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Abstract

B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is

deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is

known about the crosstalk of downstream effector pathways, and a comprehensive quanti-

tative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled

BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphoryla-

tion data of BL-2 and BL-41 cells. The models unveiled feedback and crosstalk structures in

the BCR signaling network, including a negative crosstalk from p38 to MEK/ERK. The rele-

vance of the crosstalk was verified for BCR and CD40 signaling in different BL cells and con-

firmed by global phosphoproteomics on ERK itself and known ERK target sites. Compared

to the starting network, the trained network for BL-2 cells was better transferable to BL-41

cells. Moreover, the BL-2 network was also suited to model BCR signaling in Diffuse large B

cell lymphoma cells lines with aberrant BCR signaling (HBL-1, OCI-LY3), indicating that

BCR aberration does not cause a major downstream rewiring.

Author summary

B cell receptors bind specific antigens, and upon binding, they activate a signal transduc-

tion network which ultimately primes the cells for proliferation and affinity maturation.

B-cell receptor signaling is often altered in B-cell lymphoma, leading to altered or chronic

activation of the network. In this study we compared the signal transduction network
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downstream of acute and aberrant B cell receptor activity in cell lines originating from

Burkitt and diffuse large B-cell lymphoma, respectively. By applying kinase inhibitors, we

measured phosphorylation state changes in the network nodes. Mathematical modeling

revealed a 16-node core network conserved in cells with acute and abberant B cell receptor

signaling. In the network we detected hitherto undescribed crosstalks and feedbacks,

structures known to confer treatment robustness. We elucidated and verified a negative

crosstalk between the mitogen-activated protein kinases (MAPK) p38 and ERK. We fur-

ther discovered that the negative feedback from ERK to its upstream kinase RAF, which

in solid tumors neutralizes treatments targeting ERK or MEK, is also present in B cells.

Altogether these findings may inform future treatment strategies targeting overactive B

cell receptor or help to explain treatment resistance.

Introduction

Intracellular signaling pathways are central to the communication of a cell with its environ-

ment, and control many important cellular processes and fates. These pathways are often acti-

vated by ligands that bind to cognate cell surface receptors and activate a specific set of

intracellular proteins, often by tyrosine or serine/threonine phosphorylation. In many disease

contexts, these pathways are deregulated, for instance by mutations in key signaling proteins.

Consequently, activation can occur independent of ligands or stimuli. Signaling pathways are

embedded into complex networks with feedback and crosstalk. It is therefore difficult to pre-

dict how these networks change when a pathway is chronically activated, and how the pathway

reacts upon targeted interference. Mathematical modeling of intracellular pathways based on

systematic perturbation data is a valuable approach to disentangle the difference in signaling

networks of ligand/stimuli-induced pathways vs. chronic (aberrant) active pathways. A better

understanding of the interactions of chronically activated signaling pathways is important to

improve the prediction and further design of targeted therapies.

B cell receptor signaling represents a network for which the extend of feedback and cross-

talk still remains unclear. Furthermore, a better dissection of chronic vs. acute signaling will

support our understanding of related diseases. In normal B cells, the pathway is triggered by

antigens, but is chronically activated in specific sets of Non-Hodgkin B cell lymphoma (NHL).

In normal physiology the binding of a specific antigen to the B cell receptor complex leads to a

very fast rebuilding and recruitment of a number of proximal signaling molecules including

the ITAM motif molecules CD79A/B, the kinases LYN/SYK and SLP65/Btk/PI3K [1–3]. The

activated BCR subsequently recruits multiple downstream signaling molecules and pathways,

some of which include those dependent upon phospholipase Cγ, Protein kinase C or RAF-

MAPK, PI3K, GSK3, MTOR and NF-kB. In addition, also JNK and p38MAPK are activated

downstream of the BCR [4]. These pathways converge in the activation of a set of different

transcription factors controlling B cell proliferation and survival, including c-Myc, NF-AT,

Elk1, c-Jun and ATF2 (4–6).

In human B cells the activation of the key signaling pathway RAF/MEK/ERK by BCR seems

to be similar to the activation by receptor tyrosine kinases (Satpathy et al., 2015; Vanshylla

et al., 2018) [5,6]. This signal transduction network downstream of the B cell receptor (BCR)

has received much attention, as it is a major regulator in adaptive immunity [7–10]. It has

been shown that the relative activity of the multiple pathways downstream of BCR determines

the outcome of BCR signaling [11]. The activity of the BCR is important for the expansion and

survival and can be supported by both antigen-dependent and antigen-independent
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mechanisms [12]. Compelling evidence is provided that in different NHL subtypes aberrant

BCR signaling activation is important [9,13–19]. BCR signaling is often studied in Burkitt lym-

phoma (BL) cell lines [5,6,12,20,21].

While the EGFR-signaling network or the T cell receptor pathway have been quantitatively

studied in many contexts, the BCR signaling and its oncogenic variations have so far only

gained limited attention. Elaborated network models of EGFR and T cell signaling include

proximal and distal elements but also feedback loops [2,22–28]. Some of these models discov-

ered and quantified pathway interactions and feedback loops, which have important implica-

tions also for clinical applications. These include positive feedback loops that strengthen the

therapeutic success and negative feedback loops that lead to adverse events or even therapeutic

failure [26,29–32]. For example, the somewhat disappointing response rates to drugs targeting

the intracellular RAS/MAPK pathway could be explained by strong negative feedbacks [26,33].

Now it is becoming more and more clear that also in BCR signaling the signal is propagated

through a complex context-dependent network. The complexity of this signaling network is

also characterized by an interplay of RAF/MEK/ERK, JNK, p38, NF-kB and PI3K, originally

described as parallel pathways of activation. However, there is a substantial crosstalk between

these different downstream signaling molecules not yet characterized in sufficient detail.

Reaching a better level of understanding will allow to answer questions such as whether these

crosstalks are cell type specific and thus account in part for the differential activity of BCR and

its functional outcome, but can also unveil therapeutic opportunities.

The few existing BCR signaling models are mostly deterministic models that include BCR

signal propagation by a specific set of network nodes [23,24,34,35]. The models cover both

membrane proximal, early signaling events and to some extend downstream signaling events.

Furthermore, a detailed model of the feedback loops involving LYN and SYK incorporating

every phosphorylation event for six proximal signaling components has been established [34].

However, an exhaustive quantitative modeling of downstream pathways is currently missing.

A previous study [36] attempted to infer an oncogenic signaling network in aggressive lym-

phoma cell lines indirectly from gene expression data following signaling perturbations using

the Boolean Nested Effects Modeling (B-NEM) approach. By this simple modeling approach,

an acyclic network with only activating interactions was derived which contained no feedbacks

and lacked quantitative information. While such models help to gain the understanding of

pathway interactions, they are not suitable for simulations or quantitative model comparisons.

To get a more fine-grained semi-quantitative understanding of the signaling network, we

therefore decided to employ a modeling approach on the more information rich readout of

phosphorylation data after systematic pathway perturbations which contains more predictive

power [37]. We have previously developed an approach termed STeady-STate Analysis of Sig-

naling Networks (STASNet) that is based on Modular Response Analysis (MRA) [38] and

applied this tool to decipher EGFR/RAS signaling in different tumors [26,39–42] as well as to

compare mouse embryonic stem cells with different sex chromosome compositions [43]. The

main concept of MRA is that the measurable global response matrix R (e.g., log fold changes

of steady state measurements before and after systematic single node perturbations for every

node of the network) theoretically contains the information to derive the so-called local

response r, a matrix whose non-zero entries quantify the edges of the underlying network

structure which are called local response coefficients (see Material and Methods). A positive

and negative response coefficient encodes for an increase or decrease of the downstream

node’s activity, respectively, where |r|> 1 amplifies, |r|< 1 dampens and |r| = 1 neutrally

relays the upstream signal. In STASNet we adapted the MRA theory to real world applications

to account for (1) measurement noise using a maximum likelihood and model selection strat-

egy and (2) incomplete perturbation and measurement designs by adding a non-identifiability
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analysis before parameter fitting [39]. Due to the latter, we summarize non-identifiable

response coefficients into identifiable combinations thereof, and term those ‘coefficient paths’.

The advantage of the MRA approach is that it allows to model and identify feedback loops that

are known to play a crucial role in conferring robustness, shaping the signaling dynamics or

integrating multiple converging signals and thus are vital to consider when searching for drug

combinations eligible for targeted therapeutics. Furthermore, in contrast to the previous Bool-

ean approach, STASNet allows to semi-quantitatively (on steady state change level) compare

signaling networks and to predict simulations across cell line models.

Based on systematic perturbation data we developed an MRA-based network model for

acute signaling in a Burkitt lymphoma (BL) cell line BL-2. We show that this model is transfer-

able to perturbation data of another BL cell line BL-41. This supports the view that our model

reflects common elements of intracellular signaling of acute B-cell signaling. Additional phos-

phoproteomic analyses of selected interventions support key insights of this model. After

establishing these quantitative network models, we found that the BL-2-derived network struc-

ture forms a solid base to describe signaling networks in cell lines from Diffuse large B cell

lymphoma (DLBCL) with aberrant BCR signaling. Thus, by integrated phosphoproteomic

analysis, we have uncovered a conserved core B cell receptor-regulated signaling network.

Results and Discussion

To dissect B cell signaling in aggressive NHL cells and get better insights into corresponding

oncogenic signaling networks, we followed an approach that we previously established for

EGFR signal transduction networks in solid cancer cell lines [26,39]. This approach combines

experimental quantitative perturbation data sets with a mechanistic computational modeling

approach derived from MRA.

Generation of signaling perturbation data set

We decided to generate the first model on the Burkitt lymphoma cell line BL-2 as this type of

lymphoma is a role model for studying acute B cell signaling [21, 44]. In BL-2 cells an external

stimulus (α-IgM) is able to activate the BCR and its downstream intracellular signaling [44,

45]. Stimulation-mediated intracellular signaling typically displays a strong transient response

with different kinetics followed by short or longer lasting activation plateau interval. Therefore,

time-series experiments were performed to determine the optimal time point for the pathway

intervention experiments. A strong response for AKT, ERK1/2, MEK, p70S6K and p38/

MAPK14 over time in α-IgM treated BL-2 cells is observed using both immunoblotting and a

bead-based ELISA platform (S1 Fig). The 30-min time point was chosen for further experi-

ments, as the interpretation of the modeling procedure requires the signaling network to be

approximately in steady state.

To establish an information rich dataset for modeling, we combined stimulation of the

receptor with inhibitions of several key signaling nodes with targeted small-molecule inhibi-

tors. Specifically, we preincubated inhibitors for JNK (5μM SP600125), MEK (1μM AZD6244),

PI3K (2μM BKM120), Btk (10μM Ibrutinib), AKT (1μM MK-2206), MTOR (1μM Rapamy-

cin), IKK (10μM MLN120B) and p38 (2μM SB203580) or solvent control for 3h. We then stim-

ulated BCL-2 cells with α-IgM for 30min or left unstimulated (control). Before and after

perturbation, phosphorylation of key signaling molecules was quantified to create a high-

dimensional data set. A bead-based multiplex ELISA platform (MagPix) was then used to mea-

sure the phosphorylation of fourteen key signaling and effector proteins: SYKY352, ZAP70Y319,

BtkY223, AKTS473, RPS6S235/236, BADS136, ERK2T185/Y187, MEK1S217/S221, p90RSKS380, GSK-3a/

bS21/S9, NF-κB-p65S536, HSP27S78, JNKT183/Y185 and cJunS63. The resulting data sets are
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presented as a heat map of log2 fold changes compared to unperturbed and unstimulated con-

trols, were we noticed a stark contrast in complexity between stimulated and unstimulated

inhibitor response data (Fig 1A).

Model-based analysis of B cell receptor signaling in BL-2 cells

We used the perturbation data set together with a literature-based starting network

[1,12,40,46] for our modeling pipeline to reverse engineer the signaling network downstream

of the BCR (Fig 1B). We performed modeling using STASNet, a Modular Response Analysis-

based modeling R package, to estimate optimal coefficient composition and quantification for

a given network structure to best match the perturbation data [Parametrization]. After fitting

the initial network, we adapted the network structure to the specific cell system by removing

links that did not contribute significantly to the goodness of fit (likelihood ratio test, p>0.05)

and tested systematically if adding a link significantly improves the network fit (likelihood

ratio test, p<0.05) [Adapt Network]. To prevent overfitting, structurally altered network mod-

els were validated by comparing simulations to data that were not used for model parameteri-

zation [Consistency]. These three modeling steps were iteratively repeated for every network

change until no further alteration was supported by the data [Final Network]. Fig 1C shows

the goodness of fit and the statistics of the consistency check during the network modeling

steps. During the course of modeling the reduced chi-square statistics, representing goodness

of fit, steadily decreases indicating better or equally good fit with every network alteration.

Next to the model fit a simultaneous consistency check procedure is conducted assessing the

ability to model the unseen less complex unstimulated inhibitor data as percent reduction of

weighted sum squared residuals (WSSR), when compared to untreated data as null model. For

each modeling step the model predicts unseen data better or equally well than for the previous

step. This is a good indication that the model development did not lead to overfitting.

Fig 1D presents the literature-derived starting network adjusted to the structure of the final

BCR signaling network model for BL-2 cells with pruned links indicated in grey and novel

links indicated in green (see S2 Fig for model fit vs. data comparison). Four of the removed

links correspond to redundancies in the receptor proximal signaling structure around PI3K

where removal resolved this non-identifiability. Other removed links belong to downstream

signaling, decoupling JNK and IKK from Btk. Furthermore, RPS6 seems to be only regulated

by AKT/mTOR and not ERK. HSP27 was not found to be regulated by p38 activity in BL-2

cells. Importantly, by extending the network, the modeling procedure discovered three novel

connections that significantly improved the model fit: (i) a positive crosstalk from mTOR to

JNK, (ii) a positive feedback from GSK3 to ZAP70 and (iii) a negative crosstalk from p38 on or

above RAF/MEK/ERK.

The network structure learned from BL-2 can be transferred to BL-41

perturbation data

After we have established a semi-quantitative network model of BCR signaling in BL-2 cells,

we aimed to assess if the final network describes BCR signaling in a general way. Thus, we per-

formed the same perturbations experiment that was conducted on BL-2 cells on a different BL

cell line, BL-41, (Fig 2A) and subsequently applied the same modeling strategy (cf. Fig 1B) to

derive a BL-41 specific signaling network. Starting from the same literature network as in BL-2

cells the network was derived that was best supported by the data. We noted that the reduced

chi-square statistics approached the theoretical limit of 1 during network adaptation, indicat-

ing accurate model optimization (Fit, Fig 2B). Furthermore, the simultaneous independent

consistency step (percentage of error reduction compared to unperturbed control) shows that
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Fig 1. Discovery of novel feedback and crosstalk structures in a BCR-driven signaling network by perturbation data-based modeling of BL-2 cells. (A)

Systematic perturbation data shown as log2 fold changes to solvent control DMSO. Data was generated by pre-treating BL-2 cells with inhibitors targeting key

effectors downstream of BCR for 3h with subsequent BCR stimulation using α-IgM for 30 min (upper panel) or no stimulation as consistency check (lower

panel). Phosphorylation of indicated signaling proteins (cf. D) was measured using bead-based ELISAs (mean, n = 3). (B) Modeling workflow using the

Modular Response Analysis-based method STASNet to derive a semi-quantitative directed network. The model requires systematic perturbation data (depicted

in A) and a curated literature network as starting network (cf. D). In order to avoid overfitting, the data was split into two parts: (1) α-IgM stimulated data was

used for parameter fitting and network adjustment and (2) unstimulated inhibitor data was used for verifying model consistency. After each network

adjustment step the unseen data part was simulated and compared. If the error reduction as compared to the null model was not significantly worse, the new

network adjustment was upheld otherwise the next best solution was simulated and tested. (C) Model performance for each modeling step from the literature-

derived starting model to the final model: (TOP) goodness of fit as weighted sum squared residuals divided by number of free parameters and (BOTTOM)

consistency check step as percentage of error reduction compared to unperturbed control as null model (see S1 Text BL-2_network_model.html: Tab ‘Network

derivation BL-2’). (D) Literature network adjusted to the final signaling network for BL-2 cells derived by the modeling pipeline depicted in B. grey line/text—

removed links/nodes; green line/text—added links.

https://doi.org/10.1371/journal.pcbi.1012488.g001
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Fig 2. BL-2-derived modeling structure can be transferred to cell line BL-41. (A) Systematic perturbation data for BL-41 cells generated alike the procedure

described in Fig 1A (mean, n = 3). (B) Model development statistics (TOP) goodness of fit as reduced chi-square and (BOTTOM) unseen data consistency

check as percentage of error reduction compared to unperturbed control as null model for each modeling step from the literature-derived starting model (black

PLOS COMPUTATIONAL BIOLOGY Core model of oncogenic B cell signaling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012488 October 1, 2024 7 / 27

https://doi.org/10.1371/journal.pcbi.1012488


the simulation quality of unseen data stayed approximately at a similar level during network

development (Consistency, Fig 2B), indicating that no considerable overfitting took place.

During model adaption, 4 adjustments were shared between BL-2 and BL-41. This includes,

two of the three additional links already identified in BL-2 cells before, i.e., p38->RAF and

mTORC1->JNK. However, 7 and 5 adjustments were BL-2- and BL-41-specific, respectively

(Figs 2C and S3). This divergence in proposed network structure also manifests in the fact that

only 14 of the 21 identifiable coefficient (path)s were shared in both cell lines (cf. S1 Text, BL-

2_network_model.html: Tab ‘11. Rem. PI3K -> Btk’ and BL-41_network_model.html: Tab ‘9.

Rem. Syk -> PI3K’). A structural overlap of only 66% for cell lines from the same lymphoma type

would indicate vastly different signaling. However, as our modeling technique employs a greedy

hill climbing link adjustment strategy, the resulting networks may represent a local optimum. To

further investigate this, we compared goodness of fit and model prediction (consistency) when

the respective network structure of one cell line would be used to fit the data of the other cell line.

Fig 2D shows the best fit and consistency statistics for the transferred networks (transfer) in com-

parison to the literature-based starting network (literature) and the adjusted literature-based net-

work (adjusted). Interestingly, the signaling network structure learned on BL-2 cells can be

faithfully transferred to fit a BL-41 data with strikingly similar statistical properties than the best-

found structure found for BL-41 itself. The reverse scenario, i.e., transfer of BL-41 best network

structure to BL-2, led to a worse fit and consistency, while only slightly better than the literature

network-based model. We assume that the reason for the better transferability is that the BL-2

perturbation data show a higher complexity (above noise) than the BL-41 data, in general and

especially for the very central AKT readout. This allows the more complex BL-2 learned network

structure to also fit the less complex BL-41 data, but not vice versa (compare S2 and S4 Figs).

Thus, it is evident that the current best network structure found for BL-2 cells can be trans-

ferred to BL-41 and results in an equally good model fit as if using the individually fitted net-

work structure from BL-41 data. This successful transfer strongly supports the view of the

similarity of BCR signaling in both BL cell lines. Furthermore, it indicates that the BCR signal-

ing network structure developed from BL-2 data can be seen as the most representative BCR

signaling structure for BL cells activated by a crosslink of the BCR (Fig 1C).

Next, we compared the fitted coefficient (path)s of BL-2 cells and BL-41 cells using the BL-

2-optimised network structure (Fig 2E). As both cell lines received the same inhibitor dose,

the difference in response should be attributed to the network wiring and not to the inhibitor

coefficient as the inhibitor coefficients only occur in combination with network coefficient in

the model. Therefore, we previously developed the option in STASNet to fix the inhibitor coef-

ficients to a certain value and allow the network coefficient (path)s to adapt accordingly [41].

We decided to fix the inhibitor coefficients to values learned from the BL-2 model so that

changes in response are now reflected in the other coefficient path(s). We performed a profile

likelihood analysis that unveiled that about half of the non-inhibitor coefficient (path)s (11 of

21, asterisks Fig 2E) are significantly different, i.e., the 95% pointwise confidence intervals [47]

do not overlap. For example, the coefficient path corresponding to the pathway from Btk via

and grey arrows in Fig 1D) to the final model (grey–reduction, green—extension). See S1 Text BL-41_network_model.html: Tab ‘Network derivation BL-41’.

(C) Venn diagram indicating the shared and not shared structural adjustments in the development of BL-2 and BL-41 cells starting from the same literature

network (cf. S3 Fig). (D) Model fit and consistency check statistics for fitted models on BL-2 and BL-41 perturbation data for three different network

structures: literature, cell-specific adjusted network (adjusted) and for the best-found structure of the respective other cell line (transfer). See also S2 and S4

Figs. (E) Network coefficients heatmap from models fitted to the BL-2 learned structure for the indicated cell lines. Comparability was ensured by fixing the

inhibitor coefficients to BL-2-learned values as both cells received the same inhibitor doses. Stars denote coefficients that are significantly different (i.e., 95%-

point wise confidence intervals do not overlap, see S1 Table). (F) Data excerpt for the model-derived negative crosstalk prediction from p38 to RAF/MEK/ERK

pathway in BL-2 and BL-41 cells showing the upregulation of α-IgM-induced activation of pERK and pMEK by the p38 inhibitor SB203580 (mean ± s.e.m.,

n = 3), but no upregulation by p38 inhibitor alone.

https://doi.org/10.1371/journal.pcbi.1012488.g002
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p38 to MEK is estimated to be stronger in BL-41 than in BL-2 cells. Interestingly, this coeffi-

cient path corresponds to the cross talk from p38 to RAF/MEK/ERK, and the underlying data

shows that the effect is only notable in the presence of α-IgM stimulus but not when p38 inhib-

itor is applied without stimulation (Fig 2F).

In summary, the BL-2 model constitutes a generic network structure that can accurately

describe signaling for both BL cell lines. This finding is important as it demonstrates the exis-

tence of a signaling network core for the activated BCR in BL cells. In addition, three hitherto

undescribed links in BCR mediated intracellular signaling in BL cells were unveiled to disen-

tangle upstream wiring including the yet not fully resolved receptor proximal signaling events

(Fig 1C). These so far undescribed network links include the strong negative crosstalk from

p38 to RAF/MEK/ERK, which has been previously described in endothelial cells [48] or

EGFR-activated epithelial cells [49]. For BCR activated signaling this feedback however was

not yet described. Therefore, we decided to conduct further experiments to characterize the

model-predicted p38-mediated dampening of MEK/ERK phosphorylation.

An α-IgM dependent feedback signal from p38 (MAPK14) attenuates

pMEK and pERK

Since the model-based findings rely on a single time point (30min after α-IgM treatment), we

investigated the temporal dynamics of MEK and ERK phosphorylation in BL-2 cells (Fig 3A).

An increase in MEK and ERK phosphorylation as early as 2 min after α-IgM-mediated BCR

stimulation is observed in the presence of the p38 inhibitor SB203580. This p38 inhibitor-

dependent increase of MEK/ERK phosphorylation persists for the entire span of the measured

60 minutes post stimulation with the strongest induction within the first 10 minutes and a

slight decrease thereafter (Fig 3A).

To directly asses the involvement of p38 in this predicted cross talk, a knockdown of p38α
(MAPK14) was performed. p38α is one of the most abundantly expressed isoforms of p38 in

BL-2 cells (S5 Fig). Importantly, the knockdown of p38α affects the phosphorylation of ERK

similarly to the previous p38 inhibition (Fig 3B). This further supports the observation that

p38 activity dampens the MEK/ERK pathway and that in BL-2 cells this seems to be conferred

by the α-isoform of p38.

By analyzing subcellularly fractionated cell lysates, it can be shown that both cytosolic as

well as nuclear pERK is increased in the presence of the p38 inhibitor SB203580 in α-IgM-

stimulated BL-2 cells (Fig 3C). As only active ERK is able to enter the nucleus but not MEK

[50] it is unlikely that the cause of the upregulation is a prolonged retention of ERK together

with active MEK in the cytosolic scaffold. This finding also indicates that ERKs activity is likely

to be propagated to its many nuclear targets even in the presence of p38 inhibitors.

Having verified the negative crosstalk from p38 on MEK and ERK, the next step was to

characterize the molecular mechanism that underlies this crosstalk. The RAF-MEK-ERK sig-

naling cascade is a well-characterized MAPK pathway involved in different cellular processes

initiated by different cell surface receptors and RAS. Upstream kinase RAF is known to be neg-

atively regulated by phosphorylation at serines 289, 296 and 301, which are known negative

feedback sites phosphorylated by ERK [51]. Since p38, as ERK, belongs to the family of MAPK

we examined whether p38 regulates phosphorylation at serine 289, 296 and 301 and thus

might affect RAF1 activity. After 30 minutes of α-IgM stimulation, RAF1S289/296/301 phosphor-

ylation is clearly detectable and diminished by MEK inhibition using AZD6244, confirming

the regulation by ERK also within the BCR signaling cascade (Fig 3D). However, RAF1 phos-

phorylation at these sites is not affected by p38 inhibitor SB203580 (Fig 3D). Also, in BL-2 and

CA-46 Burkitt lymphoma cells no difference on the RAF1 feedback sites can be seen (Fig 3E).
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This indicates that p38 must attenuate the MEK-ERK pathway directly after BCR activation

while the feedback from ERK to RAF1 seems p38-independent.

Next to the feedback we also checked upstream activation of RAF1 by measuring phosphory-

lation at serine 388 [52] in three different BL cell lines BL-2, BL-41 and CA-46 (Fig 3E). Phos-

phorylation of S338 increases slightly after BCR activation, however, there is no effect by p38

inhibition. Importantly, in all three cell lines p38 inhibition affects the MEK/ERK pathway in a

comparable way after α-IgM treatment as shown by upregulation of pERK (Fig 3E). Therefore,

our data support the view that this crosstalk is a widely existing phenomenon in BL cells. In

addition, we also saw that CD40L stimulation in CA-46 cells could also produce hyperactivation

of pERK together with p38 inhibition (S6 Fig). This demonstrates that the observed p38-ERK

crosstalk is not only limited to BCR activation, but is an inherent mechanism in BL signaling.

Global phosphoproteomic analysis of BL-2 cells supports model-derived

pathway network crosstalk

To further characterize the crosstalk from p38 to MEK/ERK and to investigate more general

consequences on overall signaling, a systematic proteomic analysis was performed.

Fig 3. Increased MEK/ERK-pathway activity in BCR-activated B cell lines after p38 intervention. (A) Changes in the phosphorylation of MEK and ERK in BL-2 cells

after treatment with α-IgM in the presence or absence of the p38 inhibitor SB203580. (B) Phosphorylation of ERK is further increased in α-IgM-treated BL-2 cells after

24h of p38α (MAPK14) knockdown. (C) Phosphorylation of ERK is enriched within the nucleus of α-IgM treated BL-2 which is further enhanced by inhibiting p38.

Tubulin and HDAC1 were used as reference for the cytosolic and nuclear fraction, respectively. (D) (TOP) Phosphorylation of c-RAF at serine-residues 289/296/301 is

increased after 30 min α-IgM treatment in BL-41 cells but not affected by p38 inhibition. The inhibition of MEK using AZD6244 interrupts the phosphorylation of RAF.

Representative Western blot. (BOTTOM) Bar plots quantifying c-RAF phosphorylation measurements for n = 2 replicates. (E) p38 affects the MEK/ERK pathway in a

comparable way in different BL cell lines after α-IgM treatment. Shown are phosphorylations of Raf1 at serine 338 (activatory site) and 289/296/301 (ERK feedback sites)

as well as of ERK and p38 in Burkitt lymphoma cells BL-2, BL-41 and CA-46.

https://doi.org/10.1371/journal.pcbi.1012488.g003
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Specifically, we performed phosphoproteomic mass spectrometry combined with the tandem

mass tag (TMT) technology that allows to quantitatively compare phosphorylation in different

samples without dropouts [53].

Phosphoproteomes were obtained for unstimulated controls, and cells stimulated for 30

min with α-IgM that were incubated with inhibitors of p38 (SB203580), PI3K (BKM120) and

mTORC1 (Rapamycin) or solvent control (DMSO) as in the above-described analysis. PI3K

inhibitor was chosen as it represents a central hub in the deduced network model with

mTORC1 the target of rapamycin being a major downstream mediator, whereas the p38 inhi-

bition was included to get an unbiased insight into the downstream effects of p38 in BCR sig-

naling as well as to extend the understanding of the p38-MEK/ERK crosstalk in B cells.

Overall, 28871 phosphosites from 5698 proteins (localization probability>0.75) were iden-

tified reliably. When investigating the global effect on the 3000 most varying phosphosites by

hierarchical clustering (Fig 4A) and principal component analysis (Fig 4B), it is evident that

α-IgM treatment had the strongest impact. Interestingly, inhibition of PI3K by BKM120

reverted the effect of α-IgM partially, and thus α-IgM+PI3Ki samples were located between

Control+DMSO and α-IgM+DMSO samples in PC1-PC2 space. α-IgM treatment in combina-

tion with Rapamycin (mTORC1) or SB203580 (p38) clustered and colocalized well with α-

IgM+DMSO treatment. This indicates that the inhibition of mTORC1 and p38 had a rather

confined influence on the phosphoproteome in α-IgM activated BL-2 cells.

Differential expression analysis showed that α-IgM treatment had the largest effect with

8094 phosphosites (28% of detectable phosphosites) that were significantly different compared

to untreated control (limma FDR�5%, Fig 4C). PI3K inhibition had an influence on 1433

phosphosites when compared to α-IgM treatment alone. mTORC1 inhibition led to a signifi-

cant change in only 259 phosphosites, of which 47% are shared sites with its upstream regula-

tor PI3K. With 12%, a considerable part of the α-IgM-regulated phosphoproteome is counter-

regulated by PI3K (980/8094). Interestingly this PI3Ki counter-regulation is much more prom-

inent for α-IgM down-regulated sites (23%) than for α-IgM upregulated sites (3%). Due to its

large counter-active potential, it can be assumed that PI3K is a very potent target for treating

BCR-addicted neoplasms.

Differences in substrate phosphorylation are usually caused by differences in kinase activity.

Therefore, upstream kinase annotation provided by the PhosphoSitePlus Database [54] was

used to get an insight into the potential kinase activity by a combined analysis of their target

sites (Fig 4D). Significant kinase activity changes were defined by testing all treatments to α-

IgM treatment alone using a pairwise t-test. Kinases acting further upstream such as Syk and

ZAP70 are most strongly regulated by α-IgM vs Control treatment. The effect of inhibitors on

those upstream kinases was rather small with marginally significant effects of PI3Ki counter-

acting SYK-target induction and mTORi increasing ZAP70 target induction (Fig 4D). Reas-

suringly, bona fide target kinases for the inhibitors, i.e., AKT for PI3K inhibition and mTOR/

p70S6K for mTOR inhibition showed the strongest and most significant reversal of α-IgM

induction. Importantly, the proposed p38-MEK/ERK crosstalk is also visible in the significant

upregulation of MEK and ERK target site phosphorylations after SB203580 treatment. This

further indicates that the crosstalk is functional and inhibition of p38 leads to an enhanced

ERK signaling output on a global scale.

Having ascertained the negative p38-MEK/ERK crosstalk, the significantly regulated sites

(limma, FDR�5%) by SB203580 were further investigated (Fig 4E). p38 inhibitor responsive

phosphosites are rather specifically regulated, with 70% (24/34) of significantly regulated sites

neither co-regulated by other inhibitors nor counteractively regulated by α-IgM treatment. 12

sites are strongly downregulated and 22 hyperactivated compared to Control and DMSO treat-

ment. Three of the hyperactivated sites are activatory phosphosites of ERK1/2 (red)
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Fig 4. Phosphoproteomics analysis supports the BCR-signaling model and reveals a dominant effect of the PI3K pathway inhibition onto

BCR-signaling in BL-2 cells. Analysis of Tandem-Mass-Tag (TMT) Mass spectrometry measurements for BL-2 cells treated with α-IgM and

inhibitor solvent DMSO or inhibitors of PI3K (BKM120), MTORC1 (Rapamycin) or p38 (SB203580) (n = 2). (A) Hierarchical clustering of

3000 most varying phosphosites demonstrates a global effect of α-IgM and PI3K inhibitor BKM120 on the phosphoproteome and subtle effects

of the remaining inhibitors. (B) Principal component analysis shows that α-IgM effect is governing the principal components 1 and 2. Only
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demonstrating a direct ERK hyperactivation. We then checked other phosphosites for known

ERK-targets, using a previously published compendium of ERK targets [55] Seven of the p38

inhibitor-dependent phosphosites are described as ERK targets, of which six follow the same

hyperactivation pattern as ERK phosphorylation itself. This further corroborates that next to

ERK also downstream partners are hyperactivated by p38 inhibition. Notably TRRAP, the

only identified known ERK target to be downregulated by p38 inhibition seems to be a shared

target of both ERK and p38. This can be proposed based on a SILAC-based phosphoproteo-

mics study which observed, that TRRAPS2077 is upregulated after 15 min EGF stimulation and

downregulated by EGF stimulation and p38 inhibitor (SB202190) treatment in HeLa cells [56].

Taking into account the similarity of the results in that study and our own observation we con-

clude that TRRAPS2077 is dominated by p38 over ERK activity.

From the phosphoproteome analysis, we conclude that p38 inhibition indeed leads to stron-

ger ERK activation, but it is rather confined to a small subset of the signaling network. While

the mechanism of the crosstalk remains unclear, the phosphoproteome does identify 19 candi-

date phosphosites that are p38-regulated but not known ERK targets which could be investi-

gated in future studies.

BL-2-dervied network improves starting basis for network development of

DLBCLs

Having developed a semi-quantitative model for activated BCR signaling in BL cells we sought

to investigate if a similar signaling network exists in cells with aberrant BCR signaling such as

in ABC-like DLBCL. For that reason, the intracellular signaling networks of two representative

cell lines HBL-1 and OCI-LY3 were analyzed. Similarly, to BL-cell lines earlier (cf. Fig 1A), the

signaling in both cell lines was perturbed using the same inhibition and measuring scheme.

Additional α-IgM stimulation was not required, as both cell lines exhibit chronically active

BCR signaling [9]. The resulting phosphoprotein perturbation data of both cell lines (Fig 5A)

were analyzed using our STASNet pipeline.

We first tested if the literature-based network or the BL-2-derived network provides a better

starting point for the development of the signaling model. We trained models for both cell

lines on (a) the literature network (cf. Fig 1D grey and black arrows) and (b) BL-2-derived

final network (cf. Fig 1D) without receptor proximal signaling as no stimulation perturbation

was present. For both DLBCL cell lines, we found that the BL-2-derived model resulted in a

better fit compared to the literature-based model (Fig 5B). We then structurally adjusted the

BL2-network to the respective DLBCL-cell line reaching reduced chi-square residuals close to

the theoretical expectance for optimal fit, i.e., 1 (Fig 5B–adjusted from BL-2). We also tested

whether those cell line-specific fits yield generality in DLBCLs and re-fitted HBL-1 and

OCI-LY3 data with the best network structure identified for the respective other cell line.

Since both cross-fittings resulted in clearly higher residuals than the respective self-best net-

work fit, we decided to use the individually developed networks for the further analysis.

The corresponding network starting from the BL-2 model (without upstream wiring due to

missing perturbations above PI3K and Btk) is presented in Fig 5C before and after training on

PI3Ki treatment is able to partly revert the α-IgM effect. (C) Overlap of differentially regulated phosphosites (limma, FDR�5%) for indicated

selected comparisons. (D) Upstream kinase activity assessment on base of log2 fold changes (vs. α-IgM+DMSO) in PhosphoSitePlus-annotated

target sites (Nov 2021) for selected kinases. Significance asserted by two-sided t-test: ns—not significant; * - 0.05; ** - 0.01; *** - 0.001; **** -

0.0001); Average value indicated. (E). Phosphosites significantly regulated by p38 inhibitor SB203580 (limma, FDR�5%). Left panel denotes

which site was found to be significantly regulated (blue—down; red–up) by the indicated comparison. Sites are annotated as follows: ‘HGNC
symbol’_’amino acid’_’position’_’number. of phosphosites’; ERK activation sites and known target sites of ERK [55] are indicated by green and

orange circles, respectively.

https://doi.org/10.1371/journal.pcbi.1012488.g004
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HBL-1 and OCI-LY3 cell lines. In both cell lines the links from Btk to p38 and ERK to GSK3

were removed by the network adjustment strategy of STASNet (Fig 5C). In HBL-1 cells addi-

tional links from JNK/cJun to AKT and from AKT to p90RSK were required, whereas in

OCI-LY3 the network required a link between JNK/cJun and GSK3 and between IKK and

AKT for optimal fits. The link from ERK to p90RSK was removed only in the HBL-1 network.

In agreement with the findings from the analysis of the Burkitt lymphoma cell line BL-2, we

also note a central role of PI3K in the studied DLBCLs indicated by the network central

Fig 5. BL-2-derived network structure sets a veritable starting base to develop networks for DLBCL cell lines HBL-1 and OCI-LY3. (A) Systematic

perturbation data of bead-based ELISA measurements of the DLBCL cell lines HBL-1 and OCI-LY3 quantified as log2 fold changes to solvent control (DMSO);

mean of n = 3. (B) Goodness of fit expressed as reduced chi-square statistic Xr on selected network structures for the two DLBCL cell lines HBL-1 and

OCI-LY3. literature–network from Fig 1B; BL-2 –BL-2 network derived from Fig 1C; adjusted from BL-2 –BL-2 network locally adjusted to respective DLBCL

cell line; OCI-LY3/HBL-1 –final adjusted network of respective other DLBCL cell line (see C). (C) Network structures of BL-2 derived starting network and

final DLBC-specific networks trained on HBL-1 and OCI-LY3 data (see A). (D) Side-by-side comparison of the model coefficient (path)s (log scale) with fixed

inhibitor strengths set to mean of both cell line models. Empty tiles indicate missing links in one of the cell lines (individual links). Asterisks point to non-

overlapping confidence intervals as estimated by STASNet profile likelihood function (see S2 Table).

https://doi.org/10.1371/journal.pcbi.1012488.g005
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position of the PI3K node even after the individual network adjustment (Fig 5C, bottom), i.e.,

every network node can be reached by PI3K. In addition, when inspecting the links removed

and added in both DLBCL cell lines, a shift from less control by MAPK to more control by

mTOR/AKT can be noticed which further corroborates the importance of PI3K in DLBCL sig-

naling. This PI3K/mTOR-dependency is further underlined by the growth inhibitory effect of

corresponding inhibitors in those cell lines (see S7 Fig).

Next to identifying the structural similarities and differences, STASNet allows to reveal the

quantitative signaling differences in the cell lines by comparing the coefficient (path)s

(Fig 5D). For better comparability we fixed the inhibitor coefficients to the mean of both cell

line models. After applying parameter stability analysis using profile likelihood, we noted that

of the 15 shared links only 2 (AKT->BAD, MEK->ERK) are not significantly different (i.e.,

95% confidence intervals do not overlap; S2 Table). Of note the p38->Raf->MEK crosstalk is

negative in HBL-1, like in BL-2 and BL-41, but faintly positive in OCI-LY3.

We found that from 18 identifiable coefficient (path)s that are present in the BL-2 network

model aside from receptor-proximal signaling (Fig 5C TOP), 15 (83%) and 16 (89%) coeffi-

cient (path)s were also required in HBL-1 and OCI-LY3 cell line models, respectively. Next to

the removal of three (HBL-1) and two (OCI-LY3) links, both models required only two addi-

tional coefficients for their final best fit, suggesting that many insights from α-IgM-stimulated

BL cells can be transferred to DLBCLs. However, these changes are necessary, as we observe a

~3-fold improvement of fit, i.e., reduction of Xr, in both DLBCL cell lines with five and four

adjustments for HBL-1 and OCI-LY3, respectively (Fig 5B). This indicates that a common

model of BL and DLBCL would perform poorly and local adjustments are still required but

that a common conserved core network of BCR downstream signaling exists.

Conserved core network of chronic and acute B cell receptor signaling

To further analyze similarities and differences between the modelled cell lines, we decided to

investigate the core network. We defined the core network to consist of all edges that are pres-

ent in at least three of the four final cell line models, which produces a network of 16 nodes

and 16 edges (Fig 6). For better comparability we binned the coefficients into five distinct

states: amplification (r> 1), dampening to neutral relay (0< r < 1), no link (r = 0), attenuat-

ing to neutral inhibition (0 > r> -1) and enforced inhibition (r < -1).

When analyzing the overlap, we find that 9 of 16 coefficients are qualitatively similar, i.e.,

coefficients are either all positive or all negative. This number can be elevated to 12 (75%) by

taking into account that the coefficients are multiplied along the path such that a negative qual-

itative response coefficient between PI3K and AKT in BL-41 cells leads to an overall positive

response from PI3K to AKT downstream targets mTOR, BAD, NFkB and GSK3. This renders

the sign of the response same for three of the AKT downstream targets in all four cell line mod-

els when viewed from PI3K. The negative quantification of the PI3K-> AKT link in BL-41

cells can be attributed to the weak AKT signal found in that cell line (cf. Fig 2A). When using

the above-mentioned interpretation for BL-41 coefficients downstream of AKT, we note that

for all 16 coefficients at least three out of four exhibit the same sign, indicating a strong overall

signaling conservation. The deviating coefficients for one cell line model are the aforemen-

tioned negative impact of PI3K on AKT in BL-41 cells, a negative effect from AKT to GSK3

and a weakly positive p38->RAF crosstalk in OCI-LY3 (whose confidence interval spans over

0 indicating unimportance of that link, cf. S2 Table) and a missing link in ERK-> p90RSK in

HBL-1 cells. Since none of these outlier links is inherent to both cell lines of DLBCL or Burkitt

Lymphoma origin we are unable to assign those differences to adaptations to chronic B-cell

receptor signaling. Looking for more subtle common changes between acute and chronic BCR
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signaling a stronger positive feedback from GSK3 and a stronger coefficient between mTOR

and RPS6 for HBL-1 and OCI-LY3 is observed. This points to the fact that only subtle changes

seem to occur. In summary, we quantitatively describe a conserved core network in the studied

cell systems.

Conclusion

In this work, we established a (semi)-quantitative signaling network of the BCR and tested it in

different B cell lymphoma cell lines. We explored how a more quantitative understanding of

signaling can be used to describe a conserved B cell receptor regulated signaling network,

which can be used as a starting point to quantify cell-specific, individual networks. The devel-

opment of the new BCR network model allowed us to introduce so far not described links in

BCR mediated intracellular signaling. Earlier described network cross talks and feedbacks

were confirmed, but also new feedbacks are identified further supporting the complexity of the

BCR signaling network. Thus, the well-known RAF->MEK->ERK-|RAF regulatory loop also

exists in BLs and DLBCLs, whereas the negative impact of BCR mediated p38 activation onto

this loop is a newly discovered crosstalk found in three BL cell lines BL-2, BL-41 and CA-46

Fig 6. Conserved core network of chronic and acute B cell receptor signaling. Consensus network structure and coefficient

quantification of links present in at least 3 of the 4 modelled cell lines with chronic (HBl-1, OCI-LY3) and acute (BL-2, BL-41)

BCR signaling. BL-2 and BL-41 information retained from models trained on the BL-2 structure and with inhibitor strength fixed

to BL-2 model (Fig 2E and S1 Table), the connection for GSK3 to Btk was retrieved by multiplying the coefficients

r_ZAP70_GSK3A.B with r_Btk_ZAP70. HBL-1 and OCI-LY3 information retained from their respective adjusted model when

started from the BL-2 network with inhibitor strength fixed to average of both cell line models. (Fig 5D and S2 Table). Note that

the coefficients for ERK->RAF, p38-> RAF and Btk->RAF all occur in combination with the RAF->MEK coefficient so that the

modelled strength represents the response on MEK instead of RAF.

https://doi.org/10.1371/journal.pcbi.1012488.g006
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and one DLBCL cell line HBL-1. We propose that the identified negative crosstalk from BCR

mediated activation of p38 to the RAF/MEK/ERK pathway might dampen an excessive RAF/

MEK/ERK signaling cascade. Despite the discovery of feedbacks and crosstalks in ERK and

p38 signaling we could not find a cellular dependency in the cell lines we studied. However, as

we determined that those signaling motifs are conserved across different B cell lymphoma

types it might be possible that insights of this study apply also to other B cell lymphomas. For

example, a recent study described an essential dependency to MAPK activity in Chronic Lym-

phocytic Leukemia progression suggesting that insights from this study could be valuable for

treatment decisions in CLL [57].

While the mechanism behind the p38 –MEK/ERK crosstalk remains enigmatic, it is clear

that it is neither mediated by the ERK feedback sites nor the tested activation sites of RAF1.

RAF is a complex kinase family with more activity regulating phosphosites than we could

observe with our analysis and at least another important isoform BRAF [58]. Therefore, we

cannot rule out that the effect could still manifest on other RAF1 activity sites or the BRAF iso-

form. As RAF activity is neither measured nor perturbed, the model coefficients of the p38

crosstalk are only identifiable as combinations with the RAF->MEK link (S1 and S2 Tables)

which means a direct crosstalk from p38 to MEK would result in the same fit. A previous study

on Hela cells determined that the crosstalk is conferred by direct binding of p38 to ERK [59],

as it demonstrated direct binding and no change in MEK phosphorylation. In our study, as all

cell line models retained a strong negative feedback from ERK to RAF (Fig 6)—which causes

an hyperactivation of MEK, when ERK activity is switched off by e.g., a MEK inhibitor [51, 60]

—we would expect a downregulation of MEK activity when ERK is hyperactivated alone.

Since in our data instead of an attenuation we observe an upregulation of MEK phosphoryla-

tion in cells that show the p38 crosstalk when treated with p38 inhibitor (Figs 2F, 3A and 5A),

we postulate that the crosstalk must act on or upstream of MEK.

In addition, a positive link between mTOR and JNK and a positive feedback downstream of

AKT to upstream of PI3K/Btk is proposed in our consensus model, which notably are kept

also in both DLBCL cell line models. Importantly, also the qualitative wiring of the established

core BCR network is conserved across all or at least the majority of cell lines and only few cell

type- and cell line-specific characteristics could be detected.

In conclusion, we could demonstrate that the more generic network trained from BL-2 and

BL-41 cell lines had better transfer capacity to DLBCL cell lines HBL-1 and OCILY3 than the

literature network indicating that a model trained on BCR-activated B-cells is informative to

be transferred to BCR-driven cancer models. Importantly, our conserved BCR network model

can be applied to the situation in antigen-driven BCR activation (BL-2/BL-41) and the situa-

tion, were the BCR pathway is antigen independently activated, driven by gain-of-function

mutations in specific signaling molecules of the BCR pathway (HBL-1/OCI-LY3). A recent

study that compared primary Chronic Lymphocytic Leukemia and non-malignant B Cell sig-

naling by modeling a smaller network (5 nodes) using Bayesian inference learning underscores

our finding by determining only a modest topology difference between the malignant and

non-malignant network [61]. In here we can recapitulate this finding on a larger core network

(16 nodes, 16 edges) for aberrant and non-aberrant B-cell receptor driven signaling (Fig 6).

Material and Methods

Cell culture and stimulation

BL-2, BL-41, and OCI-Ly3 cells were obtained from the DSMZ (Braunschweig, Germany).

HBL-1 cells were kindly provided by D. Krappmann (Munich, Germany). BL-2 and BL-41

cells were cultivated as described previously at cell densities between 2x105 and 1x106 cells/ml
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[62]. For stimulation studies, BL-2 and BL-41 cells were cultured in RPMI1640 with 10% FCS

at 3x105 cells/ml and incubated with 1.3μg/ml goat α-IgM F(ab)2 fragments (Jackson Immu-

nity) for indicated time points. For pathway interventions cells were treated with DMSO, 5μM

SP600125, (all Merck KGaA, Darmstadt, DE), 1μM AZD6244, 2μM BKM120, 10μM Ibrutinib,

1μM MK-2206, 1μM Rapamycin (all Selleckchem, Munich, DE), 10μM MLN120B (Med-

ChemExpress, Sollentuna, SE), 2μM SB203580 (Sigma-Aldrich, St. Louis, US). HBL-1 or

OCI-LY3 cells were cultured in RPMI1640 with 10% FCS at 5x105 cells/ml. For studying pro-

tein phosphorylation, the cells were incubated with inhibitors for 3 hours. HBL-1 and

OCI-LY3 were then harvested, while BL-2 and BL-41 cells were incubated for additional 30

minutes with 1.3μg/ml goat α-IgM F(ab)2 fragments (BCR activation) or left untreated. Cells

were harvested using corresponding inhibitors of phosphatases (PhosSTOP Roche, Basel, CH)

and proteases (cOmplete Mini Roche, Basel, CH) and protein was isolated using RIPA buffer.

Western blot analysis

Cells were analysed for protein expression by SDS polyacrylamide gel electrophoresis and

Western blot analysis using the following antibodies: mouse monoclonal anti α-tubulin (#05–

829, Merck Millipore, Burlington, US), rabbit α-p-AKTSer473 (#9271), rabbit α-pan AKT

(#9272), rabbit α-p-p38 (#9211), rabbit α-p38 (#9212), rabbit α-p42/44 (#4695), mouse α-

MEK1/2 (#4694), rabbit α-p-p42/44 (#4370), rabbit α-p-p42/44 (#4377), rabbit α-p-MEK1/2

(#9154), rabbit α-p70 S6 Kinase (49D7) (#5707), rabbit α-p-p70 S6 KinaseThr389 (108D2)

(#9234), α-p-Raf1Ser289/296/301(#9431), rabbit α-p-Raf1Ser338 (56A6) (#9427)(all from Cell Sig-

naling Technology) and α-mouse HRP polyclonal goat (D1609) and α-rabbit HRP polyclonal

goat (E1710) (all from Santa Cruz Biotechnology, Inc.).

Bio-Plex multiplex immunoassay

To measure all protein phosphorylations in one sample, the magnetic bead-based multiplex assay

(BIO-RAD) was performed. The principle is that a specific antibody coupled to a color-coded

bead identifies the total protein of interest while a second detection antibody determines the mag-

nitude of a distinct phosphorylation. For this analysis, the Bio-Plex Pro Cell Signaling Reagent Kit

(BIO-RAD) was used. The treated lymphoma cells were cooled down by addition of the three-

fold volume of ice-cold DPBS supplemented with 1xPhosSTOP (Roche) and 100μM sodium

orthovanadate. After 5 minutes centrifugation (500xg, 4˚C) the cells were washed once. Accord-

ing to the instruction manual the cells were lysed in the provided buffer containing 1xfactor QG

and 2mM PMSF. After shaking for 20 minutes at 4˚C, debris was removed by centrifugation

(14000xg, 4˚C) for 15 minutes. The analysis with the Bio-Plex Protein Array system (BIO-RAD)

was done as published before [26] and according to the manufacturer’s instructions. Specific

beads were used for p-SYKY352, p-ZAP70Y319, p-BtkY223, p-AKTS473, p-40S ribosomal protein

S6S235/S236, p-BADS136, p-MEK1S217/S221, p-ERK1/2T202/Y204, T185/Y187, p-p90RSKS380, p-

GSK3αßS21/S9, p-HSP27S78, p-JNKT183/Y185, p-c-JunS63 and p-p65 NF-κBS536. The Bio-Plex man-

ager software and R package lxb was used for data acquisition.

Network modeling

For the quantitative network modeling from systematic perturbation data we used our previ-

ously developed R package STASNet Version 1.0.2 (available on https://github.com/

molsysbio/STASNet), which is a derivative of Modular Response Analysis [38, 63] adapted to

model incomplete signaling perturbation data [26, 39]. Briefly, a perturbation p in a biochemi-

cal network is propagated through the network interactions resulting in an experimentally

observable global response Rip on node i as steady state change. In contrast the local response
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coefficient rip, represents the direct steady state change of node i upon perturbation p without

allowing the perturbation to propagate through the network which is typically not measure-

able. Given a full systematic perturbation and measurements regime, these direct network con-

nectivities can be estimated from the global response matrix as:

R ¼ � r� 1∗p ð1Þ

Where p is a matrix containing the coefficients for direct target perturbation strengths,

each column with only non-zero entries on the perturbed node(s). Due to noise and an incom-

plete experimental design, we can only numerically approximate the coefficients of the right

side of Eq (1) from the global response matrix. As oftentimes not all nodes can be measured

and perturbed, in STASNet we solve the underdetermined situation threefold: (i) we only fit

entries of R that were measured, (ii) we utilize prior knowledge by using a literature-derived

starting network (i.e., a binary representation of r), with which we symbolically fill the entries

of r and (iii) we apply gaussian elimination to derive identifiable combinations of r. The

parameters of the model are the entries of r and p, termed local response coefficients, and per-

turbation coefficients, respectively. In here we use the term ‘coefficients’ for both, if identifi-

able, and if not the structurally identifiable combinations thereof will be termed ‘coefficient

paths’.

Regarding the perturbation coefficients we distinguish between stimulation and inhibition.

We include the stimulated node s in the network and attribute the stimulation strength to the

local response coefficients directly reached by node s and set the corresponding entry in p to 1.

For modeling inhibitors, we cannot do this transfer as we model a twofold action on the down-

stream targets of the inhibited node: (i) for basal, i.e. unstimulated, signaling a negative effect

on the activity of the downstream nodes (l2[−1,0)) and (ii) for simultaneous stimulation a

dampening of the upstream signal by multiplying with the exponential of l (el2(0,1)), cf. [39]

illustration in Fig 2.

We then quantify the so-called coefficient (path)s by a combination of Latin hypercube

sample governed initialization and a Levenberg Marquardt gradient descent method to mini-

mize the weighted quadratic difference between the measured global steady state changes and

the model derived quantification (cf. Eq (2)). Afterwards we probe the network for superfluous

or missing links and repeat the procedure for every step-wise development of the network. For

a detailed mathematical explanation of the STASNet methodology we refer to supplementary

information S1 in [39].

The model development strategy used in this study is illustrated in Fig 1B and accompa-

nying text. More detailed modeling workflows as well as the required data for all modelled cell

lines and scenarios are provided by step-by-step accompanying html reports available online

(S1 Text, https://zenodo.org/doi/10.5281/zenodo.10732059).

To assess goodness of fit we calculate the weighted sum squared residuals (WSSR) which is

generally defined as:

WSSR ¼
X data � model

error

� �2

ð2Þ

where the data represents the data points, the model the prediction and the error the anti-

body-wise standard error derived from the replicate measurements.
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Using Eq (2) for the model prediction of the fitted data (WSSRfit) we calculated the reduced

chi square statistics Xr as goodness of fit assessment, which is defined as:

Xr ¼
WSSRfit

nfree parameter
ð3Þ

Where the number of free parameters is given by number of data points minus the number

of model parameters, i.e., identifiable coefficient (path)s. For the model consistency step the

STASNet function simulateModel() was used to generate the prediction of unstimulated but

inhibited data of which the sum of weighted squared residuals (WSSRsimulation) was calculated.

We then compared this to the residuals that a suitable null model, in here unperturbed data,

would produce (WSSRnullmodel) and defined the prediction capacity better than null model as

follows:

Error reduction %ð Þ ¼ 100∗
WSSRnullmodel � WSSRsimulation

WSSRnullmodel

� �

ð4Þ

For comparative combined modeling we used the following strategy. Since inhibitor dos-

ages were always the same but the response to the inhibitors varied from cell line to cell line,

the actual difference is thought to happen on the internal wiring not on the inhibitor perturba-

tion strength coefficient. Therefore, when comparing different models, we fixed the coeffi-

cients encoding the inhibitor strengths to the same value across the models to be compared

and allowed the STASNet algorithm to compensate by refitting the remaining coefficient

(path)s using the STASNet routine refitModel().
As the typical kinase inhibitors usually block the phosphorylation of downstream nodes, by

either interfering with the binding of targets or ATP, the inhibitor action is implemented such

that it affects the downstream nodes of the actual target but not the target itself. In case this

effect is also acting on the targeted node itself we will ignore the measurement of the targeted

node (which is done for inhibitors of AKT and Btk in this study, see also S2 and S4 Figs and

S1 Text).

Mass spectrometry based phosphoproteomics

For phosphoproteomic profiling by mass spectrometry, cell pellets were lysed in urea lysis

buffer (6M urea, 2M thiourea, 100mM Tris-HCl, pH 8, 150mM NaCl, 1mM EDTA, phospha-

tase inhibitor cocktail 2 and 3, 10mM NaF, Sigma), reduced with 10mM DTT (dithiothreitol,

Sigma) for 45 minutes followed by alkylation with 40mM CAA (2-chloroacetamide, Sigma) for

30 minutes. After treatment with Benzonase (Merck, 50 units) for 30 min at 37˚C, samples

were centrifuged for 10 minutes at 12 000 rpm. The supernatant was collected and protein

concentration was determined. 200μg protein per sample was digested with 2μg endopeptidase

LysC (Wako), followed by a 3:1 dilution with 100mM ammonium bicarbonate and addition of

2μg sequence-grade trypsin (Promega). Samples were digested at room temperature overnight

and acidified with formic acid (final concentration 1%). The resulting peptides were cleaned

using C18 SepPak columns (Waters, 100mg/1cc), dried and resolved in 50mM HEPES (pH 8).

Peptides were labeled with 11-plex tandem mass tag (TMT, Fisher Scientific) reagents follow-

ing the vendors instructions. After combining all samples and C18 SepPak-based clean-up

(Waters, 200mg/1cc), samples were fractionated by high-pH reversed phase off-line chroma-

tography (1290 Infinity, Agilent) and pooled into 15 fractions, which were applied to IMAC

based phosphopeptide enrichment as described [53]. For LC-MS/MS measurements, peptides

were reconstituted in 3% acetonitrile with 0.1% formic acid and separated on a reversed-phase

column (20 cm fritless silica microcolumns with an inner diameter of 75 μm, packed with
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ReproSil-Pur C18-AQ 1.9 μm resin (Dr. Maisch GmbH)) using a 98 min gradient with a 250

nl/min flow rate of increasing Buffer B (90% ACN, 0.1% FA) concentration (from 2% to 60%)

on a High Performance Liquid Chromatography (HPLC) system (Thermo Fisher Scientific)

and analyzed on a Q Exactive Plus instrument (Thermo Fisher Scientific). The mass spectrom-

eter was operated in data-dependent acquisition mode using the following settings: full-scan

automatic gain control (AGC) target 3 x 106 at 70K resolution; scan range 350–2000 m/z; Orbi-

trap full-scan maximum injection time 10ms; MS/MS scan AGC target of 5 x 104 at 35K reso-

lution; maximum injection time 100ms; normalized collision energy of 32 and dynamic

exclusion time of 30s; precursor charge state 2–6, ten MS2 scans per full scan. RAW data were

analyzed with MaxQuant software package (v 1.6.0.1) using the Uniprot databases for human

(2018–05). The search included variable modifications of methionine oxidation, N-terminal

acetylation, deamidation (N and Q) and phosphorylation (STY) and fixed modification of car-

bamidomethylated cysteine. Reporter ion MS2 for TMT11 was selected (internal and N-termi-

nal) and TMT batch specific corrections factors were specified. The FDR (false discovery rate)

was set to 1% for peptide and protein identifications. Unique and razor peptides were included

for quantification.

Statistical analysis and evaluation of Tandem Mass Tag data

After excluding reverse database hits and potential contaminants the resulting list of phospho-

sites was filtered for localisation probability (>0.75) and unified for ambiguously mapped

phosphosites leaving 28871 phosphosites for downstream analysis. After quantile normalisa-

tion, differentially regulated sites were identified using the limma R package (v. 3.54.0) and

resulting p-values were corrected for multiple testing using Benjamini-Hochberg method

(FDR< = 0.05).

Kinase enrichment of phosphopeptides was conducted by using information from Phos-

phoSitePlus (https://www.phosphosite.org, Kinase_Substrate_Dataset 24.11.2021) to identify

putative kinases that regulate the phosphosites. Then for all kinases that regulate at least 5

phosphosites in our data set, we tested with a two-sided paired t-test whether the mean fold

change to the reference treatment (i.e., Control+DMSO for α-IgM+DMSO and α-IgM

+DMSO for α-IgM+inhibitor) was significantly different from 0. Afterwards we corrected for

multiple-testing using the Benjamini-Hochberg approach.

To assess the effect of treatments on the total proteome we in parallel analyzed the total pro-

tein data (n = 8785) analogously to the phosphoproteome data but without localization proba-

bility filter. In total only 71 proteins were found significantly changed for any treatment of

which 35 overlapped with significant phosphosite changes, affecting 1.1% of proteins whose

phosphoproteome significantly changed and 1.6% of significant phospho-signals (n = 141).

Due to the little change of total proteins we decided to only concentrate on the phosphopro-

teome in this study.

Supporting information

S1 Fig. Changes of selected phosphosites over time after treatment of BL-2 cells with α-

IgM indicate a (quasi) steady state at 30 min. The phosphorylation changes were estimated

by (A) immunoblot and (B) Bead-based ELISA analysis on the same samples depicted in fluo-

rescence intensities.

(TIF)

S2 Fig. BL-2 data and model fits on network structures learned from indicated cell lines.

Heatmaps of mean log2 fold changes (n = 3) to untreated for model input data for BL-2 (BL-2
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data) and model results for best network structures found for BL-2 and BL-41 data when

adjusting the response coefficients but not the network structure to BL-2 data. Blanks in BL-2

data are withhold data which act contrary to central model assumptions that inhibitors reduce

phosphorylations of downstream targets not phosphorylation of their targets and are therefore

not modelled (see Material and Methods). Blanks in BL-2 model are due to the removal of the

edge connecting to HSP27 in the final model structure. For more information see S1 Text BL-

2_network_model.html: Tab ‘11. Rem. PI3K -> Btk’ and BL-41_network_model.html: Tab

‘Model transfer to BL-2’.

(TIF)

S3 Fig. Network comparison of individually derived models on BL-2 and BL-41 cell data.

Literature-derived starting network (cf. Fig 1C) and adjustments during model development

for individual models for the indicated cell lines. Numbers indicate added (green) and

removed (grey) links.

(TIF)

S4 Fig. BL-41 data and model fits on network structures learned from indicated cell lines.

Heatmaps of mean log2 fold changes (n = 3) to untreated for model input data for BL-41 (BL-

41 data) and model results for best network structures found for BL-2 and BL-41 data when

adjusting the coefficient (path)s but not the network structure to BL-41 data. Blanks in BL-41

data are withhold data which act contrary to central model assumptions that inhibitors reduce

phosphorylations of downstream targets not phosphorylation of their targets and are therefore

not modelled (see Materials and Methods). Blanks in BL-2 model are due to the removal of the

edge connecting to HSP27 in the final model structure. For more information see S1 Text BL-

41_network_model.html: Tab ‘9. Rem. Syk -> PI3K’ and BL-2_network_model.html: Tab

‘Model transfer to BL-41’ variant BL2-model as initial model.
(TIF)

S5 Fig. p38α/MAPK14 is one of the most abundantly expressed isoforms of p38 in BL-2.

Total reads of the p38 subunits α (MAPK14), β (MAPK11), γ (MAPK12), δ (MAPK13) are dis-

played from RNA sequencing analysis of BL-2 cells (n = 3, data from microarrays conducted at

[64]).

(TIF)

S6 Fig. Increased MEK/ERK-pathway activity after p38 MAPK14 intervention can be

observed also in response to CD40-Ligand treatment in BL cells. CA-46 BL cells were

treated with CD40 ligand for up to 90 min without or with 2μM p38 inhibitor SB203580. Data

were analyzed by classical IB-chemoluminescence imaging and by the Fusion-FX platform.

(TIF)

S7 Fig. Relative growth of DLBCL cells after drug treatments. Cell counts of indicated

DLBCL cell lines treated for 72h with indicated inhibitors and concentrations, as log2 fold

change to respective mean solvent control (DMSO). P-values derived by two-sided T-test;

n = 3. Inhibitors (target): SB203580 (p38), AZD6244 (MEK), Rapamycin (mTORC1),

BKM120 (PI3K) and MLN120B (IKK).

(TIF)

S1 Table. Side-by-side coefficient (path)s and confidence intervals for BL-2 and BL-41 data

with fixed inhibitor quantifications. Parametrization for the best fit and in brackets the

upper and lower boundaries of the 95% confidence interval, derived by profile likelihood

(alpha = 0.05, 1 degree of freedom). ni denotes nonidentifiable confidence intervals in that

direction (i.e., alteration of the coefficient can be compensated by changing other model
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coefficients). Coefficient (path)s with non-overlapping confidence intervals are termed signifi-

cantly different between BL-2 and BL-41. Coefficient term definition: r_source_target.
(DOCX)

S2 Table. Side-by side model coefficient path(s) and confidence intervals for HBL-1 and

OCI-LY3 data with fixed inhibitor quantifications. Parametrization for the best fit and in

brackets the upper and lower boundaries of the 95% confidence interval, derived by profile

likelihood (alpha = 0.05, 1 degree of freedom). ni denotes nonidentifiable confidence intervals

in that direction (i.e., alteration of the coefficient can be compensated by changing other

model coefficients). Coefficient (path)s with non-overlapping confidence intervals are termed

significantly different between HBL-1 and OCI-LY3. – indicates missing link in either cell line.

Coefficient term definition: r_source_target.
(DOCX)

S1 Text. Overview of Online Supplements. (https://zenodo.org/doi/10.5281/zenodo.

10732059): BL-2_network_model.html. BL-41_network_model.html. DLBCLs_network_mo-

del.html. global_extend.R.

(DOCX)
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44. Denépoux S, Fournier N, Péronne C, Banchereau J, Lebecque S. T cells can induce somatic mutation

in B cell receptor-engaged BL2 Burkitt’s lymphoma cells independently of CD40-CD40 ligand interac-

tions. J Immunol. 2000 Feb 1; 164(3):1306–13. https://doi.org/10.4049/jimmunol.164.3.1306 PMID:

10640744

45. Poltoratsky V, Woo CJ, Tippin B, Martin A, Goodman MF, Scharff MD. Expression of error-prone poly-

merases in BL2 cells activated for Ig somatic hypermutation. Proc Natl Acad Sci U S A. 2001 Jul 3; 98

(14):7976–81. https://doi.org/10.1073/pnas.141222198 PMID: 11427727

46. Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev

Cancer. 2014 Apr; 14(4):219–32. https://doi.org/10.1038/nrc3702 PMID: 24658273

47. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, et al. Structural and practical

identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioin-

formatics. 2009 Aug 1; 25(15):1923–9. https://doi.org/10.1093/bioinformatics/btp358 PMID: 19505944

48. Molinar-Inglis O, Wozniak JM, Grimsey NJ, Orduña-Castillo LB, Cheng N, Lin Y, et al. Phosphoproteo-

mic analysis of thrombin- and p38 MAPK-regulated signaling networks in endothelial cells. Journal of

Biological Chemistry. 2022 Apr 1; 298(4):101801. https://doi.org/10.1016/j.jbc.2022.101801 PMID:

35257745

49. Finch AR, Caunt CJ, Perrett RM, Tsaneva-Atanasova K, McArdle CA. Dual specificity phosphatases 10

and 16 are positive regulators of EGF-stimulated ERK activity: Indirect regulation of ERK signals by

JNK/p38 selective MAPK phosphatases. Cell Signal. 2012; 24(5):1002–11. https://doi.org/10.1016/j.

cellsig.2011.12.021 PMID: 22245064
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