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INFLAMMATORY BOWEL DISEASE
Multimodal Profiling of Peripheral Blood Identifies Proliferating
Circulating Effector CD4D T Cells as Predictors for Response to
Integrin a4b7–Blocking Therapy in Inflammatory Bowel Disease
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BACKGROUND & AIMS: Despite the success of biological
therapies in treating inflammatory bowel disease, managing
patients remains challenging due to the absence of reliable
predictors of therapy response. METHODS: In this study, we
prospectively sampled 2 cohorts of patients with inflamma-
tory bowel disease receiving the anti-integrin a4b7 antibody
vedolizumab. Samples were subjected to mass cytometry;
single-cell RNA sequencing; single-cell B and T cell receptor
sequencing (BCR/TCR-seq); serum proteomics; and multi-
parametric flow cytometry to comprehensively assess
vedolizumab-induced immunologic changes in the peripheral
blood and their potential associations with treatment
response. RESULTS: Vedolizumab treatment led to substan-
tial alterations in the abundance of circulating immune cell
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WHAT YOU NEED TO KNOW

BACKGROUND AND CONTEXT

Patients with inflammatory bowel disease (IBD) have
benefitted from new biologic treatments, including the
anti-integrin a4b7 blocker vedolizumab. However, many
patients do not achieve full remission and there are no
reliable markers to predict responses.

NEW FINDINGS

The circulating immune cell landscape was thoroughly
characterized in patients with IBD before and after
treatment with vedolizumab, integrating multiparametric
flow cytometry, mass cytometry, and serum proteomis
(Olink) data into a predictive model. A predictive
signature of Ki67þ memory CD4þ T cells (area under the
curve, 0.97) was increased in nonresponders before
treatment, exhibited an activated T-helper 1/T-helper 17
cell phenotype, and was not sufficiently targeted by
vedolizumab.

LIMITATIONS
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lineages and modified the T-cell receptor diversity of gut-
homing CD4þ memory T cells. Through integration of multi-
modal parameters and machine learning, we identified a
significant increase in proliferating CD4þ memory T cells
among nonresponders before treatment compared with re-
sponders. This predictive T-cell signature demonstrated an
activated T-helper 1/T-helper 17 cell phenotype and exhibi-
ted elevated levels of integrin a4b1, potentially making these
cells less susceptible to direct targeting by vedolizumab.
CONCLUSIONS: These findings provide a reliable predictive
classifier with significant implications for personalized in-
flammatory bowel disease management.

Keywords: Inflammatory Bowel Disease; Cell Migration
and Homing; Integrin a4b7; CD4þ Memory T Cells; Vedoli-
zumab; Single-Cell Profiling; Machine Learning; Therapy
Response.

ecent therapies for inflammatory bowel disease

The findings were limited by the modest sample size and
need multicenter validation. In addition, the findings were
limited to circulating immune cells and not tissues and
lack definitive proof of mechanism.

CLINICAL RESEARCH RELEVANCE

Ki67 expression on circulating CD4þ memory T cells is a
novel pretherapeutic nonresponse feature. This paves the
way for a peripheral blood assay for precision therapy in
patients with IBD.

BASIC RESEARCH RELEVANCE

This study provides new insights into immune cell
characteristics after a4b7 integrin blockade and
associated with treatment failure. The findings are
particularly relevant in the context of gut homing and
recirculation of activated T cells.

* Authors share co-first authorship.

Abbreviations used in this paper: AUC, area under the curve; BCR, B-cell
receptor; CD, Crohn’s disease; CITEseq, cellular indexing of tran-
scriptomes and epitopes by sequencing; CyTOF, cytometry by time of
flight; FACS, fluorescence-activated cell sorting; IBD, inflammatory bowel
disease; IL, interleukin; ITGB7, integrin subunit b7; MAdCAM-1, mucosal
vascular addressin cell adhesion molecule 1; PBMC, peripheral blood
mononuclear cell; scRNAseq, single-cell RNA sequencing; TCR, T-cell
receptor; Th, T-helper; UC, ulcerative colitis; VCAM-1, vascular cell
adhesion molecule–1.
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R(IBD) target pathogenic cytokine pathways and im-
mune cell recruitment to the gut.1–4 Vedolizumab, a mono-
clonal antibody, selectively inhibits lymphocyte homing to
the intestine by disrupting interactions between mucosal
vascular addressin cell adhesion molecule–1 (MAdCAM-1)
on gut endothelial cells and integrin a4b7 on circulating
leukocytes.5–8 Vedolizumab induces and maintains clinical
remission in patients with Crohn’s disease (CD) and ulcer-
ative colitis (UC).9–11 It is believed to act on gut-homing T-
cell subsets, but recent reports have indicated effects on
other cell types known to express integrin a4b7, such as
monocytes, eosinophils, and plasmablasts.11–13 Integrin
a4b7 blockade increases total numbers of peripheral blood
mononuclear cells (PBMCs) and circulating memory T cells,
suggesting that it sequesters gut-homing cells in the blood,
thereby reducing their numbers in the mucosa and gut-
associated lymphoid tissue.12,14–17

Despite this knowledge, only a fraction of patients
respond to vedolizumab or experience full remission,
underscoring the unmet need for a more comprehensive
understanding of its mode of action and the factors and
mechanisms behind treatment failure.9,10,18,19 In addition,
identifying biomarkers or correlates of therapy failure could
help to deploy specific biological therapies to patients with
IBD who are more likely to respond.19–21 There have been
attempts to identify potential predictors of therapy response
to vedolizumab based on (para-)clinical parameters, such as
C-reactive protein, interleukin (IL) 6/8, and integrin a4b7
expression on circulating and lamina propria T cells, the
composition of the fecal microbiota, and cellular and tran-
scriptomic cues in the intestinal mucosa.22–30 However, none
of these biomarkers are clinically established, and the
immunologic correlates of anti-integrin treatment respon-
siveness, especially in peripheral blood, remain undefined.

In this prospective cohort study, we employed multi-
modal profiling to systematically evaluate the circulating
immune landscape both at baseline and after vedolizumab
treatment. We observed highly dynamic changes within the
innate and adaptive immune cell compartments during
treatment. Using machine learning, we identified common
features associated with vedolizumab treatment and effec-
tively classified therapy response. Notably, a specific T-cell
signature was linked to vedolizumab failure, independent of
key clinical variables, such as treatment history or para-
clinical parameters. Our findings provide novel insights into
the immunologic mechanisms underlying therapy response
and failure in patients with IBD treated with vedolizumab.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1053/j.gastro.2024.09.021
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Materials and Methods
Study Design and Approval

A total of 47 patients (cohort 1; Supplementary Table 1)
and 26 patients (cohort 2; Supplementary Table 7) receiving
vedolizumab at the outpatient and inpatient clinic of the
Department of Gastroenterology, Infectiology, and Rheuma-
tology at Charité University Medicine Berlin were enrolled in
either a prospective study (VEPREDEX#EA4/162/17) or a
prospective biobank (IBDome-study; EA4/162/17), which
were approved by the Charité University Medicine Berlin ethics
committee. Donors in the first cohort were recruited between
July 2018 and November 2021, and patients in the second
cohort were included from December 2021 to July 2024.
Eligible patients were aged 18–80 years with an established
diagnosis of UC or CD. These patients were switched to vedo-
lizumab due to persistently active disease, despite attempts at
corticosteroid tapering, or due to a lack of response or intoler-
ance to immunosuppressive medications (such as azathioprine)
or tumor necrosis factor antagonists, even after appropriate in-
duction and more than 4 weeks of treatment. Only 6 patients
from both cohorts had received ustekinumab before vedolizu-
mab, and none had been treated with JAK inhibitors before
starting vedolizumab (Supplementary Table 16 and Technical
Supplementary Figure 10). We also included 41 age- and sex-
matched healthy donors (healthy controls) for comparison. All
donors provided informed written consent for their participation
in the study. In addition to biosampling, we collected relevant
(para-) clinical data, including Harvey-Bradshaw Index/partial
Mayo Score, C-reactive protein levels, and leukocyte and throm-
bocyte counts. Responders were classified as patients who ach-
ieved a minimum reduction of 3 points in the Harvey-Bradshaw
Index and at least 2 points in the partial Mayo score after 30
weeks of vedolizumab treatment.

Peripheral Blood Mononuclear Cell Thawing and
Stimulation

PBMCs were thawed in a 37�C water bath, transferred to
thawing medium, centrifuged, and resuspended for counting. Cells
were used for flow cytometry, surface and transcription factor
staining, and stimulated with phorbol myristate acetate/ionomycin
for 4 hours. For details, see Supplementary Experimental
Procedures.

Flow Cytometry
PBMCs were stained according to standard protocols. For

details, see Supplementary Experimental Procedures.

Inhibition of Vascular Cell Adhesion Molecule–1
Binding in Memory CD4þ T Lymphocytes

The assay was done as described previously by Soler et al.12

For details, see Supplementary Experimental Procedures.

Mass Cytometry and Data Processing
Whole blood samples were fixed with PROT1 proteomic

stabilizer and stored at –80�C. Upon thawing, samples were
stained and acquired in batches of 15, including all time points
from the same patient and matched healthy controls. For de-
tails, see Supplementary Experimental Procedures.
Single-Cell Sequencing of Peripheral Blood
Mononuclear Cells and Data Analysis

Following manufacturer’s instructions, single-cell RNA
sequencing (scRNAseq) libraries were generated using the
Chromium Next GEM Single Cell 5’ Reagent Kits, version 2, from
10x Genomics (Pleasanton, CA; CG000330 Rev D). Sequencing
libraries for gene expression and T-cell receptor (TCR)/B-cell
receptor (BCR) were processed together using Cell Ranger
multi (version 5.0.0) and the GRCh38 genome annotation and
analyzed using Seurat, version 4.0.11.31

Proteomics Serum Assay
Proteomics analysis of patient serum samples was per-

formed using the Olink Target 96 Inflammation panel platform
(https://www.olink.com/products/inflammation/).

Machine Learning
We applied machine learning techniques to identify

markers across 4 data modalities for predicting vedolizumab
efficacy in patients with IBD, using logistic regression and
cross-validation. The top 10% most influential features were
selected, with iterative model validation used to test predictive
capacity. Performance was evaluated using area under the
curve (AUC) and feature regularization methods (Lasso, Elas-
ticNet) were applied for robustness. For details, see
Supplementary Experimental Procedures.

Code Availability
All original code necessary to replicate our analyses,

including scRNAseq analyses and machine learning code, are
deposited in a GitHub repository (https://github.com/VeroHo/
vedo_paper).

Data Availability
All source data relevant to understanding and reproducing

the results presented in this article are provided in the
Supplementary Material. Sequencing data (scRNAseq, CITEseq,
and TCR sequencing) can be accessed at Gene Expression
Omnibus (https://www.ncbi.nlm.nih.gov/geo) under accession
number GSE261334.

Statistical Analysis
Statistical analyses and visualizations were created in R,

using ggpubr (version 0.6.0), ggplot2 (version 3.4.3), limma
(version 3.50.3), corrplot (version 0.92), and ComplexHeatmap
(version 2.10.0) packages or with Prism software (GraphPad
Software). P values were calculated using the Wilcoxon test.
Paired analyses are indicated by connecting lines.

Results
Multimodal Profiling of Patients With
Inflammatory Bowel Disease Receiving Anti-
Integrin a4b7 Therapy

We aimed to investigate the effect of vedolizumab
treatment on circulating immune cells at baseline and dur-
ing treatment. Therefore, we prospectively sampled blood
from a cohort of patients with IBD receiving vedolizumab at

https://www.olink.com/products/inflammation/
https://github.com/VeroHo/vedo_paper
https://github.com/VeroHo/vedo_paper
https://www.ncbi.nlm.nih.gov/geo
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baseline and during treatment (IBD, n ¼ 47; Figure 1A,
Supplementary Table 1) together with age- and sex-matched
healthy controls (n ¼ 41; Supplementary Figure 1A,
Supplementary Table 1). We recorded disease activity
scores, prior treatments, and paraclinical parameters
(Supplementary Figure 1B–E, Supplementary Table 16).
Responders were classified as patients who achieved a
minimum reduction of 3 points in the Harvey-Bradshaw
Index (for CD) and at least 2 points in the partial Mayo
score (for UC) after 30 weeks of vedolizumab treatment and
continued vedolizumab treatment. Stool calprotectin levels
at 18 weeks effectively distinguished responders from
nonresponders (Supplementary Figure 1D).

Mass cytometry was used to profile whole blood, iden-
tifying and characterizing immune cell subsets of major
innate and adaptive populations with 36 protein targets
(Supplementary Tables 10 and 11). Serum samples under-
went proteomic analysis using the Olink proximity exten-
sion assay (Target 96 Inflammation panel, Supplementary
Table 14) to detect changes in inflammatory markers
before and 6 weeks after treatment induction (Figure 1A
and B). In a selected sub-cohort, PBMCs were analyzed using
single-cell sequencing and immune repertoire profiling to
evaluate gene and protein expression (CITEseq) and to
monitor changes in TCR and BCR repertoires upon treat-
ment (Supplementary Tables 12 and 13). In addition, mul-
tiparametric flow cytometry (fluorescence-activated cell
sorting [FACS]) was used to examine the expression of
chemokine receptors, surface molecules, integrins, cyto-
kines, and transcription factors in circulating T cells
(Figure 1B, Supplementary Tables 8 and 9).
Integrin a4b7 Expression and Distribution on
Circulating Immune Cells at Steady-State and
After Treatment

We first obtained a comprehensive overview of the
circulating immune cell landscape in healthy controls and
patients with IBD. CITEseq analysis and mass cytometry
identified approximately 16–18 different cell clusters
(Figure 1C and D, Supplementary Figures 2A and B and 3A and
B). Both datasets revealed that patients with IBD have an
altered immune cell composition compared with healthy
controls (Supplementary Figures 2C and 3C). Next, we per-
formed a comprehensive single-cell analysis of a4b7 integrin
expression in both healthy and diseased conditions
=
Figure 1.Multimodal characterization of patients with IBD receiv
and analyses applied to each patient sample (UC, CD; respons
[RM]; gender, age). (C) Uniform Manifold Approximation and Pro
with color-coded representation of cell types and patients (n
controls [HC], n ¼ 5; IBD, n ¼ 10 matched before and after tr
healthy controls and 10 patients with UC before and 6 weeks a
CITEseq analysis. cDC, conventional dendritic cell; ILC, innate
natural killer; pDC, plasmacytoid dendritic cell; Treg, regulatory
the CyTOF dataset, with color representation based on cell type
clustering analysis performed on 13,311,287 cells from 154 sam
both before and during treatment. (E) Expression of ITGA4 and IT
(F) Scaled expression of integrin a4 and b7 in the CyTOF datas
(Figures 1E and F and 2A and B). The scRNAseq analysis
revealed ITGA4 (integrin a4) and ITGB7 (integrin b7)
expression across all lineages (Figure 1E and 2A). ITGA4
showed high expression across all major cell types (Figures 1E
and 2A), although there was differential ITGB7 expression on
specific immune cells (Figures 1E and 2A). ITGA4 and ITGB7
expression were similar between healthy controls and pa-
tients with IBD (Figure 2A and Supplementary Figure 4A).

We next explored the protein expression of integrin a4
and b7 on circulating immune cells to identify cell lineages
potentially targeted by vedolizumab. In our CITEseq dataset,
integrin b7 protein expression (ADT, antibody-derived tag)
showed a similar distribution to ITGB7 RNA expression
(Figure 2B). Gating on a4b7 co-expressing cells in the mass
cytometry dataset and performing cell clustering within this
subset (Figure 2C and Supplementary Figure 4B), we found
that a4 and b7 integrins were co-expressed not only in T
cells and monocytes, but also in other cell lineages, with
CD4/CD8þ T cells and eosinophils being the most abundant
(Figure 2C). The frequency of a4b7þ cells was significantly
reduced in patients with IBD before treatment induction
across several cell types (Supplementary Figure 4C and D).
Surprisingly, protein expression of integrin b7, but not
integrin a4, was up-regulated after vedolizumab treatment
in all cell subsets (Figure 2B and D), with significant changes
in memory CD4þ and CD8þ T cells, eosinophils, classical
monocytes, memory B cells, basophils, conventional den-
dritic cells, and natural killer cells (Figure 2E).

Taken together, our data demonstrated that integrin
a4b7 is expressed on various circulating cell lineages and
that vedolizumab modulates expression of integrin b7.
Vedolizumab Enhances Clonal Diversity in
Circulating Memory T Cells

Targeting memory T cells expressing integrin a4b7 is a
key mechanism by which vedolizumab modulates intestinal
inflammation.13 Animal studies suggest that anti-integrin
a4b7 treatment releases gut-resident immune cells into
circulation.5,11,14 To test this, we assessed the diversity of
circulating T and B cells before and after treatment using
single-cell TCR and BCR repertoire analysis (TCR/BCR
sequencing) combined with CITEseq (Figure 3A and B,
Supplementary Figure 5A and F). We found a significant
increase in clonal diversity, specifically in memory CD4þ T
cells, but not CD8þ T cells and B-cell subsets after treatment
ing anti-integrin a4b7. (A) Study design. (B) The study cohort
e: responder [R], nonresponder [NR], remission maintenance
jection (UMAP) plots of CITEseq profiled peripheral blood cells
¼ 191,578 cells derived from a total of 25 samples: healthy
eatment). Sorted CD45þ cells from the peripheral blood of 5
fter vedolizumab (VDZ) treatment initiation were subjected to
lymphoid cell; MAIT, mucosal-associated invariant T cell; NK,
T cell. (D) UMAP plots of peripheral blood cells extracted from
and patient. Results derived from FlowSOM/ConsensusPlus
ples. This dataset includes both HCs and patients with IBD
GB7 in the different cell subsets derived from scRNAseq data.
et from HCs and patients with IBD before therapy (IBD).
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(Figure 3C, Supplementary Figure 5B and G). After treat-
ment, there was an increase in TCR diversity, specifically in
central memory CD4þ T cells, but not in effector memory
CD4þ T cells or in the corresponding CD8þ T-cell pop-
ulations (Figure 3D and Supplementary Figure 5B). Using
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(Figure 3E and F and Supplementary Figure 5A). However,
treatment did not increase TCR diversity among gut-homing
CD8þ T cells (Supplementary Figure 5C and D). There were
no specific alterations in TCR and BCR diversity based on
therapy response (Supplementary Figure 6A and B).
Consistent with the increase in TCR diversity of CD4þ T
cells, memory CD4þ T cells (but not CD8þ or B cells) also
significantly increased after treatment (Figure 3G–I,
Supplementary Figure 5E, H, and I).

These findings provide evidence that vedolizumab
significantly increases clonal diversity within circulating
memory T cells, with a particular impact on central memory
and a4b7þ memory CD4þ T cells.
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Vedolizumab Modulates the Abundance of

Circulating a4b7-Integrinþ Immune Cells and
Proinflammatory Serum Proteins

We next integrated our multimodal datasets into a
reductionist machine learning model, focusing on cytometry
by time of flight (CyTOF), FACS, and Olink data to gain a
comprehensive understanding of vedolizumab’s immuno-
logic effects in the circulation of patients with IBD. Due to
observed changes in their TCR diversity, we focused our
flow cytometry analysis on memory CD4þ T cells (Figure 4A,
Supplementary Table 2, Supplementary Figures 7 and 8).

Using a logistic regression classifier, we found that vedo-
lizumab treatment significantly increased the abundance of
integrin a4b7 on circulating immune cells (CyTOF-a4b7; AUC,
0.97; Figure 4B). The abundance of a4b7þ cells in the
bloodstream increased over time with vedolizumab treatment
(Figure 4C), especially in populations with the highest integrin
a4b7 expression (Figures 4D and E). The second major effect
of vedolizumab was observed in inflammatory serum protein
levels at week 6 after treatment initiation (Olink; AUC, 0.94;
Figure 4B). Unexpectedly, several serum proteins, including
eotaxin (CCL11), delta/notch-like epidermal growth factor-
related receptor, chemokine (C-X3-C motif) ligand (CX3CL)
1, tumor necrosis factor–b (or LT-b), and chemokine (C-C
motif) ligand (CCL) 28, showed significant increases after
vedolizumab treatment (Figures 4F and G, Supplementary
Figure 9A–C). To explore the mechanism underlying this
phenomenon, we analyzed gene expression corresponding to
the inflammatory serum proteins in the intestinal mucosa of
patients with IBD treated with vedolizumab in RNAseq data
=
Figure 2. Integrin a4b7 expression and distribution in circulati
integrin a4b7 treatment. (A) Dot plot of ITGA4 and ITGB7 e
different conditions before treatment (0) and 6 weeks (6 wk) after
the percentage of positive cells. cDC, conventional dendritic
invariant T cell; NK, natural killer; pDC, plasmacytoid dendritic
rin b7 protein expression (antibody-derived tag [ADT]) by CITEs
staining in mass cytometry on CD45þ cells showing stained ce
stochastic neighbor embedding (TSNE) with results of FlowSOM
and a pie chart representing the percentage of cluster frequen
(HCs) and patients with IBD. (D) Mean integrin a4 and b7 expr
FlowSOM algorithm in healthy donors (HDs) and patients with
treatment initiation (HDs, n ¼ 27; before treatment, n ¼ 31; week
Comparison of mean integrin b7 expression in indicated mass c
were calculated using the paired Wilcoxon test.
from the GEMINI trial (GSE73661).10 In the intestinal mucosa,
the genes corresponding to the Olink proteins were not up-
regulated after vedolizumab treatment, suggesting that the
increased protein serum levels cannot be attributed to
enhanced expression of these genes in inflamed tissue
(Supplementary Figure 10A–C). However, we found a positive
correlation between the top serum markers and the abun-
dance of the most altered a4b7-expressing populations
identified by mass cytometry, suggesting that immune cell
entrapment after anti-integrin treatment may explain the
increased serum inflammatory markers (Figure 4H).

In conclusion, vedolizumab strongly alters the abun-
dance of circulating immune cells, particularly those
expressing high levels of a4b7 integrin, and this is associ-
ated with increased inflammatory serum markers.
Integration of Multimodal Data Identifies
Determinants of Nonresponse to Anti-Integrin
Treatment

We applied both linear and nonlinear classification ap-
proaches to the multiparametric data (Figure 5A,
Supplementary Figure 11A and B, and Supplementary Table
15) to identify features associated with vedolizumab nonre-
sponse. After evaluating performance and model simplicity,
we selected logistic regression as the final method for clas-
sifying treatment outcomes (Supplementary Figure 11A–C,
Supplementary Table 3).

Surprisingly, when we analyzed all measured parame-
ters (features) from individual modalities (eg, FACS, Olink,
CyTOF, CyTOF-a4b7), we were unable to successfully clas-
sify therapy outcomes (Figure 5B and Supplementary
Figure 11D, upper left, Supplementary Table 3). In addi-
tion, combining all modalities did not improve classification
performance (Figure 5B and Supplementary Figure 11D,
lower left). However, selecting the top 10% of features from
each modality significantly improved classification accuracy
(Figure 5B and Supplementary Figure 11E). We achieved an
AUC of 0.89 for Olink and 0.91 for FACS individually
(Figure 5B and Supplementary Figure 11D, upper right).
Combining the top 10% of features from both modalities
further improved performance, reaching an AUC of 0.98
(Figure 5B and Supplementary Figure 11D, lower right).

Testing the 4 best-performing models using an iterative
approach resulted in the validation of the models containing
ng immune cells at steady-state and modulation upon anti-
xpression in scRNAseq data from different cell types and
treatment. Color indicates expression level, dot size indicates
cell; ILC, innate lymphoid cell; MAIT, mucosal-associated
cell; Treg, regulatory T cell. (B) As in (A), derived from integ-
eq. (C) Representative dot plot of integrin a4 (CD49d) and b7
lls (blue) and metals-minus-one (MMO) control. T-distributed
clustering of a4b7þ cells from the mass cytometry dataset

cy within the total a4b7þ cells derived from healthy controls
ession within mass cytometry clusters, as determined by the
IBD before treatment and at the indicated time points after
2, n ¼ 9; week 6, n ¼ 25; week 30, n ¼ 15; week 50, n ¼ 9). (E)
ytometry cluster before and 6 weeks after treatment. P values
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(1) Olink/FACS, (2) Olink/FACS/CyTOF, and (3) FACS/
CyTOF/clinical parameters, although FACS/CyTOF-a4b7 did
not reach the required test accuracy >0.5 (Supplementary
Figure 12A). For each of the 3 validated models, we
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Supplementary Table 4), and used the resulting refined
models for classification of treatment response (Figure 5D).
Parameters within memory CD4þ T cells, including chemo-
kine receptors, cytokines, serum inflammatory markers,
abundance of natural killer cells in the circulation measured
by mass cytometry, and especially the proliferation marker
Ki67, had a high influence on predictive capacity. An AUC of
0.99 was achieved by selecting a panel containing the top 3
features in the FACS/Olink/CyTOF model (Figure 5D), while
still maintaining test set accuracies of 0.75. Here, classification
performance remained compelling even when tested on a
reduced patient set (Supplementary Figure 12D,
Supplementary Table 5). Remarkably, evaluating the predic-
tive capacity of Ki67þ memory CD4þ T cells alone in the
FACS/Olink/CyTOF model yielded an AUC of 0.93, thus
scoring higher than the majority of top-3 and top-5 feature
combinations.

To test the reproducibility of these findings, we next
recruited a validation cohort of patients with IBD under-
going vedolizumab treatment (n ¼ 26) and analyzed PBMCs
using an optimized and simplified flow cytometry panel. In
that cohort, the combination of our top 3 FACS markers
(Ki67, CXCR3, and IL4) achieved an AUC of 0.99 (Figure 5E).

Thus, our 3-feature FACS panel on Ki67þ memory CD4þ

T cells allowed reliable prediction of treatment response,
and we identified the abundance of proliferating CD4þ

memory T cells in circulation as a key classifier of vedoli-
zumab treatment outcome.

Transcriptional Characteristics of Circulating
Ki67þ Effector CD4þ T Cells

To further investigate the observed increase in T-cell
proliferation in vedolizumab nonresponders, we analyzed
different T-cell populations for Ki67 expression. We
observed significant enrichment of Ki67þ cells within total
CD3þ T cells in the blood of nonresponders (Supplementary
Figure 13A). This increased Ki67þ fraction was specific to
memory CD4þ T cells (but not regulatory or memory CD8þ

T cells) in nonresponders compared with responders in
both patients with UC and patients with CD (Supplementary
Figure 13A–C). This finding was also confirmed in the vali-
dation cohort (Supplementary Figure 13D). Interestingly,
Ki67þ levels in memory CD4þ T cells were significantly
elevated in patients with IBD before therapy initiation and
=
Figure 4. Vedolizumab (VDZ) modulates integrin a4b7 expres
proinflammatory serum proteins. (A) Machine learning approach
immune cells. (B) Capacity of clinical parameters, Olink, mass c
signatures shown as receiver operating characteristic curves (RO
cells from total CD45þ cells in the mass cytometry dataset at
before treatment, n ¼ 31; week 2, n ¼ 9; week 6, n ¼ 25; week 30
the top 10 VDZ efficacy features from the CyTOF-a4b7 dataset
the highest feature coefficients, and the absolute values of the
Supplementary Table 3. cDC, conventional dendritic cell; pDC, p
total CD45þ per indicated cluster in the mass cytometry datase
n ¼ 31; after treatment, n ¼ 25). Paired Wilcoxon test. NK, natura
data with the largest feature coefficients. DNER, delta/notch-lik
fication of the indicated analytes before treatment (n ¼ 39) and 6
between the serum proteomics’ most significantly altered cyto
CyTOF after treatment.
remained unaffected by vedolizumab (Supplementary
Figure 13E and F).

To further characterize Ki67þ memory CD4þ T cells, we
conducted additional single-cell sequencing analysis on FACS
sort-purified memory CD4þ T cells from the same donors
used initially in our study, which was integrated with the pre-
existing PBMC scCITEseq data (Figure 6A and Figure 1B).
Hierarchical clustering resulted in 12 distinct clusters within
the sequenced memory CD4þ T cells (Figure 6B,
Supplementary Figure 14A–C), with predominant enrichment
of Ki67þ memory CD4þ T cells in cluster 1 (Figure 6C and D),
which, consistent with our FACS data, was significantly
increased in nonresponders before treatment (Figure 6E).

We compared the genes expressed in cluster 1 with all
other clusters (Figure 6F, Supplementary Table 6), focusing
on classical activation and homing markers, cytokine re-
ceptors, cytokines, and classical T cell–related transcription
factors (Figure 6G). Our analysis revealed signs of activation
and proliferation in cluster 1 (up-regulated HLADRA,
CD40LG, and MKI67, down-regulated IL7R and SELL)
(Figure 6G, activation markers, and cytokine receptors).
Furthermore, cells in cluster 1 showed high ITGA4, ITGB1,
and ITGB7 levels, and CXCR3 and CCR6 (Figure 6G, homing
receptors) expressed IL12BR2, IL18R1, and showed down-
regulation of IFNGR2 (Figure 6G, cytokine receptors).
Several transcription factors, including TBX21, RORC, MAF,
and TOX, were up-regulated (Figure 6G, transcription fac-
tors). By integrating protein data, we confirmed that cluster
1 expressed increased protein levels of HLA-DR, while dis-
playing low expression of CD25, CD45RA, and CD127
(Figure 6H). Our findings indicate that Ki67þ memory CD4þ

T cells constitute an activated subpopulation distinguished
by T-helper (Th) 1 and Th17 attributes, elevated integrin
expression, heightened gut-homing potential, and increased
activation markers.
Proliferating Effector Memory CD4 T Cells Exhibit
Expression of Alternative Homing Receptors and
T-helper 1/T-helper 17 Cell Characteristics

We used multiparametric flow cytometry to explore the
functional characteristics of the predictive Ki67þ effector
memory CD4þ T-cell signature in IBD, including markers
identified by single-cell sequencing. There was a positive
sion on circulating immune cells, cell type abundance, and
used to identify the effects of VDZ treatment on circulating
ytometry, and flow cytometry data to display VDZ treatment
C) with corresponding AUC values. (C) Percentage of a4b7þ

different time points throughout treatment (patients with IBD
, n ¼ 15; week 50, n ¼ 9). Mann-Whitney test. (D) Overview of
with the largest feature coefficients. These populations have
se coefficients are shown. The complete list can be found in
lasmacytoid dendritic cell. (E) Percentage of a4b7þ cells from
t from week 0 vs week 6 (patients with IBD before treatment,
l killer. (F) Overview of the 10 VDZ efficacy features from Olink
e epidermal growth factor-related receptor. (G) Olink quanti-
weeks after VDZ treatment (n ¼ 39). (H) Spearman correlation
kines and the abundance of cell populations measured by
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correlation between Ki67 and HLA-DR, CD38, and PD-1
expression (Supplementary Figure 15A). Ki67þ memory
CD4þ T cells showed increased expression of HLA-DR, CD38,
MKI67
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integrin a4 and b1, with nearly 80% expressing integrin
a4b1 and 20% expressing integrin a4b7 (Figure 7A–C).
Indeed, vedolizumab did not inhibit interactions between
integrin a4b1 and its ligand vascular cell adhesion molecule
(VCAM) (Supplementary Figure 15E–G). In addition, Ki67þ

memory CD4þ T cells expressed high levels of GPR15,
CXCR3, and CCR6, which are critical for migration to
inflamed sites (Supplementary Figure 15B and C), consistent
with the high expression of corresponding chemokine li-
gands and adhesion molecules in inflamed intestinal tissue
(Supplementary Figure 16).

Expression of Th1/Th17 transcription factors T-bet,
Eomes, RORgt, and the cytokine IL-17A were also increased
in Ki67þ memory CD4þ T cells (Figure 7D and E;
Supplementary Figure 15D). In vedolizumab non-
responders, there was an increase in T-betþRORgtþ cells
and a reduction in FoxP3 expression within Ki67þ memory
CD4þ T cells (Figure 7F). These findings collectively
demonstrate that Ki67þ memory T cells are significantly
enriched in the blood of patients who fail to respond to anti-
integrin therapy, express a4b1 integrin, and exhibit an
activated Th1/Th17 phenotype.
Discussion
This study investigated the impact of anti-integrin a4b7

treatment on the circulating immune cell landscape in IBD
and identified factors associated with nonresponse. First,
a4b7 integrin was expressed across various immune cell
types, including both innate and adaptive circulating immune
cells, leading to significant alterations in their composition
and expression of a4b7 integrin after therapy initiation. Sec-
ond, the TCR repertoire of CD4þ T cells, specifically effector
and a4b7þ memory CD4þ T cells, changed after treatment.
Third, integrating acquired multimodal parameters into a
composite model effectively classified therapy response to
vedolizumab. Fourth, the predictive activated cycling effector
CD4 T-cell subset expressed molecules associated with path-
ogenic Th1/Th17 responses, including the transcription fac-
tors T-bet and RORgt and homing markers, including CXCR3,
CCR6, and integrin a4b1. Finally, we confirmed that the
abundance of circulating proliferating effector CD4þ T cells is
a novel classifier of vedolizumab failure in patients with IBD.

Vedolizumab is thought to reduce intestinal inflamma-
tion by modulating T cell migration and entry to the gut.
Notably, gut-resident CD4þ T cells can migrate from gut
tissue into the circulation.32 Vedolizumab treatment may
disrupt their re-entry into the gut, possibly leading to
=
Figure 6. Enrichment of proliferating Ki67þ effector CD4þ T cells
experimental approach. (B) Uniform Manifold Approximation an
bined PBMC and CD4þ-sorted scRNAseq data from 5 HCs and
CD4þ memory cells. (D) Fraction of MKI67þ cells within differ
sponders (R) and nonresponders (NR), respectively. Mann-Whitn
percentage of cells with detectable expression in cluster 1 comp
expression of selected genes in cluster 1 compared with oth
expression, and the dot size represents the P value. Genes are
vation markers, cytokine receptors, transcription factors, cyto
CITEseq expression of selected markers in cluster 1 in compar
retention of circulating gut-resident CD4þ T cells in the
peripheral blood. This phenomenon could account for the
observed enhancement in clonal diversity among circulating
CD4þ T cells. However, its effects on the abundance and
activation of intestinal T cells and the colonic TCR repertoire
have been described as minor.33

Our findings reveal broad a4b7 integrin expression on a
variety of immune cell types, but a4b7 integrin levels
changed most significantly in circulating myeloid pop-
ulations after treatment. Transcriptional analysis of whole
colonic biopsies acquired before and after vedolizumab
treatment previously suggested that vedolizumab primarily
affects innate rather than adaptive immunity.33 Indeed,
inflammation-adapted emergency hematopoiesis, increased
bone marrow output, and skewing toward enhanced
granulocyte-monocyte progenitors have been found to occur
and support intestinal inflammation, and these granulocytic
populations express integrin a4b7 and migrate to mucosal
tissues.34,35 Consistent with these data, we observed an
increased abundance of circulating eosinophils, monocytes,
and dendritic cells after vedolizumab treatment, irre-
spective of therapy response. These findings suggest that by
targeting a4b7 integrin, vedolizumab potentially reduces
infiltration of newly generated myeloid cells into gut tissue.

Because the influence of vedolizumab treatment on the
systemic inflammatory environment in patients remains
unclear, we measured proinflammatory serum proteins
before therapy initiation and 6 weeks later. We observed
significant alterations in serum proinflammatory markers in
patients with IBD compared with healthy controls. Of
particular interest, we noted an increase in several serum
markers after 6 weeks of vedolizumab, consistent with
preclinical observations in rhesus macaques.15 Interestingly,
we found a strong correlation between the top-enriched
serum analytes and the abundance of various cellular pop-
ulations also enriched in peripheral blood after vedolizumab
treatment. This suggests that the sequestration of inflam-
matory cells in the circulation may contribute to pro-
inflammatory cytokine and chemokine release.

Ki67þ memory CD4þ T cells were enriched in patients
with IBD compared with healthy controls, and these cells
were significantly increased in nonresponders to vedolizu-
mab. Furthermore, these cells co-expressed activation
markers CD38 and HLA-DR, which are increased in the blood
and colonic mucosa of patients with IBD.36 Ki67þ memory
CD4þ T cells showed reduced CD127 and CCR7 expression,
while HLA-DR and CD38 expression was increased, con-
firming their activation and effector status. Indeed,
in vedolizumab-refractory patients. (A) Schematic depiction of
d Projection (UMAP) plot of CD4þ memory cells using com-
10 patients with IBD. (C) Normalized expression of MKI67 in

ent clusters. (E) Fraction of MKI67þ cells in cluster 1 for re-
ey test. (F) Scatter plot of marker genes for cluster 1 showing
ared with all other clusters. (G) Lollipop graph illustrating fold
er clusters. The color scale represents the mean log2-fold
categorized according to different functions, including acti-

kines, and homing receptors. (H) Dot plot displaying scaled
ison with other clusters.
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Figure 7. Distinctive features of proliferating effector CD4þ T cells in vedolizumab nonresponsive patients. (A) Histograms of
FACS surface marker expression in a representative patient with IBD. Shown is the expression of the indicated markers on
naïve, Ki67þ, and Ki67– memory CD4þ T cells. (B) Dot plot showing geomean expression of FACS surface markers on Ki67þ or
Ki67– memory CD4þ T cells in patients with IBD before therapy (n ¼ 41). Expression normalized to naïve CD4þ T cells. (C)
Percentage of indicated surface marker expression within Ki67þ and Ki67– memory CD4þ T cells in patients with IBD. n ¼ 29–
44. Mann-Whitney test. (D) Percentage of indicated transcription factor expression within Ki67þ and Ki67– memory CD4þ T
cells in patients with IBD. n ¼ 28–40. (E) Percentage of IL-17A and interferon (IFN)-gamma expression within Ki67þ and Ki67–

memory CD4þ T cells in patients with IBD. n ¼ 20. (F) Expression of the indicated transcription factors within Ki67þ and Ki67–

memory CD4þ T cells in vedolizumab responders (R) vs nonresponders (NR). n ¼ 18–32. Mann-Whitney test.
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gluten-specific and Salmonella-specific circulating CD4þ T
cells from patients with celiac disease37 or healthy volunteers
challenged with Salmonella enterica38 showed a comparable
phenotype to the cycling effector cells in patients with IBD.
This similarity suggests that the observed CD4þ T cells in
patients with IBD, particularly vedolizumab nonresponders,
could be cycling, activated microbiota-specific CD4þ T cells,
which are known to be abundant in patients with IBD.39
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The observed circulating Ki67þ memory CD4þ T cells
expressed homing receptors (CXCR3, CCR6, and GPR15) and
adhesion molecules (integrins a4b1 and a4b7), which
enable migration to the inflamed mucosal tissue.40,41

Indeed, a significant fraction of Ki67þ memory CD4 T cells
expressed integrin a4b1 and, to a lesser extent, integrin
a4b7, suggesting that they might not be sufficiently targeted
by anti-a4b7 integrin treatment. Integrin a4b1 binds to
VCAM-1 and integrin a4b7 interacts with MadCAM-1, and
both VCAM-1 and MAdCAM-1 are up-regulated in the in-
testinal tissue of patients with IBD.42,43 However, vedoli-
zumab does not influence the interaction between integrin
a4b1 and VCAM.12 Initial efforts to target cell migration to
intestinal tissue using a monoclonal antibody targeting a4
integrin, natalizumab, which blocks both a4b1 and a4b7
integrins, significantly reduced intestinal inflammation, but
at the cost of elevated risk of fatal progressive multifocal
leukoencephalopathy.44–47 A small molecule oral integrin a4
antagonist (AJM300) was well tolerated and induced a
clinical response in patients with moderately active UC
without increased risk of progressive multifocal leu-
koencephalopathy, which might be useful in patients with
increased cycling circulating memory CD4þ T cells.48 How-
ever, the pathogenic role of these cells and their mechanism
of targeting remain unclear and need further investigation.

This study has several limitations. First, our sample size
is small, comprising mostly patients with UC. Second, our
study does not include the analysis of matched mucosal
samples, limiting our understanding of the origin and
characteristics of the observed increase in proliferating
memory CD4þ T cells. Third, our novel findings of a pre-
dictive signature warrant additional investigations to
elucidate underlying mechanisms. It is important to note
that not all patients were profiled on all platforms, which
may introduce bias or incomplete data representation.
Nevertheless, our study expansively characterizes the
circulating immune cell landscape using multimodal
profiling, identifies alterations induced by vedolizumab
treatment, and classifies therapy response. Validation of the
predictive value of Ki67þ memory CD4þ T cells using a
custom flow cytometry panel supported the robustness of
our technical approach. However, a multicentric prospective
study is needed to validate our signature in more hetero-
geneous patient populations. This will pave the way for
developing a peripheral blood assay for precision therapy
after validation in future multicentric studies.

Our study provides a comprehensive framework for
assessing therapy response and understanding the mecha-
nisms underlying resistance in chronic immune-mediated
inflammatory diseases, such as IBD. Identifying personal-
ized treatment strategies based on individual patient char-
acteristics, as exemplified by our "stratify to target"
approach, can significantly improve IBD management.

Supplementary Material
Note: To access the supplementary material accompanying
this article, visit the online version of Gastroenterology at
www.gastrojournal.org, and at https://doi.org/10.1053/
j.gastro.2024.09.021.
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