1.15 (0.93 to 1.42) 0.17
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ICAM-1, VCAM-1 and higher scores on a composite ED 
factor  were each associated with an increased  risk of 
developing POD.  However, we detected a potential con-
founding role for BMI, hypertension, diabetes, HbA1C, 
triglyceride, total cholesterol  and/or HDL-C  in those 
associations. Individuals with higher VCAM-1 had a 
lower risk of developing POCD, and this association 
remained statistically significant after adjustments for all 

covariates considered in our analyses  including cerebro-
vascular pathology evidenced on MRI.

Pre‑operative ED biomarkers and POD
A number of non-modifiable risk factors  for POD have 
been identified, including age, pre-operative neuro-
cognitive disorders, hypertension, and diabetes [55]. 
Other, modifiable, risk factors include peri-operative 

Table 4  The associations between pre-operative ED biomarkers with POD risk in study participants with available data on MRI 
(n = 310)

Results are shown for logistic regression analyses with outcome POD. The p-value for trend (2-sided) is based on the Wald chi2 statistic. OR per 1-SD increment refers to 
the change in risk of POD per 1 SD increment in ED biomarker. For instance, an OR 1.5 would mean that for each 1 SD increment in ED biomarker exposure, the risk of 
the outcome is 1.5-fold. OR in quartiles 2, 3 and 4 refer to the risk of POD relative to quartile 1 as reference quartile

Model 3 adjusted for age (continuous), sex, surgery type (intracranial: 3.7% in patients with POD vs 0.6% without POD, intrathoracic: 39.0% in patients with POD vs 
38.1% without POD. peripheral: 57.4% in patients with POD vs 51.1% without POD), pre-morbid IQ (continuous), triglyceride (continuous), HDL-C (continuous), total 
cholesterol (continuous), BMI (continuous), hypertension (yes/no), diabetes (yes/no), HbA1C (continuous), TIA (yes/no), stroke (yes/no)

Model 4 adjusted for Model 3 + gm-c blood flow (continuous), volume of WMH (continuous), cerebral infarctions (yes/no)

Abbreviations: ADMA asymmetric dimethylarginine, CI confidence interval, gm-c Gray matter cerebral, ICAM-1–1 intercellular adhesion molecule, MRI magnetic 
resonance imaging, OR odds ratio, POD post-operative delirium, SDMA symmetric dimethylarginine, TIA transient ischemic attack, VCAM-1 vascular cell adhesion 
molecule-1, vWF von Willebrand factor, WMH white matter hyperintensities

Quartiles P-Trend Continuous Variable

1 2 3 4 OR P-value

per one-SD increment

ADMA

  Cut point (μmol/l)  ≤ 0.65 0.66–0.76 0.77–0.90  ≥ 0.91

  N with POD/ N total 12/ 77 5/ 77 16/ 79 12/ 77

  OR Model 3(95% CI) Ref 0.45 (0.13 to 1.56) 1.32 (0.47 to 3.69) 0.91 (0.32 to 2.58) 0.29 1:04 (0.72 to 1.49) 0.40

  OR Model 4 (95% CI) Ref 0.45 (0.13 to 1.56) 1.41 (0.51 to 3.90) 0.89 (0.31 to 2.52) 0.35 1.02 (0.70 to 1.48) 0.75

SDMA

  Cut point (μmol/l)  ≤ 0.60 0.61–0.74 0.75–0.90  ≥ 0.91

  N with POD/ N total 13/ 77 10/ 78 11/ 78 11/ 77

  OR Model 3(95% CI) Ref 0.88 (0.31 to 2.38) 0.79 (0.27 to 2.27) 0.66 (0.22 to 1.93) 0.90 1.19 (0.89 to 1.60) 0.47

  OR Model 4 (95% CI) Ref 0.66 (0.30 to 2.43) 0.87 (0.27 to 2.68) 0.66 (0.23 to 1.95) 0.78 1.19 (0.88 to 1.59) 0.23

ICAM-1

  Cut point (ng/ml)  ≤ 566 567–647 648–743  ≥ 744

  N with POD/ N total 10/ 77 10/ 78 11/ 78 14/ 77

  OR Model 3(95% CI) Ref 1.07 (0.35 to 3.22) 1.29 (0.41 to 4.02) 1.30 (0.43 to 3.92) 0.95 1.02 (0.71 to 1.45) 0.90

  OR Model 4 (95% CI) Ref 1.13 (0.37 to 3.42) 1.26 (0.40 to 3.93) 1.24 (0.41 to 3.78) 0.97 0.99 (0.62 to 1.49) 0.99

VCAM-1

  Cut point (ng/ml)  ≤ 681 682–807 800–986  ≥ 987

  N with POD/ N total 9/ 77 12/ 78 8/ 78 16/ 77

  OR Model 3(95% CI) Ref 0.91 (0.31 to 2.61) 0.53 (0.16 to 1.73) 1.24 (0.43 to 3.59) 0.44 0.99 (0.68 to 1.43) 0.97

  OR Model 4 (95% CI) Ref 0.97 (0.33 to 2.79) 0.54 (0.17 to 1.79) 1.23 (0.43to 3.51) 0.50 0.97 (0.67 to 1.41) 0.88

vWF

  Cut point (mU/ml)  ≤ 569 570–853 854–1308  ≥ 1309

  N with POD/ N total 10/ 77 18 / 78 8/ 78 9/ 77

  OR Model 3(95% CI) Ref 1.50 (0.56 to 4.03) 0.69 (0.23 to 2.06) 0.56 (0.18 to 1.70) 0.26 0.69 (0.44 to 1.08) 0.08

  OR Model 4 (95% CI) Ref 1.53 (0.56 to 4.17) 0.66 (0.22 to 2.01) 0.55 (0.17 to 1.70) 0.23 0.68 (0.43 to 1.08) 0.10

ED factor

  OR Model 3(95% CI) Ref 1.51 (0.56 to 4.09) 1.04 (0.33 to 3.07) 0.84 (0.27 to 2.45) 0.81 0.97 (0.65 to 1.43) 0.91

  OR Model 4 (95% CI Ref 1.53 (0.56 to 4.17) 1.02 (0.34 to 3.04) 0.83 (0.28 to 2.45) 0.76 0.96 (0.64 to 1.45) 0.87
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Table 5  The associations between pre-operative ED biomarkers with POCD risk in study participants (n = 537)

Results are shown for logistic regression analyses with outcome POCD. The p-value for trend (2-sided) is based on the Wald chi2 statistic. OR per 1-SD increment refers 
to the change in risk of POCD per 1 SD increment in ED biomarker. For instance, an OR 1.5 would mean that for each 1 SD increment in ED biomarker exposure, the risk 
of the outcome is 1.5-fold. OR in quartiles 2, 3 and 4 refer to the risk of POCD relative to quartile 1 as reference quartile

Following the limitation of the outliers to the upper or lower control limits for ADMA (n = 8), SDAM (n = 16), SICAM-1 (n = 15), SVCAM-1 (n = 21), vWF (11), results 
remained mainly unchanged

Model 1: adjusted for age (continuous), sex, surgery type (intracranial: 3.7% in patients with POCD vs 0.6% without POCD, intrathoracic: 39.0% in patients with POCD 
vs 38.1% without POCD, peripheral: 57.4% in patients with POCD vs 51.1% without POCD), pre-morbid IQ (continuous)

Model 2: Model 1 +  BMI (continuous), hypertension (yes/no), diabetes (yes/no), HbA1C (continuous), triglyceride (continuous), total cholesterol (continuous), HDL-C 
(continuous)

Model 3: Model 2 + TIA (yes/no), stroke (yes/no)

Addition of quadratic terms to the respective Model 2 led to the following results: ADMA2, p = 0.21; SDMA2, p = 0.93; VCAM-12, p = 0.64; sICAM-12, p = 0.57; vWF, 
p = 0.40

Abbreviations: ADMA asymmetric dimethylarginine, CI confidence interval, ICAM-1–1 intercellular adhesion molecule, OR odds ratio, POCD Post-operative cognitive 
dysfunction, SDMA symmetric dimethylarginine, TIA transient ischemic attack, VCAM-1 vascular cell adhesion molecule-1, vWF von Willebrand factor

Quartiles P-Trend Continuous Variable

1 2 3 4 OR P-value

per one-SD incrementease

ADMA

  Cut point (μmol/l)  ≤ 0.64 0.65–0.75 0.76–0.89  ≥ 1.54

  N with POCD/ N total 18/ 134 15/135 8/134 13/134

  Model 1 OR (95% CI) Ref 0.71(0.33 to 1.51) 0.37 (0.15to 0.90) 0.66 (0.30 to 1.43) 0.14 0.81 (0.60 to 1.10) 0.19

  Model 2 OR (95% CI) Ref 0.79 (0.35 to 1.78) 0.44 (0.17 to 1.13) 0.74 (0.32 to 1.69) 0.30 0.89 (0.65 to 1.21) 0.47

  Model 3 OR (95% CI) Ref 0.79 (0.35 to 1.79) 0.44 (0.17 to 1.13) 0.73 (0.31 to 1.68) 0.29 0.88 (0.65 to 1.21) 0.45

SDMA

  Cut point (μmol/l)  ≤ 0.60 0.61–0.74 0.75–0.89  ≥ 4.10

  N with POCD/ N total 17/134 11/135 14/135 12/134

  Model 1 OR (95% CI) Ref 0.55 (0.24 to 1.26) 0.64 (0.29 to 1.41) 0.54 (0.24 to 1.22) 0.18 0.74 (0.50 to 1.09) 0.13

  Model 2 OR (95% CI) Ref 0.54 (0.23 to 1.30) 0.70 (0.30 to 1.62) 050 (0.20 to 1.23) 0.20 0.78 (0.52 to 1.16) 0.22

  Model 3 OR (95% CI) Ref 0.55 (0.23 to 1.31) 0.71 (0.30 to 1.64) 0.51 (0.21 to 1.25) 0.22 0.78 (0.52 to 1.17) 0.23

ICAM-1

  Cut point (ng/ml)  ≤ 558 558–641 642–727  ≥ 1317

  N with POCD/ N total 17/134 14/134 9/135 14/134

  Model 1 OR (95% CI) Ref 0.81 (0.37 to 1.75) 0.55 (0.23 to 1.31) 0.87(0.40 to 1.88) 0.60 0.89 (0.66 to 1.20) 0.46

  Model 2 OR (95% CI) Ref 0.97 (0.42 to 2.26) 0.65 (0.25 to 1.66) 0.96 (0.40 to 2.28) 0.74 0.88 (0.63 to 1.24) 0.43

  Model 3 OR (95% CI) Ref 0.97 (0.42 to 2.27) 0.65 (0.25 to 1.68) 0.95 (0.40 to 2.28) 0.73 0.87 (0.63 to 1.21) 0.43

VCAM-1

  Cut point (ng/ml)  ≤ 673 674–807 808–980  ≥ 3854

  N with POCD/ N total 19/134 17/135 10/135 8/134

  Model 1 OR (95% CI) Ref 0.78 (0.38 to 1.61) 0.39 (0.16 to 0.91) 0.35 (0.14 to 0.85) 0.01 0.64 (0.43 to 0.95) 0.02

  Model 2 OR (95% CI) Ref 0.80 (0.37 to 1.73) 0.35 (0.13 to 0.88) 0.23 (0.08 to 0.63) 0.01 0.55 (0.35 to 0.86) 0.007

  Model 3 OR (95% CI) Ref 0.81 (0.37 to 1.85) 0.34 (0.13 to 0.88) 0.23 (0.08 to 0.63) 0.001 0.55 (0.35 to 0.86) 0.01

VWF

  Cut point (mU/ml)  ≤ 534 535–824 825–1294  ≥ 5830

  N with POCD/ N total 14/134 11/134 17/135 12/134

  Model 1 OR (95% CI) Ref 0.71 (0.30 to 1.63) 1.30 (0.60 to 2.85) 0.73 (0.31 to 1.68) 0.81 0.87 (0.63 to 1.20) 0.40

  Model 2 OR (95% CI) Ref 0.80 (0.31 to 2.01) 1.45 (0.62 to 3.40) 0.72 (0.28 to 1.81) 0.80 0.82 (0.58 to 1.16) 0.27

  Model 3 OR (95% CI Ref 0.78 (0.31 to 1.95) 1,44 (0.61 to 3.37) 0.70 (0.28 to 1.78) 0.78 0.81 (0.57 to 1.16) 0.26

ED factor

  N with POCD/ N total 14/ 134 13/134 16/135 11/134

  Model 1 OR (95% CI) Ref 0.89 (0.39 to 2.02) 1.11 (0.51 to 2.43) 0.71 (0.30 to 1.65) 0.74 0.82 (0.69 to 0.98) 0.01

  Model 2 OR (95% CI) Ref 1.18 (0.44 to 2.80) 1.44 (0.60 to 3.47) 1.66 (0.25 to 1.74) 0.66 0.82 (0.66 to 1.02) 0.18

  Model 3 OR (95% CI) Ref 1.12 (0.44 to 2.81) 1.44 (0.60 to 3.48) 0.65 (0.25 to 1.73) 0.38 0.82 (0.66 to 1.02) 0.07
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pharmacological and anaesthesiologic treatment, inva-
siveness and duration of surgical measures as well as sub-
optimal hydration and temperature homeostasis [56]. In 
addition to these factors, a role could be considered for 
systemic ED in causing an increased risk for POD, given 
the large endothelial surface of the brain and accordingly 
its likely vulnerability to systemic ED [26–28]. If this 
was to be the case, then patients’ risk of POD could be 

reduced via controlling ED,  though this – as it requires 
lifestyle changes – would certainly prove difficult in the 
immediate pre-surgical setting.

ED and POD risk have rarely been assessed in the past.  
In one cohort of 118 older surgery patients in Germany, 
no association was found between systematic ED, meas-
ured by several biomarkers including ICAM-1-1 and 
VCAM-1-1, and POD risk [37]. Similarly, a cohort of 300 

Table 6  The associations between pre-operative ED biomarkers with POCD risk in study participants with available data on MRI 
(n = 252)

Results are shown for logistic regression analyses with outcome POCD. The p-value for trend (2-sided) is based on the Wald chi2 statistic. OR per 1-SD increment refers 
to the change in risk of POCD per 1 SD increment in ED biomarker. For instance, an OR 1.5 would mean that for each 1 SD increment in ED biomarker exposure, the risk 
of the outcome is 1.5-fold. OR in quartiles 2, 3 and 4 refer to the risk of POCD relative to quartile 1 as reference quartile

Model 3 adjusted for age (continuous), sex, surgery type (intracranial: 3.7% in patients with POD vs 0.6% without POD, intrathoracic: 39.0% in patients with POD vs 
38.1% in patients without POD. peripheral: 57.4% in patients with POD vs 51.1% in patients without POD), pre-morbid IQ (continuous), triglyceride (continuous), 
HDL-C (continuous), total cholesterol (continuous), BMI (continuous), HbA1C (continuous), hypertension (yes/no), diabetes (yes/no), TIA (yes/no), stroke (yes/no)

Model 4 adjusted for Model 3 + gm-c blood flow (continuous), volume of WMH (continuous), and cerebral infarctions (yes/no)

Abbreviations: ADMA asymmetric dimethylarginine, CI confidence interval, gm-c gray matter cerebral, ICAM-1–1 intercellular adhesion molecule, MRI magnetic 
resonance imaging, OR odds ratio,POCD Post-operative cognitive dysfunction, SDMA symmetric dimethylarginine, TIA transient ischemic attack, VCAM-1 vascular cell 
adhesion molecule-1, vWF von Willebrand factor, WMH white matter hyperintensity

Quartiles P-Trend Continuous Variable

1 2 3 4 OR P-value

per one-SD incrementease

ADMA

  Cut point (μmol/l)  ≤ 0.64 0.65–0.75 0.76–0.89  ≥ 1.54

  N with POCD/ N total 5/63 10/62 5/64 5/63

  OR Model 3(95% CI) Ref 1.60 (0.44 to 5.81) 0.74 (0.17 to 3.18) 0.72 (0.17 to 3.09) 0.60 0.90 (0.55 to 1.49) 0.70

  OR Model 4 (95% CI) Ref 1.11 (0.26 to 4.73) 0.65 (0.12 to 3.45) 0.67 (0.14 to 3.22) 0.45 0.99 (0.45 to 1.61) 0.81

SDMA

  Cut point (μmol/l)  ≤ 0.60 0.61–0.74 0.75–0.89  ≥ 4.10

  N with POCD/ N total 6/63 4/63 9/64 6/62

  OR Model 3(95% CI) Ref 0.64 (0.14 to 2.78) 0.83 (0.21 to 3.21) 0.80 (0.19 to 3.21) 0.95 0.80 (0.46 to 1.40) 0.44

  OR Model 4 (95% CI) Ref 0.91 (0.20 to 4.07) 1.20 (0.26 to 5.42) 0.93 (0.20 to 4.33) 0.98 0.83 (0.50 to 1.37) 0.47

ICAM-1

  Cut point (ng/ml)  ≤ 558 558–641 642–727  ≥ 1317

  N with POCD/ N total 6/63 7/63 6/63 6/63

  OR Model 3(95% CI) Ref 1.42 (0.37 to 5.44) 1.07 (0.27 to 4.71) 1.20 (0.30 to 4.71 0.95 1.02 (0.60 to 1.92) 0.90

  OR Model 4 (95% CI) Ref 2.46 (0.63 to 8.07) 1.23 (0.25 to 5.98) 1.20 (0.23 to 6.14) 0.98 1.08 (0.60 to 1.92) 0.78

VCAM-1

  Cut point (ng/ml)  ≤ 673 674–807 808–980  ≥ 3854

  N with POCD/ N total 7/63 8/63 7/63 3/63

  OR Model 3(95% CI) Ref 1.00 (0.28 to 3.53) 0.64 (0.17 to 2.38) 0.27 (0.43 to 0.98) 0.19 0.47 (0.22 to 1.01) 0.05

  OR Model 4 (95% CI) Ref 0.74 (0.20 to 2.69) 0.55 (0.14 to 2.16) 0.17 (0.03 to 0.84) 0.02 0.50 (0.24 to 1.02) 0.05

vWF

  Cut point (mU/ml)  ≤ 534 535–824 825–1294  ≥ 5830

  N with POCD/ N total 5/63 4/63 9/63 7/63

  OR Model 3(95% CI) Ref 0.39 (0.06 to 2.24) 1.61 (0.45 to 5.70) 0.98 (0.25 to 3.77) 0.38 1.02 (0.63 to 1.64) 0.91

  OR Model 4 (95% CI) Ref 0.64 (0.12 to 3.38) 2.06 (0.51 to 8.32) 1.25 (0.27 to 5.82) 0.47 1.06 (0.56 to 2.02) 0.83

ED factor

  OR Model 3(95% CI) Ref 1.01 (0.13 to 5.28) 1.95 (0.36 to 9.58) 0.74 (0.16 to 3.82) 0.57 0.90 (0.63 to 1.29) 0.62

  OR Model 4 (95% CI) Ref 1.31 (0.27 to 6.38) 2.73 (0.64 to 11.68) 0.97 (0.21 to 4.52) 0.41 0.90 (0.63 to 1.29) 0.57
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surgical patients in the US reported, no difference in pre-
operative vascular endothelial growth factor (VEGF; a 
protein involved in angiogenesis) between POD patients 
and controls [36]. Given the smaller sample size in these 
two studies, it was suggested that the results might suf-
fer from low power for detecting true associations. 
Another study of 117 older surgical patients in Japan 
reported an association of higher pre-operative systemic 
ED, measured by p-selectin, and an increased POD risk 
[38].  Importantly, these studies had applied only statis-
tical adjustments for a few selected potential confound-
ing (i.e., age, sex, surgery type, pre-operative  cognition, 
vascular comorbidity, and apolipoprotein E genotype 
[36], and propensity scoring adjustments for confound-
ers [37]. Here, we controlled our analyses for a large set 
of potential confounding variables, demonstrating the 
independence of associations of ED with POD from age, 
sex, surgery type and pre-morbid IQ, and a dependence 
on the vascular risk factors BMI, hypertension, diabetes, 
HbA1c, triglycerides, total cholesterol and/or HDL-C.

 An  in-depth evaluation of this finding  is needed  in 
future studies. Short of a causal relationship and possible 
interventions, knowledge of risk factors (irrespective of 
confounding) is also useful, because it can screen patients 
to identify those who require further pre-operative evalu-
ation and adjustments in the management of periopera-
tive monitoring. Here, we have shown that measuring 
pre-operative ED biomarker concentrations could possi-
bly help towards that goal.

We additionally found an association between higher 
concentrations of ADMA and  SDMA with increased 
WMH volume, which is in line with the research litera-
ture associating ED with cerebrovascular damage [29, 
41–43]. No further associations of ED biomarkers with 
the brain imaging parameters including WMH, cerebral 
infarction or cerebral blood flow were identified, how-
ever, and  additional adjustment for these brain imaging 
parameters did not alter the statistically non-significant 
results on the associations of ED biomarkers with POD.

Pre‑operative ED biomarkers and POCD
POCD shares some risk factors, such as advanced age, 
with POD [57] but we here have provided evidence for 
the two conditions as distinct entities with distinct risk 
factors. Specifically, we observed an inverse associa-
tion of VCAM-1 with POCD risk at 3  months (which 
was independent of all considered covariates including 
subclinical cerebrovascular disease which we suggested 
could function as a mediator). In combination, this pat-
tern of results could speak to differential mechanisms 
involved in POD and POCD development.  Consist-
ent with this, we also found no association of POD with 
POCD in our cohort which contrasts with results from a 

recent meta-analysis of 18 studies which concluded that 
patients with POD are at increased POCD risk [58].

Previous studies frequently reported higher concentra-
tions of VCAM-1 in patients with dementia as compared 
with unimpaired controls [29, 30, 59].

Further, inflammation has been proposed as an 
involved mechanism in the pathogenesis of POCD [60]. 
On that basis, and with VCAM-1 as a promoter of leuko-
cyte migration across the endothelium to sites of inflam-
mation [61], the observed inverse association between 
VCAM-1 and POCD development in the current study 
is particularly surprising and may well be a chance find-
ing or could be driven by residual confounding. Thus, 
caution is warranted in the interpretation this finding in 
particular.

Study strengths and limitations
We used a large cohort with detailed cognitive assess-
ment as well as brain imaging data to investigate the 
association of pre-operative concentrations of ED with 
the risk of post-operative neurocognitive disorders. 
We characterized systemic ED using 5  biomarkers and 
assessed the interdependence in their relationships with 
POD/POCD. We adjusted for a range of potential con-
founding factors and further assessed the mediatory role 
of pre-operative clinical and subclinical cerebrovascu-
lar damage in the association between ED biomarkers 
and POD/POCD risk. The validity of our POD/POCD 
measurement was indicated by incidences of these con-
ditions that were consistent with incidence reports in 
the literature. Yet, our study was accompanied by some 
limitations. We used a sample of patients who underwent 
diverse surgical procedures with different anesthetic 
techniques. Surgical factors such as those are strong risk 
factors for POD/POCD and despite controlling for “sur-
gery type” in our analyses, a contribution of such factors 
to our findings may be possible. POD definition did not 
consider subsyndromal POD. Thus, inclusion of patiens 
with subsyndromal POD in the “no POD” group will 
have weakened any biomarker associations with POD. 
Because we entered correlated variables into the models, 
multicollinearity may have impacted our results by bias-
ing exposure-outcome associations and reducing preci-
sion. In fact, the change in findings between model 1 and 
model 2 on POD may have stemmed from this. Based 
on our findings, we are also unable to tease out the roles 
of specific confounding factors in the association of ED 
biomarkers with POD/POCD. For instance, the change 
from model 1 to model 2 could stem from confounding 
by a lower HDL-C but also from a higher BMI (leading 
both to higher ED and POD/POCD risk respectively); the 
step from model 2 to model 3 had been pre-planned to 
reflect mediation by the state of the cerebrovasculature 
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(clinically as TIA/stroke or subclinically on brain imag-
ing) but due to the loss of statistical significance between 
model 1 and model 2, model 3 did not add any further 
information. Brain imaging data was available for only 
a subset of patients. Thus, analyses of POCD and those 
involving brain imaging data were affected by a reduced 
statistical power as compared with the analyses of the 
full sample for the outcome POD, and by the possibil-
ity for an influence of selection bias. However, when we 
repeated our analyses of POD with restriction to patients 
who also had data on POCD, or to those with brain imag-
ing data respectively, our results did not change substan-
tially, indicating that reduced power but not selection 
bias could be a contributing factor here. We linked a total 
of five exposures with two outcomes which resulted in a 
relatively large number of statistical analyses and risk of 
type I error. If we applied a Bonferroni correction with 
resulting p-value of 0.005 for statistical significance (5 
exposures, 2 outcomes), the results on VCAM-1 and 
POCD would survive this correction though the results 
for ED biomarkers and POD would not. This is to be con-
sidered in the interpretation of our results.

Conclusion
We did not find evidence for concentrations of biomark-
ers of systemic ED as risk factors for POD over and above 
their roles as correlates of vascular risk factors. Our anal-
ysis surprisingly showed an inverse association between 
biomarkers of systemic ED and POCD at 3 months after 
surgery, which was independent of all considered covari-
ates and requires repeat assessment in other cohorts. Our 
findings do support the notion that POD and POCD are 
separate entities with distinct etiology and epidemiology.
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