
Figure S1: Distribution of feature variances is preserved in signal implantation, but not parametric
simulations. For all baseline datasets (see Methods), the distribution of feature variances were recorded for the
real input data (reference, gray) as well as simulated data from different parametric simulation frameworks or the
signal implantation framework. For simulated data, the distributions are shown for a single repeat of a fixed effect
size (abundance scaling of 2, prevalence shift of 0.2, if applicable). Missing ridges for some datasets indicate the
simulation procedures failed to converge after five days of compute time.
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Figure S2: Sample sparsity, machine learning, and PERMANOVA analyses indicate that signal
implantation, but not parametric simulations, can reproduce key data characteristics across various
datasets. For all baseline datasets (see Methods), sample sparsity was recorded as the fraction of
zero-abundance features per sample for the real input data (reference) as well as data simulated with different
parametric simulation frameworks or the implantation framework. The distribution of sample sparsity is shown as
magenta box plots, with the median line of the reference extended across each subplot. Similarly, the AUROC
values resulting from machine learning analyses (a measure for how well a machine learning model can
distinguish between real and simulated samples, see Methods) and the log-transformed F-values from
PERMANOVA analyses (a measure for how different real and simulated samples are from one another, based on
log-Euclidean distances between samples) are shown as cyan and brown boxplots, respectively. Boxplots show
the measures for all repetitions (100 for the dataset from Zeevi WGS and 20 for all other datasets) and effect
sizes. Missing boxes for some datasets indicate the simulation procedures failing to complete after five days of
compute time. See Fig. 1 in the main text for box definitions.
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Figure S3: Mean-variance relationship is retained in data derived from signal implantation, but not
parametric simulations. a) For all baseline datasets, the log10-transformed mean relative abundance is plotted
against the log10-transformed variance for all taxa simulated with five parametric simulation frameworks and the
signal implantation framework. A single repetition of a fixed effect size (abundance scaling of 2, prevalence
scaling of 0.2, if applicable) is shown. Features that have been selected for differential abundance are highlighted
in green. The blue shaded area indicates the density of the mean-variance relationship in the real input data,
estimated through the MASS::kde2d() function in R (see color key). Missing points for some datasets indicate
that the simulation procedures failed to converge after five days of compute time. b) For the Zeevi gut WGS
dataset, the mean-variance relationship is shown for various abundance scaling effect sizes (fixed prevalence
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scaling of 0.2, a single random repetition). Using the approach of the PERMDISP test (vegan::betadisper),
the dispersion of real and simulated mean-variance values was tested for significant differences. For an
abundance scaling factor of 10, 46% of repetitions resulted in significant (P < 0.05) differences in the dispersion
between real and simulation data, depending on the implanted prevalence shift (prevalence shift of 0: 7%, pr.
shift of 0.1: 40%, pr. shift of 0.2: 60%, and pr. shift of 0.3: 77% of repetitions), whereas 97% of repetitions for
abundance scaling of 20 showed significant differences. None of the tests for other abundance scaling effect
sizes were significant. All parametric simulation frameworks resulted in data with significantly different dispersion
between real and simulated mean-variance values irrespective of the effect size used.

Figure S4: Implanted effect sizes vary across different simulation schemes and eligible feature sets. a)
The absolute generalized fold change (gFC)6 and the absolute prevalence difference between groups was
calculated for all features across all repetitions in every simulation scheme. For each repetition, the mean gFC
and mean prevalence difference values were calculated for both background and implanted features (ground
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truth differentially abundant features). As a reference, the real gFC and prevalence shift values observed across
all features in the Crohn’s disease meta-analysis are shown in the top left panel (see Methods and main text Fig.
1, also for a comparison to gFCs and prevalence shifts observed in colorectal cancer). In the bottom row, mean
gFC and mean prevalence shift values are shown for different signal implantation configurations that vary feature
sets eligible for implantation (see Methods). Signals implanted into high abundant features resulted in (mean)
effect sizes which were much larger and deviated substantially from real Crohn’s disease data. b) Boxplots show
the AUROC values for distinguishing between implanted and background features, using the gFC values as
predictor. All values were calculated for the simulation based on the Zeevi WGS dataset, with all features eligible
for implantation. Except for small effect sizes, the gFC values are almost perfectly separated between
background and implanted features, indicating that the implanted features have higher gFC values than
background features. The effect size shown in the main figures is highlighted by a red star.

Figure S5: Performance of differential abundance testing methods tends to decrease after rarefaction.
The mean change in observed FDR, observed recall and AUROC for the detection of ground truth differentially
abundant (DA) features are shown as bars across all tested effect and sample sizes to compare method-internal
normalization (exclusively) with prior data transformation (assessing methods that are commonly used in
microbiome data analysis, such as e.g. rarefaction). Negative values denote decreased performance when
compared to no data preprocessing, and error bars indicate the standard deviation across all repetitions. The
horizontal bars on the top of the plot indicate the preprocessing method used (and combinations thereof, e.g.
total sum scaling (TSS) could be combined with rarefaction and/or other downstream transformations). For all DA
testing methods, rarefaction was applied before any method-specific normalization was performed. Overall,
rarefaction led to a decrease in observed recall and lower AUROC scores across most methods. Other data
preprocessing methods were applied for methods that do not specifically model count data and could therefore
be supplied with other types of data. Both limma and the LM showed marked improvements in recall (with
comparably low deterioration of observed FDR) across several preprocessing techniques, where the
compositional preprocessing methods clr and rclr lowered the AUROC and the recall for detection of ground truth
DA features for theWilcoxon test.
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Figure S6: Performance of differential abundance testing methods improves with increasing effect size.
The mean observed FDR, mean observed recall, the mean specificity (1 - false positive rate, calculated on raw P
values) and the mean AUROC (on raw P values) for the detection of ground truth DA features are shown across
all included methods for varying effect sizes of the same signal implantation benchmark (all features eligible for
implantation). All values were recorded for a sample size of 100. With larger effect sizes (both prevalence shifts
and scaled abundances), the AUROC for the detection of ground truth DA features generally increased. For
ANCOM, lines for mean observed FDR and recall are dashed, since ANCOM does not output P values and
multiple testing corrections cannot be applied (see Methods).
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Figure S7: The effect of different adjustment methods for multiple hypothesis testing. For each included
DA testing method, FDR, recall, and AUROC for the detection of differentially abundant features was calculated
at a cutoff of 5%, using either the raw P values (no correction), or the results of the Benjamini-Hochberg
correction (BH), or the Benjamini-Yekutieli correction (BY). Box plots show the distribution of all values across all
repetitions and included effect sizes. As expected, a cutoff of 5% on raw P values results in high FDR across all
methods except for ALDEx2, which appears to be overconservative – in line with previous benchmarks45. After
either BH and BY correction, most methods properly control the observed FDR at the nominal 5% level, while
those methods that failed to do so under BH, also failed under BY (e.g. metagenomeSeq (mgs), edgeR, or
corncob). The BY correction not only results in lower observed FDR across all methods, but it also generally
leads to reduced recall and lower AUROC. See Fig. 1 in the main text for boxplot definitions. Since ANCOM does
not output P values (see Methods), BH and BY corrections cannot be applied, so the corresponding values
cannot be shown.
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Figure S8: Performance of differential abundance testing methods varies largely across simulation
frameworks and comparably little across datasets. The evaluation results of different underlying simulation
frameworks are visually compared across the top 6 rows (see labels to the right) and contrasted to the
differences in evaluations resulting from the use of different data sets in the implantation framework across the
bottom three rows. For a single, moderate effect size (abundance scaling of 2, prevalence shift of 0.1, if
applicable see Fig. 2), the mean observed FDR, mean observed recall (both computed after BH correction of raw
P values), the mean specificity, and mean AUROC values for the detection of differentially abundant features are
shown across all repetitions for all included DA testing methods (see also Methods). Data simulated by
parametric simulation frameworks used the real Zeevi gut WGS dataset as input. For ANCOM, lines for observed
FDR and recall are dashed, since ANCOM does not output P values (see Methods).
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Figure S9: Performance of differential abundance testing methods in the presence of strong
compositionality effects. a) The generalized fold change is shown across different effect sizes for background
features and implanted features for the default signal implantation framework with a balanced implantation into
both groups (left, see Methods and Weiss et al.25) and the imbalanced implantation (right, see Methods and also
Jonsson et al.30). In the default framework, compositional effects are minimized, meaning that background
(unimplanted) features show no difference between groups, whereas in the imbalanced implantations, features
are only implanted into a single group, thereby leading to abundance shifts in background features (average
generalized fold change decreasing with effect size) as a consequence of compositionality. Generalized fold
changes for a single representative repetition are shown (prevalence shift of 0.2, only high abundant features
eligible for implantation, see Fig. 1 in the main text for boxplot definition). b) The mean observed FDR, mean
observed recall, and mean AUROC values are shown across all repetitions (prevalence shift of 0.2, only high
abundant features eligible for implantation, sample size of 200) for each abundance scaling effect size (with
which the compositionality effects also increase) for all included DA methods (see Methods). While
compositionality (at extreme effect sizes) leads to a general trend of deteriorating DA method performance,
ANCOM and ALDEx2 are least affected in terms of FDR. For ANCOM, lines for observed FDR and recall are
dashed, since ANCOM does not output P values (see Methods).
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Figure S10: Empirical phi coefficients between cardiometabolic diseases and medication. a) Phi
coefficients were calculated between different disease groups from the MetaCardis cohort14 and n=330 healthy
controls (see Methods). For a given disease, the highest phi values are observed for the most common drug
indications. Gray squares represent NAs, which resulted when no individuals in either case or control group were
taking a given medication. b) Medication intake broken down by case or control group. High concomitance
between drug intake and disease status produces large phi coefficients, while negative coefficients indicate that
the control group was more medicated than a given disease cohort. c) Linear relationship (with 95% confidence
interval as shaded gray area) between the bias parameter used in our framework to produce confounded
simulations (see Methods) and empirical phi values of simulated data.
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Figure S11: Performance of confounder-adjusted linear models is minimally impacted by choice of model
formula. Different ways of adjusting the linear model for confounders were explored for the same simulation as
shown as in Fig. 3 (abundance scaling factor of 2, prevalence shift of 0.2, all features eligible for implantation,
sample size of 200 shown here). LMEM represents the random effect model used in the main text for confounder
adjustment, i.e. with formula lmerTest::lmer(feature~label + (1|confounder)), which was fit using the base R
summary function. The LM interaction model had the formula lm(feature~label * confounder) and was also fit
with the summary function. The fixed effect model was implemented as lm(feature~label + confounder), and the
significance of the label variable was tested using a Type III analysis of variance (via the car::Anova function), i.e.
one which does not depend on the order of terms in the model formula. The LMEM had a slightly higher
proportion of false positives than the other methods at confounder strengths > 0.6, albeit coupled with higher
recall and AUROC, but results were largely similar to one another in our evaluation.
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Figure S12: Confounder-adjusted DA testing methods show similar performance across datasets and
varying proportion of confounder-associated features. For all included gut WGS studies (Zeevi WGS,
Schirmer WGS, and TwinsUK WGS), several confounded simulations were created with a varying number of
features implanted as confounder-associated features into the simulations (5%, 10% or 20% of features
implanted with the confounder label, always 10% of features implanted with the main group label, see Methods).
The mean observed FDR, the mean observed recall, and the AUROC values for the detection of differentially
abundant features were calculated for each simulation and each of the included DA testing methods (limma, the
LM, the Wilcoxon test, and fastANCOM), while taking either the confounder variable into account or not (naive
and confounder-adjusted models, respectively). Lines show the mean performance of each method across all
repetitions for a single effect size (abundance scaling of 2, prevalence shift of 0.2) for each different simulation.
All values were recorded for a sample size of 100.
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Figure S13: Linear mixed-effect models are able to distinguish the ground truth with high accuracy,
despite poor adherence to model assumptions. a) Using the sample size 200 from the same representative
confounded simulation from the main text Fig. 3, residual variances of mixed-effect models were extracted from
all bacterial taxa for each simulated group (CASE/CTR reflects the main group label, whereas +/- indicates the
confounder label, see Methods). Identified features represent models of ground truth taxa with the smallest and
largest residual variances between groups, indicating the best and worst adherence to model assumptions
(Features 4206 and 4651, respectively). b-c) Log-transformed relative abundances which were used as input for
the LM and LMEM in our benchmarks for the features in a. d-e) Fitted values and residuals for the features in a,
showing clear separation of the case-control groups by their fitted means in both cases. f-g) For each ground
truth feature (N=84 total), fifty models were built for each confounder strength (quantified by ϕ, reflecting the
same confounder strengths in main text Fig. 3b), corresponding to the same random testing subsets used for
benchmarking (see Methods), and their fits were quantified via non-parametric statistical tests. While visual
inspection of residuals is advised, it does not scale well to the high-throughput nature of DA testing or
benchmarking. The Kolmogorov-Smirnov (KS) test was used to compare residuals against a standard normal
reference distribution, and the Fligner-Killeen (FK) test evaluates the homogeneity of variances across groups. P
values were adjusted for multiple testing using the Benjamini-Hochberg method, then averaged across the 50
repetitions. Models with adjusted P values ≤ 0.05 violated assumptions of residual normality and/or homogeneity
of group variances respectively, and were considered poor fits. Regardless of confounder strength, more than
95% of ground truth features did not meet LMEM assumptions. h) Coefficients for the main group (case-control)
label were extracted from the exact same models as in f and g, adjusted for multiple testing, and classified as
either true positives or false negatives using the same adjusted cutoff (≤ 0.05 for true positives). Echoing our
findings in the main text (evaluated across many more simulations and repetitions), LMEMs were slightly less
accurate under high confounding (ϕ=0.7).
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Figure S14: Study heterogeneity between real datasets resembles confounding conditions achieved
using signal implantation and biased resampling. a) For both colorectal cancer (CRC) and Crohn’s disease
(CD), the number of samples in each group (control and respective case group) is shown across studies as a bar
plot. For CRC, studies are generally balanced, while there are larger differences in group proportions for CD
studies. b) Across all pairwise combinations of CD studies, Lewis et al.81 and Qin et al.80 exhibit the strongest
confounding potential due to study heterogeneity (ϕ=0.58 between study origin and disease status). For this
study combination, the generalized fold change associated with the disease label (CD) and the study origin are
plotted against each other across all included bacterial taxa, showing a pronounced correlation. c) Using both the
naive (not adjusted for study heterogeneity as a confounder) and the study-adjusted configuration of limma, the
LM, and the Wilcoxon test, all bacterial genera from the combination of Lewis et al. and Qin et al. (see b) were
tested for differential abundance between control and CD samples. The resulting estimated FDR values
(Benjamini-Hochberg corrected P values) are plotted against each other as scatter plots, with 0.05 indicated as
dashed black line for both models. Red dots highlight taxa that are potentially confounded (identified as
differentially abundant in the naive model, but not the confounder-adjusted model), with a similar proportion of
potentially confounded taxa across all three DA testing methods. Taxa that are significantly associated with CD,
independent of the type of model used, are highlighted in blue, whereas taxa that were not significant in the naive
model, but do appear significantly different in the confounder-adjusted model are shown in orange.
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Figure S15: Broad confounding results in slightly worse performance of DA testing methods compared
to narrow confounding. For each two-way combination of the included gut WGS studies (Zeevi WGS, Schirmer
WGS, and TwinsUK WGS), implantation simulations were created from data of both studies as input, using the
study information as confounding variable for the generation of (biased) resampled testing sets (see Methods).
On the left, principle coordinate projections for various levels of confounding are shown, visualizing how the study
and group variables become more aligned with increased confounding strength (as seen in the group-resolved
boxplots for the first principle coordinate). Underneath, the absolute generalized fold change (gFC) for the group
label is contrasted with the gFC for the study label, with implanted features highlighted in light green (see Fig. 3
in the main text for reference). On the right side, the performance of limma, the LM, fastANCOM, and the
Wilcoxon test are shown in dependence of the confounder strength as measured by ϕ (see Methods). Each test
was run in the ‘naive’ (without adjusting for the study variable, left column) and in the confounder-adjusted
configuration (right column). Observed (abbreviated to obs.) FDR and recall were calculated after
Benjamini-Hochberg correction, while AUROC was calculated on raw P values.
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Figure S16: Comparison of runtime across differential abundance testing methods. Runtime was recorded
on the same machine for 50 repetition of different subset sizes from a single repetition in the same signal
implantation benchmark (abundance scaling of 2, prevalence shift of 0.1, all features eligible for implantation).
Methods are annotated with the time needed to run the subset size of 800 samples on the same laptop. The
original ANCOM implementation was obtained from the website of the first author of the ANCOM manuscript at
https://sites.google.com/site/siddharthamandal1985/research.
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