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Abstract 
MRI is a valuable tool for studying brain structure and function in animal and clinical 

studies. With the growth of public MRI repositories, access to data has finally become 

easier. However, filtering large data sets for potential poor-quality outliers can be a 

challenge. We present AIDAqc, a machine learning-assisted automated Python-based 

command-line tool for small animal MRI quality assessment. Quality control features 

include signal-to-noise ratio (SNR), temporal SNR, and motion. All features are 

automatically calculated and no regions of interest are needed. Automated outlier 

detection for a given dataset combines the interquartile range and the machine 

learning methods one-class support vector machine, isolation forest, local outlier 

factor, and elliptic envelope. To evaluate the reliability of individual quality control 

metrics, a simulation of noise (Gaussian, salt and pepper, speckle) and motion was 

performed. In outlier detection, single scans with induced artifacts were successfully 

identified by AIDAqc. AIDAqc was challenged in a large heterogeneous dataset 

collected from 19 international laboratories, including data from mice, rats, rabbits, 

hamsters, and gerbils, obtained with different hardware and at different field strengths. 

The results show that the manual inter-rater agreement (mean Fleiss Kappa score 

0.17) is low when identifying poor-quality data. A direct comparison of AIDAqc results, 

therefore, showed only low to moderate concordance. In a manual post-hoc validation 

of AIDAqc output, precision was high (>70%). The outlier data can have a significant 

impact on further post-processing, as shown in representative functional and structural 

connectivity analysis. In summary, this pipeline optimized for small animal MRI 

provides researchers with a valuable tool to efficiently and effectively assess the 

quality of their MRI data, which is essential for improved reliability and reproducibility. 

 

Keywords: standardization; reproducibility; machine learning; motion detection; image 

artifacts; majority voting 
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1 Introduction 
Quality control (QC) is an integral part of overcoming reproducibility issues and lack 

of transparency towards open data sharing for magnetic resonance imaging (MRI) 

(Niso et al., 2022). Numerous software developments are available for human MRI, 

e.g., MRIQC (Esteban et al., 2017), pyfMRIqc (Williams et al., 2023), VisualQC 

(Raamana, 2018), and FreeSurfer (Backhausen et al., 2016) as well as standardized 

protocols, e.g., in the Human Connectome Project (Marcus et al., 2013), ENIGMA 

(Thompson et al., 2020), and INDI initiative (Zarrar et al., 2015). In contrast, the focus 

of previous small animal approaches was mainly on the use of standardized phantoms 

but not software (Mannheim et al., 2018; Osborne et al., 2017). A recent survey 

highlighted the need for more efficient animal MRI QC, as the majority of users (63%) 

do not follow any QC protocols and 19% declare that no regular maintenance for 

quality assurance (QA) of the machine is performed (Tavares et al., 2023). This is in 

stark contrast to industry and clinical guidelines, e.g., the AAPM acceptance testing 

and QA procedures for MRI facilities (Jackson et al., 2010) or the ACR MRI QC manual 

(Price et al., 2015), which have been shown to improve further MRI analysis (Bedford 

et al., 2023; Gilmore et al., 2021).  

Both QA and QC standards aim to facilitate stable, high-quality MRI data. In addition 

to the desired homogeneous image quality in the in-house laboratory, QC/QA 

procedures are necessary for longitudinal imaging sessions between different 

laboratories (Sreedher et al., 2021). MR image quality is mainly determined by noise 

and image artifacts. Noise arises from multiple sources including  intrinsic scanner and 

thermal noise as well as physiological noise, which originates from motion, cardiac 

cycle, and respiration (Bianciardi et al., 2009). Typical image artifacts include 

occasional noise, differences in susceptibility, i.e., differences in the magnetic field, 

mostly at the border between different tissue compartments (Budrys et al., 2018), and 

ghosting, i.e., a blurry copy of the sample that appears in the field-of-view displaced 

from its true location. Ghosting can be induced by periodic movements, including 

involuntary movements, cardiac and respiratory motion, vessel pulsation, and blood 

and CSF flow (discrete ghosts) (Zaitsev et al., 2015) or hard- and software related 

issues, such improper shimming, strong heating of the gradients, and induction of eddy 

currents (Nyquist ghosts) (Chen & Wyrwicz, 2004). In small animal imaging, 
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movement is restricted by anesthesia and animal fixation in the MRI bed, which can 

be combined with muscle relaxants and intubation to achieve a stable respiratory and 

cardiac cycle (Grandjean et al., 2014). Nevertheless, physiological factors and 

movement of parts of the body can induce motion in the image. This leads to an 

increased level of noise, blurring, and ghosting artifacts (Zaitsev et al., 2015), which 

are difficult to distinguish and eliminate via post-processing. Due to the large variety 

of hardware/software combinations, the most prominent components influencing 

image quality may vary. For functional MRI (fMRI) in rodents, a previous study has 

shown that physiological fluctuations, mainly originating from the respiratory cycle, 

introduce severe artifacts and lead to misinterpretation of corresponding connectivity 

measures (Kalthoff et al., 2011). Different from faster MRI sequences with easier 

visual interpretation of motion artifacts, e.g., as ghosting or blurring, in dynamic MRI 

scans, motion artifacts can cause signal changes that may severely confound 

statistical analysis rendering results unreliable (Havsteen et al., 2017).  

The manual identification of poor image quality, which is still the most frequently used 

method, can only be practically applied to a rather small number of datasets (according 

to our expertise this relates to <50 datasets) and remains a very subjective method 

with high inter-assessor variability (Williams et al., 2023). This is mainly due to 

unavoidable human error and a missing standard of how to draw and where to place 

regions of interest (ROI) to quantify signal-to-noise ratio (SNR) or temporal SNR 

(tSNR). Pre-defined standardized regions as implemented in the image artifact 

analysis of the American College of Radiology are only available for phantoms (Etman 

et al., 2017). As an alternative, machine-learning algorithms for specific quality metrics 

were tested, e.g., to automatically detect motion artifacts (Fantini et al., 2021; Lorch et 

al., 2017). However, such deep learning approaches require large training datasets, 

which is difficult to achieve with small animal MRI and in addition would require expert 

knowledge to generate a ground truth. Automation without the need to train the model 

would provide a unique opportunity to assess the quality of images for less 

experienced users or a scenario of data re-use. However, to date, user-independent 

and large-scale-applicable calculation of image quality metrics in small animal MRI is 

missing. To address this issue, we developed AIDAqc, a user-friendly command-line 

tool tailored to the needs of small animal MR neuroimaging, while maintaining high 

flexibility with respect to animal model, MR hardware, and sequences. The tool 
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generates a detailed summary of the dataset parameters and performs automatic 

calculations of image quality metrics, which are assessed using a majority-voting 

approach to simplify and objectify the categorization of image quality. Here, we 

describe the AIDAqc pipeline, present the validation using a large heterogeneous 

dataset collected from 19 international MRI laboratories, and discuss the interpretation 

of quality metrics and their influence on further analysis.  

2 Methods 

2.1 Python-based Workflow for Automated QC 

AIDAqc was developed as part of the AIDA (Atlas-based Imaging Data Analysis 

Pipeline) software family (https://github.com/aswendt-lab) with the suffix qc relating to 

quality control. The automated pipeline was tested in Python 3.12.0 using the libraries 

Numpy, Pandas, Matplotlib, Sklearn, Nibabel, and Alive_progress. The installation 

was tested successfully using a custom Anaconda software environment (conda 

23.10.0), on Windows 10 & 11, macOS 12.6.8, and Linux Ubuntu 22.04. Detailed 

instructions on how to install and use AIDAqc including a video tutorial can be found 

online (https://github.com/Aswendt-Lab/AIDAqc).  

The following subsections explain each stage of the pipeline in detail (Fig. 1): 1. 

Parsing Input Data 2. Feature Calculation, and 3.Outlier Detection.  

Figure 1. Schematic overview of the AIDAqc pipeline. Starting with input data formats, 

three consecutive stages of automatic parsing, feature calculation, and multiple outlier 

detection techniques combined to a major vote for the outlier status. Note: naming convention 

- anatomical (all T1- or T2-weighted scans), diffusion (all diffusion-weighted, DWI, or diffusion 

tensor imaging, DTI, scans), and functional (fMRI, and rs-fMRI scans). 

2.1.1 Stage I: Parsing Input Data 

To increase the flexibility of the pipeline, the Neuroimaging Informatics Technology 

Initiative (NIfTI) data format, Brain Imaging Data Structure (BIDS) data folder structure 
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as well as the raw Bruker (Bruker, BioSpin, Ettlingen, Germany) data format (i.e., the 

complete Bruker study folder including image and metadata from one subject and time 

point) can be used as input. Note: the image data needs to be oriented as coronal 

brain sections. In the initial parsing stage, the input folder is automatically and 

recursively searched for these MRI files. As a result, the file paths are validated to 

contain a unique file and sorted into anatomical (T1- or T2-weighted), diffusion 

(diffusion-weighted, diffusion tensor imaging, etc.), and functional (fMRI and rs-fMRI) 

scans based on filenames and related metadata. Other scans, e.g., localizers, and 

files with missing necessary metadata are excluded from further processing.  

2.1.2 Stage II: Feature Calculations 

Automatically calculated features include (t)SNR, motion, and ghosting. At this stage, 

the quantitative measures are automatically obtained from the input data, i.e., no user 

input is required. Specific measures, e.g., tSNR, will be calculated only for fMRI.  

SNR 

The SNR is the most rudimentary but also versatile quantitative measure of MR image 

quality for most sequences. However, the calculation can get complex due to the 

manual definition of regions of interest (ROIs), i.e., at least one ROI inside the sample 

and one ROI outside the sample representing the noise area. Here, two approaches 

were implemented: the “standard” method, which automatically defines ROIs based 

on the center of intensity (COI) of the image, and the Chang method (Chang et al., 

2005), which is independent of ROI selection. For both methods, the SNR is reported 

in Decibel (dB).  

Standard method: SNR is calculated by dividing the mean signal intensity by the 

standard deviation of the noise (Henkelman, 1985; Kaufman et al., 1989). ROIs are 

placed automatically in a three-step procedure (Fig. 2). 
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Figure 2. SNR calculation without manually placed regions-of-interest (ROI). Graphical 

illustration of automated ROI selection to distinguish signal (blue sphere) from noise (gray 

cuboids), which are used to calculate the SNR. 

 

1. Center of intensity (COI): To robustly determine the center of the object in the 

image, the coordinates of the COI are extracted as a starting point for step 2. 

2. COI sphere: A sphere with the COI as its center is used to create a mask for 

averaging all the voxels within this sphere as a reference value for the “true signal”. 

To ensure that the sphere does not extend beyond the signal volume of interest, a 

relative value for the sphere radius is set based on the image dimensions.  

3. Cuboids: In all 8 corners of the image volume with a size relative to the dimensions 

of the volume, cuboid ROIs are created. All voxels in these cuboids are averaged and 

used as a reference for the noise. 

If I represents the three-dimensional image, then S and C are subsets of I representing 

the sphere and the cuboid space, respectively (Eq.1a). S(x,y,z) and C(x,y,z) are image 

functions representing a specific voxel in I, defined by the coordinate x,y,z in the three-

dimensional image space I. Upper limits of the subsets S and C are shown as 

(𝑖𝑖𝑠𝑠 , 𝑗𝑗𝑠𝑠 , 𝑘𝑘𝑠𝑠 ) and (𝑖𝑖𝑐𝑐 , 𝑗𝑗𝑐𝑐 , 𝑘𝑘𝑐𝑐 ), respectively (Eq. 1a). The SNR is calculated by dividing the 

mean intensity of the sphere by the standard deviation of the cuboids with N being the 

number of voxels in the image subset of the image I (Eq. 1b). The SNR value is commonly 

reported in decibel, dB (Eq. 1c). In the case of 4D diffusion images the first b0 image 

volume is chosen to represent the three-dimensional image I. 
𝑆𝑆 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝐶𝐶 𝑥𝑥 𝑦𝑦 𝑧𝑧 ⊂ 𝐼𝐼 𝑥𝑥 𝑦𝑦 𝑧𝑧 (1a) 

𝜇𝜇𝑆𝑆 = ∑  𝑖𝑖𝑠𝑠
𝑥𝑥=1 ∑  𝑗𝑗𝑠𝑠

𝑦𝑦=1 ∑  𝑘𝑘𝑠𝑠
𝑧𝑧=1 𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝑁𝑁𝑠𝑠
 σc  =  √

∑  𝑖𝑖
𝑥𝑥=1   ∑  𝑗𝑗

𝑦𝑦=1   ∑  𝑘𝑘
𝑧𝑧=1  (𝐶𝐶(𝑥𝑥,𝑦𝑦,𝑧𝑧) − 𝜇𝜇𝑐𝑐)2

Nc
  (1b) 

𝑆𝑆𝑆𝑆𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜇𝜇𝑠𝑠
𝜎𝜎𝑐𝑐

= 20 ⋅ log (𝜇𝜇𝑠𝑠
𝜎𝜎𝑐𝑐

)  dB     (1c)
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)  dB     (1c)

 

 

9 

Chang method: This approach uses a histogram analysis of the image signal intensity 
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the number of voxels in the image subset of the image I. In the case of 4D diffusion 

images, the Chang method (different to the standard method) creates an average SNR 

of all diffusion directions except the b0 image. 

μ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) = ∑ ∑ 𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑧𝑧)𝑁𝑁
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𝐸𝐸(𝑧𝑧) = 𝜇𝜇slice(𝑧𝑧)
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SNRchang, Final = ∑ 𝐸𝐸(𝑧𝑧)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠
𝑧𝑧=1

𝑁𝑁  (2c) 

tSNR 

The temporal signal-to-noise ratio (tSNR) is defined for sequences acquired over time 

(Welvaert & Rosseel, 2013). Therefore, there is an additional 4th dimension in a three-

dimensional volume, here represented with the image function 𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) in Eq. 3. For 
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subset of S is represented with 𝑆𝑆(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡). 𝑁𝑁𝑠𝑠 is the amount of voxels in the sphere. 

From a practical point of view, to calculate one quantitative value for the tSNR, first, a 

tSNR map is calculated (Eq.3c) and the average of the tSNR over all voxels in the 

sphere is the final tSNR value. 
𝑆𝑆(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) ⊂  𝐼𝐼(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡)     (3a) 

μ𝑡𝑡(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = ∑ 𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑠𝑠
 , σ𝑡𝑡(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = √∑ (𝑆𝑆(𝑥𝑥,𝑦𝑦,𝑧𝑧,𝑡𝑡)−μ𝑡𝑡(𝑥𝑥,𝑦𝑦,𝑧𝑧))2𝑇𝑇

𝑡𝑡=1
𝑁𝑁𝑠𝑠

 (3b) 

tSNR(x, y, z) = μt(x,y,z)
σt(x,y,z) = 20 log (μt(x,y,z)

σt(x,y,z))  dB (3c) 

tSNRFinal = ∑ ∑ ∑ tSNR(x, y, z)ks
z=1

js
y=1

is
x=1  (3d) 

Ghosting and Motion 

Mutual information (MI) was used as a metric for the identification of MRI ghosting 

artifacts (Fig. 3a-b). It is known that one of the sources of ghosting artifacts is the 
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sensitivity of Echo-planar imaging (EPI) scans to magnetic field inhomogeneities and 

an additive consequence of hardware-originated artifacts. The Nyquist ghost is one of 

the artifacts happening with EPI sequences where the ghost is located half of the field 

of view (FOV) away from the image (Buonocore & Gao, 1997; Reeder et al., 1997; 

Yang et al., 1996). Additionally, there are discrete ghosts, which occur in images where 

the periodic motion of the subject is present, like respiratory or cardiac motions. These 

regular motions often spread across the whole image in the form of ghosts emerging 

from the principles of the Fourier transform (Axel et al., 1986), (Storey et al., 2002), 

(Wood & Henkelman, 1985). 

In practice, irrespective of the type of the ghost for a 3D image volume, the middle 

slice is automatically extracted. For 4D image data, i.e., diffusion and functional scans, 

the average across the fourth dimension is used to create a representative 3D image. 

In the next step, the MI is calculated between the selected image and the shifted image 

by n voxels, with n ranging from 1 to N, with N being the size of the image in x or y 

directions. According to the MI theorem, the MI value decreases as the shifts increase 

because the pair of images fits less well. Considering a “ghost” has happened, along 

one of these shifted image versions, the main target of the image (in our case the 

brain) will match its ghost in the shifted image. This process will generate peaks in the 

MI as the shifts increase, which are automatically detected. If a peak exceeds a 

defined threshold, there is a high probability that it is due to a ghost. 

Mutual information (MI) is also a sensitive measure of detecting translational motion 

between images (Godenschweger et al., 2016) and was here used to compare brain 

structures along the time dimension (Fig. 3c). To obtain a quantitative value for the 

severity of motion in the image, the Mutual Information (MI) was calculated between a 

reference image and subsequent images for the time dimension in functional scans 

and the direction dimension in diffusion scans. The choice of reference image depends 

on the number of repetitions in the fourth dimension. For smaller datasets with, for 

example, 10 repetitions, the first repetition (TR or b=0, depending on the acquisition 

type) is taken as the reference. However, for larger datasets with more repetitions, the 

10th repetition is used as the reference to ensure the signal has reached a steady 

state and is free from initial transient effects. This practice helps to provide a more 

reliable measure of motion by avoiding the instability often present in the first few 

repetitions. In the case of no or small amounts of motion (Fig. 3d), the MI is close to 1 
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and relatively stable over different time points or directions. In the case of severe 

motion (Fig. 3e), there is a characteristic drop in the MI (Fig. 3c). Motion severity as a 

single quantitative value for each scan reflects the standard deviation of the MI vector. 

To reduce the processing time for 4D image volumes, MI is only calculated for the slice 

with the highest average intensity over time.  

Figure 3. Mutual information (MI) to detect ghosting artifacts and motion. (a) Image 

without ghosting: smooth and bowl-shaped MI curve indicating the whole cycle of image 

shifting. An initial decrease due to an increasing mismatch between the reference image and 

the shifted versions is followed by an increase to its initial state when the shifted image arrives 

at the reference. (b) Complementary MI curve for an image with ghosting. MI peaks at various 

shifts throughout the cycle. (c) Representative MI was plotted for consecutive time points of 

two rs-fMRI scans, one with strong motion artifacts and the other with no motion artifacts. (d) 

There is near to no motion visually detectable in the receptive images of time = 70 vs. 230 s. 

(e) The motion can be detected visually in the receptive images of time = 70 vs. 230 s. A 

mixture of translational and rotational motions shifts the image approx. 20 voxels. 

2.1.3 Stage III: Outlier Detection 

After the extraction of quality features, AIDAqc applies one univariate and four 

multivariate outlier detection methods using a selection of statistical and machine 

learning (ML) algorithms: interquartile range (IQR), one-class support vector machine 

(ocSVM), isolation forest (IF), local outlier factor (LOF), and elliptic envelope (EE). 
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This approach provides a diverse range of perspectives on the potential outlier status 

and overcomes the biased approach of only applying one algorithm, which is not suited 

to detect outliers from a broad range of datasets. The IQR identifies outliers by 

measuring data spread and is particularly effective for datasets with non-normal 

distributions (Vinutha et al., 2018). The ocSVM specializes in anomaly detection by 

defining hyperplanes, making it robust to high-dimensional datasets and capable of 

capturing complex patterns. The LOF detects anomalies based on local density 

deviations, offering sensitivity to local variations in data density and robustness to 

noise, complementing the limitations of ocSVM in handling local anomalies (Budiarto 

et al., 2019). In scenarios where the ocSVM might struggle with non-linear 

separations, Isolation Forest (IF) excels in isolating anomalies by constructing decision 

trees, providing a computationally efficient alternative (Mohammed et al., n.d.). The 

EE approach offers probabilistic outlier detection by fitting robust covariance 

estimations, making it suitable for multivariate datasets with elliptical distributions 

(Ashrafuzzaman et al., 2020). 

Outcomes from this multi-algorithm approach are aggregated using majority voting on 

a per-image basis. Each image is assigned a score ranging from 0 (not detected as 

an outlier in any algorithm) to 5 (reported as an outlier in all algorithms). This enables 

flexible thresholding on a per-study basis (rather than a singular, binary "outlier" 

assignment) and minimizes the potential for false positives and negatives in a single-

algorithm approach. 

 

2.1.4 Scan Reports and Automatically Created Files 

AIDAqc provides detailed reports for the user to get an overview of the dataset and to 

verify the outlier detection in machine-readable CSV files. The reports include 

information on spatial resolution and are presented in pie charts and distribution plots 

(Fig. 4). Positive votes that an algorithm has detected an image as an outlier are 

included in the “voting.csv” table, together with the evaluations provided by each 

outlier approach. This way, the user can identify which algorithm was important to flag 

the data as an outlier and investigate the reasons further if necessary. Next to the scan 

report, the single-slice inspection function automatically saves the middle slice images 

in the respective output folder from each anatomical, diffusion, and functional scan, 
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respectively. The images are named based on a unique scheme, i.e., sequence type 

followed by a number that is incremented for each image and the subject name. 

Additionally, the image file names are listed in the final feature calculated CSV files. 

This information fulfills the purpose to i) get a first overview of the dataset and to 

identify scans with different voxel sizes - especially when accidentally a wrong 

sequence or parameters were used. This feature facilitates quick browsing of images 

without the need to open each dataset separately in a different program. The output is 

restricted to the middle slice, which is particularly valuable as it most likely covers 

larger areas of the subject. While the pipeline is running, users can observe how these 

images are created one after the other. This allows for quick visual inspection of the 

subjects. If the orientation of the slice differs in one of these images, the users will 

promptly recognize that some settings for that subject were different from the usual 

pattern compared to the others. Furthermore, noisy images are easily discernible at 

first glance, further enhancing the efficiency of the inspection process. This method 

can be regarded as a basic but convenient complement to the pipeline. In addition to 

BIDS datasets, which come with specific metadata and unique file and sequence 

names, detailed listing as csv files is implemented in AIDAqc for Bruker datasets as 

well. Here, the sequence names, which have been assigned manually by the user are 

listed next to the sequence type (Fig. 4f and supplementary Fig. 9). Further practical 

instructions on how to interpret AIDAqc results are documented online 

(https://github.com/Aswendt-Lab/AIDAqc). 
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Figure 4. Example of the automatically created outputs as part of the scan report for a 
representative dataset. Graphs and tables summarizing the (a) spatial resolution (in x-, y, 

and z-direction), (b) distribution of anatomical SNR, (c) distribution of motion based on the 

standard deviation of the mutual information calculated for diffusion scans, (d) distribution of 

the tSNR for functional scans, and (f) file location, metadata details, and individual outlier 

votings as listed in the votings.csv file (representative dataset: 94_m_As).  Note: in (b-d) red 

bars indicate outliers based on the statistical definition of quartiles (Q) added by the 1.5-fold 

interquartile range (IQR). The dashed gray line indicates the pre-defined outlier threshold. In 

(f) the file paths were shortened by the placeholder StudyID and Date. 
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2.2 Artifact Simulation to Evaluate the Reliability of Quality 

Metrics and Outlier Detection 

2.2.1 Quality Metrics 

To evaluate the reliability of individual quality control (QC) metrics, a simulation of 

noise and motion was performed using custom-written code in Python (version 3.11) 

using the scikit-image library (van der Walt et al., 2014) and Matlab (Matlab Version 

R2023a, The MathWorks Inc., Natick, USA), respectively. Anatomical and functional 

scans from the combined datasets 94_m_As and 94c_m_As (Table I) were used.  

 

For noise simulation, a constant amount of noise (variance of 0.2) was added to every 

subject's anatomical scans. Additionally, a Gamma function was applied to reduce the 

overall brightness of the images, mimicking the shadows present in MR images 

(gamma value of 0.6). For motion simulation, the spatial image dimensions of the 

functional scans were manipulated by adding variable translational motion along the 

time dimension. Three different types of noise were added: Gaussian, salt and pepper 

(S&P), and speckle noise. Each type of noise serves a specific purpose: Gaussian 

noise simulates general background noise, salt and pepper noise represents sudden, 

isolated artifacts and speckle noise captures spatial variations in tissue texture or 

structure (Khan et al., 2019). Additionally, for the functional scans, motion was induced 

by shifting the image volume over the time course, adding random degrees of motion 

to each subject's image data. SNR and motion severity were computed both before 

and after adding noise and motion, and AIDAqc's results regarding SNR in both the 

Chang and standard methods, as well as motion severity, were calculated.  

2.2.2 Outlier Detection 

To assess the reliability of the outlier detection, we applied the same as for quality 

metrics to introduce noise and motion, here only for one randomly selected scan from 

each sequence instead of all subjects, effectively creating single scans with simulated 

artifacts in the whole dataset (combined datasets ). 
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2.3 Validation of Outlier Detection  

2.3.1 Initial Validation Approach 

The validation of the outlier detection was conducted in two phases, addressing 

different aspects. In the initial phase, five experienced users manually rated the image 

quality of all datasets (Table I). The individual images from the 

“manual_slice_inspection” folder (“static” images as part of the automatically 

generated output derived from the 3D/4D images), encompassing anatomical, 

diffusion, and functional MRI sequences, were examined. Raters identified potential 

outliers, i.e., "bad quality data", based on subjective evaluations of the image in 

comparison to all other images within one dataset. 

 classification features true/false positive (TP/FP) and true/false negative 

(TN, FN), sensitivity, specificity, and accuracy were calculated for quantitative 

comparison (Supplementary Table III). 

2.3.2 Revised post-hoc Validation 

Because of significant inter-rater variability in the initial approach, a revised and more 

comprehensive validation strategy was implemented. In this second phase, six 

experienced users conducted a detailed manual screening of the complete 3D/4D 

image files that AIDAqc identified as high-threshold outliers (AIDAqc voting thresholds 

of 4 and 5). Thresholds were introduced to create cut-off scenarios, in which the 

majority voting results are grouped into very strict (high threshold) or not as strict (low 

threshold) outliers. In a systematic way, different thresholds for the number of manual 

raters and AIDAqc outlier algorithms were compared to find an optimum 

(Supplementary Material: “Role of the rating threshold for the agreement between 

manual raters and AIDAqc”). 
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2.4 Statistics and Visualization 

The statistical analyses were conducted using GraphPad Prism version 9.5.1 

(GraphPad Software, Boston, Massachusetts, USA, www.graphpad.com) and custom 

code written in Python version 3.11.4, with the libraries statsmodels (Seabold & 

Perktold, 2010) and scipy.stats (Virtanen et al., 2020).  

Fleiss' kappa score, a statistical measure utilized to assess the inter-rater agreement 

between multiple raters when categorizing items into different groups, was used to 

evaluate the reliability of manual ratings of image quality as "good" or "bad". The 

interpretation of Fleiss' kappa scores indicates various levels of agreement: scores 

less than 0 indicate poor agreement, 0.01 – 0.20 suggest slight agreement, 0.21 – 

0.40 imply fair agreement, 0.41 – 0.60 signify moderate agreement, 0.61 – 0.80 denote 

substantial agreement, and scores between 0.81 – 1.00 represent almost perfect 

agreement. 

Additionally, various data analysis and visualization tasks were done using the Python 

libraries pandas, numpy, matplotlib, seaborn, and nibabel. DTI and rs-fMRI post-

processing for selected datasets was conducted using an atlas-based approach with 

our in-house software AIDAmri (https://github.com/Aswendt-Lab/AIDAmri). Briefly, 

AIDAmri performs brain extraction and data correction (slice time correction, motion 

correction, spatial smoothing with full width at half maximum and high-pass filtering for 

rs-fMRI), followed by a multi-step registration with the Allen Mouse Brain Reference 

atlas (CCF v3). Functional connectivity is derived by a seed-based Pearson correlation 

among all atlas regions. Structural connectivity matrices are produced with 

deterministic fiber tracking using DSI Studio; for details see (Pallast et al., 2019) 

2.5 Ethics Statement 

The data corresponding to 94c_m_As and 94_m_As from Table I were acquired in 

strict adherence to the ARRIVE guidelines for reporting in vivo animal experiments 

and the IMPROVE guidelines for stroke animal models, as recommended by Kilkenny 

et al. (2010) and Percie du Sert et al. (2017). These datasets were processed following 

comprehensive ethical protocols approved by the Landesamt für Natur, Umwelt und 

Verbraucherschutz North Rhine-Westphalia, Germany, under animal protocol 

numbers 84−02.04.2016. A461 and 84−02.04.2014.A305. Further ethical clearance 



 

 

18 

was obtained from the Gothenburg Ethics Committee, Sweden, under animal permit 

number 1551/2018. In the case of data sourced from other groups within the research, 

all animal experiments were approved by the respective local ethical authorities. 

3 Results 

3.1 AIDAqc Workflow 

AIDAqc was designed as a three-stage open-source pipeline of Python scripts 

(https://github.com/Aswendt-Lab/AIDAqc), which requires minimal user input (Fig. 1). 

The installation and application of AIDAqc were independently tested by 4 scientists 

and optimized using the datasets (see next section). T1, T2, DTI, and fMRI scans can 

be used - independent of the underlying MR sequence (i.e., spin echo, gradient echo, 

FLASH, etc.) - as input. AIDAqc accepts a vendor-specific data format by Bruker 

Biospin and the widely used vendor-independent BIDS/NIfTI data format. No prior data 

sorting is necessary as the main input folder will be iteratively searched. Each of the 

three stages can be run individually but the result of the third stage depends on the 

sequential processing of stages one and two, respectively. The results are reported 

automatically in machine-readable csv files as well as figures and image sequences.  

3.2 Dataset Statistics 

To test AIDAqc on a wide range of MRI setups, sequences, and animal models, 65 

international MRI experts were invited as part of an initiative from the STANDARD 

working group of the European Society for Molecular Imaging (documented on GitHub: 

https://github.com/Aswendt-Lab/MRI_Standardization_AIDAqc).  

Finally, n=19 laboratories provided a total of n=23 small animal datasets to provide 

datasets consisting of about 2600 anatomical, 1200 diffusion, and 700 functional 

scans. These datasets had not been pre-screened for outliers and were used to test 

and validate AIDAqc. In applying AIDAqc to test its efficacy, each of the 23 datasets 

was processed independently. This separate analysis allowed us to maintain the 

integrity of the outlier detection process, ensuring that any identified quality issues 

were specific and relevant to each dataset's unique characteristics. All data is publicly 

available (see section 5: “Data and Code Availability”). The majority of datasets were 
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obtained with mice (68.2%) and rats (18.2%), and single studies used hamsters, 

rabbits, and gerbils (Fig. 5a). MRI was acquired with a broad range of hardware in 

terms of field strength (7-16.4T) and receive/transmit coil arrangement (Fig. 5b). Most 

studies were conducted at 7T (50%) followed by 9.4T (31.8%) using anatomical (T1- 

or T2-weighted MRI) and diffusion-weighted imaging (DWI), as well as resting-state 

functional MRI (rs-fMRI) (Fig. 5c). Most data was provided in the Bruker raw data 

format (63.6%) next to the NIfTI format of which only six datasets were BIDS-compliant 

(Fig. 5d). 

 
Table I: Summary of datasets used for developing AIDAqc  
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The datasets further varied substantially in terms of FOV, matrix size, and image 

resolution (see Supplementary Fig. 1 and extended version of Table I in 

Supplementary Table I). In addition, we also applied AIDAqc in a proof-of-concept 

approach to two abdominal datasets (Supplementary Fig. 2) and previously published 

large repositories containing mouse and rat data (Supplementary Table II). The 

# Repository Datasets Sequenc
es 

Data 
format 

# Repository Datasets Sequen- 
ces 

Data 
format 

1 Aswendt  94_m_As 
T2w, 
fMRI, 
DWI 

Bruker  13 
Rivera- 

Olvera 

117_m_
Ri 

T2w, DWI, 

fMRI 
Bruker 

2 Aswendt  94c_m_As 
T2w, 
fMRI, 
DWI 

Bruker 14 
Sta Maria 

 
7_m_St T2w, DWI Nifti 

3 Boehm- 
Sturm  7_m_Bo T2w, 

DWI Bruker 15 Selim 7_m_Se  
T2w, T1w, 

DWI 
Bruker 

4 Carnevale 7_m_Ca T2/DWI Bruker 16 Selim 7_r_Se  
T2w, 

T1w, DWI 
Bruker 

5 Franx 
 94_r_Fr 

T2w, 
DWI, 
T1w 

Nifti 17 Soria 7_r_So T2w, fMRI Nifti  

6 Hekmatyar  7_h_He T2w, 
fMRI Nifti  18 

Van 

Leeuwen 

94_m_V
a 

T2w, DWI Nifti 

7 Kurniawan 
164_m_K
u 

T2w, 
DWI Bruker 19 Vrooman 117_m_

Vr T2w, fMRI Nifti 

8 Micotti 7_m_Mi T2w, 
DWI Bruker 20 Wenk 

94_m_W
e 

T2w, fMRI,  

DWI  
Bruker 

9 
Muñoz- 

Moreno 

 

7_rab_Mu T1w, 
DWI Nifti 21 

Wenk/ 

Goncalves 
94_r_We 

T2w, fMRI, 

DWI  
Bruker 

10 Brinton 7_m_Br 
T2w, 

DWI Nifti 22 
Wenk/ 

Michalek 

94_g_W
e 

T2w, fMRI, 

fMRI, DWI  
Bruker 

11 
Ramos- 

Cabrer 

 

117_m_Ra 
T2w, 

DWI, 

fMRI 

Bruker 23 
Longo 

 
7_m_Lo* T2w, DWI Bruker 

12 Reichardt 
94_m_Rei
* 

T2w Bruker      
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AIDAqc output is summarized in the online repository (https://doi.gin.g-

node.org/10.12751/g-node.q82cjj/), featuring detailed reports for SNR, tSNR and 

motion severity.  

The mean SNR in anatomical scans (neuroimaging datasets as listed in Table 1), as 

calculated using the Chang method, was 32.1 dB ± 4.6 dB (Fig. 5e). For the diffusion 

scans, the mean SNR was 28.4 dB ± 5.0 dB (Fig. 5f) and in functional scans, we 

measured 27.4 dB ± 5.9 dB tSNR (Fig. 5h). Temporal SNR across functional MR 

sequences varied with large differences in variance between specific studies, e.g., 

117_m_Ra, which was acquired with two different sequences, visible as two tSNR 

populations (Fig. 5f). The motion severity was rather stable for 16 out of 18 diffusion 

and 9 out of 11 functional studies, respectively (Fig. 5g, i). The motion severity varied 

between 0.017 (7_m_Bo) to 0.217 (7_m_Lo) in diffusion scans and 0.002 (117_m_Ra) 

to 0.323 (117c_m_Ri) in functional scans, respectively.  

Initially, the intention was to also apply AIDAqc to a published large, multicenter 

dataset to demonstrate the tool's adoption and efficacy (see section 4.3). However, it 

became apparent that these datasets had already undergone screening for poor-

quality data, rendering them unsuitable for our intended purpose. As a result, we also 

applied the tool to all NIfTI datasets from Table I in a collective manner (Supplementary 

Fig. 8) and outliers in addition to the normal statistical outliers were registered in the 

voting.csv through the majority vote approach. 
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Figure 5. Summary of dataset distribution regarding basic statistical information (a-d) 
and quality features (e-i). Statistical distribution between all datasets regarding the (a) 

species, (b) field strength, (c) sequence, and (d) data format. In (d) “Bruker” refers to the 

Bruker raw data format and NIfTI to the Neuroimaging Informatics Technology Initiative data 

format. Summary of quality features for all (e) anatomical scans, (f-g) diffusion scans, and (h-

i) functional scans. Note that the distribution of data sets for (e-i) is different, as not all data 

sets contain diffusion and functional scans in addition to anatomical scans. 
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3.3 Automated SNR Measurements 

3.3.1 Comparison of SNR across Datasets 

Given the differences in MRI hardware (scanner, coils), sequences, shimming 

procedure, and animal experiment, here it was not meaningful to statistically compare 

all individual datasets. Importantly, the effects of differences in MRI hardware 

(gradients, coils) overrode the positive correlation of field strength and SNR (Fig. 5). 

In studies selected for a relatively homogenous voxel volume of 9.5 nl ± 1.2 nl, there 

were significant differences in SNR values for different magnetic field strengths, also 

for selected studies with the same magnetic field strength and an increasing voxel 

volume there were significant differences observed. As expected, SNR was scaled 

with magnetic field strength and voxel volume (Supplementary Fig. 3). Within studies 

including both anatomical and functional scans, SNR and tSNR correlated positively 

(Spearman r = 0.57, p-value < 0.001) (Fig. 6a). A similar positive correlation was found 

between anatomical SNR and diffusion SNR (r = 0.30, p-value < 0.001) (Fig. 6b).  

Figure 6. Scatterplots (a) Spearman correlation between functional tSNR and anatomical 

standard SNR. (b) Spearman correlation between diffusion standard SNR and anatomical 

standard SNR of subjects that had both scans. 
 

We further quantitatively compared the two SNR methods (SNR-Standard vs. SNR-

Chang) for all anatomical datasets (Supplementary Fig. 4). The SNR methods 

correlated positively (Spearman r = 0.16, P<.001). For a randomly chosen selection of 

five datasets, we further validated that the quantitative SNR values represent the 

qualitative “visual” appearance of the images, i.e., higher SNR corresponds to more 

brightness and contrast in the image (Fig. 7a-b, image #3-4). The visual comparison 

(Fig. 7b) also suggests that SNR-Chang is less sensitive for images with brightness 
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differences (Fig. 7b, #1-2). The SNR-Standard method however can be falsified when 

the ratio of subject to field of view is high (Fig. 7b, #5-6).  

 

Figure 7. Scatterplot of the relationship between SNR values calculated using the 
Standard and Chang method. (a) SNR-Standard and SNR-Chang comparison for 5 

randomly selected datasets (7_h_He, 7_m_Se, 7_rab_Mu, 94_m_Va and 117_m_Ra). (b) 

Selected images from the different datasets reflect similar SNR (examples 1 and 4) and 

different SNR (examples 2, 3, 5, and 6).  

3.4 Artifact Simulation to Evaluate the Reliability of Quality 

Metrics and Outlier Detection 

3.4.1 Quality Metrics 

The analysis of data with simulated (added) Gaussian, salt & pepper, and speckle 

noise (Fig. 8a-b) revealed a significantly lower SNR compared to the original image 

using both SNR methods. Similarly, adding motion to the rs-fMRI scans, significantly 

increased the motion severity index (Fig. 8c). Welch's t-test was applied for 

comparison, indicating significant differences (p<0.001) between the modified and the 

original group data for each metric. 
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3.4.2 Outlier Detection 

In the approach to showcase the reliability of outlier detection and majority voting, a 

significant difference in majority votes between the artifact-induced and original 

images was detected (p<0.001), with the artifact-induced images consistently 

receiving higher majority votes.  

Representative examples show that the majority vote was consistently higher in the 

artifact-induced images compared to the original. For the anatomical image, the 

number of ML algorithms flagging the original image as an outlier was 1, whereas in 

the contaminated counterpart image, it increased to 4 (Fig. 8e). Similarly, in the case 

of the diffusion sequence, the majority vote was 0 for the original image and increased 

to 4 for the contaminated image (Fig. 8f). In functional sequences, the contaminated 

image was flagged with a majority vote of 3 compared to 1 for its original counterpart 

(Fig. 8g).  

Figure 8. Artifact simulation to evaluate the reliability of quality metrics and outlier 
detection. Comparison of signal-to-noise ratio (SNR) and motion severity metrics between 

the induction of different noise types and motion versus the original image in (a) SNR-Chang, 

(b) SNR Standard Method, and (c) Motion Severity. The boxplots illustrate the distribution 

before (original) and after noise addition and motion induction. Significant differences 

(p<0.001) were observed between each noise-induced group and the original group for using 

Welch's t-test. The evaluation of majority votes on artifact induced images revealed 

significantly higher votes compared to the original images (p<0.001). Representative 

anatomical (e), diffusion (f), and functional (g) images before and after addition of artifacts with 

related majority votes. 
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3.5 Validation of Outlier Detection 

3.5.1 Initial Validation Approach 

To gain a ground truth for the comparison of classification, we worked with the votings 

for all datasets from n=5 experts with 5-10 years of experience in small animal MRI. 

The experts were asked to identify bad-quality images in the 23 datasets including 

4452 images. The assessment was purely objective and referred to visible artifacts or 

noise in the images, without any further specific step-by-step evaluation. As the main 

result, the mean inter-rater agreement for all data (Fig. 9) was low across anatomical, 

functional, and diffusion scans (mean Fleiss Kappa score 0.2±0.2, 0.2±0.2, and 

0.1±0.2). For the datasets with a substantial inter-rater agreement, e.g., 7_h_He and 

117_m_Ra (Fleiss Kappa score >=0.6), and with no inter-rater agreement, e.g., 

7_m_Br and 94_m_Rei (Fleiss Kappa score 0.0), respectively, there was visually no 

related identifiable image feature or pattern.  

In addition, we conducted a comprehensive analysis using a confusion matrix 

(Supplementary Material Table 3 and related text). This analysis was based on 

calculations of sensitivity, specificity, and accuracy, considering various threshold 

scenarios between the AIDAqc and human raters (Supplementary Fig. 5). Here, a 

threshold relates to a minimal number of positive votes.  The threshold=3 for AIDAqc 

voting refers to the majority vote of three, i.e., at least three algorithms labeled the 

data to be of bad quality. Similarly, the threshold=3 for the manual raters indicates that 

a file was considered of bad quality by at least three of the expert raters. The highest 

sensitivity (0.20±0.28), i.e., out of all the actual “bad quality” datasets, how many were 

identified by AIDAqc as “bad quality” data, was reached with the AIDAqc threshold set 

to one and the Manual rater threshold set to 4. For this threshold combination the 

overall classification accuracy (0.79±0.13) and specificity (0.81±0.12), i.e., 

identification as “no bad quality”, was high. Despite these efforts, the low inter-rater 

agreement rendered the results less definitive.  
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Figure 9. Inter-rater agreement. Fleiss kappa scores were calculated separately for each 

dataset, serving as an indicator of inter-rater agreement. The last two columns present the 

mean and standard deviation (std).  

3.5.2 Revised post-hoc Validation 

In response to the low inter-rater agreement observed in the initial validation phase, a 

second, more focused validation approach was implemented. In this revised strategy, 

the same experts were tasked with validating only those images flagged as high-

threshold outliers (voting thresholds of 4 and 5) by AIDAqc. The precision 

measurements, which reflect the proportion of images correctly identified as outliers 

by AIDAqc and confirmed by the experts, showed an average precision of 70.72 ± 

9.9%, with an adjusted precision of 72.23% when unsure cases were excluded.   

3.5 Relevance of Outlier Removal for Data Post-processing 

To assess the importance of identifying poor-quality data through AIDAqc in 

subsequent post-processing steps, we processed functional and diffusion datasets 

from two representative control groups, 94c_m_As and 94_m_As using our in-house 

software AIDAmri, as established in a prior study  (Pallast et al., 2019). These datasets 

were chosen because they represent control animals, i.e. no disease or intervention 

model, to provide a consistent baseline for assessing functional and structural 

specificity. In terms of SNR, the functional specificity calculated for the merged dataset 

(Figure 10a) illustrates how connectivity metrics can differ significantly even when 

images appear visually similar at first glance. We assessed functional specificity by 

computing correlations between specific and non-specific ROIs. The X-axis of the 

scatter plot in Figure 10a details the specific ROIs, which include the left and right 

primary somatosensory barrel fields, expected to show high correlations. The Y-axis 

represents the non-specific ROI, formed by combining the anterior cingulate area with 
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the left primary somatosensory barrel field, expected to show lower correlations 

(Grandjean et al. 2023). High values for the non-specific ROI might suggest problems 

either in the unprocessed data or during the processing steps. Adjacent to the scatter 

plot, the subject with a majority vote of 5 and one other subject not flagged by AIDAqc 

are shown representatively. In case of a majority vote of 5, a complete loss of signal 

in the last 25 repetitions was detected, potentially due to a gradient malfunction, 

leading to incorrect bias field correction and poor atlas registration (Supplementary 

Material Figure 7). Among the subjects from the merged datasets, this subject’s data 

confirms that image quality issues predominantly originate from the data itself, not the 

processing steps, as indicated by AIDAqc's findings. This emphasizes that while high 

correlations for non-specific ROIs could stem from various sources, in this instance, 

the problems are specifically related to data quality. In diffusion tensor imaging data 

(Fig. 10b-c), artifacts may not be detectable by examining single slices or directions 

alone. Instead, diffusion analysis can produce markedly different results even when 

visual image quality appears only slightly varied. For instance, in the data identified as 

an outlier (Fig. 10c), marked by a majority vote of 3 out of 5 algorithms, the diffusion 

tensor distribution showed a more random pattern and less anatomical coherence 

compared to the good-quality dataset. Notably, key structures like the corpus 

callosum, a major fiber tract connecting both hemispheres, were detected in the good-

quality image but not in the outlier data. These observations are supported by a 

comprehensive qualitative comparison across all subjects from the two datasets, 

showing a higher majority vote of 2 and 3 related to suboptimal FA (fractional 

anisotropy) maps. Extended qualitative comparisons of diffusion-weighted images and 

corresponding quality metrics are detailed in Supplementary Figures 6. 



 

 

28 

the left primary somatosensory barrel field, expected to show lower correlations 

(Grandjean et al. 2023). High values for the non-specific ROI might suggest problems 

either in the unprocessed data or during the processing steps. Adjacent to the scatter 

plot, the subject with a majority vote of 5 and one other subject not flagged by AIDAqc 

are shown representatively. In case of a majority vote of 5, a complete loss of signal 

in the last 25 repetitions was detected, potentially due to a gradient malfunction, 

leading to incorrect bias field correction and poor atlas registration (Supplementary 

Material Figure 7). Among the subjects from the merged datasets, this subject’s data 

confirms that image quality issues predominantly originate from the data itself, not the 

processing steps, as indicated by AIDAqc's findings. This emphasizes that while high 

correlations for non-specific ROIs could stem from various sources, in this instance, 

the problems are specifically related to data quality. In diffusion tensor imaging data 

(Fig. 10b-c), artifacts may not be detectable by examining single slices or directions 

alone. Instead, diffusion analysis can produce markedly different results even when 

visual image quality appears only slightly varied. For instance, in the data identified as 

an outlier (Fig. 10c), marked by a majority vote of 3 out of 5 algorithms, the diffusion 

tensor distribution showed a more random pattern and less anatomical coherence 

compared to the good-quality dataset. Notably, key structures like the corpus 

callosum, a major fiber tract connecting both hemispheres, were detected in the good-

quality image but not in the outlier data. These observations are supported by a 

comprehensive qualitative comparison across all subjects from the two datasets, 

showing a higher majority vote of 2 and 3 related to suboptimal FA (fractional 

anisotropy) maps. Extended qualitative comparisons of diffusion-weighted images and 

corresponding quality metrics are detailed in Supplementary Figures 6. 

 

 

29 

Figure 10: Functional Specificity and Diffusion Tensor Imaging Analysis for Quality 
Assessment. (a) Functional specificity analysis comparing the functional connectivity to the 

primary somatosensory barrel field relative to the contralateral homotopic area and the anterior 

cingulate area (ACA). The X-axis represents the correlation to the specific ROI (contralateral 

primary somatosensory barrel field), and the Y-axis represents the correlation to the unspecific 

ROI (ACA). Expected results include high correlations for the specific ROI and low correlations 

for the non-specific ROI. Data points across the dataset reveal correlation values for each 

ROI, with outliers, identified by AIDAqc with a majority vote, showing unusually high 

correlations for the non-specific ROI. This suggests that these outliers likely represent poor-

quality data, which can adversely affect functional connectivity measures. (b-c) Two different 

examples of diffusion images are classified as good vs. bad quality using AIDAqc. Whereas 

similar anatomical structures can be identified in the FA map, the diffusion tensor (displayed 

as direction encoded color map) shows very different and anatomically incorrect tensor 

orientations, e.g., in the corpus callosum (*) connecting both hemispheres with horizontal (red) 

fibers crossing the brain midline. 

4 Discussion 
AIDAqc was developed with the aim of automatically identifying bad-quality data from 

large and heterogeneous small animal MRI datasets. Although classification was 

implemented as an automated selection using statistics and machine learning, it 
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should not act as a black box. On the contrary, it was designed to report the 

classification transparently and flag poor quality data that needs further inspection by 

the user, e.g., it can still be useful for a particular purpose.  

To achieve these goals, we collaborated with n=19 international MRI laboratories, 

which shared mouse, rat, and gerbil datasets. This collaboration ensured a diverse 

testing environment, encompassing a wide range of scanner hardware, imaging 

protocols, and experimental conditions (a detailed summary of the datasets can be 

found in Supplementary Material Fig. 1 and Supplementary Material Table I). In an 

iterative process, the AIDAqc workflow was adjusted and optimized to facilitate the 

processing of all acquired datasets. The findings of this study highlight the potential 

for improvement in quality control, as well as the benefits of automating the process, 

thereby avoiding manual interventions and reducing related errors. The AIDAqc 

pipeline was developed in Python as an open-source project, to allow full flexibility to 

include other metrics or automated calculations and integrate AIDAqc in other 

pipelines by the small animal imaging community.  

4.1 The Importance of QC/QA in Small Animal MRI 

Conceptually, QC and QA describe ongoing efforts to ensure the stability of the MRI 

scanner and the assurance of homogenous image quality (Sreedher et al., 2021). 

Small animal MRI has not adopted clinical and industry standards so far, to a certain 

extent because of the belief that such standards would limit scientific freedom and 

innovation (Wijnen et al., 2023). In contrast, we argue here in line with the community-

driven standardization initiatives as part of the imaging societies ESMI, ESMRMB, and 

ISMRM, that standards are required to enhance the reliability and reproducibility of all 

neuroimaging studies and are necessary in the translation of preclinical to clinical 

protocols.  

A central element of clinical QC is checkpoints defined before the project starts, to 

avoid poorer quality data passing on to the next processing stage (Strother, 2006). 

Such strict exclusion criteria limit retrospective cherry-picking and avoid bad quality 

data to introduce false positive and/or negative results (Niso et al., 2022). However, 

most animal studies still favor an explorative approach, for which a retrospective 

selection of good quality data as implemented in AIDAqc is more meaningful. Similarly, 

for reuse of data and, more importantly, for reproducibility of existing studies that rely 
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on large databases (e.g., OpenNeuro), retrospective identification of image quality in 

general and, in particular, signal-to-noise ratio (SNR) and image artifacts is critical. 

AIDAqc fills an existing gap of efficient software tools and overcomes manual bad 

quality selection, which in most cases is bound to an individual decision by the 

researcher. Importantly, AIDAqc does not contradict previous standardization efforts 

but complements the development of reliable preclinical MR assays that lead to 

comparable results across laboratories (Doblas et al., 2015; Waterton et al., 2019).  

4.2 Outlier Detection Based on Quality Metrics  

4.2.1 Rationale of Selected Quality Metrics 

The selection of bad-quality data for different MR sequences cannot be accurately 

done by a single quality measure. Similar to QC tools for human MRI (Esteban et al., 

2017; Raamana, 2018; Williams et al., 2023), AIDAqc relies on the combination of 

multiple automatically derived image quality measures, i.e., (t)SNR, motion, and 

ghosting. The combination ensures high versatility for multiple MR sequences and 

mitigates known disadvantages for a single quantitative assessment of image quality, 

as described for SNR, for example (Erdogmus et al., 2004). We have selected basic 

quality metrics well-established in the MRI community. As a novel aspect, we introduce 

automated calculations, which do not require manually drawn regions of interest. With 

simulated image artifacts, we have shown that these calculations provide a good 

differentiation from image data without artifacts. 

It should be noted that this approach could be extended in future versions to provide 

more information about the type of artifact (e.g. the discrimination of discrete vs. 

Nyquist ghosts) and include other metrics described in the literature, e.g., the contrast-

to-noise ratio (CNR), root-mean-squared error (RMSE), coefficient of joint variation of 

gray matter and white matter, full-width half-maximum estimation of the blurriness of 

the image, and the overlap of tissue probability maps estimated from the image and a 

template (Chow & Paramesran, 2016; Esteban et al., 2017). These quality metrics 

were not included as the information content either overlaps with integrated metrics 

(e.g., SNR and CNR) or segmentation and template registration, respectively, are 

required. We decided against a segmentation or template registration process as this 

would increase processing time and unnecessarily limit the input images to a specific 
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format and orientation. Other restrictions should be considered as well, such as in the 

case of RMSE where the reliance on a specific reference image or ground truth data 

would pose practical challenges due to the diverse nature of MRI datasets and the 

absence of universally applicable reference images. In the case of CNR, the need for 

more than two regions of interest is theoretically possible to automate, however, 

presents difficulties in generalization across different datasets, again due to the 

variability in sequence and scan orientation.  

4.2.2 Synergistic Application of Two SNR Methods  

In this study, we compared two distinct methods for assessing SNR without the need 

to manually label regions-of-interest: the noise estimation method developed by 

Chang et. al. (Chang et al., 2005) and the standard SNR method extended with an 

automatically created center of intensity to measure the signal and cuboids in the 

corners to measure noise. The results of the quantitative comparison across all 

datasets revealed the strengths and limitations of each approach, which can be 

complementary and used as an advantage to enhance the reliability of SNR 

measurements through a synergistic combination as it is done in AIDAqc. The 

standard method excels in capturing spatial variations in image quality, particularly in 

regions of interest where signal integrity is paramount, while Chang's SNR method 

provides a statistical framework for noise estimation. For datasets with a high 

probability that the subject is not in the center of the field of view, results showed that 

the Chang approach is more trustworthy. In the comparison of five randomly selected 

datasets (7_h_He, 7_m_Se, 7_rab_Mu, 94_m_Va, and 117_m_Ra), the distribution 

along the standard method is higher than the SNR-Chang method across each 

dataset. This variation in standard deviation across different datasets suggests that 

SNR-Chang would better distinguish data from different sources in a scenario 

combining different studies. Also through the simulation tests of noise and specifically 

applying the gamma function to change intensity and contrast, mimicking shadows in 

MRI images, we identified the Chang method to be more responsive to general 

intensity changes compared to merely adding different types of noise. However, by 

focusing on one modality or similar images of a dataset, the SNR standard can create 

a better distinction. Whether this distinction is desired or not depends on the research 

question at hand. Therefore, it is beneficial to consider the SNR methods first from a 
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synergistic viewpoint. Overall, we found that this synergistic approach enhances the 

accuracy and robustness of SNR measurements and subsequently, the machine 

learning algorithms can use both features as their input, providing researchers with a 

more comprehensive understanding of image quality, particularly in neuroimaging 

studies where image quality directly impacts the validity and interpretability of results. 

The SNR assessment was also validated qualitatively and quantitatively by simulating 

noise.  

4.2.3 Detection of Motion and Ghosting using Mutual Information 

Motion was quantified with a novel application of mutual information (MI). This 

approach was validated by introducing random motion into the dataset. Incorporating 

MI for assessing motion severity and ghosting was inspired by the recognized 

effectiveness of MI as an image registration metric (Maes et al., 2003). The strength 

lies in the ability of MI to capture nonlinear relationships and tolerate intensity 

variations. These intensity variations are particularly prevalent in preclinical animal 

models, where images often feature strokes and lesions. Further investigation into the 

effectiveness of mutual information in addressing motion severity and ghosting, 

considering various artifact characteristics and pre-processing techniques, would be 

valuable for optimizing artifact assessment. In future studies, this method could be 

compared and complemented by other machine learning approaches to detect motion 

(Fantini et al., 2021; Lorch et al., 2017), which have so far only been used in human 

MRI. The discrimination of the types of ghosts is also planned in future versions of 

AIDAqc. 

4.3 Majority Voting  

As a novel concept, we introduce a statistical- and machine-learning-based outlier 

detection method in the form of majority voting. In the purely statistical way to 

determine outliers based on the interquartile range (Vinutha et al., 2018), a single 

feature (single variate) of image quality is used. Incorporating a multivariate outlier 

detection algorithm can lead to more accurate and general results. Using multiple 

algorithms together and creating a majority vote for an outlier can even stabilize the 

results further as each algorithm is selective for different types of quality measures 
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and data. With simulated image artifacts, we have shown the robustness and reliability 

of the majority voting approach in identifying outliers. 

The chosen machine-learning algorithms ocSVM, IF, LOF, and EE, have been 

successfully used for example in MRI-based tumor classification, and tissue matter 

segmentation (Mayer et al., 2022; Zhang, 2011), (Mohammed et al., 2021; Ong et al., 

2022). However, the concept of bringing all of these outlier detectors together and 

using them as part of a majority vote in QC has, to our knowledge, not been used 

before. The adaptable and open-source structure of AIDAqc enables the seamless 

integration or removal of ML algorithms to adapt to specific requirements and new 

research results. Exploring the integration of additional algorithms like autoencoders 

and robust principal component analysis into the majority approach could offer 

avenues for enhancing its efficacy. These algorithms bring unique capabilities such as 

nonlinear feature representation and an enhanced resilience to noisy or incomplete 

data, potentially enriching the diversity of perspectives considered in the decision-

making process. However, it's essential to acknowledge that such augmentation might 

incur heightened computational demands and processing time. Nonetheless, 

investigating the interplay of diverse machine learning techniques within the majority 

voting framework holds promise for advancing its performance.  
We noticed that the thresholds to set the minimal number of manual raters and outlier 

algorithms rating data to be “bad quality”, respectively, has a huge impact on the 

validation of the classification. To understand the role of AIDAqc in outlier detection, 

it's essential to recognize its capability to identify subjects that deviate from the 

provided cohort. This doesn't necessarily imply that flagged subjects are inherently of 

poor quality or that the specific artifacts cannot be reduced during post-processing, 

e.g., using motion correction. In a scenario where a cohort consists of subjects 

selected from two or more different datasets with different acquisition parameters, 

AIDAqc would not classify an entire group as an outlier, but rather identify individual 

subjects who have characteristics that differ from their respective group. This targeted 

outlier detection is a significant advantage of AIDAqc, rooted in its machine-learning 

algorithms tailored for outlier identification. Traditional statistical approaches often 

falter in such complex scenarios. Therefore, when designing studies or research 

questions involving data from multiple sources, leveraging AIDAqc across all datasets 



 

 

34 

and data. With simulated image artifacts, we have shown the robustness and reliability 

of the majority voting approach in identifying outliers. 

The chosen machine-learning algorithms ocSVM, IF, LOF, and EE, have been 

successfully used for example in MRI-based tumor classification, and tissue matter 

segmentation (Mayer et al., 2022; Zhang, 2011), (Mohammed et al., 2021; Ong et al., 

2022). However, the concept of bringing all of these outlier detectors together and 

using them as part of a majority vote in QC has, to our knowledge, not been used 

before. The adaptable and open-source structure of AIDAqc enables the seamless 

integration or removal of ML algorithms to adapt to specific requirements and new 

research results. Exploring the integration of additional algorithms like autoencoders 

and robust principal component analysis into the majority approach could offer 

avenues for enhancing its efficacy. These algorithms bring unique capabilities such as 

nonlinear feature representation and an enhanced resilience to noisy or incomplete 

data, potentially enriching the diversity of perspectives considered in the decision-

making process. However, it's essential to acknowledge that such augmentation might 

incur heightened computational demands and processing time. Nonetheless, 

investigating the interplay of diverse machine learning techniques within the majority 

voting framework holds promise for advancing its performance.  
We noticed that the thresholds to set the minimal number of manual raters and outlier 

algorithms rating data to be “bad quality”, respectively, has a huge impact on the 

validation of the classification. To understand the role of AIDAqc in outlier detection, 

it's essential to recognize its capability to identify subjects that deviate from the 

provided cohort. This doesn't necessarily imply that flagged subjects are inherently of 

poor quality or that the specific artifacts cannot be reduced during post-processing, 

e.g., using motion correction. In a scenario where a cohort consists of subjects 

selected from two or more different datasets with different acquisition parameters, 

AIDAqc would not classify an entire group as an outlier, but rather identify individual 

subjects who have characteristics that differ from their respective group. This targeted 

outlier detection is a significant advantage of AIDAqc, rooted in its machine-learning 

algorithms tailored for outlier identification. Traditional statistical approaches often 

falter in such complex scenarios. Therefore, when designing studies or research 

questions involving data from multiple sources, leveraging AIDAqc across all datasets 

 

 

35 

collectively becomes justified, serving to refine the application of this tool according to 

the specific research objectives. 

In practice, determining the majority vote threshold should involve subsequent 

checking of the data. As illustrated in the example of a functional scan with a high 

majority vote indicating a potential issue (Figure 10a), detailed inspection revealed that 

the high voting was related to disruptions in the last 25 repetitions due to a potential 

gradient malfunction. Removing these affected repetitions could rectify the issue, 

illustrating how the majority voting approach assists in pinpointing specific problems 

for targeted corrections. 

When using AIDAqc to detect outliers, a balance between sensitivity and specificity is 

critical. Users retain the flexibility to adjust the threshold for the majority voting based 

on the desired balance between these two metrics. For example, opting for a threshold 

of a majority vote of 3 or higher may lead to an increase of false positives, thereby 

reducing specificity, but could potentially decrease false negatives, consequently 

increasing sensitivity. Conversely, selecting a more stringent threshold, like only those 

subjects with a majority vote of 5, might further diminish false negatives increasing the 

specificity but lowering the sensitivity. After the initial process, researchers can simply 

focus on the data with the highest majority votes or adjust the threshold based on their 

preferences.  

4.4 Validation of Outlier Detection 

4.4.1 Initial Validation Approach 

Visual criteria of image quality are not standardized and are strictly user-dependent. It 

was therefore not surprising to see a significant difference in user ratings for the 

individual datasets. However, we questioned the rather poor confirmation of AIDAqc 

outlier detection by the expert raters. Finding a common ground truth proved to be a 

very challenging task. We noticed that very important noise and image artifact 

components in the datasets remained hidden for manual raters and can only be 

identified by automated algorithms scanning the full 2D/3D/4D image volume. Visually 

detectable artifacts might exist in other slices or in the case of functional and diffusion 

scans, artifacts might exist at a different time point and diffusion direction, respectively. 

A tSNR map, which was not part of the manual evaluation, might have been sufficient 
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for manual raters to see the difference between two rs-fMR images (Fig. 11a). 

Similarly, it is very unlikely to detect motion and ghosting from inspection of single 

images, as the motion between images requires setting a temporary reference image 

(Fig. 11b), and ghosting might appear only in specific diffusion directions (Fig. 11c). 

That was also reflected in the sensitivity, which was by trend highest in anatomical 

compared to diffusion and functional datasets, i.e., in the data which can be rated best 

manually. We noticed that the validation of the automated outlier detection based on 

the single images, produced as part of the AIDAqc output, remains the most feasible 

but not optimal scenario, especially for 4D scans. We, therefore, come to the same 

conclusion as others in human MRI that the manual evaluations are impractical or 

infeasible (Bedford et al., 2023; Chow & Paramesran, 2016), as it is not possible and 

not expedient to go through all the individual images for very large data sets.  

Figure 11: (a) rs-fMR images and their corresponding tSNR maps selected by the highest and 

lowest values calculated by AIDAqc. (b) Low and high motion examples for rs-fMR image 

volumes averaged over time to visualize the motion. (c) Ghosting artifacts in the 14th diffusion 

direction of the 4D diffusion image volume of one subject. Ghosting artifacts can be seen in 

the lower image, where the upper image corresponding to another the first diffusion direction 

of the same image volume was rated by the users, and as it doesn't show any particular 

problem it was not rated as a bad quality image. (a-b) were selected based on the highest 

(best) and lowest (worst) values between all datasets from Table I. 

 

Therefore understanding the optimal combinations of thresholds for both AIDAqc and 

manual raters was crucial. For each sequence type (anatomical, diffusion, and 

functional scans), we identified the best combinations of thresholds for AIDAqc and 

manual raters. For the most important measure, sensitivity, i.e., the rate of “bad quality” 

data identified by AIDAqc compared to the manual raters, the optimal threshold for 
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AIDAqc was one. This might be interpreted as a logical choice for several reasons: i) 

the error rate of AIDAqc is not fluctuating as it is the case for the objective classification 

by the manual raters, ii) AIDAqc systematically evaluates every voxel of an image 

volume, each AIDAqc rater can be considered to have its unique strengths and 

weaknesses in identifying outliers. In contrast, manual raters, relying on visual 

inspection, do not have the same systematic approach. Thus it is worth checking any 

dataset, even if it only got one vote to be an outlier from AIDAqc. In contrast, manual 

rater thresholds exhibited a favorable trend for accuracy but not for specificity and 

sensitivity, likely influenced by poor inter-rater agreement. 

4.4.2 Revised post-hoc Validation 

Consequently, we transitioned to a more focused validation method, as elaborated in 

the second stage of our process, providing a more targeted validation approach. 

indicating some variability in their assessments, yet demonstrating a generally 

consistent agreement with AIDAqc. This approach provided a more nuanced insight 

into AIDAqc’s outlier detection capabilities. By focusing on the high-confidence outlier 

predictions and considering the more decisive assessments of the experts, this 

method offered a better understanding of the effectiveness in identifying true cases of 

poor-quality datasets. The observed standard deviation underscores the inherent 

subjectivity in manual assessments, reinforcing the value of automated tools in 

systematically evaluating image quality. 

4.5 Limitations  

4.5.1 Datasets 

To validate the reliability of bad quality detection using AIDAqc, we collected largely 

heterogeneous data in terms of animal, MRI hardware, and sequence. Unlike previous 

standardization efforts that focused on homogenization of data collection (Doblas et 

al., 2015; Grandjean et al., 2023; Waterton et al., 2019), wide variability was desired 

for probing the versatility of AIDAqc. Nevertheless, the heterogeneous datasets 

imposed a challenge for the analysis. This included automated sequence type 

recognition and the correct sorting into anatomical, diffusion, and functional scans, 

respectively, which were corrupted by non-standard abbreviations for MR sequences 
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(see Supplementary Fig. 9 a-b and d). As most sequences can be used for multiple 

purposes, e.g., echo planar imaging (EPI) both in diffusion and functional imaging, 

requires more in-depth metadata extraction to identify the actual type of scan. Such 

metadata extraction is in the current AIDAqc version only possible for BIDS or Bruker 

data but not for the NIfTI format as it contains only very limited metadata. In future 

versions, compatibility with DICOM data could be implemented because of its wide 

distribution in human MRI as well as other vendor-specific raw data next to the Bruker 

format to increase the versatility. AIDAqc uses an integrated list of strings of the most 

common nomenclature as keywords, e.g., turbo, rare, rest, diff, rs-, func, anat, struc, 

dwi, and dti. Additionally, for DWI and functional images in the raw Bruker format, 

AIDAqc checks if a gradient/b-value table is available to make the distinction. We 

cannot exclude, however, the possibility that automated parsing and sorting may fail 

for other unconventional sequence names. In the case of BIDS structure, e.g., in the 

7_rab_Mu and 94_r_Fr datasets, the NIfTI format is complemented with metadata in 

a standardized json file. To facilitate standardization, we highly recommend the BIDS 

format as it solves the issue of variable sequence names and dataset hierarchy of 

groups and time points as well as metadata information. 

Another challenge was imposed by a corrupted image matrix logic in the x-y-z regime, 

e.g., in the form of 256x40x256 imposing a x-z-y structure with z being the number of 

slices and x-y being the image dimension. This occurred in single datasets both in the 

raw data and also by converting the data into the NIfTI format and required manual 

correction. Manual spatially re-organization is also necessary for non-coronal acquired 

datasets (see Supplementary Fig. 9 c, e, and g). This step is critical, as the subsequent 

processing depends on the correct association of 2D/3D/4D sequences and scans. In 

future AIDAqc versions, automatic extraction of the actual image orientation and 

position of the animal would reduce this potential error and manual data preparation 

for the users. Another potential limitation is the fixed parameter setting in some of the 

outlier detection algorithms, which should be optimized if AIDAqc is to be used for 

completely different datasets. 

4.5.2 Automated Feature Calculations 

Unlike most approaches to calculating SNR region-based, which requires manual user 

input to draw the regions-of-interest, here two fully automated SNR calculations were 
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implemented. This way, there is no need for the user to manually define regions, which 

makes the calculation less error-prone and faster. We noticed, however, that the 

automated SNR calculation has some limitations. The standard SNR calculation is 

sensitive to the location of the subject in the field of view: i) when the subject fills most 

of the field of view, especially the corners, the cuboids for calculating the standard 

deviation cover not only noise (Fig. 2), thus decreasing the final SNR, and ii) when the 

central sphere used to calculate the mean signal covers regions with artifactually high 

or low signal, e.g., ventricles or blood-rich areas. In such cases, the resulting SNR 

value might be misleading and we suggest verifying the center-of-mass in the images 

to be representative of the signal in the image. We also noticed that the alternative 

Chang method has limitations when it comes to the ratio of noise-to-tissue in the field 

of view. In particular, different SNR ranges create different circumstances for the ratio 

of noise-to-tissue for a correct estimation of the standard deviation of noise in the 

image (Chang et al., 2005). If the ratio is small, SNR-Chang overestimates the true 

SNR as the quantitative comparison with the low SNR-Standard in line with the visual 

comparison showed. It should be noted that SNR-Chang, different to SNR standard 

(which uses the b0 images only), creates an average SNR across all diffusion 

directions except b0, resulting in a less interpretable value for multiple diffusion 

weightings (i.e. b-values).  

To retain the high versatility of AIDAqc, both SNR algorithms were included and for 

most cases, the majority voting approach still resulted in a stable detection of low-

quality images.  

Similar to the SNR calculation, the motion detection was successfully automated in 

AIDAqc without the need to manually draw regions or perform separate tissue 

segmentations. Nevertheless, the user should be aware that the mutual information 

calculation can not distinguish between animal and hardware motion if both have 

similar effects, e.g., producing a drift in the image stack. An extreme example dataset 

is 117_m_Ri with the highest motion severity of all functional datasets. However, in 

this case, the animals were paralyzed and artificially ventilated, which practically 

reduces animal motion to a minimum (Bukhari et al., 2017). The high motion severity 

can be explained by a hardware limitation of the used gradient system in the 11.7T 

Bruker scanner, creating thermal artifacts at a high-duty cycle, i.e., long acquisitions 

of thin slices with short repetition time.  
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4.5.3 Validation Approaches 

In an ideal validation scenario, manual raters would examine every slice, across all 

time points, repetitions, and diffusion directions, mirroring the extensive analysis 

performed by AIDAqc. However, such a level of manual scrutiny is impractical and 

leads to highly variable results as shown in the inter-rater comparison. It underscores 

the necessity for automated tools and the challenges faced in achieving 

comprehensive quality control. The full transparency of sharing the code, reporting 

results, and related data was implemented to ensure future improvements are 

implemented by the community. In an alternative validation scenario, the tSNR maps 

or mutual information plots could be provided for the expert raters as an additional 

level of quality assessment. 

Future AIDAqc developments should strike an optimal balance between sensitivity and 

precision. High sensitivity ensures the tool's ability to detect the majority of outliers or 

poor-quality data, which is vital for reliable neuroimaging analysis. Simultaneously, 

high precision is equally important, as it assures users that the data flagged as outliers 

are indeed of inferior quality. To further increase the precision, alternative approaches 

could be explored, i.e., feeding the images directly without the calculation of quality 

features into the machine learning algorithms. However, such an approach would be 

time-consuming and require high computational power that maybe not every user can 

afford.  

5 Data and Code Availability 
Datasets for testing and validating AIDAqc (Table I) were collected from 19 

international MRI laboratories. These datasets (CC BY-NC-SA 4.0 license) organized 

according to the scheme outlined in (Kalantari et al., 2023) can be accessed via: 

https://doi.gin.g-node.org/10.12751/g-node.q82cjj/. This DOI contains all datasets and 

results of this publication. Datasets remained unchanged during the revision process, 

while the output and code folder contained additional content representing changes 

during the revision. Access to the live datasets' content can be facilitated by clicking 

on the "Browse Repository" button on the GIN DOI, where further details are available. 

The published data listed in supplementary Table II can be obtained through the 

provided links/references in the table. 
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