SUPPLEMENTAL APPENDIX

Measurable Residual Disease Monitoring in AML With *FLT3*-ITD Treated With Intensive Chemotherapy Plus Midostaurin

Frank G Rücker¹, Lars Bullinger², Sibylle Cocciardi¹, Sabrina Skambraks¹, Tamara J Luck^{1,2}, Daniela Weber¹, Julia Krzykalla³, Ema Pozek³, Isabelle Schneider¹, Andrea Corbacioglu¹, Verena I Gaidzik¹, Annika Meid¹, Sophia Aicher¹, Frank Stegelmann¹, Anika Schrade¹, Frauke Theis¹, Walter Fiedler⁴, Helmut R Salih⁵, Gerald Wulf⁶, Hans Salwender⁷, Thomas Schroeder⁸, Katharina S Götze⁹, Michael W.M. Kühn¹⁰, Michael Lübbert¹¹, Richard F Schlenk^{12,13}, Axel Benner³, Felicitas Thol¹⁴, Michael Heuser¹⁴, Arnold Ganser¹⁴, Hartmut Döhner¹, Konstanze Döhner¹

¹Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany

²Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany

³Division of Biostatistics, German Cancer Research Center, Heidelberg, Germany

⁴Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

⁵Department of Hematology and Oncology, Eberhard Karls University Tübingen, Tübingen, Germany

⁶Department of Hematology and Oncology, University Hospital of Göttingen, Göttingen, Germany

⁷Asklepios Tumorzentrum Hamburg, AK Altona and AK St. Georg, Hamburg, Germany

⁸Department of Hematology, Oncology and Clinical Immunology, University Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany

⁹Department of Medicine III, TUM School of Medicine and Public Health, Munich, Germany

¹⁰Department of Hematology, Oncology and Pneumology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany

¹¹Department of Hematology, Oncology, and Stem-Cell Transplantation, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany

¹²Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany

¹³National Center of Tumor Diseases, NCT-Trial Center, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany

¹⁴Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany

The following AML Study Group (AMLSG) investigators and institutions participated in this study:

Investigator	Site		
Dr. med. Daniel Schöndube	Helios Klinikum Bad Saarow		
Prof. Dr. Jörg Westermann	Charité Universitätsmedizin Berlin, Campus Virchow		
Prof. Dr. med. Maike de Wit	Vivantes Klinikum Neukölln		
Prof. Dr. Roland Schroers	Medizinische Universitätsklinik, Knappschaftskrankenhaus Bochum		
Dr. med. Beate Schultheis	Marienhospital Bochum-Herne		
Martin Schumacher	Universitätsklinikum Bonn		
Prof. Dr. Jürgen Krauter	Städtisches Klinikum Braunschweig gGmbH		
Prof. Dr. med. Bernd Hertenstein	Klinikum Bremen-Mitte gGmbH		
Prof. Dr. med. Helga Bernhard	Klinikum Darmstadt		
PD Dr. Thomas Schroeder	Universitätsklinikum Düsseldorf		
Dr. Daniel Föhring	Kliniken Essen-Süd, Evang. Krankenhaus Essen-Werden gGmbH		
PD Dr. Swen Wessendorf	Klinikum Esslingen		
Prof. Dr. Nadezda Basara	Malteser Krankenhaus St. Franziskus-Hospital Flensburg		
Prof. Dr. med. Michael Lübbert	Medizinische Universitätsklinik Freiburg		
Dr. med. Andrea Distelrath	MVZ Osthessen Medizinisches Versorgungszentrum, Fulda		
Dr. Maisun Abu Samra	Klinik der Justus-Liebig-Universität Gießen		
Prof. Dr. med. Volker Runde	Wilhelm-Anton-Hospital gGmbH Goch		
Prof. Dr. med. Gerald Wulf	Universitätsmedizin Göttingen		
Dr. Hans Salwender	Asklepios Klinik Hamburg-Altona		
Prof. Dr. Walter Fiedler	Universitätsklinikum Eppendorf		
Dr. Andrea Stoltefuß	Evangelisches Krankenhaus Hamm		
Prof. Dr. Felicitas Thol	Medizinische Hochschule Hannover		
Dr. Daniela Dörfel	KRH Klinikum Siloah		

Investigator	Site		
Prof. Dr. med. Uwe Martens	SLK-Kliniken Heilbronn GmbH		
Dr. Dominic Kaddu-Mulindwa	Universitätskliniken des Saarlandes Homburg		
Prof. Dr. David Nachbaur	Medizinische Universität Innsbruck Universitätsklinik für Innere Medizin V		
Prof. Dr. med. Mark Ringhoffer	Städtisches Klinikum Karlsruhe		
Dr. Lars Fransecky	Universitätsklinikum Schleswig-Holstein Kiel		
Dr. med. Stephan Kremers	Caritas Krankenhaus Lebach		
Dr. Philipp Breuch	Klinikum Lippe-Lemgo		
Univ. Prof. Dr. med. Andreas Petzer	Krankenhaus der Barmherzigen Schwestern Linz		
Prof. Dr. Michael Girschikofsky	Krankenhaus der Elisabethinen Linz GmbH		
Prof. Dr. med. Gerhard Heil	Märkische Kliniken GmbH, Klinikum Lüdenscheid		
Dr. Enrico Schalk	Universitätsklinikum der Otto-von-Guericke Universität Magdeburg		
PD Dr. Thomas Kindler	Universitätsklinikum der Johannes Gutenberg Universität Mainz		
Dr. Hans-Joachim Tischler	Johannes Wesling Klinikum Minden		
Prof. Dr. med. Holger Hebart	Stauferklinikum Mutlangen		
Prof. Dr. med. Katharina Götze	Klinikum rechts der Isar der TU München		
Dr. med. Sabine Struve	Klinikum Schwabing		
Prof. Dr. med. Frank Griesinger	Pius Hospital Oldenburg		
Prof. Dr. med. Jochen Casper	Klinikum Oldenburg		
Prof. Dr. Thomas Südhoff	Klinikum Passau		
PD Dr. med. Simone Thomas	Universitätsklinikum Regensburg		
Prof. Dr. Richard Greil	Universitätsklinik für Innere Medizin III Salzburg		
Prof. Dr. Michael Clemens	Caritasklinik St. Theresia Saarbrücken		
Prof. Dr. Jochen Greiner	Diakonie-Klinikum Stuttgart		
Dr. med. Jan Schleicher	Klinikum Stuttgart		
Dr. med. Heinz Kirchen	Krankenhaus der Barmherzigen Brüder Trier		
Dr. med. Rolf Mahlberg	Klinikum Mutterhaus der Borromäerinnen gGmbH Trier		
Prof. Helmut Salih	Medizinische Universitätsklinik Tübingen		
Coordinating investigator: Prof. Dr. Hartmut Döhner	Universitätsklinikum Ulm		

Investigator	Site
Prof. Dr. Paul Graf La Rosée	Schwarzwald-Baar Klinikum, Villingen- Schwenningen GmbH
Dr. Silke Schostok	Helios Klinikum Wuppertal
Dr. Elisabeth Koller	Hanuschkrankenhaus Wien

FLT3-ITD detection by Next-Generation Sequencing

Next-generation sequencing: After enrichment for mononuclear cells by Ficoll gradient centrifugation genomic DNA of purified cells was isolated using the AllPrep Mini Kit (Qiagen, Hilden, Germany) according to the manufacturers' instructions. FLT3 exons 14-15 were amplified by PCR, using 50ng of genomic sample DNA, 20µL of 2x KAPA HiFi HotStart ReadyMix (KAPA Biosystems, Wilmington, Massachusetts, USA) and 1.2µL of 10µM forward and reverse 5´primer (forward primer: 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGA-3' 5′-GCAATTTAGGTATGAAAGCCAGCTAC-3', reverse primer: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGA-3' + 5'-CTTTCA GCATTTTGACGGCAACC-3', each consisting of FLT3 locus-specific sequence and the required sequencing adapter). The PCR comprised an initial denaturation step (95°C 3min), 30 amplification cycles (denaturation 98°C 20s, annealing 65°C 30s, elongation 72°C 1min) and a final elongation step (72°C 5min). Amplicons from the first step PCR were purified using Agencourt AMPure XP beads (Beckman Coulter, Fullerton, CA, USA). A second PCR was performed using primers from the Illumina Nextera XT Index Kit for sample multiplexing and the 2x KAPA HiFi HotStart ReadyMix (Kapa Biosystems, Wilmington, MA, USA) with the following thermocycling condition: 95°C for 3 minutes, 8 cycles of 30 second at 95°C (denaturation), 30 seconds at 55°C (annealing), and 30 seconds at 72°C (elongation) and a final extension for 5 minutes at 72°C. The libraries were purified with Agencourt AMPure XP beads (Beckman Coulter, Fullerton, CA, USA). PCR products were prepared for sequencing as detailed in the Illumina 16S Metagenomics Sequencing Protocol (16S Metagenomic Sequencing Library Preparation, Illumina, San Diego, California, USA). The libraries were sequenced with high-coverage on the Illumina MiSeq using 300bp paired-end reads (600-cycles MiSeq Reagent Kit V3, Illumina) and 10% PhiX control spike-in (Kit V3, Illumina; coverage range: 0.806-4.844 million, mean 1.975 million paired-end reads).

Supplemental Table T1. Logistic regression for achievement of FLT3-ITD MRD^{neg} after Cy2

	OR (95% Cl)	P value
Total <i>FLT3</i> -ITD VAF at diagnosis (log2)	0.46 (0.21-1.03)	.058
Age (10y-increase)	1.43 (0.92-2.22)	.113
Female	0.89 (0.30-2.59)	.824
WBC (log10)	0.31 (0.10-0.92)	.035
BM blasts	1.02 (1.00-1.05)	.098
NPM1 mutation	10.45 (3.40-32.07)	<.001
<i>FLT3</i> -ITD high AR (≥0.5)	1.58 (0.39-6.39)	.519
Induction II [§]	0.19 (0.06-0.58)	.004

Achievement of FLT3-ITD MRD^{neg} after Cy2

Abbreviations: ITD, internal tandem duplication; after Cy2, after two cycles intensive chemotherapy; OR, odds ratio; CI, confidence interval; VAF, variant allele frequency; WBC, white blood cell count; BM, bone marrow; AR, allelic ratio determined by Genescan

§ administered to patients achieved only partial remission after induction I

CIR OS HR HR P value P value (95% CI) (95% CI) 1.15 1.37 Age (10y-increase) .312 .014 (0.88-1.51) (1.07 - 1.76)0.47 0.56 .028 Female .011 (0.29 - 0.84)(0.34-0.94) 1.13 0.91 WBC (log10) .617 .669 (0.70 - 1.85)(0.60 - 1.38)1.00 1.00 **BM blasts** .945 .976 (0.95 - 1.01)(0.99 - 1.01)0.29 0.58 NPM1 mutation <.001 .042 (0.16. - 0.53)(0.34 - 0.98)0.88 1.02 FLT3-ITD high AR (≥0.5) .669 .932 (0.49 - 1.57)(0.61 - 1.72)FLT3-ITD VAF at diagnosis 0.95 1.15 .646 .218 (0.92 - 1.42)(log2) (0.78 - 1.17)1.56 1.03 Induction II[§] .169 .921 (0.57 - 1.85)(0.83 - 2.92)0.28 0.60 HCT in CR1 (time dependent) <.001 .067 (0.15 - 0.50)(0.35 - 1.04)FLT3-ITD VAF reduction 0.56 0.75 <.001 .010 (log10) after Cy2 (0.43-0.71) (0.60-0.93) 4.78 2.14 *FLT3*-ITD VAF ≥ 0.1% <.001 .032 (2.36-9.76) (1.07 - 4.30)0.31 0.58 FLT3-ITD MR^{3.0} after Cy2 <.001 .097 (0.30 - 1.10)(0.16 - 0.62)0.33 0.47 *FLT3*-ITD MRD^{neg} after Cy2 .012 .001 (0.17 - 0.64)(0.26 - 0.85)0.27 0.72 NPM1 MRD^{neg} after Cy2 (PB) .050 .416 (0.33 - 1.58)(0.08 - 1.00)

Supplemental Table T2: Risk of relapse and death on univariate analysis

Abbreviations: CIR, cumulative incidence of relapse; OS, overall survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell count; BM, bone marrow; ITD, internal tandem duplication; AR, allelic ratio determined by Genescan; VAF, variant allele frequency; HCT in CR1, allogeneic hematopoietic cell transplantation in first complete remission; after Cy2, after two cycles of intensive chemotherapy; $MR^{4.0}$, \geq 4.0-log₁₀ reduction of VAF; MRD, measurable residual disease; PB, peripheral blood

[§] administered to patients achieved only partial remission after induction I

	CIR		OS	
	HR (95% CI)	P value	HR (95% CI)	P value
FLT3-ITD MRD log ₁₀ reduction				
Age (10y-increase)	0.95 (0.70-1.29)	.739	1.39 (1.04-1.86)	.028
Female	0.57 (0.28-1.16)	.119	0.62 (0.35-1.18)	.112
WBC (log10)	1.05 (0.57-1.91)	.884	0.62 (0.36-1.06)	.080
BM blasts	1.01 (0.99-1.03)	.178	1.01 (0.99-1.03)	.229
NPM1 mutation	0.23 (0.10-0.50)	<.001	0.75 (0.39-1.45)	.386
<i>FLT3</i> -ITD high AR (≥0.5)	1.00 (0.48-2.10)	.994	1.12 (0.59-2.11)	.730
HCT in CR1 (time dependent)	0.10 (0.05-0.24)	<.001	0.68 (0.37-1.25)	.211
FLT3-ITD MRD log ₁₀ reduction	0.53 (0.39-0.72)	<.001	0.72 (0.55-0.94)	.014
<i>FLT3-</i> ITD VAF <0.1%				
Age (10y-increase)	0.84 (0.62-1.17)	.255	1.33 (1.01-1.77)	.047
Female	0.52 (0.26-1.07)	.076	0.59 (0.33-1.06)	.080
WBC (log10)	0.91 (0.47-1.75)	.775	0.61 (0.35-1.07)	.082
BM blasts	1.02 (1.00-1.04)	.087	1.01 (1.00-1.03)	.187
NPM1 mutation	0.21 (0.09-0.47)	<.001	0.69 (0.36-1.32)	.263
<i>FLT3</i> -ITD high AR (≥0.5)	0.88 (0.42-1.85)	.743	1.02 (0.54-1.91)	.960
HCT in CR1 (time dependent)	0.11 (0.05-0.25)	<.001	0.68 (0.36-1.26)	.222
<i>FLT3</i> -ITD VAF <0.1%	0.16 (0.06-0.38)	<.001	0.38 (0.17-0.87)	.021

Supplemental Table T3: Multivariable analyses determining the prognostic significance of *FLT3*-ITD MRD log₁₀ reduction, *FLT3*-ITD VAF <0.1%, and *FLT3*-ITD MR^{3.0} after Cy2

Achievement of MR ^{3.0}				
Age (10y-increase)	0.84 (0.62-1.14)	.262	1.30 (0.98-1.73)	.073
Female	0.51 (0.25-1.02)	.058	0.60 (0.34-1.07)	.084
WBC (log10)	1.24 (0.67-2.31)	.499	0.69 (0.41-1.08)	.179
BM blasts	1.02 (0.99-1.04)	.169	1.01 (0.99-1.03)	.236
NPM1 mutation	0.23 (0.10-0.49)	<.001	0.67 (0.35-1.29)	.226
<i>FLT3</i> -ITD high AR (≥0.5)	0.85 (0.40-1.82)	.680	1.02 (0.53-1.94)	.960
HCT in CR1 (time dependent)	0.11 (0.05-0.25)	<.001	0.64 (0.34-1.20)	.164
FLT3-ITD MR ^{3.0} after Cy2	0.27 (0.11-0.62)	.002	0.57 (0.27-1.20)	.137

Abbreviations: CIR, cumulative incidence of relapse; OS, overall survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell count; BM, bone marrow; ITD, internal tandem duplication; AR, allelic ratio determined by Genescan; HCT in CR1, allogeneic hematopoietic cell transplantation in first complete remission; $MR^{3.0}$, ≥ 3.0 -log₁₀ reduction of variant allele frequency; after Cy2, after two cycles of intensive chemotherapy

Supplemental Table T4: Multivariable analysis on relapse-free survival determining the prognostic significances of *FLT3*-ITD MRD and *NPM1*^{mut} MRD interaction status after Cy2

	RF	S
	HR (95% CI)	Р
Age (10y-increase)	1.56 (0.97-2.51)	.069
Female	0.51 (0.22-1.17)	.111
WBC (log10)	0.50 (0.23-1.07)	.074
BM blasts	1.01 (0.99-1.03)	.384
FLT3-ITD ^{high}	1.08 (0.44-2.65)	.867
HCT in CR1 [§]	0.46 (0.18-1.16)	.099
FLT3-ITD MRD ^{neg} /NPM1 ^{mut} MRD ^{neg}	1	
FLT3-ITD MRD ^{neg} /NPM1 ^{mut} MRD ^{pos}	1.52 (0.59-3.96)	.388
FLT3-ITD MRD ^{pos} /NPM1 ^{mut} MRD ^{pos}	7.89 (2.34-26.58)	<.001

Abbreviations: RFS, relapse-free survival; HR, hazard ratio; CI, confidence interval; WBC, white blood cell count; BM, bone marrow; mut, mutated; *FLT3*-ITD^{high}, *FLT3*-internal tandem duplication with allelic ratio ≥0.5; HCT in CR, allogeneic hematopoietic cell transplantation in first complete remission; MRD, measurable residual disease; neg, negative; mut, mutated

§as time dependent variable

FLT3-ITD MRD assessment at defined time-points. AMLSG 16-10 study design and time-

points for FLT3-ITD MRD assessement.

[#] EOT was defined as response assessment on day 35 to 42 after last consolidation cycle or HCT (for HCT median day +34).

Paired BM and PB Analysis at diagnosis and after Cy 2. (A) Comparison of total ITD VAF at diagnosis and after Cy2 in BM and PB, respectively. Correlation of *FLT3*-ITD VAF assessed in BM and PB at diagnosis (B) and after Cy2 (C).

	Dx (n=10)		Cy2 (n=19)	
	BM	РВ	BM	РВ
MRDpos, n (%)	10 (100)	10 (100)	19 (100)	12 (63)
Median FLT3-ITD VAF [%], range	29.24 (3.16-44.73)	23.59 (9.15-42.01)	0.112 (0.006-5.476)	0.033 (0.0-2.969)
Median Log ₁₀ difference PB/BM (range)	0.04 (-0.46-0.34)		0.9 (-0.1	4-2.27)

Molecular characterization of the 465 ITDs identified in 157 *FLT3*-ITD^{pos} AML at diagnosis.

FLT3-ITD characteristics at diagnosis	
Median number of ITDs, n (range)	2 (1-16)
>1 ITD, n (%)	108 (69)
Median length, nt (range)	51 (9-285)
Median Variant allele frequency (VAF), % (range)	0.312 (0.006-92.256)
Median total VAF per pt*, % (range)	31.543 (0.461-92.256)
Median calculated allelic ratio (AR) per pt*, % (range)	0.461 (0.005-11.913)

*Total FLT3-ITD VAF/AR calculated overall ITDs per pt

Correlation of *FLT3***-ITD allelic ratio at diagnosis.** Correlation of NGS-based allelic ratio (AR) per patient, calculated as $\Sigma VAF/(100-\Sigma VAF)$, with AR determined by Genescan.

Outcome according to FLT3-ITD MR^{3.}. Cumulative Incidence of relapse (A) and Overall Survival (B) according to achievement of *FLT3*-ITD MR^{3.0} after Cy2.

8

0

0

ż

2

0

0 0

0

Supplemental Figure F6:

Outcome according to *FLT3*-ITD MRD status after Cy2 and post-remission therapy (conventional consolidation vs HCT in CR1). Cumulative Incidence of relapse (A) and Overall Survival (B) according to various *FLT3*-ITD MRD status after Cy2 and post-remission therapy. Results of pairwise comparisons are provided below the x-axis.

<i>FLT3</i> -ITD	MRD ^{neg} / no HCT_CR1	MRD ^{pos} / HCT_CR1	MRD ^{pos} / no HCT_CR1
MRD ^{neg} /HCT_CR1	<0.001	0.001	<0.001
MRD ^{neg} /no HCT_CR1	-	0.231	<0.001
MRD ^{pos} /HCT_CR1	0.231	-	0.001
MRD ^{pos} /no HCT_CR1	<0.001	0.001	-

MRD ^{neg} / no HCT_CR1	MRD ^{pos} / HCT_CR1	MRD ^{pos} / no HCT_CR1
0.042	0.027	<0.001
-	0.716	0.011
0.716	-	0.183
0.011	0.183	-

Outcome according according to FLT3-ITD MRD status during follow up. Cumulative incidence of relapse (A) and Overall survival (B). MRD^{neg}, MRD negative; MRD^{conv}, MRD conversion (MRD^{neg} to MRD^{pos})

Supplementary Figure F8:

Outcome according to FLT3-ITD MRD status and concurrent NPM1 mutation (NPM1^{mut}) status after Cy2. Cumulative Incidence of relapse (A) and Overall Survival (B). Results of pairwise comparisons are provided below the x-axis.

В

<i>FLT3</i> -ITD	MRD ^{neg} /NPM1 ^{WT}	MRD ^{pos} /NPM1 ^{mut}	MRD ^{pos} /NPM1 ^{WT}
MRD ^{neg} /NPM1 ^{mut}	<0.001	0.010	<0.001
MRD ^{neg} /NPM1 ^{WT}	-	0.560	0.959
MRD ^{pos} /NPM1 ^{mut}	0.560	-	0.725
MRD ^{pos} /NPM1 ^{WT}	0.959	0.725	-

MRD ^{neg} /NPM1 ^{WT}	MRD ^{pos} /NPM1 ^{mut}	MRD ^{pos} /NPM1 ^{WT}
0.071	0.072	0.008
-	0.798	0.441
0.798	-	0.904
0.441	0.904	-