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1. INTRODUCTION

Quality control (QC) is an integral part of overcoming 
reproducibility issues and lack of transparency toward 
open data sharing for magnetic resonance imaging (MRI) 
( Niso  et al.,  2022). Numerous software developments are 
available for human MRI, for example, MRIQC ( Esteban 
 et al.,  2017), pyfMRIqc ( Williams  et al.,  2023), VisualQC 
( Raamana,  2018), and FreeSurfer ( Backhausen  et  al., 
 2016) as well as standardized protocols, for example, in 
the Human Connectome Project ( Marcus  et  al.,  2013), 
ENIGMA ( Thompson  et  al.,  2020), and INDI initiative 
( Zarrar  et  al.,  2015). In contrast, the focus of previous 
small animal approaches was mainly on the use of stan-
dardized phantoms but not software ( Mannheim  et  al., 
 2018;  Osborne  et al.,  2017). A recent survey highlighted 
the need for more efficient animal MRI QC, as the major-
ity of users (63%) do not follow any QC protocols and 
19% declare that no regular maintenance for quality 
assurance (QA) of the machine is performed ( Tavares 
 et al.,  2023). This is in stark contrast to industry and clin-
ical guidelines, for example, the AAPM acceptance test-
ing and QA procedures for MRI facilities ( Jackson  et al., 
 2010) or the ACR MRI QC manual ( Price  et  al.,  2015), 
which have been shown to improve further MRI analysis 
( Bedford  et al.,  2023;  Gilmore  et al.,  2021).

Both QA and QC standards aim to facilitate stable, 
high- quality MRI data. In addition to the desired homoge-
neous image quality in the in- house laboratory, QC/QA 
procedures are necessary for longitudinal imaging ses-

sions between different laboratories ( Sreedher  et al.,  2021). 
MR image quality is mainly determined by noise and image 
artifacts. Noise arises from multiple sources including 
intrinsic scanner and thermal noise as well as physiologi-
cal noise, which originates from motion, cardiac cycle, and 
respiration ( Bianciardi  et al.,  2009). Typical image artifacts 
include occasional noise, differences in susceptibility, that 
is, differences in the magnetic field, mostly at the border 
between different tissue compartments ( Budrys  et  al., 
 2018), and ghosting, that is, a blurry copy of the sample 
that appears in the field- of- view displaced from its true 
location. Ghosting can be induced by periodic move-
ments, including involuntary movements, cardiac and 
respiratory motion, vessel pulsation, and blood and CSF 
flow (discrete ghosts) ( Zaitsev  et al.,  2015) or hardware-  
and software- related issues, such as improper shimming, 
strong heating of the gradients, and induction of eddy cur-
rents (Nyquist ghosts) ( Chen  &  Wyrwicz,  2004). In small 
animal imaging, movement is restricted by anesthesia and 
animal fixation in the MRI bed, which can be combined 
with muscle relaxants and intubation to achieve a stable 
respiratory and cardiac cycle ( Grandjean  et  al.,  2014).  
Nevertheless, physiological factors and movement of 
parts of the body can induce motion in the image. This 
leads to an increased level of noise, blurring, and ghosting 
artifacts ( Zaitsev  et al.,  2015), which are difficult to distin-
guish and eliminate via postprocessing. Due to the large 
variety of hardware/software combinations, the most 
prominent components influencing image quality may 
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vary. For functional MRI (fMRI) in rodents, a previous study 
has shown that physiological fluctuations, mainly originat-
ing from the respiratory cycle, introduce severe artifacts 
and lead to misinterpretation of corresponding connectiv-
ity measures ( Kalthoff  et  al.,  2011). Different from faster 
MRI sequences with easier visual interpretation of motion 
artifacts, for example, as ghosting or blurring, in dynamic 
MRI scans, motion artifacts can cause signal changes that 
may severely confound statistical analysis rendering 
results unreliable ( Havsteen  et al.,  2017).

The manual identification of poor image quality, which 
is still the most frequently used method, can only be prac-
tically applied to a rather small number of datasets (accord-
ing to our expertise this relates to <50 datasets) and 
remains a very subjective method with high interassessor 
variability ( Williams  et  al.,  2023). This is mainly due to 
unavoidable human error and a missing standard of how 
to draw and where to place regions of interest (ROI) to 
quantify signal- to- noise ratio (SNR) or temporal SNR 
(tSNR). Predefined standardized regions as implemented 
in the image artifact analysis of the American College of 
Radiology are only available for phantoms ( Etman  et al., 
 2017). As an alternative, machine- learning algorithms for 
specific quality metrics were tested, for example, to auto-
matically detect motion artifacts ( Fantini  et al.,  2021;  Lorch 
 et  al.,  2017). However, such deep learning approaches 
require large training datasets, which is difficult to achieve 
with small animal MRI and in addition would require expert 
knowledge to generate a ground truth. Automation without 
the need to train the model would provide a unique oppor-
tunity to assess the quality of images for less experienced 
users or a scenario of data reuse. However, to date, user- 
independent and large- scale- applicable calculation of 
image quality metrics in small animal MRI is missing. To 
address this issue, we developed AIDAqc, a user- friendly 
command- line tool tailored to the needs of small animal 
MR neuroimaging, while maintaining high flexibility with 
respect to animal model, MR hardware, and sequences. 
The tool generates a detailed summary of the dataset 
parameters and performs automatic calculations of image 
quality metrics, which are assessed using a majority- voting 
approach to simplify and objectify the categorization of 
image quality. Here, we describe the AIDAqc pipeline, 
present the validation using a large heterogeneous dataset 
collected from 19 international MRI laboratories, and dis-
cuss the interpretation of quality metrics and their influ-
ence on further analysis.

2. METHODS

2.1. Python- based Workflow for automated QC

AIDAqc was developed as part of the AIDA (Atlas- based 
Imaging Data Analysis Pipeline) software family (https://

github . com / aswendt - lab) with the suffix qc relating to 
quality control. The automated pipeline was tested in 
Python 3.12.0 using the libraries Numpy, Pandas, Mat-
plotlib, Sklearn, Nibabel, and Alive_progress. The instal-
lation was tested successfully using a custom Anaconda 
software environment (conda 23.10.0), on Windows 10 & 
11, macOS 12.6.8, and Linux Ubuntu 22.04. Detailed 
instructions on how to install and use AIDAqc can be 
found online (https://github . com / Aswendt - Lab / AIDAqc).

The following subsections explain each stage of the 
pipeline in detail (Fig. 1): (1). Parsing Input Data, (2). Fea-
ture Calculation, and (3).Outlier Detection.

2.1.1. Stage I: Parsing input data

To increase the flexibility of the pipeline, the Neuroimaging 
Informatics Technology Initiative (NIfTI) data format, Brain 
Imaging Data Structure (BIDS) data folder structure, as 
well as the raw Bruker (Bruker, BioSpin, Ettlingen, Ger-
many) data format (i.e., the complete Bruker study folder 
including image and metadata from one subject and time 
point) can be used as input. Note: the image data need to 
be oriented as coronal brain sections. In the initial parsing 
stage, the input folder is automatically and recursively 
searched for these MRI files. As a result, the file paths are 
validated to contain a unique file and sorted into anatomi-
cal (T1-  or T2- weighted), diffusion (diffusion- weighted, dif-
fusion tensor imaging, etc.), and functional (fMRI and 
rs- fMRI) scans based on filenames and related metadata. 
Other scans, for example, localizers, and files with missing 
necessary metadata are excluded from further processing.

2.1.2. Stage II: Feature calculations

Automatically calculated features include (t)SNR, motion, 
and ghosting. At this stage, the quantitative measures are 
automatically obtained from the input data, that is, no 
user input is required. Specific measures, for example, 
tSNR, will be calculated only for fMRI.

2.1.2.1. SNR. The SNR is the most rudimentary but also 
versatile quantitative measure of MR image quality for most 
sequences. However, the calculation can get complex due 
to the manual definition of regions of interest (ROIs), that is, 
at least one ROI inside the sample and one ROI outside the 
sample representing the noise area. Here, two approaches 
were implemented: the “standard” method, which auto-
matically defines ROIs based on the center of intensity 
(COI) of the image, and the Chang method ( Chang  et al., 
 2005), which is independent of ROI selection. For both 
methods, the SNR is reported in decibel (dB).

2.1.2.1.1. Standard method. SNR is calculated by divid-
ing the mean signal intensity by the standard deviation  

https://github.com/aswendt-lab
https://github.com/aswendt-lab
https://github.com/Aswendt-Lab/AIDAqc
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of the noise ( Henkelman,  1985;  Kaufman  et  al.,  1989). 
ROIs are placed automatically in a three- step procedure 
(Fig. 2).

 1.  Center of intensity (COI): To robustly determine 
the center of the object in the image, the coordi-
nates of the COI are extracted as a starting point 
for step 2.

 2.  COI sphere: A sphere with the COI as its center is 
used to create a mask for averaging all the voxels 
within this sphere as a reference value for the “true 
signal.” To ensure that the sphere does not extend 
beyond the signal volume of interest, a relative 
value for the sphere radius is set based on the 
image dimensions.

 3.  Cuboids: In all eight corners of the image volume 
with a size relative to the dimensions of the vol-
ume, cuboid ROIs are created. All voxels in these 
cuboids are averaged and used as a reference for 
the noise.

If I represents the three- dimensional image, then S 
and C are subsets of I representing the sphere and the 
cuboid space, respectively (Eq. 1a). S(x,y,z) and C(x,y,z) 
are image functions representing a specific voxel in I, 
defined by the coordinate x,y,z in the three- dimensional 

image space I. Upper limits of the subsets S and C are 
shown as ( is, js,ks ) and ( ic, jc,kc ), respectively (Eq.  1a). 
The SNR is calculated by dividing the mean intensity of 
the sphere by the standard deviation of the cuboids with 
N being the number of voxels in the image subset of the 
image I (Eq. 1b). The SNR value is commonly reported in 
decibel, dB (Eq. 1c). In the case of 4D diffusion images, 
the first b0 image volume is chosen to represent the 
three- dimensional image I.

 x,y,z( ),  C x,y,z( )⊂ I x,y,z( )  (1a)

µS = x=1

is∑ y=1

js∑ z=1

ks∑ S x, y, z( )
Ns

,

σc =
x=1

i∑ y=1

j∑ z=1

k∑   C x, y, z( )− µc( )2
Nc  

(1b)

 

 
SNRstandard = µs

σc
= 20 ⋅ log µs

σc

⎛
⎝⎜

⎞
⎠⎟
 dB.

 
(1c)

2.1.2.1.2. Chang method. This approach uses a histo-
gram analysis of the image signal intensity to calculate 
the distribution of noise ( Chang  et al.,  2005). The strength 
of the method lies in the fact that it can be used for devel-
oping a processing workflow for large- scale MR data 
without the need for manual region selection. Here, this 
method is used to acquire a value for SNR based on 
Equation 2 with E (z) as the SNR calculated for each slice 
(z) with the Chang function (see details of the function in 
 Chang  et  al.  (2005)). N is the number of voxels in the 
image subset of the image I. In the case of 4D diffusion 
images, the Chang method (different to the standard 
method) creates an average SNR of all diffusion direc-
tions except the b0 image.

µslice (z ) =
x=1

N∑ y=1

N∑ S x, y, z( )
Ns

,

 σchang(z ) = Chang I(x, y, z )( )  

(2a)

 

Fig. 1. Schematic overview of the AIDAqc pipeline. Starting with input data formats, three consecutive stages of 
automatic parsing, feature calculation, and multiple outlier detection techniques combined to a major vote for the outlier 
status. Note: naming convention— anatomical (all T1-  or T2- weighted scans), diffusion (all diffusion- weighted, DWI, or 
diffusion tensor imaging, DTI, scans), and functional (fMRI, and rs- fMRI scans).

Fig. 2. SNR calculation without manually placed regions 
of interest (ROI). Graphical illustration of automated ROI 
selection to distinguish signal (blue sphere) from noise (gray 
cuboids), which are used to calculate the SNR.
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E(z ) = µslice (z )

σchang(z )
= 20 ⋅ log µslice (z )

σchang(z )

⎛

⎝
⎜

⎞

⎠
⎟  dB

 
(2b)

 
SNRchang, Final = z=1

Slices∑ E(z )

N
.
 

(2c)

2.1.2.2. tSNR. The temporal signal- to- noise ratio (tSNR) 
is defined for sequences acquired over time ( Welvaert  & 
 Rosseel,  2013). Therefore, there is an additional fourth 
dimension in a three- dimensional volume, here repre-
sented with the image function I x, y, z,t( ) in Equation 3. 
For this case, the center of intensity (COI) of the averaged 
volume over time is calculated and the sphere with the COI 
as its center is defined. The sphere image function as a 
subset of S is represented with S x, y, z,t( ). Ns is the num-
ber of voxels in the sphere. From a practical point of view, 
to calculate one quantitative value for the tSNR, first, a 
tSNR map is calculated (Eq. 3c) and the average of the 
tSNR over all voxels in the sphere is the final tSNR value.

 S x, y, z,t( )⊂ I x, y, z,t( )  (3a)

 
µt x, y, z( ) = t=1

T∑ S x, y, z,t( )
Ns

,

 
σt x, y, z( ) = t=1

T∑ S x, y, z,t( )− µt x, y, z( )( )2
Ns  

(3b)

 

 
tSNR x,y,z( ) = µt x,y,z( )

σt x,y,z( ) = 20log
µt x,y,z( )
σt x,y,z( )

⎛

⎝
⎜

⎞

⎠
⎟  dB

 
(3c)

 
tSNRFinal = x=1

is∑ y=1

js∑ z=1

ks∑ tSNR x,y,z( ).
 

(3d)

2.1.2.3. Ghosting and motion. Mutual information (MI) 
was used as a metric for the identification of MRI ghost-
ing artifacts (Fig. 3a, b). It is known that one of the sources 
of ghosting artifacts is the sensitivity of echo- planar 
imaging (EPI) scans to magnetic field inhomogeneities 
and an additive consequence of hardware- originated 
artifacts. The Nyquist ghost is one of the artifacts hap-
pening with EPI sequences where the ghost is located 
half of the field of view (FOV) away from the image 
( Buonocore  &  Gao,  1997;  Reeder  et al.,  1997;  Yang  et al., 
 1996). Additionally, there are discrete ghosts, which 
occur in images where the periodic motion of the subject 
is present, like respiratory or cardiac motions. These reg-
ular motions often spread across the whole image in the 
form of ghosts emerging from the principles of the Fou-
rier transform ( Axel  et al.,  1986;  Storey  et al.,  2002;  Wood 
 &  Henkelman,  1985).

In practice, irrespective of the type of the ghost for a 
3D image volume, the middle slice is automatically 
extracted. For 4D image data, that is, diffusion and func-
tional scans, the average across the fourth dimension is 
used to create a representative 3D image. In the next 
step, the MI is calculated between the selected image 
and the shifted image by n voxels, with n ranging from 1 
to N, with N being the size of the image in x or y direc-
tions. According to the MI theorem, the MI value 
decreases as the shifts increase because the pair of 
images fits less well. Considering a “ghost” has hap-
pened, along one of these shifted image versions, the 
main target of the image (in our case the brain) will match 
its ghost in the shifted image. This process will generate 
peaks in the MI as the shifts increase, which are automat-
ically detected. If a peak exceeds a defined threshold, 
there is a high probability that it is due to a ghost.

Mutual information (MI) is also a sensitive measure  
of detecting translational motion between images 
( Godenschweger  et al.,  2016) and was here used to com-
pare brain structures along the time dimension (Fig. 3c). 
To obtain a quantitative value for the severity of motion in 
the image, the Mutual Information (MI) was calculated 
between a reference image and subsequent images for 
the time dimension in functional scans and the direction 
dimension in diffusion scans. The choice of reference 
image depends on the number of repetitions in the fourth 
dimension. For smaller datasets with, for example, 10 
repetitions, the 1st repetition (TR or b = 0, depending on 
the acquisition type) is taken as the reference. However, 
for larger datasets with more repetitions, the 10th repeti-
tion is used as the reference to ensure the signal has 
reached a steady state and is free from initial transient 
effects. This practice helps to provide a more reliable 
measure of motion by avoiding the instability often pres-
ent in the first few repetitions. In the case of no or small 
amounts of motion (Fig. 3d), the MI is close to 1 and rel-
atively stable over different time points or directions. In 
the case of severe motion (Fig. 3e), there is a characteris-
tic drop in the MI (Fig.  3c). Motion severity as a single 
quantitative value for each scan reflects the standard 
deviation of the MI vector. To reduce the processing time 
for 4D image volumes, MI is only calculated for the slice 
with the highest average intensity over time.

2.1.3. Stage III: Outlier detection

After the extraction of quality features, AIDAqc applies 
one univariate and four multivariate outlier detection 
methods using a selection of statistical and machine- 
learning (ML) algorithms: interquartile range (IQR), one- 
class support vector machine (ocSVM), isolation forest 
(IF), local outlier factor (LOF), and elliptic envelope (EE).



6

A. Kalantari, M. Shahbazi, M. Schneider et al. Imaging Neuroscience, Volume 2, 2024

This approach provides a diverse range of perspec-
tives on the potential outlier status and overcomes the 
biased approach of only applying one algorithm, which is 
not suited to detect outliers from a broad range of data-
sets. The IQR identifies outliers by measuring data spread 
and is particularly effective for datasets with non- normal 
distributions ( Vinutha  et al.,  2018). The ocSVM special-
izes in anomaly detection by defining hyperplanes, mak-
ing it robust to high- dimensional datasets and capable of 
capturing complex patterns. The LOF detects anomalies 
based on local density deviations, offering sensitivity to 
local variations in data density and robustness to noise, 
complementing the limitations of ocSVM in handling local 
anomalies ( Budiarto  et al.,  2019). In scenarios where the 
ocSVM might struggle with nonlinear separations, Isola-
tion Forest (IF) excels in isolating anomalies by construct-
ing decision trees, providing a computationally efficient 
alternative ( Mohammed  et  al.,  2021). The EE approach 
offers probabilistic outlier detection by fitting robust 
covariance estimations, making it suitable for multivariate 
datasets with elliptical distributions ( Ashrafuzzaman 
 et al.,  2020).

Outcomes from this multialgorithm approach are 
aggregated using majority voting on a per- image basis. 
Each image is assigned a score ranging from 0 (not 

detected as an outlier in any algorithm) to 5 (reported as 
an outlier in all algorithms). This enables flexible thresh-
olding on a per- study basis (rather than a singular, binary 
“outlier” assignment) and minimizes the potential for false 
positives and negatives in a single- algorithm approach.

2.1.4. Scan reports and automatically created files

AIDAqc provides detailed reports for the user to get an 
overview of the dataset and to verify the outlier detection 
in machine- readable CSV files. The reports include infor-
mation on spatial resolution and are presented in pie 
charts and distribution plots (Fig. 4). Positive votes that 
an algorithm has detected an image as an outlier are 
included in the “voting.csv” table, together with the eval-
uations provided by each outlier approach. This way, the 
user can identify which algorithm was important to flag 
the data as an outlier and investigate the reasons further 
if necessary. Next to the scan report, the single- slice 
inspection function automatically saves the middle slice 
images in the respective output folder from each anatom-
ical, diffusion, and functional scan, respectively. The 
images are named based on a unique scheme, that is, 
sequence type followed by a number that is incremented 
for each image and the subject name. Additionally, the 

Fig. 3. Mutual information (MI) to detect ghosting artifacts and motion. (a) Image without ghosting: smooth and bowl- 
shaped MI curve indicating the whole cycle of image shifting. An initial decrease due to an increasing mismatch between 
the reference image and the shifted versions is followed by an increase to its initial state when the shifted image arrives 
at the reference. (b) Complementary MI curve for an image with ghosting. MI peaks at various shifts throughout the cycle. 
(c) Representative MI was plotted for consecutive time points of two rs- fMRI scans, one with strong motion artifacts and 
the other with no motion artifacts. (d) There is near to no motion visually detectable in the receptive images of time = 
70 versus 230 s. (e) The motion can be detected visually in the receptive images of time = 70 versus 230 s. A mixture of 
translational and rotational motions shifts the image approximately 20 voxels.
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image file names are listed in the final feature calculated 
CSV files.

This information fulfills the purpose to (i) get a first 
overview of the dataset and to identify scans with differ-
ent voxel sizes— especially when accidentally a wrong 
sequence or parameters were used. This feature facili-
tates quick browsing of images without the need to open 
each dataset separately in a different program. The out-
put is restricted to the middle slice, which is particularly 
valuable as it most likely covers larger areas of the sub-
ject. While the pipeline is running, users can observe how 

these images are created one after the other. This allows 
for quick visual inspection of the subjects. If the orienta-
tion of the slice differs in one of these images, the users 
will promptly recognize that some settings for that sub-
ject were different from the usual pattern compared with 
the others. Furthermore, noisy images are easily discern-
ible at first glance, further enhancing the efficiency of the 
inspection process. This method can be regarded as a 
basic but convenient complement to the pipeline. In 
addition to BIDS datasets, which come with specific 
metadata and unique file and sequence names, detailed 

Fig. 4. Example of the automatically created outputs as part of the scan report for a representative dataset. Graphs and 
tables summarizing the (a) spatial resolution (in x- , y- , and z- direction), (b) distribution of anatomical SNR, (c) distribution 
of motion based on the standard deviation of the mutual information calculated for diffusion scans, (d) distribution of the 
tSNR for functional scans, and (e) file location, metadata details, and individual outlier votings as listed in the votings.
csv file (representative dataset: 94_m_As). Note: in (b– d) red bars indicate outliers based on the statistical definition 
of quartiles (Q) added by the 1.5- fold interquartile range (IQR). The dashed gray line indicates the predefined outlier 
threshold. In (e) the file paths were shortened by the placeholder StudyID and date.
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listing as csv files is implemented in AIDAqc for Bruker 
datasets as well. Here, the sequence names, which have 
been assigned manually by the user, are listed next to the 
sequence type (Fig. 4e and Supplementary Fig. 9). Fur-
ther practical instructions on how to interpret AIDAqc 
results are documented online (https://github . com 
/ Aswendt - Lab / AIDAqc).

2.2. Artifact simulation to evaluate the reliability  
of quality metrics and qutlier detection

2.2.1. Quality metrics

To evaluate the reliability of individual quality control (QC) 
metrics, a simulation of noise and motion was performed 
using custom- written code in Python (version 3.11) using 
the scikit- image library ( van  der  Walt  et  al.,  2014) and 
Matlab (Matlab Version R2023a, The MathWorks Inc., 
Natick, USA), respectively. Anatomical and functional 
scans from the combined datasets 94_m_As and 94c_m_
As (Table 1) were used.

All of the subjects were induced with noise and then 
AIDAqc was applied on ~60 subjects (30 original, 30 
noise induced). This was done to prove the reliability of 
each metric.

For noise simulation, a constant amount of noise (vari-
ance of 0.2) was added to every subject’s anatomical 
scans. Additionally, a gamma function was applied to 
reduce the overall brightness of the images, mimicking 
the shadows present in MR images (gamma value of 0.6). 
For motion simulation, the spatial image dimensions of 
the functional scans were manipulated by adding vari-
able translational motion along the time dimension. Three 
different types of noise were added: Gaussian, salt and 
pepper (S&P), and speckle noise. Each type of noise 
serves a specific purpose: Gaussian noise simulates gen-
eral background noise, salt and pepper noise represents 

sudden, isolated artifacts, and speckle noise captures 
spatial variations in tissue texture or structure ( Khan 
 et al.,  2019). Additionally, for the functional scans, motion 
was induced by shifting the image volume over the time 
course, adding random degrees of motion to each sub-
ject’s image data. SNR and motion severity were com-
puted both before and after adding noise and motion, 
and AIDAqc’s results regarding SNR in both the Chang 
and standard methods, as well as motion severity, were 
calculated.

2.2.2. Outlier detection

To assess the reliability of the outlier detection, we applied 
the same as for quality metrics to introduce noise and 
motion, here only for one randomly selected scan from 
each sequence instead of all subjects, effectively creating 
single scans with simulated artifacts in the whole dataset 
(combined datasets 94_m_As and 94c_m_As). Thus, one 
scan at a time was induced with artifacts and then AIDAqc 
was applied 30 times on ~31 subjects (30 original, 1 arti-
fact induced) each time with another scan as outlier.

2.3. Validation of outlier detection

2.3.1. Initial validation approach

The validation of the outlier detection was conducted in 
two phases, addressing different aspects. In the initial 
phase, five experienced users manually rated the image 
quality of all datasets (Table 1). The individual images from 
the “manual_slice_inspection” folder (“static” images as 
part of the automatically generated output derived from the 
3D/4D images), encompassing anatomical, diffusion, and 
functional MRI sequences, were examined. Raters identi-
fied potential outliers, that is, “bad quality data,” based on 
subjective evaluations of the image in comparison with all 

Table 1. Summary of datasets used for developing AIDAqc.

# Repository Datasets Sequences
Data 

format # Repository Datasets Sequences
Data 

format

1 Aswendt 94_m_As T2w, fMRI, DWI Bruker 13 Rivera- Olvera 117_m_Ri T2w, DWI, fMRI Bruker
2 Aswendt 94c_m_As T2w, fMRI, DWI Bruker 14 Sta Maria 7_m_St T2w, DWI Nifti
3 Boehm- Sturm 7_m_Bo T2w, DWI Bruker 15 Selim 7_m_Se T2w, T1w, DWI Bruker
4 Carnevale 7_m_Ca T2/DWI Bruker 16 Selim 7_r_Se T2w, T1w, DWI Bruker
5 Franx 94_r_Fr T2w, DWI, T1w Nifti 17 Soria 7_r_So T2w, fMRI Nifti
6 Hekmatyar 7_h_He T2w, fMRI Nifti 18 Van Leeuwen 94_m_Va T2w, DWI Nifti
7 Kurniawan 164_m_Ku T2w, DWI Bruker 19 Vrooman 117_m_Vr T2w, fMRI Nifti
8 Micotti 7_m_Mi T2w, DWI Bruker 20 Wenk 94_m_We T2w, fMRI, DWI Bruker
9 Muñoz- Moreno 7_rab_Mu T1w, DWI Nifti 21 Wenk/Goncalves 94_r_We T2w, fMRI, DWI Bruker
10 Brinton 7_m_Br T2w, DWI Nifti 22 Wenk/Michalek 94_g_We T2w, fMRI, fMRI, 

DWI
Bruker

11 Ramos- Cabrer 117_m_Ra T2w, DWI, fMRI Bruker 23 Longo 7_m_Lo* T2w, DWI Bruker
12 Reichardt 94_m_Rei* T2w Bruker

https://github.com/Aswendt-Lab/AIDAqc
https://github.com/Aswendt-Lab/AIDAqc
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other images within one dataset. The level of agreement 
among raters when evaluating the same set of data for 
classifications, also known as the inter- rater agreement, 
was analyzed and compared with the results generated by 
AIDAqc. The classification features true/false positive (TP/
FP) and true/false negative (TN, FN), sensitivity, specificity, 
and accuracy were calculated for quantitative comparison 
(Supplementary Table 3).

2.3.2. Revised post hoc validation

Because of significant inter- rater variability in the initial 
approach, a revised and more comprehensive validation 
strategy was implemented. In this second phase, six 
experienced users conducted a detailed manual screen-
ing of the complete 3D/4D image files that AIDAqc iden-
tified as high- threshold outliers (AIDAqc voting thresholds 
of 4 and 5). Thresholds were introduced to create cutoff 
scenarios, in which the majority voting results are grouped 
into very strict (high threshold) or not as strict (low thresh-
old) outliers. In a systematic way, different thresholds for 
the number of manual raters and AIDAqc outlier algo-
rithms were compared to find an optimum (Supplemen-
tary Material: “Role of the rating threshold for the 
agreement between manual raters and AIDAqc”).

2.4. Statistics and visualization

The statistical analyses were conducted using GraphPad 
Prism version 9.5.1 (GraphPad Software, Boston, MA, 
United States, www . graphpad . com) and custom code 
written in Python version 3.11.4, with the libraries stats-
models ( Seabold  &  Perktold,  2010) and scipy.stats 
( Virtanen  et al.,  2020).

Fleiss’ kappa score, a statistical measure utilized to 
assess the inter- rater agreement between multiple raters 
when categorizing items into different groups, was used 
to evaluate the reliability of manual ratings of image qual-
ity as “good” or “bad.” The interpretation of Fleiss’ kappa 
scores indicates various levels of agreement: scores less 
than 0 indicate poor agreement, 0.01– 0.20 suggest slight 
agreement, 0.21– 0.40 imply fair agreement, 0.41– 0.60 
signify moderate agreement, 0.61– 0.80 denote substan-
tial agreement, and scores between 0.81 and 1.00 repre-
sent almost perfect agreement.

Additionally, various data analysis and visualization 
tasks were done using the Python libraries pandas, numpy, 
matplotlib, seaborn, and nibabel. DTI and rs- fMRI post-
processing for selected datasets were conducted using an 
atlas- based approach with our in- house software AIDAmri 
(https://github . com / Aswendt - Lab / AIDAmri). Briefly, AID-
Amri performs brain extraction and data correction (slice 
time correction, motion correction, spatial smoothing with 

full width at half maximum, and high- pass filtering for rs- 
fMRI), followed by a multistep registration with the Allen 
Mouse Brain Reference atlas (CCF v3). Functional connec-
tivity is derived by a seed- based Pearson correlation 
among all atlas regions. Structural connectivity matrices 
are produced with deterministic fiber tracking using DSI 
Studio; for details see  Pallast  et al.  (2019).

2.5. Ethics statement

The data corresponding to 94c_m_As and 94_m_As from 
Table 1 were acquired in strict adherence to the ARRIVE 
guidelines for reporting in vivo animal experiments and the 
IMPROVE guidelines for stroke animal models, as recom-
mended by Kilkenny et al. (2010) and Percie du Sert et al. 
(2020). These datasets were processed following compre-
hensive ethical protocols approved by the Landesamt für 
Natur, Umwelt and Verbraucherschutz North Rhine- 
Westphalia, Germany, under animal protocol numbers 
84−02.04.2016. A461 and 84−02.04.2014.A305. Further 
ethical clearance was obtained from the Gothenburg Eth-
ics Committee, Sweden, under animal permit number 
1551/2018. In the case of data sourced from other groups 
within the research, all animal experiments were approved 
by the respective local ethical authorities.

3. RESULTS

3.1. AIDAqc workflow

AIDAqc was designed as a three- stage open- source 
pipeline of Python scripts (https://github . com / Aswendt 
- Lab / AIDAqc), which requires minimal user input (Fig. 1). 
The installation and application of AIDAqc were inde-
pendently tested by four scientists and optimized using 
the datasets (see next section). T1, T2, DTI, and fMRI 
scans can be used— independent of the underlying MR 
sequence (spin echo, gradient echo, FLASH, etc.)— as 
input. AIDAqc accepts a vendor- specific data format by 
Bruker Biospin and the widely used vendor- independent 
BIDS/NIfTI data format. No prior data sorting is neces-
sary as the main input folder will be iteratively searched. 
Each of the three stages can be run individually but the 
result of the third stage depends on the sequential pro-
cessing of stages 1 and 2, respectively. The results are 
reported automatically in machine- readable csv files as 
well as figures and image sequences.

3.2. Dataset statistics

To test AIDAqc on a wide range of MRI setups, sequences, 
and animal models, 65 international MRI experts were 
invited as part of an initiative from the STANDARD working 

http://www.graphpad.com
https://github.com/Aswendt-Lab/AIDAmri
https://github.com/Aswendt-Lab/AIDAqc
https://github.com/Aswendt-Lab/AIDAqc
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group of the European Society for Molecular Imaging (doc-
umented on GitHub: https://github . com / Aswendt - Lab 
/ MRI _ Standardization _ AIDAqc).

Finally, n = 19 laboratories provided a total of n = 23 
small animal datasets to provide datasets consisting of 
about 2,600 anatomical, 1,200 diffusion, and 700 func-
tional scans. These datasets had not been prescreened 
for outliers and were used to test and validate AIDAqc. 
In applying AIDAqc to test its efficacy, each of the 23 

datasets was processed independently. This separate 
analysis allowed us to maintain the integrity of the out-
lier detection process, ensuring that any identified 
quality issues were specific and relevant to each data-
set’s unique characteristics. All data are publicly avail-
able (see section 5: “Data and Code Availability”). The 
majority of datasets were obtained with mice (68.2%) 
and rats (18.2%), and single studies used hamsters, 
rabbits, and gerbils (Fig. 5a). MRI was acquired with a 

Fig. 5. Summary of dataset distribution regarding basic statistical information (a– d) and quality features (e– i). Statistical 
distribution between all datasets regarding the (a) species, (b) field strength, (c) sequence, and (d) data format. In (d) 
“Bruker” refers to the Bruker raw data format and NIfTI to the Neuroimaging Informatics Technology Initiative data format. 
Summary of quality features for all (e) anatomical scans, (f– g) diffusion scans, and (h– i) functional scans. Note that the 
distribution of datasets for (e– i) is different, as not all datasets contain diffusion and functional scans in addition to 
anatomical scans.

https://github.com/Aswendt-Lab/MRI_Standardization_AIDAqc
https://github.com/Aswendt-Lab/MRI_Standardization_AIDAqc
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broad range of hardware in terms of field strength (7– 
16.4T) and receive/transmit coil arrangement (Fig. 5b). 
Most studies were conducted at 7T (50%) followed by 
9.4T (31.8%) using anatomical (T1-  or T2- weighted 
MRI) and diffusion- weighted imaging (DWI), as well as 
resting- state functional MRI (rs- fMRI) (Fig.  5c). Most 
data were provided in the Bruker raw data format 
(63.6%) next to the NIfTI format of which only six data-
sets were BIDS- compliant (Fig. 5d).

The datasets further varied substantially in terms of 
FOV, matrix size, and image resolution (see Supplemen-
tary Fig. 1 and extended version of Table 1 in Supplemen-
tary Table  1). In addition, we also applied AIDAqc in a 
proof- of- concept approach to two abdominal datasets 
(Supplementary Fig.  2) and previously published large 
repositories containing mouse and rat data (Supplemen-
tary Table  2). The AIDAqc output is summarized in the 
online repository (https://doi . gin . g - node . org / 10 . 12751 / g 
- node . q82cjj/), featuring detailed reports for SNR, tSNR, 
and motion severity.

The mean SNR in anatomical scans (neuroimaging 
datasets as listed in Table  1), as calculated using the 
Chang method, was 32.1 dB ± 4.6 dB (Fig. 5e). For the 
diffusion scans, the mean SNR was 28.4  dB ±  5.0  dB 
(Fig.  5f), and in functional scans, we measured 
27.4 dB ± 5.9 dB tSNR (Fig. 5h). Temporal SNR across 
functional MR sequences varied with large differences in 
variance between specific studies, for example, 117_m_
Ra, which was acquired with two different sequences, 
visible as two tSNR populations (Fig.  5f). The motion 
severity was rather stable for 16 out of 18 diffusion and 9 
out of 11 functional studies, respectively (Fig. 5g, i). The 
motion severity varied between 0.017 (7_m_Bo) and 
0.217 (7_m_Lo) in diffusion scans and between 0.002 
(117_m_Ra) and 0.323 (117c_m_Ri) in functional scans, 
respectively.

Initially, the intention was to also apply AIDAqc to a 
published large, multicenter dataset to demonstrate the 
tool’s adoption and efficacy (see Section 4.3). However, it 

became apparent that these datasets had already under-
gone screening for poor- quality data, rendering them 
unsuitable for our intended purpose. As a result, we also 
applied the tool to all NIfTI datasets from Table 1 in a col-
lective manner (Supplementary Fig.  8), and outliers in 
addition to the normal statistical outliers were registered 
in the voting.csv through the majority vote approach.

3.3. Automated SNR measurements

3.3.1. Comparison of SNR across datasets

Given the differences in MRI hardware (scanner, coils), 
sequences, shimming procedure, and animal experiment, 
here it was not meaningful to statistically compare all 
individual datasets. Importantly, the effects of differences 
in MRI hardware (gradients, coils) overrode the positive 
correlation of field strength and SNR (Fig. 5). In studies 
selected for a relatively homogeneous voxel volume of 
9.5 nl ± 1.2 nl, there were significant differences in SNR 
values for different magnetic field strengths, also for 
selected studies with the same magnetic field strength 
and an increasing voxel volume, there were significant 
differences observed. As expected, SNR was scaled with 
magnetic field strength and voxel volume (Supplemen-
tary Fig. 3). Within studies including both anatomical and 
functional scans, SNR and tSNR correlated positively 
(Spearman r = 0.57, p < 0.001) (Fig. 6a). A similar positive 
correlation was found between anatomical SNR and dif-
fusion SNR (r = 0.30, p < 0.001) (Fig. 6b).

We further quantitatively compared the two SNR 
methods (SNR- Standard vs. SNR- Chang) for all anatom-
ical datasets (Supplementary Fig. 4). The SNR methods 
correlated positively (Spearman r = 0.16, p < 0.001). For 
a randomly chosen selection of five datasets, we further 
validated that the quantitative SNR values represent the 
qualitative “visual” appearance of the images, that is, 
higher SNR corresponds to more brightness and contrast 
in the image (Fig. 7a, b, image #3– 4). The visual compar-
ison (Fig.  7b) also suggests that SNR- Chang is less  

Fig. 6. Scatterplots (a) Spearman correlation between functional tSNR and anatomical standard SNR. (b) Spearman 
correlation between diffusion standard SNR and anatomical standard SNR of subjects who had both scans.

https://doi.gin.g-node.org/10.12751/g-node.q82cjj/
https://doi.gin.g-node.org/10.12751/g-node.q82cjj/
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sensitive for images with brightness differences (Fig. 7b, 
#1– 2). The SNR- Standard method, however, can be falsi-
fied when the ratio of subject to field of view is high 
(Fig. 7b, #5– 6).

3.4. Artifact simulation to evaluate the reliability of 
quality metrics and outlier detection

3.4.1. Quality metrics

The analysis of data with simulated (added) Gaussian, 
salt and pepper, and speckle noise (Fig. 8a, b) revealed a 
significantly lower SNR compared with the original image 
using both SNR methods. Similarly, adding motion to the 
rs- fMRI scans significantly increased the motion severity 
index (Fig. 8c). Welch’s t- test was applied for compari-
son, indicating significant differences (p < 0.001) between 
the modified and the original group data for each metric.

3.4.2. Outlier detection

In the approach to showcase the reliability of outlier detec-
tion and majority voting, a significant difference in majority 
votes between the artifact- induced and original images 
was detected (p < 0.001), with the artifact- induced images 
consistently receiving higher majority votes.

Representative examples show that the majority vote 
was consistently higher in the artifact- induced images 
than in the original (Fig. 8d). For the anatomical image, 
the number of ML algorithms flagging the original image 
as an outlier was 1, whereas in the contaminated coun-

terpart image, it increased to 4 (Fig. 8e). Similarly, in the 
case of the diffusion sequence, the majority vote was 0 
for the original image and increased to 4 for the contam-
inated image (Fig. 8f). In functional sequences, the con-
taminated image was flagged with a majority vote of 3 
compared with 1 for its original counterpart (Fig. 8g).

3.5. Validation of outlier detection

3.5.1. Initial validation approach

To gain a ground truth for the comparison of classifica-
tion, we worked with the votings for all datasets from 
n = 5 experts with 5– 10 years of experience in small ani-
mal MRI. The experts were asked to identify bad- quality 
images in the 23 datasets including 4,452 images. The 
assessment was purely objective and referred to visible 
artifacts or noise in the images, without any further spe-
cific step- by- step evaluation. As the main result, the 
mean inter- rater agreement for all data (Fig. 9) was low 
across anatomical, functional, and diffusion scans (mean 
Fleiss Kappa score 0.2 ± 0.2, 0.2 ± 0.2, and 0.1 ± 0.2). For 
the datasets with a substantial inter- rater agreement, for 
example, 7_h_He and 117_m_Ra (Fleiss Kappa score >= 
0.6), and with no inter- rater agreement, for example, 
7_m_Br and 94_m_Rei (Fleiss Kappa score 0.0), respec-
tively, there was visually no related identifiable image fea-
ture or pattern.

In addition, we conducted a comprehensive analysis 
using a confusion matrix (Supplementary Material Table 3 
and related text). This analysis was based on calculations 

Fig. 7. Scatterplot of the relationship between SNR values calculated using the Standard and Chang method. (a) SNR- 
Standard and SNR- Chang comparison for five randomly selected datasets (7_h_He, 7_m_Se, 7_rab_Mu, 94_m_Va, and 
117_m_Ra). (b) Selected images from the different datasets reflect similar SNR (examples 1 and 4) and different SNR 
(examples 2, 3, 5, and 6).
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of sensitivity, specificity, and accuracy, considering vari-
ous threshold scenarios between the AIDAqc and human 
raters (Supplementary Fig. 5). Here, a threshold relates to 
a minimal number of positive votes. The threshold = 3 for 
AIDAqc voting refers to the majority vote of 3, that is, at 
least three algorithms labeled the data to be of bad qual-
ity. Similarly, the threshold = 3 for the manual raters indi-
cates that a file was considered of bad quality by at least 
three of the expert raters. The highest sensitivity 
(0.20 ± 0.28), that is, out of all the actual “bad- quality” 
datasets, how many were identified by AIDAqc as “bad- 
quality” data, was reached with the AIDAqc threshold set 
to 1 and the manual rater threshold set to 4. For this 
threshold combination, the overall classification accu-
racy (0.79 ±  0.13) and specificity (0.81 ±  0.12), that is, 
identification as “no bad quality,” were high. Despite 

these efforts, the low inter- rater agreement rendered the 
results less definitive.

3.5.2. Revised post hoc validation

In response to the low inter- rater agreement observed in 
the initial validation phase, a second, more focused vali-
dation approach was implemented. In this revised strat-
egy, the same experts were tasked with validating only 
those images flagged as high- threshold outliers (voting 
thresholds of 4 and 5) by AIDAqc. The precision mea-
surements, which reflect the proportion of images cor-
rectly identified as outliers by AIDAqc and confirmed by 
the experts, showed an average precision of 70.72 ± 9.9%, 
with an adjusted precision of 72.23% when unsure cases 
were excluded.

Fig. 8. Artifact simulation to evaluate the reliability of quality metrics and outlier detection. Comparison of signal- 
to- noise ratio (SNR) and motion severity metrics between the induction of different noise types and motion versus 
the original image in (a) SNR- Chang, (b) SNR Standard Method, and (c) Motion Severity. The boxplots illustrate 
the distribution before (original) and after noise addition and motion induction. Significant differences (*** indicates 
p < 0.001) were observed between each noise- induced group and the original group for using Welch’s t- test. The 
evaluation of majority votes on artifact- induced images revealed significantly higher votes compared to the original 
images (*** indicates p < 0.001). (d) Consistent higher majority votes in the artifact-induced images compared to the 
original. Representative anatomical (e), diffusion (f), and functional (g) images before and after addition of artifacts with 
related majority votes.

Fig. 9. Inter- rater agreement. Fleiss kappa scores were calculated separately for each dataset, serving as an indicator of 
inter- rater agreement. The last two columns present the mean and standard deviation (std).
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3.6. Relevance of outlier removal for data 
postprocessing

To assess the importance of identifying poor- quality data 
through AIDAqc in subsequent postprocessing steps, we 
processed functional and diffusion datasets from two 
representative control groups, 94c_m_As and 94_m_As, 
using our in- house software AIDAmri, as established in a 
prior study ( Pallast  et  al.,  2019). These datasets were 
chosen because they represent control animals, that is, 
no disease or intervention model, to provide a consistent 
baseline for assessing functional and structural specific-
ity. In terms of SNR, the functional specificity calculated 
for the merged dataset (Fig. 10a) illustrates how connec-
tivity metrics can differ significantly even when images 
appear visually similar at first glance. We assessed func-
tional specificity by computing correlations between spe-
cific and nonspecific ROIs. The X- axis of the scatter plot 
in Figure 10a details the specific ROIs, which include the 
left and right primary somatosensory barrel fields, 

expected to show high correlations. The Y- axis rep-
resents the nonspecific ROI, formed by combining the 
anterior cingulate area with the left primary somatosen-
sory barrel field, expected to show lower correlations 
( Grandjean  et al.,  2023). High values for the nonspecific 
ROI might suggest problems either in the unprocessed 
data or during the processing steps. Adjacent to the 
scatter plot, the subject with a majority vote of 5 and one 
other subject not flagged by AIDAqc are shown represen-
tatively. In case of a majority vote of 5, a complete loss of 
signal in the last 25 repetitions was detected, potentially 
due to a gradient malfunction, leading to incorrect bias 
field correction and poor atlas registration (Supplemen-
tary Material Fig. 7). Among the subjects from the merged 
datasets, this subject’s data confirm that image quality 
issues predominantly originate from the data itself, not 
the processing steps, as indicated by AIDAqc’s findings. 
This emphasizes that while high correlations for nonspe-
cific ROIs could stem from various sources, in this 
instance, the problems are specifically related to data 

Fig. 10. Functional specificity and diffusion tensor imaging analysis for quality assessment. (a) Functional specificity 
analysis comparing the functional connectivity with the primary somatosensory barrel field relative to the contralateral 
homotopic area and the anterior cingulate area (ACA). The X- axis represents the correlation to the specific ROI 
(contralateral primary somatosensory barrel field), and the Y- axis represents the correlation to the unspecific ROI (ACA). 
Expected results include high correlations for the specific ROI and low correlations for the nonspecific ROI. Data points 
across the dataset reveal correlation values for each ROI, with outliers, identified by AIDAqc with a majority vote, showing 
unusually high correlations for the nonspecific ROI. This suggests that these outliers likely represent poor- quality data, 
which can adversely affect functional connectivity measures. (b, c) Two different examples of diffusion images are 
classified as good versus bad quality using AIDAqc. Whereas similar anatomical structures can be identified in the FA 
map, the diffusion tensor (displayed as direction encoded color map) shows very different and anatomically incorrect 
tensor orientations, for example, in the corpus callosum (*) connecting both hemispheres with horizontal (red) fibers 
crossing the brain midline.
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quality. In diffusion tensor imaging data (Fig. 10b, c), arti-
facts may not be detectable by examining single slices or 
directions alone. Instead, diffusion analysis can produce 
markedly different results even when visual image quality 
appears only slightly varied. For instance, in the data 
identified as an outlier (Fig. 10c), marked by a majority 
vote of 3 out of 5 algorithms, the diffusion tensor distribu-
tion showed a more random pattern and less anatomical 
coherence compared with the good- quality dataset. 
Notably, key structures like the corpus callosum, a major 
fiber tract connecting both hemispheres, were detected 
in the good- quality image but not in the outlier data. 
These observations are supported by a comprehensive 
qualitative comparison across all subjects from the two 
datasets, showing a higher majority vote of 2 and 3 
related to suboptimal FA (fractional anisotropy) maps. 
Extended qualitative comparisons of diffusion- weighted 
images and corresponding quality metrics are detailed in 
Supplementary Figure 6.

4. DISCUSSION

AIDAqc was developed with the aim of automatically 
identifying bad- quality data from large and heteroge-
neous small animal MRI datasets. Although classification 
was implemented as an automated selection using sta-
tistics and machine learning, it should not act as a black 
box. On the contrary, it was designed to report the clas-
sification transparently and flag poor- quality data that 
need further inspection by the user, for example, it can 
still be useful for a particular purpose.

To achieve these goals, we collaborated with n = 19 
international MRI laboratories, which shared mouse, rat, 
and gerbil datasets. This collaboration ensured a diverse 
testing environment, encompassing a wide range of 
scanner hardware, imaging protocols, and experimental 
conditions (a detailed summary of the datasets can be 
found in Supplementary Material Fig. 1 and Table 1). In an 
iterative process, the AIDAqc workflow was adjusted and 
optimized to facilitate the processing of all acquired data-
sets. The findings of this study highlight the potential for 
improvement in quality control, as well as the benefits of 
automating the process, thereby avoiding manual inter-
ventions and reducing related errors. The AIDAqc pipe-
line was developed in Python as an open- source project, 
to allow full flexibility to include other metrics or auto-
mated calculations and integrate AIDAqc in other pipe-
lines by the small animal imaging community.

4.1. The importance of QC/QA in small animal MRI

Conceptually, QC and QA describe ongoing efforts to 
ensure the stability of the MRI scanner and the assurance 

of homogeneous image quality ( Sreedher  et  al.,  2021). 
Small animal MRI has not adopted clinical and industry 
standards so far, to a certain extent because of the belief 
that such standards would limit scientific freedom and 
innovation ( Wijnen  et  al.,  2023). In contrast, we argue 
here in line with the community- driven standardization 
initiatives as part of the imaging societies ESMI, ESM-
RMB, and ISMRM, which standards are required to 
enhance the reliability and reproducibility of all neuroim-
aging studies and are necessary in the translation of pre-
clinical to clinical protocols.

A central element of clinical QC is checkpoints 
defined before the project starts, to avoid poorer quality 
data passing on to the next processing stage ( Strother, 
 2006). Such strict exclusion criteria limit retrospective 
cherry- picking and avoid bad- quality data to introduce 
false positive and/or negative results ( Niso  et al.,  2022). 
However, most animal studies still favor an explorative 
approach, for which a retrospective selection of good- 
quality data as implemented in AIDAqc is more mean-
ingful. Similarly, for reuse of data and, more importantly, 
for reproducibility of existing studies that rely on large 
databases (e.g., OpenNeuro), retrospective identifica-
tion of image quality in general and, in particular, signal- 
to- noise ratio (SNR) and image artifacts is critical. 
AIDAqc fills an existing gap of efficient software tools 
and overcomes manual bad- quality selection, which in 
most cases is bound to an individual decision by the 
researcher. Importantly, AIDAqc does not contradict 
previous standardization efforts but complements the 
development of reliable preclinical MR assays that lead 
to comparable results across laboratories ( Doblas  et al., 
 2015;  Waterton  et al.,  2019).

4.2. Outlier detection based on quality metrics

4.2.1. Rationale of selected quality metrics

The selection of bad- quality data for different MR 
sequences cannot be accurately done by a single quality 
measure. Similar to QC tools for human MRI ( Esteban 
 et  al.,  2017;  Raamana,  2018;  Williams  et  al.,  2023), 
AIDAqc relies on the combination of multiple automati-
cally derived image quality measures, that is, (t)SNR, 
motion, and ghosting. The combination ensures high ver-
satility for multiple MR sequences and mitigates known 
disadvantages for a single quantitative assessment of 
image quality, as described for SNR, for example 
( Erdogmus  et al.,  2004). We have selected basic quality 
metrics well established in the MRI community. As a 
novel aspect, we introduce automated calculations, 
which do not require manually drawn regions of interest. 
With simulated image artifacts, we have shown that these 
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calculations provide a good differentiation from image 
data without artifacts.

It should be noted that this approach could be extended 
in future versions to provide more information about the 
type of artifact (e.g., the discrimination of discrete vs. 
Nyquist ghosts) and include other metrics described in the 
literature, for example, the contrast- to- noise ratio (CNR), 
root- mean- squared error (RMSE), coefficient of joint varia-
tion of gray matter and white matter, full- width half- 
maximum estimation of the blurriness of the image, and the 
overlap of tissue probability maps estimated from the 
image and a template ( Chow  &  Paramesran,  2016;  Esteban 
 et al.,  2017). These quality metrics were not included as the 
information content either overlaps with integrated metrics 
(e.g., SNR and CNR) or segmentation and template regis-
tration, respectively, are required. We decided against a 
segmentation or template registration process as this 
would increase processing time and unnecessarily limit the 
input images to a specific format and orientation. Other 
restrictions should be considered as well, such as in the 
case of RMSE where the reliance on a specific reference 
image or ground- truth data would pose practical chal-
lenges due to the diverse nature of MRI datasets and the 
absence of universally applicable reference images. In the 
case of CNR, where the signals from two regions of interest 
are subtracted and divided by noise, automated analysis is 
theoretically feasible. However, generalizing this approach 
across different datasets is challenging due to variations in 
imaging sequences and scan orientations.

4.2.2. Synergistic application of two SNR methods

In this study, we compared two distinct methods for 
assessing SNR without the need to manually label regions 
of interest: the noise estimation method developed by 
 Chang  et  al.  (2005) and the standard SNR method 
extended with an automatically created center of inten-
sity to measure the signal and cuboids in the corners to 
measure noise. The results of the quantitative compari-
son across all datasets revealed the strengths and limita-
tions of each approach, which can be complementary 
and used as an advantage to enhance the reliability of 
SNR measurements through a synergistic combination 
as it is done in AIDAqc. The standard method excels in 
capturing spatial variations in image quality, particularly 
in regions of interest where signal integrity is paramount, 
while Chang’s SNR method provides a statistical frame-
work for noise estimation. For datasets with a high prob-
ability that the subject is not in the center of the field of 
view, results showed that the Chang approach is more 
trustworthy. In the comparison of five randomly selected 
datasets (7_h_He, 7_m_Se, 7_rab_Mu, 94_m_Va, and 
117_m_Ra), the distribution along the standard method is 

higher than the SNR- Chang method across each data-
set. This variation in standard deviation across different 
datasets suggests that SNR- Chang would better distin-
guish data from different sources in a scenario combining 
different studies. Also through the simulation tests of 
noise and specifically applying the gamma function to 
change intensity and contrast, mimicking shadows in 
MRI images, we identified the Chang method to be more 
responsive to general intensity changes compared with 
merely adding different types of noise. However, by 
focusing on one modality or similar images of a dataset, 
the SNR standard can create a better distinction. Whether 
this distinction is desired or not depends on the research 
question at hand. Therefore, it is beneficial to consider 
the SNR methods first from a synergistic viewpoint. Over-
all, we found that this synergistic approach enhances the 
accuracy and robustness of SNR measurements, and 
subsequently, the machine- learning algorithms can use 
both features as their input, providing researchers with a 
more comprehensive understanding of image quality, 
particularly in neuroimaging studies where image quality 
directly impacts the validity and interpretability of results. 
The SNR assessment was also validated qualitatively and 
quantitatively by simulating noise.

4.2.3. Detection of motion and ghosting using 
mutual information

Motion was quantified with a novel application of mutual 
information (MI). This approach was validated by introduc-
ing random motion into the dataset. Incorporating MI for 
assessing motion severity and ghosting was inspired by 
the recognized effectiveness of MI as an image registration 
metric ( Maes  et al.,  2003). The strength lies in the ability of 
MI to capture nonlinear relationships and tolerate intensity 
variations. These intensity variations are particularly preva-
lent in preclinical animal models, where images often fea-
ture strokes and lesions. Further investigation into the 
effectiveness of mutual information in addressing motion 
severity and ghosting, considering various artifact charac-
teristics and preprocessing techniques, would be valuable 
for optimizing artifact assessment. In future studies, this 
method could be compared and complemented by other 
machine- learning approaches to detect motion ( Fantini 
 et  al.,  2021;  Lorch  et  al.,  2017), which have so far only 
been used in human MRI. The discrimination of the types 
of ghosts is also planned in future versions of AIDAqc.

4.3. Majority voting

As a novel concept, we introduce a statistical-  and 
machine- learning- based outlier detection method in the 
form of majority voting. In the purely statistical way to 
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determine outliers based on the interquartile range ( Vinutha 
 et al.,  2018), a single feature (single variate) of image qual-
ity is used. Incorporating a multivariate outlier detection 
algorithm can lead to more accurate and general results. 
Using multiple algorithms together and creating a majority 
vote for an outlier can even stabilize the results further as 
each algorithm is selective for different types of quality 
measures and data. With simulated image artifacts, we 
have shown the robustness and reliability of the majority 
voting approach in identifying outliers.

The chosen machine- learning algorithms ocSVM, IF, 
LOF, and EE have been successfully used, for example, in 
MRI- based tumor classification, and tissue matter seg-
mentation ( Mayer  et al.,  2022;  Mohammed  et al.,  2021; 
 Ong  et al.,  2022;  Zhang,  2011). However, the concept of 
bringing all of these outlier detectors together and using 
them as part of a majority vote in QC has, to our knowl-
edge, not been used before. The adaptable and open- 
source structure of AIDAqc enables the seamless 
integration or removal of ML algorithms to adapt to spe-
cific requirements and new research results. Exploring 
the integration of additional algorithms such as autoen-
coders and robust principal component analysis into the 
majority approach could offer avenues for enhancing its 
efficacy. These algorithms bring unique capabilities such 
as nonlinear feature representation and an enhanced 
resilience to noisy or incomplete data, potentially enrich-
ing the diversity of perspectives considered in the 
decision- making process. However, it is essential to 
acknowledge that such augmentation might incur height-
ened computational demands and processing time. 
Nonetheless, investigating the interplay of diverse 
machine- learning techniques within the majority voting 
framework holds promise for advancing its performance.

We noticed that the thresholds to set the minimal 
number of manual raters and outlier algorithms rating 
data to be “bad quality,” respectively, have a huge impact 
on the validation of the classification. To understand the 
role of AIDAqc in outlier detection, it is essential to recog-
nize its capability to identify subjects who deviate from 
the provided cohort. This does not necessarily imply that 
flagged subjects are inherently of poor quality or that the 
specific artifacts cannot be reduced during postprocess-
ing, for example, using motion correction. In a scenario 
where a cohort consists of subjects selected from two or 
more different datasets with different acquisition param-
eters, AIDAqc would not classify an entire group as an 
outlier, but rather identify individual subjects who have 
characteristics that differ from their respective group. 
This targeted outlier detection is a significant advantage 
of AIDAqc, rooted in its machine- learning algorithms tai-
lored for outlier identification. Traditional statistical 
approaches often falter in such complex scenarios. 

Therefore, when designing studies or research questions 
involving data from multiple sources, leveraging AIDAqc 
across all datasets collectively becomes justified, serving 
to refine the application of this tool according to the spe-
cific research objectives.

In practice, determining the majority vote threshold 
should involve subsequent checking of the data. As illus-
trated in the example of a functional scan with a high 
majority vote indicating a potential issue (Fig.  10a), 
detailed inspection revealed that the high voting was 
related to disruptions in the last 25 repetitions due to a 
potential gradient malfunction. Removing these affected 
repetitions could rectify the issue, illustrating how the 
majority voting approach assists in pinpointing specific 
problems for targeted corrections.

When using AIDAqc to detect outliers, a balance 
between sensitivity and specificity is critical. Users 
retain the flexibility to adjust the threshold for the major-
ity voting based on the desired balance between these 
two metrics. For example, opting for a threshold of a 
majority vote of 3 or higher may lead to an increase of 
false positives, thereby reducing specificity, but could 
potentially decrease false negatives, consequently 
increasing sensitivity. Conversely, selecting a more 
stringent threshold, like only those subjects with a 
majority vote of 5, might further diminish false nega-
tives, increasing the specificity but lowering the sensi-
tivity. After the initial process, researchers can simply 
focus on the data with the highest majority votes or 
adjust the threshold based on their preferences.

4.4. Validation of outlier detection

4.4.1. Initial validation approach

Visual criteria of image quality are not standardized and 
are strictly user dependent. It was, therefore, not surpris-
ing to see a significant difference in user ratings for the 
individual datasets. However, we questioned the rather 
poor confirmation of AIDAqc outlier detection by the 
expert raters. Finding a common ground truth proved to 
be a very challenging task. We noticed that very import-
ant noise and image artifact components in the datasets 
remained hidden for manual raters and can only be iden-
tified by automated algorithms scanning the full 2D/3D/4D 
image volume. Visually detectable artifacts might exist in 
other slices or in the case of functional and diffusion 
scans, artifacts might exist at a different time point and 
diffusion direction, respectively. A tSNR map, which was 
not part of the manual evaluation, might have been suffi-
cient for manual raters to see the difference between two 
rs- fMR images (Fig. 11a). Similarly, it is very unlikely to 
detect motion and ghosting from inspection of single 
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images, as the motion between images requires setting a 
temporary reference image (Fig. 11b), and ghosting might 
appear only in specific diffusion directions (Fig. 11c). That 
was also reflected in the sensitivity, which was by trend 
highest in anatomical compared with diffusion and func-
tional datasets, that is, in the data which can be rated 
best manually. We noticed that the validation of the auto-
mated outlier detection based on the single images, pro-
duced as part of the AIDAqc output, remains the most 
feasible but not optimal scenario, especially for 4D scans. 
We, therefore, come to the same conclusion as others in 
human MRI that the manual evaluations are impractical 
or infeasible ( Bedford  et al.,  2023;  Chow  &  Paramesran, 
 2016), as it is not possible and not expedient to go 
through all the individual images for very large datasets.

Therefore, understanding the optimal combinations of 
thresholds for both AIDAqc and manual raters was cru-
cial. For each sequence type (anatomical, diffusion, and 
functional scans), we identified the best combinations of 
thresholds for AIDAqc and manual raters. For the most 
important measure, sensitivity, that is, the rate of “bad- 
quality” data identified by AIDAqc compared with the 
manual raters, the optimal threshold for AIDAqc was 1. 
This might be interpreted as a logical choice for several 
reasons: (i) the error rate of AIDAqc is not fluctuating as it 
is the case for the objective classification by the manual 
raters, (ii) AIDAqc systematically evaluates every voxel of 
an image volume, each AIDAqc rater can be considered 
to have its unique strengths and weaknesses in identify-
ing outliers. In contrast, manual raters, relying on visual 
inspection, do not have the same systematic approach. 
Thus it is worth checking any dataset, even if it only got 

one vote to be an outlier from AIDAqc. In contrast, man-
ual rater thresholds exhibited a favorable trend for accu-
racy but not for specificity and sensitivity, likely influenced 
by poor inter- rater agreement.

4.4.2. Revised post hoc validation

Consequently, we transitioned to a more focused valida-
tion method, as elaborated in the second stage of our 
process, providing a more targeted validation approach. 
indicating some variability in their assessments, yet 
demonstrating a generally consistent agreement with 
AIDAqc. This approach provided a more nuanced insight 
into AIDAqc’s outlier detection capabilities. By focusing 
on the high- confidence outlier predictions and consider-
ing the more decisive assessments of the experts, this 
method offered a better understanding of the effective-
ness in identifying true cases of poor- quality datasets. 
The observed standard deviation underscores the inher-
ent subjectivity in manual assessments, reinforcing the 
value of automated tools in systematically evaluating 
image quality.

4.5. Limitations

4.5.1. Datasets

To validate the reliability of bad- quality detection using 
AIDAqc, we collected largely heterogeneous data in 
terms of animal, MRI hardware, and sequence. Unlike 
previous standardization efforts that focused on hom-
ogenization of data collection ( Doblas  et  al.,  2015; 

Fig. 11. (a) rs- fMR images and their corresponding tSNR maps selected by the highest and lowest values calculated 
by AIDAqc. (b) Low and high motion examples for rs- fMR image volumes averaged over time to visualize the motion. (c) 
Ghosting artifacts in the 14th diffusion direction of the 4D diffusion image volume of one subject. Ghosting artifacts can be 
seen in the lower image, where the upper image corresponding to another the first diffusion direction of the same image 
volume was rated by the users, and as it does not show any particular problem, it was not rated as a bad- quality image. 
(a, b) were selected based on the highest (best) and lowest (worst) values between all datasets from Table 1.
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 Grandjean  et al.,  2023;  Waterton  et al.,  2019), wide vari-
ability was desired for probing the versatility of AIDAqc. 
Nevertheless, the heterogeneous datasets imposed a 
challenge for the analysis. This included automated 
sequence type recognition and the correct sorting into 
anatomical, diffusion, and functional scans, respec-
tively, which were corrupted by nonstandard abbrevia-
tions for MR sequences (see Supplementary Fig. 9a, b, 
d). As most sequences can be used for multiple pur-
poses, for example, echo planar imaging (EPI) in both 
diffusion and functional imaging requires more in- depth 
metadata extraction to identify the actual type of scan. 
Such metadata extraction is in the current AIDAqc ver-
sion only possible for BIDS or Bruker data but not for 
the NIfTI format as it contains only very limited meta-
data. In future versions, compatibility with DICOM data 
could be implemented because of its wide distribution 
in human MRI as well as other vendor- specific raw data 
next to the Bruker format to increase the versatility. 
AIDAqc uses an integrated list of strings of the most 
common nomenclature as keywords, for example, 
turbo, rare, rest, diff, rs- , func, anat, struc, dwi, and dti. 
Additionally, for DWI and functional images in the raw 
Bruker format, AIDAqc checks whether a gradient/b- value 
table is available to make the distinction. We cannot 
exclude, however, the possibility that automated pars-
ing and sorting may fail for other unconventional 
sequence names. In the case of BIDS structure, for 
example, in the 7_rab_Mu and 94_r_Fr datasets, the 
NIfTI format is complemented with metadata in a stan-
dardized json file. To facilitate standardization, we highly 
recommend the BIDS format as it solves the issue of 
variable sequence names and dataset hierarchy of 
groups and time points as well as metadata information.

Another challenge was imposed by a corrupted 
image matrix logic in the x- y- z regime, for example, in 
the form of 256 x 40 x 256 imposing a x- z- y structure 
with z being the number of slices and x- y being the 
image dimension. This occurred in single datasets in 
both the raw data and by converting the data into the 
NIfTI format and required manual correction. Manual 
spatially reorganization is also necessary for noncoronal 
acquired datasets (see Supplementary Fig.  9c, e, g). 
This step is critical, as the subsequent processing 
depends on the correct association of 2D/3D/4D 
sequences and scans. In future AIDAqc versions, auto-
matic extraction of the actual image orientation and 
position of the animal would reduce this potential error 
and manual data preparation for the users. Another 
potential limitation is the fixed parameter setting in 
some of the outlier detection algorithms, which should 
be optimized if AIDAqc is to be used for completely dif-
ferent datasets.

4.5.2. Automated feature calculations

Unlike most approaches to calculating SNR region based, 
which requires manual user input to draw the regions of 
interest, here two fully automated SNR calculations were 
implemented. This way, there is no need for the user to 
manually define regions, which makes the calculation 
less error prone and faster. We noticed, however, that the 
automated SNR calculation has some limitations. The 
standard SNR calculation is sensitive to the location of 
the subject in the field of view: (i) when the subject fills 
most of the field of view, especially the corners, the 
cuboids for calculating the standard deviation cover not 
only noise (Fig. 2), thus decreasing the final SNR, and (ii) 
when the central sphere used to calculate the mean sig-
nal covers regions with artifactually high or low signal, for 
example, ventricles or blood- rich areas. In such cases, 
the resulting SNR value might be misleading and we sug-
gest verifying the center of mass in the images to be rep-
resentative of the signal in the image. We also noticed 
that the alternative Chang method has limitations when it 
comes to the ratio of noise- to- tissue in the field of view. 
In particular, different SNR ranges create different cir-
cumstances for the ratio of noise- to- tissue for a correct 
estimation of the standard deviation of noise in the image 
( Chang  et  al.,  2005). If the ratio is small, SNR- Chang 
overestimates the true SNR as the quantitative compari-
son with the low SNR- Standard in line with the visual 
comparison showed. It should be noted that SNR- Chang, 
different to SNR- Standard (which uses the b0 images 
only), creates an average SNR across all diffusion direc-
tions except b0, resulting in a less interpretable value for 
multiple diffusion weightings (i.e., b- values).

To retain the high versatility of AIDAqc, both SNR algo-
rithms were included, and for most cases, the majority 
voting approach still resulted in a stable detection of low- 
quality images.

Similar to the SNR calculation, the motion detection 
was successfully automated in AIDAqc without the need 
to manually draw regions or perform separate tissue seg-
mentations. Nevertheless, the user should be aware that 
the mutual information calculation cannot distinguish 
between animal and hardware motion if both have similar 
effects, for example, producing a drift in the image stack. 
An extreme example dataset is 117_m_Ri with the high-
est motion severity of all functional datasets. However, in 
this case, the animals were paralyzed and artificially ven-
tilated, which practically reduces animal motion to a min-
imum ( Bukhari  et al.,  2017). The high motion severity can 
be explained by a hardware limitation of the used gradi-
ent system in the 11.7T Bruker scanner, creating thermal 
artifacts at a high- duty cycle, that is, long acquisitions of 
thin slices with short repetition time.
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4.5.3. Validation approaches

In an ideal validation scenario, manual raters would 
examine every slice, across all time points, repetitions, 
and diffusion directions, mirroring the extensive analysis 
performed by AIDAqc. However, such a level of manual 
scrutiny is impractical and leads to highly variable results 
as shown in the inter- rater comparison. It underscores 
the necessity for automated tools and the challenges 
faced in achieving comprehensive quality control. The full 
transparency of sharing the code, reporting results, and 
related data was implemented to ensure future improve-
ments are implemented by the community. In an alterna-
tive validation scenario, the tSNR maps or mutual 
information plots could be provided for the expert raters 
as an additional level of quality assessment.

Future AIDAqc developments should strike an optimal 
balance between sensitivity and precision. High sensitiv-
ity ensures the tool’s ability to detect the majority of out-
liers or poor- quality data, which is vital for reliable 
neuroimaging analysis. Simultaneously, high precision is 
equally important, as it assures users that the data 
flagged as outliers are indeed of inferior quality. To further 
increase the precision, alternative approaches could be 
explored, that is, feeding the images directly without the 
calculation of quality features into the machine- learning 
algorithms. However, such an approach would be time 
consuming and require high computational power that 
maybe not every user can afford.

DATA AND CODE AVAILABILITY

Datasets for testing and validating AIDAqc (Table 1) were 
collected from 19 international MRI laboratories. These 
datasets (CC BY- NC- SA 4.0 license) organized according 
to the scheme outlined in  Kalantari  et  al.  (2023) can  
be accessed via: https://doi . gin . g - node . org / 10 . 12751 / g 
- node . q82cjj/. This DOI contains all datasets and results 
of this publication. Datasets remained unchanged during 
the revision process, while the output and code folder 
contained additional content representing changes 
during the revision. Access to the live datasets’ content 
can be facilitated by clicking on the “Browse Repository” 
button on the GIN DOI, where further details are avail-
able. The published data listed in Supplementary Table 2 
can be obtained through the provided links/references in 
the table.
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