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Abstract 
We present STIM, an imaging-based computational framework focused on visualizing and 
aligning high-throughput spatial sequencing datasets. STIM is built on the powerful, scalable 
ImgLib2 and BigDataViewer (BDV) image data frameworks and thus enables novel 
development or transfer of existing computer vision techniques to the sequencing domain 
characterized by datasets with irregular measurement-spacing and arbitrary spatial 
resolution, such as spatial transcriptomics data generated by multiplexed targeted 
hybridization or spatial sequencing technologies. We illustrate STIM’s capabilities by 
representing, interactively visualizing, 3D rendering, automatically registering and 
segmenting publicly available spatial sequencing data from 13 serial sections of mouse brain 
tissue, and from 19 sections of a human metastatic lymph node. 
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Introduction 
Several recent technological breakthroughs have triggered the rapid development of 
numerous high-throughput spatial transcriptomics methods over the last few years. These 
fluorescent RNA hybridization-based1–5 or array-based RNA capture, barcoding, and 
subsequent sequencing6–13 techniques provide (typically at single-cell or subcellular 
resolution) molecular readouts within the native spatial context of a tissue, which is critical 
for understanding cellular interactions in healthy and diseased states14. Therefore, the 
production of spatial transcriptomics datasets, already abundant and continuously 
expanding, is crucial for both basic life science research and clinical/medical applications. 
Handling and analysis of these datasets pose several complex challenges: (a) size – spatial 
sequencing generates several gigabytes of data for a single tissue section and we anticipate 
that to increase; (b) heterogeneity – datasets greatly differ in the number of genes and 
transcripts captured, their spatial resolution, and tissue architecture; (c) spatial 
transcriptomics data are in contrast to image data usually irregularly spaced; (d) three-
dimensional (3D) integration – data from tissue sections need to be integrated into a 3D 
molecular map; (e) access and analyses – the need to easily share and interactively 
interrogate spatial transcriptomics data, and (f) flexibility and long-term availability – the 
need for open source, community-based approaches. 
 
Several methods have been developed to visualize, process, and align spatial transcriptomics 
data15–31 – each however having their own drawbacks. Here, we show that powerful methods 
from the computer vision field that have been developed by a large scientific community for 
decades, can alternatively be adapted to meet the challenges that spatial transcriptomics 
methods face. Specifically, we present the “Spatial Transcriptomics Imaging Framework” 
(STIM), a computational, scalable and extendable toolkit based on ImgLib232 that allows 
efficient handling, processing (including integration of 2D data into 3D molecular maps), 
visualization, alignment and analysis of high-throughput spatial -omics datasets. We 
demonstrate the power of our approach by applying STIM to two distinct spatial sequencing 
datasets, integrating adjacent slices into 3D molecular maps: (i) adult mouse brain, and (ii) a 
challenging dataset of 19 sections from a human metastatic lymph node. We additionally 
show how to use STIM to visualize the data and perform a simple, machine learning-based 
segmentation task. 

Results 
ImgLib232 defines an image as a function 𝑓 that maps coordinates 𝐶 in n-dimensional space  
𝑅! to a value	𝑇  
 

𝑓:	𝐶	 → 𝑇, 𝐶	 ⊂ 𝑅!. 
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This definition illustrates that ImgLib2 natively supports both regularly and irregularly spaced 
datasets (Sup. Fig. 1). Furthermore, its generic, interface-driven design imposes no 
constraints on dataset size (biggest currently available implementation supports 4,096 
petabyte), dimensionality or data type, which is highlighted by the fact that many of the 
largest biological image datasets ever acquired33,34 were reconstructed using ImgLib2, the 
ImgLib2-backed BDV35,36 and the N5 (zarr-compatible) file format37. STIM builds on these 
frameworks to provide fast, random and distributed read&write access, interactive 
visualization and efficient processing of spatial transcriptomics data. 
 
First, STIM directly supports AnnData or re-saving of input datasets from the standardized 
text- or comma-separated formats into an N5 container (Fig 1a,b) while optionally log-
normalizing the data. Coordinate- and gene expression data can be loaded fast and memory-
efficiently in blocks using the Imglib2-cache framework, which can be accessed as values or 
as rendered images (Fig. 1b,c). ImgLib2 provides nearest-neighbor and linear interpolation for 
mapping irregularly-spaced samples onto pixel grids necessary for visualization. For a more 
realistic rendering at arbitrary resolutions we implemented a rendering method based on 
Gaussian distributions (Fig. 1, Methods, Sup. Methods). Spatial image filtering, also referred 
to as digital filtering, is an established, powerful technique to enhance certain aspects of a 
signal that is represented as discrete samples (e.g. an image) using mathematical 
operations38. While such filtering is mathematically directly applicable to irregularly-spaced 
data, it is not widely available as efficient implementations require fast k-nearest neighbor 
search. To ease this barrier, we added a generic framework based on ImgLib2 using kd-trees 
for applying filters (e.g. Mean, Median, Gaussian) to irregularly-spaced data that can easily be 
extended (Fig. 1c). All operations are implemented virtually allowing interactive access to and 
rendering of the data using BDV. 
 
We demonstrate STIM’s capabilities as follows. First, STIM can be used to filter the data and 
smoothen it, for instance by applying a Median filter or others (Fig. 1c). Second, tried-and-
tested image registration techniques can be used to align datasets stemming from 
consecutive sections of the same tissue as described below (Fig. 1d,e). Of note, we also 
developed a user-friendly BDV-based GUI for aligning tissue sections interactively using SIFT 
and ICP, or, optionally, manually using standard BigDataViewer transformation controls (Sup. 
Fig. 7). Third, STIM offers an interactive visualization and exploration of the data through BDV 
in 2D and 3D, including the visualization of metadata -- such as cell type annotation -- together 
with gene expression in every spatial unit (Sup. Fig. 2, Sup. Movie 2). Additionally, we show 
that existing machine learning segmentation can be straightforward applied to spatial 
transcriptomics data and we highlight the applicability of existing 3D rendering methods (Fig. 
2/Sup. Movie, Sup. Methods). 
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Figure 1: STIM applies state-of-the-art imaging techniques to store, visualize, and analyze 
massive amounts of spatial transcriptomics datasets. a, Spatial transcriptomics datasets can 
be represented as images with the number of genes per spatial unit corresponding to a 
number of different colors. b, Expression and spatial data is stored in N5 containers for 
efficiency and scalability and is accessible within the provided Java and Python frameworks. c, 
STIM provides classical value access operations such as filtering irregular-spaced data, 
resulting in smoothed gene expression, or interactive rendering in 2D and 3D. d, Schematic of 
how STIM aligns consecutive sections of spatial transcriptomics datasets. e, Visualization of 
the spatial gene expression of three genes in four different sections of a published dataset. 
Top (bottom) row: spatial gene expression profiles in the original (aligned) puck orientations.  
 

Alignment 
To illustrate the potential of applying computer vision techniques to sequencing datasets, we 
aligned a series of consecutive brain cerebellum sections using STIM that were published in 7 
(Fig. 2 / Sup. Video 1). Each of these 2D sections contains  between 12,000 and 33,000 cells 
and a median of ~50 quantified molecules at near-cellular resolution. To align the 13 sections 
in three dimensions we adapt an alignment strategy originally developed for the registration 
of large electron and light microscopy datasets36,39,40. We first apply Scale Invariant Feature 
Transform (SIFT)41 in combination with Robust Sample Consensus (RANSAC)42 on rendered 
image pairs of sections  (+-2 in the z-direction, Fig. 1d). For each pair, we identify a set of 
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corresponding points on a rigid 2D transformation across an automatically selected set of 
genes that show high entropy in both sections. To correctly identify as many corresponding 
points as possible we run SIFT independently for each gene with a low threshold for the 
minimal number of required points. RANSAC is then applied to all points again to identify 
those that agree on a common transformation across genes. Next, we globally minimize the 
distance between all corresponding image points across all sections, yielding a single 2D 
transformation for each section (Sup. Methods). In an optional refinement step, we use the 
Iterative Closest Point (ICP) algorithm43 on locations of sequenced spots rather than rendered  
images, where neighboring points within a predefined radius showing most similar expression 
values are assigned to be correspondences. Finally, using all ICP correspondences, we globally 
solve again and identify a regularized affine transformation model for each section that is 
stored in the N5 container. The resulting tissue dataset can be rendered in 3D using STIM (Fig. 
2 / Sup. Video 1) and the STIM-explorer can be used to highlight the spatial expression of 
interactively selected genes on the whole tissue (Sup. Video 2). 
 
Due to the robustness of SIFT, our alignment pipeline can readily be employed across different 
technologies. Importantly, STIM was vital in constructing a 3D molecular map of a recently 
published human metastatic lymph node13. This challenging dataset consists of 19 non-
consecutive sections and a total of >1.5 million cells. The pairwise and global alignment 
performed by STIM enabled the generation of the 3D virtual tissue block, and the derivation 
of 3D-specific insights from the data13. In another application, we used STIM to align six 
sections of human lung cancer tissue, each containing ~50,000 cells and being 30 μm apart44. 
Among other insights, the 3D molecular map in that case enabled the more precise 
identification of immune niches44. 
 
We further used STIM to align serial adult mouse brain sections produced with the Visium 
platform (Sup. Fig. 3). More generally, we anticipate STIM to process and stitch together 
consecutive tissue sections from the same tissue, regardless of the underlying spatial 
sequencing method. This enhances the information flow between the different sections and 
naturally enriches the molecular readouts. 
 
The alignment pipeline we developed is based on linear transformations, typically affine 
transformation models regularized with rigid models. This allows the use of robust model 
estimation using RANSAC, which is also able to realize if no proper alignment could be 
achieved. If the alignment quality needs to be further improved, existing non-rigid registration 
algorithms such as bUnwarpJ39,45 can be employed. However, it is important to realize that 
while deformations introduced by non-rigid transformations typically do improve the 
alignment quality (Sup. Fig. 4), it is likely to deform the sample in an unnatural way. A simple 
example to visualize the problem is a cone in 3D, which would be represented as circles with 
increasing radius along the sections (in z). Non-rigid alignment would effectively transform 
these circles so they show the same radius as it maximizes similarity, thus transforming the 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 7, 2024. ; https://doi.org/10.1101/2021.12.07.471629doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471629
http://creativecommons.org/licenses/by-nc/4.0/


 

 

cone into a pipe. Therefore, meaningful and well-designed regularization is a necessity for 
employing non-rigid alignment, which has been well-studied in image analysis39,45 but is, to 
the best of our knowledge, currently in its infancy for ST data. 

Interoperability and accessibility 
STIM is open-source and leverages the large Java community built around ImgLib2. To 
enhance interoperability and enable the use of STIM by users who employ Python interfaces, 
we have added support for the popular AnnData format46. With this support, it is possible to 
seamlessly access the data between the AnnData and the n5 formats, transferring the 
underlying sample metadata, and facilitating downstream analyses. Moreover, STIM can be 
installed on Linux, MacOS, and Windows through the popular Conda packaging environment. 

Benchmarking 
Recently, several software packages for the alignment of spatial sequencing data have been 
developed specifically within the field of spatial transcriptomics (Sup. Table 1). Probabilistic 
Alignment of Spatial Transcriptomics Experiments (PASTE)47 first solves an optimal transport 
problem to derive a probabilistic assignment of points for pairs of consecutive slices. Based 
on these, a rigid transformation model is sequentially estimated for each slice. Importantly, 
no optimization across slices is performed, which might prove problematic once datasets 
increase (similar to the image stitching problem), and partial alignment (i.e., sections only 
partially overlap in 2D) is not supported. More recently, PASTE2 31 introduced support for 
partial alignment, but the optimal transport framework is not scalable (in time or memory 
usage) to datasets with millions of cells. Furthermore, the computational complexity depends 
cubically on the number of sequenced locations. Andersson et al.23 relies on manual 
landmarks for alignment and also supports only rigid transformation models. Jones et al. 24 
and Qiu et al.25 require an approximate initial alignment, using for example PASTE or STIM, 
and apply Gaussian Process Spatial Alignment to extract warp functions for non-rigid 
alignment of consecutive slices, also at cubic complexity with respect to the number of 
sequenced locations. Clifton et al.26 require initialization via manual selection of 
corresponding points, and do not offer global optimization across slices. Other methods rely 
on alignment of high-level features such as cell types or spatial regions, thus requiring 
extensive analysis of individual sections prior to alignment27–29. Our proposed alternative 
approaches have been tried-and-tested in image analysis for decades, work reliably and fast 
on multi-terabyte images while their complexity depends on the size of the rendered images, 
which can even be small for ST data. The complexity for transferring sequenced locations into 
images is equivalent to that of a kdTree lookup, which is O(log n). The use of RANSAC for 
pairwise matching, global optimization with outlier removal across all pairwise results, as well 
as implementation in scalable frameworks ImgLib2 and BigDataViewer ensures that the 
identified alignment can be trusted and that the approach will scale to significantly larger 
datasets in the future. 
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Discussion 
STIM enables efficient, distributed access, processing and visualization of large-scale spatial 
transcriptomics datasets. Irregularly-spaced data can be spatially filtered and accessed 
directly as values or rendered as images. STIM thereby acts as a bridge between the fields of 
computer vision and genomics, which we highlight by developing an automatic workflow for 
the alignment of sliced spatial transcriptomics datasets. Another application of STIM is to 
perform object segmentation on subcellular, high-resolution spatial transcriptomics datasets 
using existing image-based machine learning solutions such as Random Forests (Sup. Fig. 5)48 
or for larger future datasets StarDist49 or CellPose50. We provide STIM as an extensible open 
source framework available on GitHub with interfaces in Java, Python and on the command 
line. We believe that these properties of STIM have the potential to enable the community to 
further unite the worlds of image analysis and genomics. 
 

 
Figure 2 (Movie, submitted as Sup. Movie 1): 3D rendering of the aligned SlideSeq dataset. 
The movie shows gene Calm2 is shown in white, gene Ptdgs in green, and gene Mbp in red and 
highlights the 3D nature of the dataset after alignment when represented as an image. 

Methods 

Related software 
Spacemake 30 is used for processing and basic visualization only; VT3D51, Spateo Viewer25, and 
Vitessce15 are designed for visualization purposes only;  Seurat16 and squidpy17 offer both 
analyzing and viewing, but 3D visualization and sections alignment are unavailable; ST 
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Viewer18 is tailored to datasets generated with Spatial Transcriptomics6; histoCAT19 and 
Giotto Viewer20 do not offer sections alignment. Semla52 (formerly STUtility21) offers a basic 
alignment, but requires manual registration for high-quality results. 

N5 storage and normalization 
STIM ingests spatial sequencing data that is stored in the AnnData standard, or as 
(compressed) text files containing locations and barcodes of sequenced spots, expression 
levels, and optionally cell type predictions per dataset. The current framework supports 2D 
and 3D coordinates, and can be readily extended. Initially, STIM re-saves or links the set of 
AnnData or text-file based datasets into a common N5 container that can be accessed as one 
common project, e.g. the image registration pipeline can be applied to an entire or parts of a 
project. By default, locations and expressions are stored with double precision and Gzip 
compression using a block length of 16,384 for locations and a block size of 512x512 for 
expression values (Fig. 1b). Genes and the barcode list of each dataset together with their 
transformations are currently stored as metadata in the N5 container. The N5 data can be 
accessed in STIM/stimwrap or directly through Java and python N5 packages. 
 
Optionally, the data can be normalized upon re-saving to N5 or at a later time. We have 
adopted here the standard library size normalization in log-space commonly used for scRNA-
seq datasets. More specifically, if 𝑑"#represents the raw count for gene 𝑖 in spatial unit 𝑗, we 
normalize values as 

 
where the dummy index 𝑘 is used for summing over all genes within a spatial unit.  

Rendering of irregularly-spaced data 
Image data is typically stored in n-dimensional, integer-based cartesian coordinate systems 
that are natively supported by most camera chips and display devices. In contrast, spatial 
sequencing data consist of measurements at arbitrary, floating-point precise locations, which 
stem from accurately localizing sequenced locations. To render such data, they need to be 
mapped to an integer-based cartesian coordinate system supported by standard display 
devices (e.g. to a 2048x1536 pixel grid), a problem that also occurs in other dataset types such 
as localization-based superresolution microscopy53 and other disciplines such as astronomy54. 
Straight-forward, fast mapping can be achieved through nearest-neighbor interpolation using 
kd-trees. Resulting images are effectively Voronoi-tessellations with sharp, unnatural 
boundaries and artificial appearance where point densities are low towards the edges (Sup. 
Fig. 6A,B). Distance-weighted interpolation creates more natural-looking images, which, 
however, still contain unnatural edges as either a number of points or maximal distance for 
interpolation needs to be defined (Sup. Fig. 6C). Large values are able to create reasonable 
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representations in areas of high point densities, but can still produce artificial structures, 
especially towards the edges of the dataset (Sup. Fig 6D). To overcome these issues we 
represent each location as a Gaussian distribution, and each pixel is rendered as the sum of 
all overlapping distributions, normalized by their respective weights. In order not to create 
hard boundaries in areas with few locations, normalization is only performed if the sum of 
weights is bigger than one. This mapping is fast and produces representations of the data 
resembling naturally-looking images that can therefore easily be processed with computer 
vision tools and are additionally visually pleasing (Fig. 1, Sup. Video 2, Sup. Fig. 6E). 

Filtering of irregularly-spaced data 
Within STIM, we implemented a framework for spatial filtering of irregularly-spaced datasets 
based on kd-trees. We added mean filtering, median filtering, Gaussian filtering, as well as 
practical filters to hide single, isolated locations and to visualize the density of locations. 
Adding new filters is straight-forward, and typically requires the implementation 
filter.RadiusSearchFilter class, which already provides the kd-tree search and the 
location to be filtered.  
Such basic filtering operations can for example help to smoothen noisy spatial sequencing 
data, to emphasize larger structures, or to identify edges (Fig. 1c, Sup. Video 2). 

Pairwise SIFT registration 
In order to robustly identify corresponding points between pairs of two-dimensional serial 
sections of spatial sequencing datasets we first employ the Scale Invariant Feature Transform 
(SIFT) on images of renderings of individual genes.  
First, we identify a set of genes (by default 100) that are expressed in both serial sections and 
show the highest combined standard deviations of their expression values, thus automatically 
selecting genes that are likely to show patterns that are helpful to perform an alignment. The 
user can additionally add genes that are known to create well-structured expression 
renderings. Second, we compute SIFT on all pairs of genes individually, using a low minimal 
number of corresponding points (inliers, by default 5) on a rigid model. Finally, we perform 
another RANSAC consensus across the points of all genes, requiring by default at least 30 
inliers. This combination of parameters was very robust in our tests and worked out of the 
box for SlideSeq, Visium, and Open-ST datasets. 

Global Optimization 
In order to align more than two serial sections we first compute pairwise SIFT registrations 
between close-by sections (by default +-2). We then solve an optimization problem by finding 
a set of transformations 𝑇$  that minimize the distance between all corresponding points 
𝐶%,'(𝑔) of all serial sections 𝑉 across all genes 𝐺 by identifying 36.  
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Finally, wrong pairs of correspondences 𝐶%,'(𝑔) can be identified and removed by iteratively 
analyzing inconsistencies between pairwise results and the current state of the global 
optimization as defined by the current set of transformations 𝑇$40. By default we employ 
rigidly regularized (𝛼 = 0.1) affine transformation models 𝑇$  for each serial section in the 
optimization process. All transformations are stored within the N5 metadata, thus all 
visualization tools of STIM will directly use these transformations. 

ICP refinement 
After global optimization based on the corresponding interest points identified by SIFT we 
optionally employ Iterative Closest Point (ICP) for refinement of the transformations. In 
contrast to the SIFT alignment step, ICP is performed on the actual coordinates of the 
sequenced locations. We first compute pairwise ICP’s between close-by serial sections (+-2 
sections) using only the expression values of genes that yielded SIFT correspondences. The 
basic idea of  ICP is to assign nearest neighboring points as corresponding points, update the 
transformation based on this assignment, and iterate this procedure until convergence or a 
maximum number of iterations is achieved. Here, we do not simply assign nearest points to 
each other, but those who show the most similar expression vector in the local vicinity (by 
default the median distance between all sequenced locations). We optionally support 
RANSAC filtering on the sets of corresponding points during each ICP iteration in order to 
identify a consensus update vector across all neighboring points. After all pairwise ICP 
matchings are performed, we re-solve the global optimization problem using the 
corresponding points identified in the last iteration of every respective ICP run. 

Data availability 
All data analyzed within this work are publicly available. The datasets that were used for the 
alignment of mouse cerebellum sections were published in Slide-seq7. The 10X Visium 
datasets were downloaded from the 10X Genomics website. The Open-ST data were 
downloaded from GEO (GSE251926). 

Code availability 
STIM and stimwrap are available on GitHub (https://github.com/PreibischLab/STIM and 
https://github.com/rajewsky-lab/stimwrap) 
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Supplementary Figures: 
 

1. Comparison of regularly and irregularly spaced datasets 
2. Interactive overlay of cell type onto a SlideSeq dataset 
3. Alignment of a 10x Visum dataset 
4. Comparison of non-rigid and regularized affine alignment 
5. Applying existing machine learning segmentation software to spatial transcriptomics 
6. Comparison of different point cloud rendering methods supported by STIM 
7. Interactive alignment using SIFT in the STIM BigDataViewer-based GUI 

 
Supplementary Tables: 
 

1. Comparison of 3D registration methods for Spatial Transcriptomics data 
 
Supplementary Videos: 
 

1. 3D rendering of the aligned SlideSeq dataset, gene Calm2 is shown in white, gene 
Ptdgs in green, and gene Mbp in red. 

2. Screen recording of the st-explorer for gene Calm2 of the SlideSeq dataset. 
Highlighted are interactive exploration, as well as different levels of median filtering 
on irregularly spaced data, as well as different values for the sigma of the Gaussian 
point cloud rendering. 

3. Exemplary run through the STIM alignment GUI highlighting major features 
 
Supplementary Notes: 
 

1. Workflow for the alignment of the 10x Visium dataset 
2. 3D Rendering of the SlideSeq dataset 
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Supplementary Figure 1: Comparison of regularly and irregularly spaced datasets. The left panel shows a regular 
image of a Drosophila wing captured by a standard widefield microscope (image courtesy of Prof. Nicolas Gompel). 
The right panel shows was created by extracting 5000 points at random subpixel locations from the original image 
and rendering it using the built-in nearest neighbor interpolation for sparse datasets in ImgLib2.  
 

 
Supplementary Figure 2: Interactive overlay of cell type onto a SlideSeq dataset. Depicted is a screenshot using 
st-bdv-view that visualizes the gene Calm2 (more than one gene can be displayed in parallel), together with all 
predicted cell types. Two of them are interactively highlighted. The screenshot was created calling: 
./st-bdv-view -i /home/slide-seq.n5/ -d Puck_180531_22 -g Calm2 -rf 1.0 -a celltype 
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Supplementary Figure 3: Alignment of a 10x Visium dataset. (A) shows the Gaussian point cloud rendering of the 
gene Calm2 before alignment, (B) shows the same gene after applying an affine transformation. The alignment and 
visualization were performed on the command line as outlined below. In this case ICP refinement did not improve the 
alignment quality further and was therefore omitted. 
 

 
Supplementary Figure 4: Comparison of non-rigid and regularized affine alignment. (A,B) show maximum intensity 
projections of 8 selected slices of the SlideSeq dataset for the gene Mbp. The other slices were omitted due to 
insufficient data quality that did not allow for an automatic non-rigid alignment. (A)  
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Supplementary Figure 5: Applying existing machine learning segmentation software to spatial transcriptomics.  
(a) illustrates how the Trainable Weka Segmentation (Random Forest-based method) is used to manually annotate a 
prominent visible structure in a Slide-Seq dataset using the Calm2 gene. Note that the annotation effort is limited to 
the clearly visible lines belonging to each class. (b) shows another slice of the dataset to whom the trained classifier 
was applied (c). 
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Supplementary Figure 6: Comparison of different point cloud rendering methods supported by STIM. Each row 
shows a different rendering method for the same field of view of the gene Calm2 on the left side, and two zoom-ins 
on the right side. (A) illustrates nearest-neighbor rendering. (B) show nearest neighbor rendering with a cut-off after 
the median distance between all sequenced locations (~16 distance units). (C) shows distance-weighted rendering 
using a maximum number of 20 neighbors and quadratic distance weight. (D) shows the same distance-weighted 
rendering, but with an additional cut-off at 5x the median distance between all sequenced locations. (E) shows the 
Gaussian-distance weighted rendering with a sigma equivalent to the median distance between all sequenced 
locations. This rendering method was used for all experiments, figures and videos in this publication. The code for 
creating these representations can be found in the net.imglib2 package. 

 
Supplementary Figure 7: Interactive alignment using SIFT in the STIM BigDataViewer-based GUI. Corresponding 
SIFT features were identified using a rigid model and the final transformation computed from the features was a rigidly 
regularized affine model. Yellow crosshairs indicate automatically identified corresponding features in the visible gene 
(Mbp), while gray crosshairs show corresponding features in the other genes that were also used for alignment (Fth1, 
Plp1-Enpp2). The GUI allows to interactively modify visualization parameters, filtering, manual alignment, SIFT 
alignment and ICP alignment (Note: ICP iterations are interactively updated). 
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Method Visualization Global Non-Rigid CPU time Memory Automated 

STIM    ✓✓ ✓ ✗ ~181 min ~6.8 GB ✓ 

Morpho 1 ✓ ✗  ✓ >1 day (DNF) ≥416 GB ✓  

GPSA 2 ✗ ✗ ✓ >1 day (DNF) ≥162 GB ✓ 

PASTE2 3 ✗ ✗ ✓ >1 day (DNF) ≥231 GB ✓ 

SPACEL 4 ✗ ✗  ✓ ~433 min ~18 GB ✗ (clusters) 

ST-GEARS 
5 

✓ ✗ ✓ >1 day (DNF) ≥358 GB ✗ (clusters) 

Sc3d 6 ✓ (napari)                      ✗ ✗  ~191 min ~24 GB ✗ (clusters) 

Semla 7 ✓ ✗  ✗ N/A N/A ✗ 
(landmarks) 

STAlign 8 ✗ ✗ ✓ N/A   N/A ✗ 
(landmarks) 

Eggplant 9 ✗ ✗  ✓ N/A N/A ✗ 
(landmarks) 

 
Supplementary Table 1: Comparison of 3D registration methods for Spatial Transcriptomics data. We selected 
properties that are important for aligning the Open-ST metastatic lymph node, a large dataset containing ~1 million 
cells (19 sections spanning ~3,000x4,000x350 μm3, ~60,000 cells/section). For methods using specific genes for 
alignment, we selected the top 10 highly variable genes (scanpy, using flavor ‘seurat’ with default parameters). 
Visualization: seamless interactive exploration of the data in 3D, i.e., via custom visualization tools or functions 

connecting to existing ones. ✓✓: visualization and interactive alignment are available. ✓: only visualization tools are 

available. ✗: visualization tools not available. Global: the model’s ability to perform global registration of stacks, to 
regularize the propagation of errors after pairwise alignment across the final z-stack. Non-rigid: whether the method 
provides non-rigid transformation models. CPU Time: excluding time required for converting the dataset, manual 
selection of points, or tasks not strictly related to alignment. Memory: peak RAM used during alignment, excluding 
preprocessing tasks. Automated: the method does not require manual selection of landmarks, or extensive 
preprocessing and annotation of cell types or regions. Morpho: from spateo; Sc3D: using the sc3d mode (instead of 
wrapper for PASTE). For the methods based on region selection, we used the transcriptomic cluster identities from 
the original publication. Under CPU time and Memory, the best method is bold, and the second best is underlined. 
The following software versions were used: STIM (0.3.0) PASTE2 (1.0.1), spateo-release (1.1.0), GPSA (0.8), SPACEL 
(1.1.7), ST-GEARS (1.0.0). The benchmark was run on a quad-socket server equipped with 4x Intel(R) Xeon(R) Platinum 
8280 CPUs and 4,227 GB of RAM. All tools were run using a single thread, to discard additional sources of overhead. 
Jobs requiring more than 1 day to run were terminated, thus did not finish (DNF). 
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Workflow for the alignment of the 10x Visium dataset 
 
./st-resave 

-i /home/10x-Visium/section1_locations.csv,/home/10x-Visium/section1_reads.csv,sec1 
-i /home/10x-Visium/section2_locations.csv,/home/10x-Visium/section2_reads.csv,sec2 
-c /home/10x-Visium.n5 

./st-explorer -i /home/10x-Visium.n5/ 

./st-align-pairs -c /home/10x-Visium.n5/ -n 100 -rf 0.5 --maxEpsilon 100 --minNumInliersGene 30 

./st-align-global -c /home/10x-Visium.n5/ --absoluteThreshold 100 -rf 0.5 --lambda 0.0 --skipICP 
 
./st-render -i /home/10x-Visium.n5/ -g Calm2 -rf 0.6 -s 0.1 
./st-render -i /home/10x-Visium.n5/ -g Calm2 -rf 0.6 -s 0.1 –ignoreTransforms 
 

 
3D Rendering of the Slide-Seq dataset 
 
In order to create the 3D rendering shown in Fig. 2 (which is also Supplementary Video 1), we 
exported three genes of the aligned SlideSeq dataset in low (1609 x 1771 x 256 px) and high 
resolution (3217 x 3540 x 511 px) and merged both into an RGB image (Calm2 is shown in 
white, Ptdgs in green, and Mbp in red).  
 
We then created a 3D projection using the Fiji command “Image > Stacks > 3D project” 
for both images, which creates a visually pleasing animation of both images. 
 
In order to create the zoom-in effect we wrote a script that smoothly interpolates between the 
two datasets as they rotate, which can be found in the examples.MakeMovie class in the 
STIM repository 
(https://github.com/PreibischLab/STIM/blob/master/src/main/java/examples/MakeMovie.java). 
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