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Legend Supplemental Figure 1 
Quantitative metrics of data obtained with different chromatin interaction mapping methods 
a.   Chromatin interaction maps obtained with different chromatin interaction mapping methods for H1-hESC cells. 
The region shown is Chromosome 19, 30,000,000-58,700,000. All data sets are shown at 100 kb bin size. 

b. The number of reads obtained for Hi-C, Micro-C, ChIA PET, PLAC Seq, SPRITE datasets 

c.    The percentage of cis contacts for data obtained with each method indicated. 
d.    HiCRep 61 correlations of insulation profiles obtained with Hi-C, Micro-C, ChIA PET, PLAC Seq, GAM, and 

SPRITE 

e.    P(s) plot showing distance dependent contact probability of interactions detected with all protocols applied to 

HFFc6 cells (top). Derivative of the P(s) plots shown in panel d (bottom). 
f.    The number of fragments in each SPRITE cluster. Cluster sizes are 2-10, 11-100, 101-1000, 1001-10000 

fragments. 

g.    The percentage of cis contacts in SPRITE clusters of indicated cluster size, for HFFc6 and H1-hESC cells. 
h.    P(s) plot showing distance dependent contact probability of interactions detected with different SPRITE cluster 

sizes for HFFc6 cells (top). Derivative of the P(s) plots shown in the bottom panel. 
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Supplemental Figure 2 

 

 
 

Legend Supplemental Figure 2 

Consensus ChromHMM segmentation in H1-hESC and HFFc6.  
a. Heatmap for the emission parameters of the model.  

b. Heatmap for the transition parameters of the model.  
c-d. Relative percentage of the genome represented by each chromatin state and relative fold enrichment for 

several types of genomic annotations. TSS, transcription start site; TES, transcription end site. 
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Supplemental Figure 3 

 

 
Legend Supplemental Figure 3 
Fold-enrichment scores of ChromHMM states for different loop clusters revealed by the UMAP in H1-hESC 
(a) and HFFc6 (b).  
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Supplemental Figure 4 

 

 
  
Legend Supplemental Figure 4 
a. Box plots show the distribution of normalized TSA-seq and DamID scores on distinct SPIN states in H1 and 

HFFc6 cell lines.  

b. A confusion matrix shows the comparison of SPIN states in K562 between the previous version and the new 

result based on the joint modeling across four cell lines. Note that the new result is based on a new nucleolus TSA-
seq data. The numbers in the heatmap indicate the number of 25kb bins.  

c. The differences of the distributions of normalized TSA-seq and DamID between any two pairs of SPIN states 

are tested by the Wilcoxon rank sum test. Colors of heatmap indicate the p-value under the null hypothesis that 
two distributions are derived from the same population.  
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Supplemental Figure 5 
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Legend Supplementary Figure 5 
Assessment of 3D genome structure models against independent experimental data. Assessment of genome 

structure models with independent experimental data.  

a. Genome-wide correlation of TSA-seq data from experiment and predicted from our models (Left, Lamin B1 TSA-

seq 91. Right, SON TSA-seq 56.  
b. Genome-wide correlation of structure features between genome structures from DNA-MERFISH chromosome 

tracing experiments 82 and predictions from our models. (From left to right, mean speckle distance (SpD), standard 

deviation of mean speckle distance in structure population, Speckle association frequency (SAF), Lamina 
association frequency (LAF)). c. Comparison of single cell distance matrices of chromosome 6 from simulated 

models (Top panel) and DNA-MERFISH imaging data 82 (Bottom panel). Numbers above the distance matrices 

represent Pearson correlations between distance matrices from models and experiment. 
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Supplemental Figure 6 
 

 
Legend Supplementary Figure 6 
Enrichment plots for structural and functional features of genes.  
a. Log-fold enrichment for genomic properties (calculated within a 200 kb region), histone modifications (within +/- 

10 kb of TSS), 3D structure features, and 3D spatial enhancer densities at each TSS (Methods) for genes stratified 

by their speckle association frequencies in HFFc6.  
b.  Same as in K but for H1-hESC cells. 

c.  Same analysis for HFFc6 cells as in A, but now genes are stratified into housekeeping genes and non-

housekeeping genes.  
d. Same as in panel c, but for H1-hESC cells. 
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Supplemental Figure 7 

 

 
 

Legend Supplemental Figure 7 
WTC11 scHi-C analysis compared with bulk Hi-C.  
a. Comparison of contact frequency map near the DPPA locus between bulk Hi-C merge SBS polymer model, 

merged Higashi imputed contact frequency map and raw contact frequency map without imputation. The heatmap 
on the top-right shows the Spearman correlation coefficients between these contact frequency maps. 

b. The heatmap shows the aggregated contact map from single-cell Hi-C data at the gene RABGAP1L locus (for 

cells with z-score>1.96). The circle with dashed line indicates the 450 kb loop identified by SnapHi-C.  
c. KR-normalized Hi-C contact frequency from WTC11 bulk Hi-C data.  

d. The distribution of Z-score of 188 WTC11 single cells at the chromatin loop at the gene RABGAP1L locus. The 

red vertical dash line represents Z-score = 1.96. 
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Supplemental Figure 8 

 

 
Legend Supplemental Figure 8 
Example genome-browser views showing house-keeping genes usually interact with different sets of distal 
enhancers in different cell lines. Blue arcs represent chromatin loops linking the indicated house-keeping genes 
with distal enhancers. 
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Supplemental Figure 9 

 
Legend Supplemental Figure 9 
Compartments and SPIN comparison.  
a. Size comparison of genome folding features in H1-hESCs. All regions plotted by size of their genomic 

coordinates, box plot shows 25th, 50th, and 75th quartiles, whiskers show minimum and maximum values with 
outliers annotated.  

b. Genomic size of A/B compartments stratified by SPIN alignment in H1-hESCs. Total compartment A (green; 

N=1477) and total compartment B (red ; N=1456) were stratified by those that co-register with a SPIN, fully 
encompass or contain a SPIN within, or other, including nested within a SPIN and no SPIN intersection. c. 
Genomic coverage of A/B compartments stratified by SPIN alignment. 
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Links to code 
 

Methods benchmarking: 

https://github.com/dekkerlab/Flagship_paper.git 

 

GAM analysis 

https://github.com/pombo-lab/WinickNg_Kukalev_Harabula_Nature_2021 

 

Loop calling, and transcription-loop analysis: 

https://github.com/XiaoTaoWang/4DN-joint-analysis) 

 

TADs, SPIN, Compartment, and replication analysis: 

https://bitbucket.org/creminslab/cremins_lab_4dn_phase1_jawg_code__2023/ 

 

Predicting Hi-C data from sequence: 

https://github.com/shuzhenkuang/Contact_map_prediction_visualization.  

 

Replication timing analysis 

https://github.com/ClaireMarchal/flagship_paper_scripts 

 

 

Links to data  
 

All data described in this work are publicly available at the 4DN Data Coordination and 

Integration Center (https://data.4dnucleome.org/), or through other publicly accessible 

portals listed below for each relevant dataset. 
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Methods and data links 
 

1. Methods and data for benchmarking section 
 
Datasets 
 
Cell Type Experimental Type Data Type Data Source/Download Link Note 

H1-ESC Hi-C Contact matrix 4DN (4DNFI82R42AD)  

 Micro-C Contact matrix 4DN (4DNFI9GMP2J8)  

 CTCF ChIA-PET Contact matrix 4DN (4DNFINMHXGVQ)  

 RNAPII ChIA-PET Contact matrix 4DN (4DNFIO8YJ5JA)  

 H3K4me3 PLAC-Seq Contact matrix 4DN (4DNFICOGAKW2)  

 DNA SPRITE Contact matrix 4DN (4DNFITX6WCRT)  

  Clusters 4DN (4DNFIV3PDS5F, 4DNFIIY1TXUZ) 

 GAM Contact matrix at 

25kb 

4DNESVAMUDHA   

 CTCF ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/e
pimap/data/observed/FINAL_

CTCF_BSS00478.sub_VS_FI

NAL_WCE_BSS00478.pval.si
gnal.bedgraph.gz.bigWig 

ChromHMM 
Input 

 H3K27ac ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe
d/FINAL_H3K27ac_BSS00478.sub_VS_FINAL_

WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 H3K27me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K27me3_BSS00478.sub_VS_FINAL_
WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 H3K36me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K36me3_BSS00478.sub_VS_FINAL_
WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 
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 H3K4me1 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K4me1_BSS00478.sub_VS_FINAL_
WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 H3K9ac ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K9ac_BSS00478.sub_VS_FINAL_W

CE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 H3K4me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K4me3_BSS00478.sub_VS_FINAL_

WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 H3K4me2 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe
d/FINAL_H3K4me2_BSS00478.sub_VS_FINAL_

WCE_BSS00478.pval.signal.bedgraph.gz.bigWig 

 RNA-Seq Signal (Bigwig) ENCODE (ENCFF501KFP, 
ENCFF563OKS) 

Visualization 

 CTCF ChIP-Seq Signal (Bigwig) ENCODE (ENCFF332TNJ)  

 H3K27ac ChIP-Seq Signal (Bigwig) ENCODE (ENCFF103PND)  

 H3K27me3 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF502GXT)  

 EZH2 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF109KCQ)  

 POLR2A ChIP-Seq Signal (Bigwig) ENCODE (ENCFF942TZX)  

 CHD1 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF597VKW)  

 KDM4A ChIP-Seq Signal (Bigwig) ENCODE (ENCFF269CHA)  

 PHF8 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF059EBB)  

 TAF1 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF837BSZ)  

 RAD21 ChIP-Seq Signal (Bigwig) ENCODE (ENCFF056GWP)  

 KDM1A ChIP-Seq Peaks ENCODE (ENCFF759CSN) Enrichment 
analysis 

 CBX8 ChIP-Seq Peaks ENCODE (ENCFF483UZG)  

 EZH2 ChIP-Seq Peaks ENCODE (ENCFF414CAB)  
 KDM4A ChIP-Seq Peaks ENCODE (ENCFF021QGZ)  

 SP4 ChIP-Seq Peaks ENCODE (ENCFF257FUV)  

 MAX ChIP-Seq Peaks ENCODE (ENCFF994IHO)  
 POU5F1 ChIP-Seq Peaks ENCODE (ENCFF383EYO)  

 CHD1 ChIP-Seq Peaks ENCODE (ENCFF731EYW)  

 ZNF143 ChIP-Seq Peaks ENCODE (ENCFF235ROG)  
 TAF1 ChIP-Seq Peaks ENCODE (ENCFF886BPR)  

 TCF12 ChIP-Seq Peaks ENCODE (ENCFF959HJP)  
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 CHD7 ChIP-Seq Peaks ENCODE (ENCFF338IDU)  

 CEBPB ChIP-Seq Peaks ENCODE (ENCFF823KCM)  
 BRCA1 ChIP-Seq Peaks ENCODE (ENCFF721TNS)  

 MXI1 ChIP-Seq Peaks ENCODE (ENCFF727RNJ)  

 CTBP2 ChIP-Seq Peaks ENCODE (ENCFF501VJW)  
 SIRT6 ChIP-Seq Peaks ENCODE (ENCFF219XEX)  

 SUZ12 ChIP-Seq Peaks ENCODE (ENCFF225AMM)  

 EP300 ChIP-Seq Peaks ENCODE (ENCFF244VKF)  
 ZNF274 ChIP-Seq Peaks ENCODE (ENCFF718OGI)  

 HDAC6 ChIP-Seq Peaks ENCODE (ENCFF802HUU)  

 GABPA ChIP-Seq Peaks ENCODE (ENCFF308NZT)  

 POLR2A ChIP-Seq Peaks ENCODE (ENCFF322DAE)  
 GTF2F1 ChIP-Seq Peaks ENCODE (ENCFF138MYA)  

 MYC ChIP-Seq Peaks ENCODE (ENCFF049SMR)  

 NRF1 ChIP-Seq Peaks ENCODE (ENCFF414RES)  
 REST ChIP-Seq Peaks ENCODE (ENCFF738LQB)  

 JUN ChIP-Seq Peaks ENCODE (ENCFF821GUI)  

 HDAC2 ChIP-Seq Peaks ENCODE (ENCFF923TXH)  
 RXRA ChIP-Seq Peaks ENCODE (ENCFF745EBL)  

 CTCF ChIP-Seq Peaks ENCODE (ENCFF023LAA)  

 YY1 ChIP-Seq Peaks ENCODE (ENCFF376FVJ)  
 ATF3 ChIP-Seq Peaks ENCODE (ENCFF440FTA)  

 USF2 ChIP-Seq Peaks ENCODE (ENCFF346KIW)  

 BCL11A ChIP-Seq Peaks ENCODE (ENCFF847HXU)  
 JUND ChIP-Seq Peaks ENCODE (ENCFF287KKY)  

 USF1 ChIP-Seq Peaks ENCODE (ENCFF978MNS)  

 RNF2 ChIP-Seq Peaks ENCODE (ENCFF241UKW)  
 SP2 ChIP-Seq Peaks ENCODE (ENCFF309QRC)  

 SIX5 ChIP-Seq Peaks ENCODE (ENCFF384KWP)  

 CBX5 ChIP-Seq Peaks ENCODE (ENCFF218OXB)  
 ATF2 ChIP-Seq Peaks ENCODE (ENCFF352KLD)  

 RFX5 ChIP-Seq Peaks ENCODE (ENCFF142NQQ)  

 FOSL1 ChIP-Seq Peaks ENCODE (ENCFF428RHR)  

 NANOG ChIP-Seq Peaks ENCODE (ENCFF435DTC)  
 POLR2AphosphoS5 

ChIP-Seq 

Peaks ENCODE (ENCFF872MKT)  

 BACH1 ChIP-Seq Peaks ENCODE (ENCFF749UPP)  
 E2F6 ChIP-Seq Peaks ENCODE (ENCFF174AVU)  

 CHD2 ChIP-Seq Peaks ENCODE (ENCFF726GBF)  

 RAD21 ChIP-Seq Peaks ENCODE (ENCFF883FUW)  
 SRF ChIP-Seq Peaks ENCODE (ENCFF648QJE)  

 EGR1 ChIP-Seq Peaks ENCODE (ENCFF100KKH)  

 TEAD4 ChIP-Seq Peaks ENCODE (ENCFF885PQR)  
 TBP ChIP-Seq Peaks ENCODE (ENCFF817TGF)  
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 CREB1 ChIP-Seq Peaks ENCODE (ENCFF978KGB)  

 MAFK ChIP-Seq Peaks ENCODE (ENCFF710YJK)  
 RBBP5 ChIP-Seq Peaks ENCODE (ENCFF610PCN)  

 SIN3A ChIP-Seq Peaks ENCODE (ENCFF432EYM)  

 SP1 ChIP-Seq Peaks ENCODE (ENCFF284JVS)  
 SAP30 ChIP-Seq Peaks ENCODE (ENCFF043HXQ)  

 KDM5A ChIP-Seq Peaks ENCODE (ENCFF471OCM)  

 ASH2L ChIP-Seq Peaks ENCODE (ENCFF693FGQ)  
HFFc6 Hi-C Contact matrix 4DN (4DNFIAVXXO55)  

 Micro-C Contact matrix 4DN (4DNFI9FVHJZQ)  

 CTCF ChIA-PET Contact matrix 4DN (4DNFIG2ILS39)  

 RNAPII ChIA-PET Contact matrix 4DN (4DNFIIASUSSX)  

 H3K4me3 PLAC-Seq Contact matrix 4DN (4DNFI9REIU8H)  

 DNA SPRITE Contact matrix 4DN (4DNFIP9HGF9M)  

  Clusters 4DN (4DNFIRXON7Z2)  

 CTCF ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/e

pimap/data/observed/FINAL_
CTCF_BSS00353.sub_VS_FI

NAL_WCE_BSS00353.pval.si

gnal.bedgraph.gz.bigWig 

ChromHMM 

Input 

 H3K27ac ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K27ac_BSS00353.sub_VS_FINAL_

WCE_BSS00353.pval.signal.bedgraph.gz.bigWig 

 H3K27me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K27me3_BSS00353.sub_VS_FINAL_

WCE_BSS00353.pval.signal.bedgraph.gz.bigWig 

 H3K36me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe
d/FINAL_H3K36me3_BSS00353.sub_VS_FINAL_

WCE_BSS00353.pval.signal.bedgraph.gz.bigWig 

 H3K4me1 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe
d/FINAL_H3K4me1_BSS00353.sub_VS_FINAL_

WCE_BSS00353.pval.signal.bedgraph.gz.bigWig 

 H3K9ac ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/imputed

/impute_BSS00353_H3K9ac.bigWig 
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 H3K4me3 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/observe

d/FINAL_H3K4me3_BSS00353.sub_VS_FINAL_
WCE_BSS00353.pval.signal.bedgraph.gz.bigWig 

 H3K4me2 ChIP-Seq Signal (Bigwig) https://epigenome.wustl.edu/epimap/data/imputed

/impute_BSS00353_H3K4me2.bigWig 

 
Genome Architecture Mapping methods and data processing 

 

Preparation of cryosections. H1-hESCs were fixed and processed for cryosectioning as 

described previously {Branco, 2006 #572}. Briefly, H1-hESCs were grown to 70% 

confluency, media was removed, and cells were fixed in 4% and 8% paraformaldehyde in 

250 mM HEPES-NaOH (pH 7.6; 10 min and 2 h, respectively), gently scrapped, and softly 

pelleted, before embedding (>2h) in saturated 2.1 M sucrose in PBS and frozen in liquid 

nitrogen on copper sample holders. Frozen samples were stored in liquid nitrogen. Ultrathin 

cryosections were cut using a Leica ultracryomicrotome (UltraCut EM UC7, Leica 

Microsystems) at approximately 220 nm thickness, captured on sucrose-PBS drops and 

transferred to 4 µm PEN steel frame slide for laser microdissection (Leica Microsystems, 

Cat# 11600289). Sucrose embedding medium was removed by washing with 0.2 μm filtered 

molecular biology grade PBS (3 × 5 min each) and filtered ultra-pure water (5 min). For laser 

microdissection, cryosections on PEN membranes were washed, permeabilized and 

incubated (2 h, room temperature) in blocking solution (1% BSA (w/v), 5% FBS (w/v, 

GibcoTM Cat#10270), 0.05% Triton X-100 (v/v) in PBS). After incubation (overnight, 4oC) 

with primary anti-pan-histone (1:50) antibody (Merck, Cat#MAB3422) in blocking solution, 

the cryosections were washed (3-5x; 30 min) in 0.025% Triton X-100 in PBS (v/v) and 

immunolabeled (1 h, room temperature) with secondary antibodies in blocking solution, 

followed by 3 (15 min) washes in PBS. 

 

Isolation of nuclear profiles. Nuclear staining was visualized using a Leica laser 

microdissection microscope (Leica Microsystems, LMD7000) using a 63x dry objective. 

Individual nuclear profiles (NPs) were laser micro-dissected from the PEN membrane, and 

collected into PCR adhesive caps (AdhesiveStrip 8C opaque; Carl Zeiss Microscopy 

#415190-9161-000). GAM data was collected in multiplexGAM mode, where three NPs are 

collected into each adhesive cap. The presence of NPs in each lid was confirmed with a 5x 

objective using a 420-480 nm emission filter. Control lids not containing nuclear profiles 
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(water controls) were included for each dataset collection to keep track of contamination and 

noise amplification of whole genome amplification and library reactions. Collected nuclear 

profiles were kept at -20oC until whole-genome amplification. 

 

Whole-genome amplification (WGA). Whole Genome Amplification (WGA) was performed 

as described previously {Winick-Ng, 2021 #1952} with minor modifications. Briefly, DNA was 

extracted from NPs at 600C in the lysis buffer (20 mM Tris-HCl pH 8.0, 1.4 mM EDTA, 560 

mM guanidinium-HCl, 3.5% Tween-20, 0.35% Triton X-100) containing 0.75 units/ml Qiagen 

protease (Qiagen, 19155). After 24h of DNA extraction, the protease was heat inactivated at 

750C for 30 min and the extracted DNA was amplified via two rounds of PCR. At-first quasi-

linear amplification was performed with random hexamer GAT-7N primers with an adaptor 

sequence. The lysis buffer containing the extracted genomic DNA was mixed with 2x 

DeepVent mix buffer (2x Thermo polymerase buffer (10x), 400 µm dNTPs, 4 mM MgSO4 in 

ultrapure DNase free water), 0.5 µM GAT-7N primers (5′- GTG AGT GAT GGT TGA GGT 

AGT GTG GAG NNN NNN N) and 2 units/µl DeepVent® (exo-) DNA polymerase (New 

England Biolabs, M0259L) and incubated for 11 cycles in the BioRad thermocycler. The 

second exponential PCR amplification was performed in presence of 1x DeepVent mix, 10 

mM dNTPs, 0.4 µM GAM-COM primers (5′-GTG AGT GAT GGT TGA GGT AGT GTG GAG) 

and 2 units/µl DeepVent (exo-) DNA polymerase in the programmable thermal cycler for 26 

cycles. WGA was performed in 96-well plates using Microlab STARLine liquid handling 

workstation (Hamilton). 

 

Preparation of GAM libraries for high-throughput sequencing. Following WGA, the 

samples were purified using the SPRI magnetic beads (1.7x ratio of beads per sample 

volume). The DNA concentration of each purified sample was measured using the Quant-iT 

PicoGreen dsDNA assay kit (Invitrogen Cat#P7589). Sequencing libraries were then made 

using the in-house tagmentation based protocol. Following library preparation, DNA 

concentration for each sample was measured using the Quant-iT PicoGreen dsDNA assay, 

and equal amounts of DNA from each sample was pooled together. The final pool of libraries 

was analyzed using DNA High Sensitivity on-chip electrophoresis on an Agilent 2100 

Bioanalyzer and sequenced on Illumina NextSeq 500 machine. 

 

GAM data sequence alignment. Sequenced reads from each GAM library were mapped to 

the human genome assembly GRCh38 (December 2013, hg38) with bowtie2 (v.2.3.4.3) 

using default settings. All non-uniquely mapped reads, reads with mapping quality <20 and 

PCR duplicates were excluded from further analyses. 
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GAM data window calling and sample QC. Positive genomic windows present within 

ultrathin nuclear slices were identified for each GAM library as previously described {Winick-

Ng, 2021 #1952}. In brief, the genome was split into equal-sized windows, and the number 

of nucleotides sequenced in each bin was calculated for each GAM sample with bedtools. 

Next, we determined the percentage of orphan windows (that is, positive windows that were 

flanked by two adjacent negative windows) for every percentile of the nucleotide coverage 

distribution. The number of nucleotides that corresponds to the percentile with the lowest 

percentage of orphan windows in each sample was used as an optimal coverage threshold 

for window identification in each sample. Windows were called positive if the number of 

nucleotides sequenced in each bin was greater than the determined optimal threshold. 

 

The sample quality was assessed by the percentage of orphan windows in each sample, 

total genomic coverage in percent of positive windows, the number of uniquely mapped 

reads to the mouse genome and the correlations from cross-well contamination for every 

sample. Each sample was considered to be of good quality if it had </=40% orphan 

windows, </=60% of total genome coverage, >50,000 uniquely mapped reads and a cross-

well contamination score determined per collection plate of <0.4 (Jaccard index). 

 

GAM data curation. To exclude genomic windows which were under- or oversampled in the 

GAM collection, we computed a GAM specific parameter, the window detection efficiency 

(WDF, {Beagrie, 2017 #1351} as previously described {Irastorza-Azcarate, 2024 #1953}. To 

detect genomic bins with outlying detection frequency, a smoothing algorithm was applied to 

the WDF values per chromosome in stretches of eleven equally sized genomic windows. 

Next, normalized delta (ND) was calculated for each window, according to: ND = 

(raw_Signal - smoothed_Signal)/smoothed Signal. If the ND was larger than a fold change of 

5, the window was removed from the final dataset. Next, the four adjacent windows (2 

upstream and 2 downstream) were also removed, to ensure good quality of sampling in the 

final GAM data used for further analyses. 

 

Genomic bins with an average mappability score below 0.2 were also removed. Genome 

mappability for the hg38 human genome assembly was computed using GEM-Tools suite 

{Marco-Sola, 2012 #1954} setting read length to 75 nucleotides. The mean mappability 

score was computed for each genomic bin with bigWigAverageOverBed utility from Encode. 

 

GAM data normalization. GAM contact matrices for all pairs of windows genome-wide were 

generated as previously described, to produce pair-wise co-segregation maps and pointwise 

mutual information (NPMI) maps which consider window detectability {Winick-Ng, 2021 
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#1952}. For visualization of the contact matrices, scale bars are adjusted in each genomic 

region displayed to a range between 0 and the 99th percentile of NPMI values in the region. 

 

GAM Insulation scores. The insulation scores were calculated from NPMI-normalized 

pairwise chromatin contact matrices, as previously described {Crane, 2015 #1172} with 

minor modifications adjusted for GAM input data by keeping both positive and negative 

values in the matrix {Winick-Ng, 2021 #1952}. 

 

Identification of compartments A and B in GAM data. Compartments were calculated 

using co-segregation matrices, as previously described {Irastorza-Azcarate, 2024 #1953}. In 

brief, each chromosome was represented as a matrix of observed interactions O(i,j) between 

locus i and locus j. The expected interactions E(i,j) matrix was calculated, where each pair of 

genomic windows is the mean number of contacts with the same distance between i and j. A 

matrix of observed over expected values O/E(i,j) was produced by dividing O by E. A 

correlation matrix C(i,j) was calculated between column i and column j of the O/E matrix. 

PCA was performed for the first three components on matrix C before extracting the 

component with the highest correlation to GC content. Loci with eigenvector values with the 

same sign were designated as A compartments, while those with the opposite sign were 

identified as B compartments. For chromosomes 3 and 22, we manually picked PC1 and 

PC2, respectively, as the PC that correlated most with GC content did not display a typical 

AB compartmentalization pattern and good correlation with transcription levels. 

 

4DN accession number: 4DNESVAMUDHA (replicates id 4DNBS46FF9D9, 

4DNBSB45FJC1) 

Software: bowtie2 (v.2.3.4.3), samtools (v.1.14), bedtools (v.2.30), fastq_screen (v.0.14.0), 

GEM-tools(v.1.315) 

 
Data processing - Hi-C, Micro-C, ChIA-PET, PLAC-Seq and SPRITE 
Cooler files for Hi-C, Micro-C, ChIA-PET, PLAC-Seq and SPRITE were downloaded from 

DCIC Data Portal. The link for Hi-C, MIcro-C and ChIA-PET files can be found here: 

https://data.4dnucleome.org/browse/?type=ExperimentSetReplicate&experimentset_type=re

plicate&experiments_in_set.biosample.biosource.organism.name=human&experiments_in_s

et.biosample.biosource_summary=HFFc6+%28Tier+1%29&experiments_in_set.biosample.b

iosource_summary=H1-

hESC+%28Tier+1%29&experiments_in_set.experiment_categorizer.combined=Target%3A+

RNA+Pol+II&experiments_in_set.experiment_categorizer.combined=Target%3A+CTCF+pro

tein&experiments_in_set.experiment_categorizer.combined=Enzyme%3A+DpnII&experimen
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ts_in_set.experiment_categorizer.combined=Enzyme%3A+MNase&experiments_in_set.exp

eriment_type.display_title=in+situ+Hi-

C&experiments_in_set.experiment_type.display_title=DNA+SPRITE&experiments_in_set.ex

periment_type.display_title=Micro-

C&experiments_in_set.experiment_type.display_title=PLAC-

seq&experiments_in_set.experiment_type.display_title=in+situ+ChIA-PET. Link for  PLAC-

Seq and SPRITE files can be found here: 

https://data.4dnucleome.org/browse/?type=ExperimentSetReplicate&experimentset_type=re

plicate&experiments_in_set.biosample.biosource.organism.name=human&experiments_in_s

et.biosample.biosource_summary=H1-

hESC+%28Tier+1%29&experiments_in_set.biosample.biosource_summary=HFFc6+%28Ti

er+1%29&experiments_in_set.experiment_type.display_title=DNA+SPRITE&experiments_in

_set.experiment_type.display_title=PLAC-seq. Contact matrices were normalized using the 

iterative correction procedure from Imakaev et al. 2012 {Imakaev, 2012 #1013}.  

Interaction heatmaps were created using Python. The color map is “YlOrRd” and the color 

scales are created taking the 10th and 90th percentile of the interaction frequencies of 

individual datasets.  

GAM H1-hESC was also downloaded form 4DN Data Portal and can be found here: 

https://data.4dnucleome.org/search/?q=GAM+H1-hESC&type=Item . No additional 

processing was applied to GAM data.  

 

  

Hicrep correlations 

HiCRep is used to do distance corrected correlations of the multiple methods {Yardimci, 

2019 #1896}. Correlation is calculated in two steps. First, interaction maps are stratified by 

genomic distances and the correlation coefficients are calculated for each distance 

separately. Second, the reproducibility is determined by a novel stratum-adjusted correlation 

coefficient statistic (SCC) by aggregating stratum-specific correlation coefficients using a 

weighted average. Chromosome specific correlation was performed for pairwise protocols 

and averaged the correlations across those chromosomes. Averaged pairwise correlations 

of chr1-22 and chr X between Hi-C, Micro-C, ChIA-PET, PLAC-Seq and SPRITE. Averaged 

correlation of chr 1-22 for GAM and other methods. 50kb binned interaction matrices are 

used to calculate Hicrep correlations.  

 

Compartment Analysis 
Compartments were assessed for Hi-C, Micro-C, ChIA-PET, PLAC-Seq and SPRITE using 

eigenvector decomposition on observed-over-expected contact maps at 100kb resolution 
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using the cooltools package derived scripts {Open2C, 2024 #1955}. Eigenvector that has the 

strongest correlation with gene density is selected, then A and B compartments were 

assigned based on the gene density profiles such that A compartment has high gene density 

and B compartment has low gene density profile. A and B compartment assignments of 

GAM were provided by the data producers.  

 

Spearman correlation was used to correlate the eigenvectors of different experiments 

performed with various protocols and cell states. Saddle plots were generated as follows 

(described in {Nora, 2017 #1381}: the interaction matrix of an experiment was sorted based 

on the eigenvector values from lowest to highest (B to A). Sorted maps were then 

normalized for their expected interaction frequencies; the upper left corner of the interaction 

matrix represents the strongest B-B interactions, lower right represents strongest A-A 

interactions, upper right and lower left are B-A and A-B respectively. To quantify saddle plots 

we took the strongest 20% of BB and strongest 20% of AA interactions and normalized them 

by the sum of AB and BA (top(AA)/(AB+BA) and top(BB)/(BA+AB)). Saddle quantifications 

were used to create the scatter plots. The list of parameters that are used for the saddle plot 

are;  --strength, --vmin 0.5, --vmax 2 , --regions hg38_chromsizes.bed, --qrange 0.02 0.98, --

contact-type cis.   

 
Preferential Interactions 

 Bigwig or bedgraph files for LMNB1 DamID, TSA-Seq and Repli-Seq 

 were downloaded from DCIC Data Portal. The link for those files can be found here : 

https://data.4dnucleome.org/browse/?dataset_label=E%2FL+repliseq+on+H1-

hESC+cells+%282017-08-

17%29&dataset_label=E%2FL+repliseq+on+HFFc6+cells+%282017-08-

17%29&dataset_label=E%2FL+repliseq+on+HFFc6+cells+-+Gold+Standard++%282018-02-

06%29&dataset_label=TSA-seq+MKI67IP+in+H1+cells&dataset_label=TSA-

seq+MKI67IP+in+HFFc6+cells&dataset_label=TSA-

seq+POL1RE+in+H1+cells&dataset_label=TSA-

seq+POL1RE+in+HFFc6+cells&dataset_label=TSA-

seq+v2+SON+in+H1&dataset_label=TSA-seq+v2+SON+in+HFFc6&dataset_label=DamID-

seq+on+H1-hESC+cells+%282017-12-14%29&dataset_label=DamID-

seq+on+HFFc6+cells+%282017-12-14%29&dataset_label=ChIA-PET+in+H1-

hESC&dataset_label=ChIA-

PET+in+HFFc6&experiments_in_set.biosample.biosource.organism.name=human&experim

ents_in_set.experiment_categorizer.combined=Target%3A+LMNB1+protein&experiments_i

n_set.experiment_categorizer.combined=Target%3A+CTCF+protein&experiments_in_set.ex
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periment_categorizer.combined=Target%3A+NIFK+protein&experiments_in_set.experiment

_categorizer.combined=Target%3A+POLR1E+protein&experiments_in_set.experiment_cate

gorizer.combined=Target%3A+SON+protein&experiments_in_set.experiment_categorizer.c

ombined=Fraction%3A+early+fraction+of+2+fractions&experiments_in_set.experiment_cate

gorizer.combined=Fraction%3A+late+fraction+of+2+fractions&experiments_in_set.experime

nt_categorizer.combined=Target%3A+RNA+Pol+II&experiments_in_set.experiment_categor

izer.combined=No+value&experimentset_type=replicate&type=ExperimentSetReplicate 

 

Heatmaps that integrate 3D methods with genome activity plots were generated as follows: 

First, the data was binned into 50kb bins for aforementioned assays and sorted from the 

highest to the lowest value. Additional filters were applied for Early/Late replication ratio. For 

Early/Late replication timing data; removed bins with no values and the bins with value of 0. 

Also removed the outlier bins that have values > 98th quantile and kept the min value for the 

first bin as 0. 

 

Second, the interaction matrices (Hi-C, Micro-C, ChIA-PET, PLAC-Seq, SPRITE and GAM) 

are sorted based on the 1D tracks generated from the aforementioned assays from the 

highest to the lowest.  

 

Next, sorted matrices were then normalized for their expected interaction frequencies; the 

upper left corner of the interaction matrix represents the strongest signal for non-preferential 

interactions, lower right represents strongest preferential interactions. To quantify these plots 

we took the strongest 20% of the preferential interactions. Saddle plot parameters are listed 

below for this quantifications:     --strength, --vmin 0.5, --vmax 2 , --regions 

hg38_chromsizes.bed, --qrange 0.02 0.98, --range min(Sorted 1D data) max(Sorted 1D 

data) --contact-type cis.  For GAM, --strength, --vmin 0.1, --vmax 0.4 , --regions 

hg38_chromsizes.bed, --qrange 0.02 0.98, --range min(Sorted 1D data) max(Sorted 1D 

data) --contact-type cis. 

 

Insulation Score 

For Hi-C, Micro-C, ChIA-PET, PLAC-Seq and SPRITE we calculated diamond insulation 

scores using cooltools ( 

https://github.com/open2c/cooltools/blob/master/cooltools/cli/diamond_insulation.py ) as 

implemented from Crane et al {Crane, 2015 #1172}. We defined the insulation and boundary 

strengths of each 25 kb bin by detecting the local minima of 25 kb binned data with a 100kb 

window size. We used cooltools’s diamond-insulation function with these parameters: “ --

ignore-diags 2. Insulation scores of GAM were provided by data producers. We separated 
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weak and strong log2 insulation scores using the mean insulation score of all protocols (i.e.,: 

weak insulation scores < mean < strong  insulation scores). We piled up strong insulation 

scores to compare the average insulation score strengths of methods.  

 

Identification of chromatin loops in different platforms 
We employed different strategies for detecting chromatin loops in different platforms.  
For Hi-C and Micro-C, we combined results from HiCCUPS {Rao, 2014 #1176} and 

Peakachu {Salameh, 2020 #1897}. To identify chromatin loops using HiCCUPS, we ran 

“cooltools dots” (v0.5.1 {Open2C, 2024 #1955}) at 5kb and 10kb resolutions with default 

parameters. Peakachu is a machine-learning based framework that learns contact patterns 

of pre-defined chromatin loops from a genome-wide contact map and applies trained models 

to predict loops on other maps generated by the same/similar experimental protocol. Here, 

we first trained Peakachu models on GM12878 Hi-C data at 5 kb and 10 kb resolutions, 

using a high-confidence loop set detected by at least two platforms among Hi-C, CTCF 

ChIA-PET, Pol2 ChIA-PET, CTCF HiChIP, H3K27ac HiChIP, SMC1A HiChIP, H3K4me3 

PLAC-Seq, and TrAC-loop. These models were then used to predict chromatin loops on Hi-

C and Micro-C maps of H1-hESC and HFFc6 cell lines at corresponding resolutions. The 

probability cutoffs were manually adjusted to balance sensitivity and specificity based on 

visual inspection. 

 
For ChIA-PET, we combined loop predictions from ChiaSig {Paulsen, 2014 #1956} and 

Peakachu. For each ChIA-PET dataset, we conducted multiple runs of ChiaSig with varying 

parameter settings, specifically adjusting the “-M”, “-C”, and “-c” parameters while keeping 

other parameters constant (“-m 8000 -S 4 -s 6 -A 0.01 -a 0.1 -n 1000”). The “-M” value was 

selected from 1000000, 2000000, and 4000000, while both the “-C” and “-c” values were set 

to either 2 or 3. Only chromatin loops consistently identified across all parameter settings 

were retained, while others were discarded. As ChiaSig heavily relies on one-dimensional 

(1D) peak annotation for loop detection, chromatin interactions outside peak regions are not 

identified as loops. To capture loops with similar contact patterns to those detected by 

ChiaSig but outside peak regions, we again utilized Peakachu to learn the patterns. For each 

ChIA-PET dataset, we trained 23 Peakachu models using interactions detected by ChiaSig, 

with each model trained on data from different combinations of 22 chromosomes. During 

prediction, loops on each chromosome were predicted using the model trained on the other 

22 chromosomes. The probability cutoffs were determined to ensure that Peakachu-

predicted loops covered 90% of ChiaSig-detected interactions. Training and prediction were 

conducted separately at 2 kb and 5 kb resolutions, and the final loop predictions for each 
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ChIA-PET dataset were obtained by combining ChiaSig-predicted interactions and 

Peakachu predictions. 

 
For PLAC-Seq, we identified chromatin loops at 10 kb resolution using MAPS {Juric, 2019 

#1957} with default parameters. 

 

When calculating the union loops from different platforms, methods, and resolutions, two 

chromatin loops (i,j) and (i',j') were considered overlapped if and only if |i-i'|<min(0.2|i-j|,15 

kb) and |j-j'|<min(0.2|i-j|,15 kb). If two loops are overlapped, only the one predicted at a 

higher resolution with a more precise location was retained. 
 
Consensus chromatin-state annotations for H1-hESC and HFFc6 cells 
We computed epigenomic annotations using ChromHMM (v1.23) on 14 observed and 2 

imputed ChIP-Seq datasets for 8 marks (H3K36me3, H3K4me1, H3K27ac, H3K9ac, 

H3K3me3, H3K4me2, H3K27me3, and CTCF) in both H1-hESC and HFFc6 cells. All the 

ChIP-Seq datasets were obtained from the WashU Epigenome Browser 

(https://epigenome.wustl.edu/epimap/data/) in bigwig format, and the coordinates were 

transformed from hg19 to hg38 using CrossMap (v0.5.2, http://crossmap.sourceforge.net/). 
To prepare the data for ChromHMM, we divided the whole genome into 200 bp bins and 

calculated the average signals within each bin. For the observed data, values were binarized 

with a -log10P value cutoff of 2. For the imputed data (H3K9ac and H3K4me2 in HFFc6), we 

downloaded both the imputed and observed data in H1-hESC for the same marks. Then, for 

each mark, we set the binarization cutoff for the imputed data to match the quantile in the 

observed data corresponding to the -log10P>2 cutoff, enabling comparison with the 

observed data. 

 
Finally, we ran the “ChromHMM LearnModel” command on the binarized data to segment 

both the H1-hESC and HFFc6 genomes into 12 states. The name of each state was 

manually annotated based on prior knowledge about each mark. The “12_Heterochrom” 

state was excluded from further analysis, as it did not contain signals of any marks 

(Supplemental Figure 2a). 

 

Enrichment analysis of chromatin states for chromatin loops and loop anchors 
To characterize the chromatin states of loop anchors detected by specific combinations of 

chromatin interaction methods, we calculated fold-enrichment scores by comparing the 

overlap with each ChromHMM state between the observed loop anchors and 100 randomly 
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generated control sets. Specifically, for each chromatin state, we iterated through the loop 

anchor list and counted the number of anchors overlapping at least one region with that 

state. We then randomly shuffled the anchors in the genome to generate 1,000 control sets 

and repeated the same procedure for each control. For each control, we kept the size 

distribution and the number of random regions on each chromosome the same as the 

observed loop anchors, and the intervals of each region did not overlap with any gaps in the 

hg38 reference genome. Finally, the fold-enrichment score was calculated by dividing the 

number of anchors with a specific chromatin state by the average number of random loci 

with the same state.  

 
We employed a similar method to characterize chromatin states for a specific cluster of 

chromatin loops. Briefly, for each pair of chromatin states, we iterated through the loop list 

and counted the number of loops with one anchor overlapping regions marked by one 

chromatin state and the other anchor overlapping regions marked by the other chromatin 

state. Again, we generated 1,000 random control sets for chromatin loops. Each random 

loop set maintained the same genomic distance distribution between loop anchors and the 

same number of random loops on each chromosome, ensuring that the interval between the 

two ends of each loop did not overlap any gaps in hg38. Finally, the fold-enrichment score 

was calculated by dividing the number of loops between a specific pair of chromatin states 

by the average number of random loops between the same states. 

 

Enrichment analysis of transcription factors for different loop clusters 
To explore whether different loop clusters exhibit differential binding of various transcription 

factors (TFs) at their anchors, we downloaded the ENCODE ChIP-Seq peak files for 62 TFs 

in H1-hESCs. A fold enrichment score was computed for each TF at loop anchors using a 

procedure analogous to the one described above. Briefly, we first identified non-redundant 

loop anchors from each loop cluster in H1-hESCs. For each TF, we iterated through this 

anchor list and counted the number of anchors overlapping at least one ChIP-Seq peak. 

Subsequently, we generated 1,000 random control sets by shuffling the loops and repeated 

the same procedure for each control set. The fold-enrichment score was then calculated by 

dividing the number of anchors containing ChIP-Seq peaks by the average number of 

random loci containing ChIP-Seq peaks for the same TF. 
 

UMAP projection of chromatin loops 
To construct an input feature matrix for projecting chromatin loops, we calculated the 

proportion of each ChromHMM state at interacting loop anchors. This resulted in a feature 
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matrix Mij of size 124,061 for H1ESC and a feature matrix Nij of size 115,850 for HFFc6. 

Each row in the matrix represents one chromatin loop, with the first 11 columns representing 

features of one anchor and the next 11 columns representing features of the other anchor. 

Subsequently, we standardized (z-score normalized) both Mij and Nij to ensure 

comparability between different features. 

 

Next, for each row of the normalized matrices Mij and Nij, we swapped the order of the two 

anchors to ensure that the highest value was always observed in the first 11 columns. 

Following this, we concatenated Mij and Nij row-wise to create a new combined matrix. This 

new matrix served as input for training the UMAP (https://github.com/lmcinnes/umap) 

projection function with the parameters “n_neighbors=40, min_dist=0, n_components=2, 

metric=’correlation’”. 

 
The same UMAP projection function was utilized to project chromatin loops from different 

cell lines and different platforms. 

 
Calculation of the average contact strength for different loop clusters 
To calculate the average contact strength for each loop cluster across different experimental 

platforms, we utilized distance-normalized (observed/expected) contact frequencies. 

Specifically, for Hi-C, Micro-C, and DNA SPRITE datasets, we computed this value using 

interaction frequencies normalized by matrix balancing or iterative correction and 

eigenvector decomposition (ICE) at the 5kb resolution. In contrast, for ChIA-PET and PLAC-

Seq datasets, we calculated the value using raw interaction frequencies at the same 5kb 

resolution. For GAM, we used the NPMI-normalized co-segregation frequencies at the 25 kb 

resolution. 
 

2. Methods for relating chromatin loops to gene expression. 
 

Datasets 
Description Cell Type Data Source/Download Link 

Loop predictions 

combined from multiple 

4DN experimental 
assays 

H1-ESC https://www.jianguoyun.com/p/DQkAPQkQh9qdDBik0cYFIAA 

HFFc6 https://www.jianguoyun.com/p/Dd-fjT8Qh9qdDBim0cYFIAA 

ATAC-Seq peaks  
H1-ESC 4DN (4DNFI247OOFU) 

HFFc6 4DN (4DNFIWQJFZHS) 
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House-keeping genes 
in human 

- HRT Atlas v1.0 (https://housekeeping.unicamp.br/) 

H3K27ac ChIP-Seq 
signals 

H1-ESC ENCODE (ENCFF986PCY) 

HFFc6 4DN (4DNFINRI6WOL) 

ATAC-Seq signals 
H1-ESC 4DN (4DNFICPNO4M5) 

HFFc6 4DN (4DNFIZ9191QU) 

CTCF ChIP-Seq signals 
H1-ESC ENCODE (ENCFF332TNJ) 

HFFc6 ENCODE (ENCFF406SZM) 

LMNB1 DamID-Seq 

signals 

H1-ESC 4DN (4DNFI6BH48Y3) 

HFFc6 4DN (4DNFI7724Y7Q) 

RNA-Seq for 116 

tissues / cell types 

ovary 
ENCODE (ENCFF095OFV, ENCFF940WXY, 

ENCFF857MSA) 

right renal cortex interstitium 
ENCODE (ENCFF320UVF, ENCFF821JAE, 

ENCFF981FYW) 

hindlimb muscle ENCODE (ENCFF680ZPA) 

heart right ventricle ENCODE (ENCFF823DWN, ENCFF102BTQ) 

A549 ENCODE (ENCFF627QMV, ENCFF369ZNM) 

chorionic villus 
ENCODE (ENCFF274JIK,ENCFF101AAR, 

ENCFF529CAT,E NCFF834AEP) 

Panc1 ENCODE (ENCFF890DEQ, ENCFF248YCR) 

luminal epithelial cell of 

mammary gland 
ENCODE (ENCFF047QOH) 

SK-N-SH 
ENCODE (ENCFF389TFR, ENCFF161JEA, 

ENCFF390KQP, ENCFF067ZMG) 

natural killer cell ENCODE (ENCFF036GDL) 

testis ENCODE (ENCFF850LMK, ENCFF845QSA) 

RWPE-1 
ENCODE (SRR8446409, SRR8446410, 

SRR8446411) 

aorta ENCODE (ENCFF277LBD, ENCFF914RDG) 



29 
 

germinal matrix ENCODE (ENCFF951YSP) 

brain ENCODE (ENCFF784ZTQ) 

right lung 

ENCODE (ENCFF035KGA, ENCFF535JUK,  

ENCFF015DMG, ENCFF083YGV, 

ENCFF487DRK) 

endodermal cell ENCODE (ENCFF563QGW, ENCFF237ZQX) 

lung 
ENCODE (ENCFF947WLV, ENCFF051UVH, 
ENCFF014OUE) 

liver 
ENCODE (ENCFF239EUU, ENCFF908GIP, 

ENCFF592KZK, ENCFF203UGC) 

myoepithelial cell of 

mammary gland 
ENCODE (ENCFF674EKN) 

GM23248 ENCODE (ENCFF341SCS, ENCFF775DYT) 

endocrine pancreas ENCODE (ENCFF174RSS, ENCFF982TBJ) 

foreskin melanocyte ENCODE (ENCFF441UUO, ENCFF724NAG) 

adrenal gland 

ENCODE  

(ENCFF217TKV, ENCFF802ADF, 

ENCFF555RGZ, ENCFF467PRR, 
ENCFF866LBS, ENCFF918DYI,  

ENCFF739OIE, ENCFF908UKE) 

neural cell ENCODE (ENCFF813LWT, ENCFF081JBX) 

fibroblast of lung ENCODE (ENCFF227FMH, ENCFF983VCS) 

MCF10A 
ENCODE (SRR5364109, SRR5364108,  

SRR5364107, SRR5364106) 

U-87 MG ENCODE (ENCFF164HCK, ENCFF334XLV) 

peripheral blood 

mononuclear cell 
ENCODE (ENCFF475DKC, ENCFF443WJD) 
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spleen 
ENCODE (ENCFF597SJD, ENCFF693OQP, 
ENCFF921BKL, ENCFF545TFV, 

ENCFF809RAX, ENCFF398TQO) 

hepatocyte ENCODE (ENCFF138JDF, ENCFF797ZIB) 

neural stem progenitor cell ENCODE (ENCFF789VZB, ENCFF183XSM) 

foreskin fibroblast ENCODE (ENCFF219FYH, ENCFF964QLH) 

MCF7 ENCODE (ENCFF009GDJ, ENCFF885LEQ) 

BJ ENCODE (ENCFF800TGS, ENCFF839MWS) 

fibroblast of breast ENCODE (ENCFF355QNL, ENCFF281CHW) 

smooth muscle cell ENCODE (ENCFF003QAY, ENCFF852RUU) 

placenta ENCODE (ENCFF435PHN) 

renal cortex interstitium 
ENCODE (ENCFF656GXW, ENCFF885EHC, 

ENCFF067NHZ) 

UCSF-4 ENCODE (ENCFF219WTP) 

heart left ventricle ENCODE (ENCFF860DPP, ENCFF998SEL) 

NCI-H460 
ENCODE (ENCFF322HJX, ENCFF011JTT, 

ENCFF522SUJ) 

cardiac muscle cell ENCODE (ENCFF761ACO, ENCFF509IXK) 

HEK293 
ENCODE (SRR5137672, SRR5137671, 
SRR5137670) 

mesodermal cell ENCODE (ENCFF553EAV, ENCFF749RUQ) 

adipose tissue 
ENCODE (ENCFF878UHQ, ENCFF862LZV, 

ENCFF732LRY, ENCFF272HOG) 
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GM12878 

ENCODE (ENCFF200USH, ENCFF905XDJ, 

ENCFF644DIQ, ENCFF456WWG,  
ENCFF876LUX, ENCFF886FDY,  

ENCFF121ZOP, ENCFF599JTV,  

ENCFF545OJE, ENCFF853VUK,  
ENCFF392CRO, ENCFF102NLY,  

ENCFF315WZE, ENCFF477JYI,  

ENCFF902UYP, ENCFF550OHK) 

CD14-positive monocyte 
ENCODE (ENCFF397DFK, ENCFF299BIL, 

ENCFF219ECV) 

skeletal muscle myoblast ENCODE (ENCFF505GUJ, ENCFF354AZS) 

skin fibroblast 
ENCODE (ENCFF694YJO, ENCFF202DSC, 

ENCFF458PJZ, ENCFF959PRH) 

muscle of leg 

ENCODE (ENCFF125HHE, ENCFF068NMI, 

ENCFF393OUO, ENCFF884IWB, 

ENCFF316SOJ, ENCFF559DXJ, 
ENCFF622TLD, ENCFF114CDE, 

ENCFF398PFM) 

layer of hippocampus ENCODE (ENCFF323NAG) 

HT1080 
ENCODE (ENCFF091WWB, ENCFF748NPL, 

ENCFF241KQK, ENCFF284XTA) 

HFFc6 4DN (4DNFI5MR6C3G, 4DNFIF3H5ZCH) 

ectodermal cell 
ENCODE (ENCFF034KRQ, ENCFF419KMW, 

ENCFF691ZYQ, ENCFF768SPT) 

foreskin keratinocyte 
ENCODE (ENCFF680BHT, ENCFF994UBN, 

ENCFF892CWH, ENCFF051VYX) 

PFSK-1 ENCODE (ENCFF635ALW, ENCFF568GAV) 
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left renal cortex interstitium 
ENCODE (ENCFF507HAK, ENCFF068QRU, 
ENCFF869JVY, ENCFF278ZFZ) 

SK-N-DZ 
ENCODE (ENCFF635RKM, ENCFF594NJL, 

ENCFF499DSN, ENCFF611SKK) 

chorion 
ENCODE (ENCFF550CHR, ENCFF364QYB, 
ENCFF672UJB, ENCFF397ZBW) 

kidney 

ENCODE (ENCFF525CMT, ENCFF804WTK, 

ENCFF099FXO, ENCFF229DFM, 

ENCFF326MQO) 

trophoblast 
ENCODE (ENCFF768QIJ, ENCFF591XIE, 
ENCFF270MHZ, ENCFF873XNT) 

left kidney ENCODE (ENCFF593SHI) 

B cell 
ENCODE (ENCFF770XDU, ENCFF231GYC, 

ENCFF485EUP) 

GM23338 ENCODE (ENCFF305XIS, ENCFF149CBS) 

keratinocyte 

ENCODE (ENCFF401JWS, ENCFF344FGV, 
ENCFF065UCN, ENCFF697CPR, 

ENCFF734GZX, ENCFF345YOV, 

ENCFF330VCJ, ENCFF165MYR) 

thymus 

ENCODE (ENCFF487KXD, ENCFF118YIZ, 

ENCFF380IZG, ENCFF237HIP, 
ENCFF432EQO, ENCFF123LVM, 

ENCFF608SHV) 

HepG2 

ENCODE (ENCFF640ZBJ, ENCFF861GCR, 

ENCFF534SLQ, ENCFF945LNB, 

ENCFF197XZL, ENCFF874RXH, 
ENCFF401KRE, ENCFF004HYK) 
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left lung 
ENCODE (ENCFF066QDJ, ENCFF919EYT, 
ENCFF934RBH, ENCFF643UJO, 

ENCFF391BNP, ENCFF406OKZ) 

common myeloid progenitor, 
CD34-positive 

ENCODE (ENCFF690QPA) 

AG04450 ENCODE (ENCFF025DRM, ENCFF350BOF) 

stomach 

ENCODE (ENCFF874WKO, ENCFF031EAX, 
ENCFF881ZXZ, ENCFF953SNL, 

ENCFF850QFV, ENCFF815DCS, 

ENCFF082DAH, ENCFF775TWS, 
ENCFF648ZHB, ENCFF050VJS) 

pancreas 
ENCODE (ENCFF625HJC, ENCFF390JAT, 
ENCFF971GFG) 

renal pelvis 
ENCODE (ENCFF524ZGN, ENCFF237VRQ, 

ENCFF013EVX) 

T-cell ENCODE (ENCFF158VJT) 

muscle of trunk ENCODE (ENCFF073LSZ, ENCFF419PGC) 

esophagus ENCODE (ENCFF993JBC, ENCFF566SLH) 

293T 
ENCODE (SRR12137695, SRR12137698, 

SRR12137696, SRR12137697) 

sigmoid colon 
ENCODE (ENCFF474EOZ, ENCFF904HJO, 
ENCFF362GHJ, ENCFF395HHA) 

spinal cord 
ENCODE (ENCFF144IMD, ENCFF400RFD, 

ENCFF340FSS) 

forelimb muscle ENCODE (ENCFF927KFT) 
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muscle of arm 

ENCODE (ENCFF404ZXJ, ENCFF993LHQ, 

ENCFF350ZWB, ENCFF272NAO, 
ENCFF726VKQ, ENCFF603FIV, 

ENCFF905BGI, ENCFF038FYS, 

ENCFF007LRI, ENCFF513PLX, 
ENCFF647PIL, ENCFF690YGY) 

urinary bladder ENCODE (ENCFF986LPX) 

H1 

ENCODE (ENCFF059UBK, ENCFF667AIY, 
ENCFF741PUY, ENCFF235XMZ, 

ENCFF113VWX, ENCFF915AUQ, 

ENCFF653XHG) 

mesenchymal stem cell ENCODE (ENCFF693WRN, ENCFF290OQE) 

astrocyte ENCODE (ENCFF256APB) 

psoas muscle 
ENCODE (ENCFF543WCB, ENCFF630ZKI, 

ENCFF489IIG) 

NB4 
ENCODE (SRR6006856, SRR6006857, 

SRR6006858) 

fibroblast of skin of abdomen ENCODE (ENCFF327BZW, ENCFF063EGA) 

Jurkat clone E61 ENCODE (ENCFF489SJY, ENCFF558JTV) 

IMR90 ENCODE (ENCFF244VME, ENCFF118OFK) 

mammary epithelial cell ENCODE (ENCFF380GBC, ENCFF370XTW) 

SK-MEL-5 
ENCODE (ENCFF620LZN, ENCFF845RTT, 

ENCFF070UJX, ENCFF448BML) 

mesendoderm ENCODE (ENCFF466QUZ, ENCFF044YLS) 

HUVEC 
ENCODE (ENCFF917CHS, ENCFF804WUK, 

ENCFF650CVW, ENCFF238WEU) 
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small intestine 

ENCODE (ENCFF411RSF, ENCFF769FAA, 
ENCFF309DZJ, ENCFF845OKW,  

ENCFF647PTK, ENCFF686JQP 

,ENCFF537WNL, ENCFF080HMB, 

ENCFF256ELA, ENCFF970SOK) 

heart 
ENCODE (ENCFF227RBV, ENCFF089NNQ, 
ENCFF496OSH) 

muscle of back 

ENCODE (ENCFF706VUD, ENCFF382FLL, 

ENCFF313PHN, ENCFF302HTI, 

ENCFF282SUS, ENCFF424LYQ, 

ENCFF115ORA, ENCFF195KMJ, 
ENCFF185TFE, ENCFF860PYR) 

neurosphere 
ENCODE (ENCFF153QRP, ENCFF707AMK, 

ENCFF993ZTH) 

K562 

ENCODE (ENCFF490IGF, ENCFF022QGS, 

ENCFF768TKT, ENCFF172GIN, 

ENCFF026BMH, ENCFF868MFR, 
ENCFF937GNL, ENCFF047WAI, 

ENCFF427EWZ, ENCFF342LXD, 

ENCFF472EUD, ENCFF185UMS, 
ENCFF461HPX, ENCFF156DDL) 

CD8-positive, alpha-beta T 

cell 
ENCODE (ENCFF372OMD, ENCFF088DIY) 

cerebellum ENCODE (ENCFF777IQQ) 

mammary stem cell ENCODE (ENCFF692TAL) 

amnion 
ENCODE (ENCFF144PZJ, ENCFF443KUS, 

ENCFF416MQP) 

placental basal plate 
ENCODE (ENCFF345ADJ, ENCFF457JWP, 

ENCFF434YJO, ENCFF026SBP) 
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HeLa-S3 

ENCODE (ENCFF846THO, ENCFF796REI, 
ENCFF010RHX, ENCFF206NFZ, 

ENCFF344HRY, ENCFF514TNR, 

ENCFF922LIV, ENCFF101GPJ) 

BE2C ENCODE (ENCFF396XRF, ENCFF238HUZ) 

HUES64 ENCODE (ENCFF339WEH, ENCFF682DUY) 

left renal pelvis 
ENCODE (ENCFF126KII, ENCFF602NKQ, 

ENCFF720JRI, ENCFF774PTF) 

mole ENCODE (ENCFF726KPQ) 

right renal pelvis 
ENCODE (ENCFF033EGX, ENCFF887YTL, 

ENCFF494FTI, ENCFF896OFQ) 

trophoblast cell ENCODE (ENCFF342LYI, ENCFF760HDK) 

Purkinje cell ENCODE (ENCFF683XBG, ENCFF890PPZ) 

CD4-positive, alpha-beta T 

cell 
ENCODE (ENCFF760LWW, ENCFF794NBU) 

large intestine 

ENCODE (ENCFF615SUS, ENCFF688MYF, 
ENCFF554XMC, ENCFF359YQU, 

ENCFF972VRS, ENCFF458LNT, 

ENCFF858BYE) 

right cardiac atrium ENCODE (ENCFF635SOC) 

CTCF ChIA-PET for 32 

cell lines or primary 

cells 

CD4-positive, alpha-beta T 

cell ENCODE (ENCSR345UIQ) 

activated CD8-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCSR408MRB) 

IMR-90 ENCODE (ENCSR076TTY) 

OCI-LY7 ENCODE (ENCSR401JWQ) 

A673 ENCODE (ENCSR549TMF) 

CD4-positive, alpha-beta 

memory T cell ENCODE (ENCSR106INW) 

CD8-positive, alpha-beta T 
cell ENCODE (ENCSR180GEY) 
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HUVEC ENCODE (ENCSR404FPI) 

activated CD8-positive, 

alpha-beta memory T cell 
(treated with anti-CD3 and 

anti-CD28 coated beads for 

36 hours) ENCODE (ENCSR697ZHG) 

activated CD8-positive, 

alpha-beta memory T cell 

(treated with 10 ng/mL 
Interleukin-2 for 5 days, anti-

CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCSR378IUJ) 

activated CD8-positive, 
alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 

for 5 days, anti-CD3 and anti-
CD28 coated beads for 7 

days) ENCODE (ENCSR531UMR) 

naive thymus-derived CD4-

positive, alpha-beta T cell ENCODE (ENCSR120LMS) 

K562 ENCODE (ENCSR597AKG) 

activated CD4-positive, 

alpha-beta memory T cell 

(treated with 10 ng/mL 
Interleukin-2 for 5 days, anti-

CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCSR291RCO) 

activated CD4-positive, 
alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 

for 5 days, anti-CD3 and anti-
CD28 coated beads for 7 

days) ENCODE (ENCSR962FFY) 

activated T-cell (treated with 
50 U/mL Interleukin-2 for 72 

hours, anti-CD3 and anti-

CD28 coated beads for 72 

hours) ENCODE (ENCSR411UEL, ENCSR038GON) 

CD8-positive, alpha-beta 

memory T cell ENCODE (ENCSR187PXW) 

T-cell ENCODE (ENCSR545NUL, ENCSR592BWZ) 

Caco-2 ENCODE (ENCSR185PEE) 
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WTC11 ENCODE (ENCSR016VPZ) 

A549 ENCODE (ENCSR911ZMB) 

GM12878 ENCODE (ENCSR184YZV) 

activated CD4-positive, 
alpha-beta memory T cell 

(treated with anti-CD3 and 

anti-CD28 coated beads for 
36 hours) ENCODE (ENCSR154MAJ) 

MCF10A ENCODE (ENCSR403ZYJ) 

MCF-7 ENCODE (ENCSR200VHL) 

activated B cell (treated with 

0.5 μM CpG ODN for 24 
hours) ENCODE (ENCSR494NNF) 

activated naive CD4-

positive, alpha-beta T cell 

(treated with anti-CD3 and 
anti-CD28 coated beads for 

36 hours) ENCODE (ENCSR731OFF) 

HCT116 ENCODE (ENCSR278IZK) 

activated CD4-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCSR093CTT) 

HepG2 ENCODE (ENCSR411IVB) 

Panc1 ENCODE (ENCSR145PYF) 

B-cell ENCODE (ENCSR536ZNI) 

RNAPII ChIA-PET for 
32 cell lines or primary 

cells 

CD4-positive, alpha-beta T 

cell ENCODE (ENCSR448ZLA) 

activated CD8-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCSR982KEM) 

IMR-90 ENCODE (ENCSR966RPQ) 

OCI-LY7 ENCODE (ENCSR882BUM) 

A673 ENCODE (ENCSR623KNI) 

CD4-positive, alpha-beta 

memory T cell ENCODE (ENCSR569TBN) 

CD8-positive, alpha-beta T 
cell ENCODE (ENCSR185VQH) 

HUVEC ENCODE (ENCSR080OMN) 
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activated CD8-positive, 

alpha-beta memory T cell 
(treated with anti-CD3 and 

anti-CD28 coated beads for 

36 hours) ENCODE (ENCSR041UPG) 

activated CD8-positive, 

alpha-beta memory T cell 

(treated with 10 ng/mL 

Interleukin-2 for 5 days, anti-
CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCSR114KEO) 

activated CD8-positive, 
alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 

for 5 days, anti-CD3 and anti-
CD28 coated beads for 7 

days) ENCODE (ENCSR217TFN) 

naive thymus-derived CD4-

positive, alpha-beta T cell ENCODE (ENCSR763OCG) 

K562 ENCODE (ENCSR880DSH) 

activated CD4-positive, 
alpha-beta memory T cell 

(treated with 10 ng/mL 

Interleukin-2 for 5 days, anti-
CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCSR159PXF) 

activated CD4-positive, 
alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 

for 5 days, anti-CD3 and anti-
CD28 coated beads for 7 

days) ENCODE (ENCSR733XLQ) 

activated T-cell (treated with 

50 U/mL Interleukin-2 for 72 
hours, anti-CD3 and anti-

CD28 coated beads for 72 

hours) 

ENCODE (ENCSR165FXG, ENCSR891IMI, 

ENCSR538SBO) 

CD8-positive, alpha-beta 

memory T cell ENCODE (ENCSR149TQU) 

T-cell ENCODE (ENCSR722NQM, ENCSR743YTL) 

Caco-2 ENCODE (ENCSR713NCY) 

WTC11 ENCODE (ENCSR972JTN) 
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A549 ENCODE (ENCSR138NSW) 

GM12878 ENCODE (ENCSR905HWW) 

activated CD4-positive, 

alpha-beta memory T cell 
(treated with anti-CD3 and 

anti-CD28 coated beads for 

36 hours) ENCODE (ENCSR877ZRR) 

MCF10A ENCODE (ENCSR499JGQ) 

MCF-7 ENCODE (ENCSR059HDE) 

activated B cell (treated with 

0.5 μM CpG ODN for 24 

hours) ENCODE (ENCSR096ZPB) 

activated naive CD4-

positive, alpha-beta T cell 

(treated with anti-CD3 and 
anti-CD28 coated beads for 

36 hours) ENCODE (ENCSR402NAQ) 

HCT116 ENCODE (ENCSR035PVZ) 

activated CD4-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCSR314TNQ) 

HepG2 ENCODE (ENCSR789ZIJ, ENCSR857MYZ) 

Panc1 ENCODE (ENCSR447IUA) 

B-cell ENCODE (ENCSR172WWJ) 

DNase-Seq peaks for 
32 cell lines or primary 

cells 

CD4-positive, alpha-beta T 

cell 

ENCODE (ENCFF138ZRF, ENCFF396CHT, 

ENCFF348SDZ, ENCFF147ZBC) 

activated CD8-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCFF834QBM) 

IMR-90 ENCODE (ENCFF800DVI, ENCFF525PWS) 

OCI-LY7 ENCODE (ENCFF196DIZ, ENCFF903CVK) 

A673 

ENCODE (ENCFF607YBN, ENCFF355NVJ, 

ENCFF606OTK) 
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CD4-positive, alpha-beta 

memory T cell 

ENCODE (ENCFF157MKK, ENCFF967NLQ, 

ENCFF386UFI, ENCFF010BIN) 

CD8-positive, alpha-beta T 
cell 

ENCODE (ENCFF070WZM, ENCFF792FLJ, 
ENCFF326MXR, ENCFF017FZE) 

HUVEC 

ENCODE (ENCFF833UNB, ENCFF136MYL, 

ENCFF406AWN) 

activated CD8-positive, 
alpha-beta memory T cell 

(treated with anti-CD3 and 

anti-CD28 coated beads for 
36 hours) 

ENCODE (ENCFF401WTQ, ENCFF848EBC, 
ENCFF713XCT, ENCFF810ZJY) 

activated CD8-positive, 

alpha-beta memory T cell 

(treated with 10 ng/mL 
Interleukin-2 for 5 days, anti-

CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCFF792PYU) 

activated CD8-positive, 

alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 
for 5 days, anti-CD3 and anti-

CD28 coated beads for 7 

days) ENCODE (ENCFF596UGI) 

naive thymus-derived CD4-
positive, alpha-beta T cell 

ENCODE (ENCFF885PJD, ENCFF937FLI, 
ENCFF901UGO, ENCFF951XVJ) 

K562 

ENCODE (ENCFF274YGF, ENCFF264UFX,  

ENCFF185XRG, ENCFF807ICZ) 

activated CD4-positive, 
alpha-beta memory T cell 

(treated with 10 ng/mL 

Interleukin-2 for 5 days, anti-
CD3 and anti-CD28 coated 

beads for 7 days) ENCODE (ENCFF552TYH) 

activated CD4-positive, 
alpha-beta T cell (treated 

with 10 ng/mL Interleukin-2 

for 5 days, anti-CD3 and anti- ENCODE (ENCFF765OGD) 
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CD28 coated beads for 7 

days) 

activated T-cell (treated with 

50 U/mL Interleukin-2 for 72 

hours, anti-CD3 and anti-
CD28 coated beads for 72 

hours) ENCODE (ENCFF725EBY, ENCFF168GAN) 

CD8-positive, alpha-beta 

memory T cell 

ENCODE (ENCFF931AKV, ENCFF375PHK, 

ENCFF041GGN, ENCFF224KBE) 

T-cell 
ENCODE (ENCFF873FYV, ENCFF729DOV, 
ENCFF933QZD, ENCFF839QLN) 

Caco-2 

ENCODE (ENCFF810WJX, ENCFF637OJO,  

ENCFF948AMM, ENCFF579UXQ) 

WTC11 ENCODE (ENCFF668BJR, ENCFF854DSG) 

A549 
ENCODE (ENCFF128ZVL, ENCFF410KIB, 
ENCFF302JWZ) 

GM12878 ENCODE (ENCFF338SAU, ENCFF759OLD) 

activated CD4-positive, 
alpha-beta memory T cell 

(treated with anti-CD3 and 

anti-CD28 coated beads for 
36 hours) ENCODE (ENCFF067SGU) 

MCF10A ENCODE (ENCFF667FTX) 

MCF-7 

ENCODE (ENCFF107HQA, ENCFF886OJN, 

ENCFF835KCG, ENCFF536CIK) 

activated B cell (treated with 
0.5 μM CpG ODN for 24 

hours) ENCODE (ENCFF489NNB) 

activated naive CD4-

positive, alpha-beta T cell 
(treated with anti-CD3 and 

anti-CD28 coated beads for 

36 hours) ENCODE (ENCFF261QWU) 
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HCT116 ENCODE (ENCFF356GTJ, ENCFF240LRP) 

activated CD4-positive, 
alpha-beta T cell (treated 

with anti-CD3 and anti-CD28 

coated beads for 36 hours) ENCODE (ENCFF107XDE) 

HepG2 
ENCODE (ENCFF748QCZ, ENCFF897NME, 
ENCFF453AEP) 

Panc1 ENCODE (ENCFF415BYA, ENCFF842AOT) 

B-cell 

ENCODE (ENCFF262LZH, ENCFF245RKH, 

ENCFF526MQV, ENCFF248ACA) 

 

 
 
Annotation of enhancer regions in different cell types 
To define candidate enhancer regions in each cell type, we first downloaded the total set of 

human cis-regulatory elements (cCREs) from the ENCODE data portal website using the 

following link https://screen.encodeproject.org/. We then extracted all regions marked as ELS 

(enhancer-like signatures) from the downloaded file. Finally, enhancer regions in each cell 

type were defined as a subset of these regions that overlap with ATAC-Seq or DNase-Seq 

peaks in corresponding cells, based on data availability for those cells. 
 
Gene expression breadth analysis 
To explore the gene expression profiles of a specific gene set across a diverse range of cell 

type or tissues, we collected RNA-Seq datasets for 116 human cell types or tissues (from 

ENCODE, see table of datasets for this section above). The transcripts per million (TPM) 

values were used to measure gene transcription levels. To normalize the RNA-Seq data, we 

first applied a logarithm transformation to the original TPM values using the formula 

log2(TPM+1) for each sample, and then quantile-normalized the transformed TPM values 

across all samples. 

 
In each sample, genes with a normalized TPM value greater than 3 were considered 

expressed in the corresponding sample, and the gene expression breadth is defined as the 

number of samples in which a gene is expressed. 
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3. Method for SPIN states identification and analysis 

 

Data availability  
 
Cell 
Type 

Experiment 
Type Data Type Data Source/Download Link Note1 

H1-

ESC 

SON TSA-seq 

Signal 

(BigWig) 

4DN (4DNESUTK6QWG, 

4DNESC3D6NGQ)  

LaminB TSA-
seq 

Signal 
(BigWig) 

4DN (4DNESHZ8WKRX, 
4DNESGGXKI1H)  

Nucleous TSA-

seq 

Signal 

(BigWig) 

4DN (4DNESO6HFSAD, 

4DNES6PANOF4)  

LaminB DamID 
Signal 
(BigWig) 

4DN (4DNESOFQR5FS, 
4DNESXKBPZKQ)  

Hi-C 

Contact 

matrix 

4DN (4DNESX75DD7R, 

4DNES2M5JIGV)  

H2AFZ ChIP-
Seq 

Signal 
(BigWig) ENCODE (ENCFF758YFI)  

H3K27ac 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF771GNB)  

H3K27me3 
ChIP-Seq 

Signal 
(BigWig) ENCODE (ENCFF277UCT)  

H3K36me3 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF687LJF)  

H3K4me1 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF335ZGP)  

H3K4me2 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF501AUN)  

H3K4me3 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF698DKQ)  

H3K79me2 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF640WRD)  

H3K9ac ChIP-

Seq 

Signal 

(BigWig) ENCODE (ENCFF890MIB)  

H3K9me3 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF358AWN)  

H4K20me1 

ChIP-Seq 

Signal 

(BigWig) ENCODE (ENCFF453OCL)  

16-fraction 
Repli-seq G1 

Alignment 
(Bam) 4DN (4DNES2W2DXM6) 

The smoothed and normalized RT 

score can be downloaded from 
GSE137764 
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16-fraction 

Repli-seq S1 

Alignment 

(Bam) 4DN (4DNES8GLHOD6)  

16-fraction 
Repli-seq S2 

Alignment 
(Bam) 4DN (4DNESWWMQ1IC)  

16-fraction 

Repli-seq S3 

Alignment 

(Bam) 4DN (4DNES2LV4C4Q)  

16-fraction 
Repli-seq S4 

Alignment 
(Bam) 4DN (4DNES2RXY8IB)  

16-fraction 

Repli-seq S5 

Alignment 

(Bam) 4DN (4DNESVX7IH76)  

16-fraction 
Repli-seq S6 

Alignment 
(Bam) 4DN (4DNESLOM1MB7)  

16-fraction 

Repli-seq S7 

Alignment 

(Bam) 4DN (4DNESR9FVS6K)  

16-fraction 
Repli-seq S8 

Alignment 
(Bam) 4DN (4DNESFMEOEHW)  

16-fraction 

Repli-seq S9 

Alignment 

(Bam) 4DN (4DNESBZIJJ1E)  

16-fraction 
Repli-seq S10 

Alignment 
(Bam) 4DN (4DNESDZOL2VU)  

16-fraction 

Repli-seq S11 

Alignment 

(Bam) 4DN (4DNESJJKOIH4)  

16-fraction 
Repli-seq S12 

Alignment 
(Bam) 4DN (4DNES4I9OXS7)  

16-fraction 

Repli-seq S13 

Alignment 

(Bam) 4DN (4DNES6G2SSN2)  

16-fraction 

Repli-seq S14 

Alignment 

(Bam) 4DN (4DNESGY7RRTV)  

16-fraction 

Repli-seq S15 

Alignment 

(Bam) 4DN (4DNESYIVVMOC)  

16-fraction 

Repli-seq S16 

Alignment 

(Bam) 4DN (4DNESIK2HK47)  

iMARGI 

Read 

pairs  

4DN (4DNESOBRUQ12, 

4DNES8B3R3P8, 
4DNESGRI8A8N, 

4DNESNOJ7HY7) 

Only interchromosomal repetitive 

element (RE)-containing chromatin-
associated RNAs (caRNAs) read pairs 

are used 

HFFc6 

SON TSA-seq 
Signal 
(BigWig) 

4DN (4DNESB5I8TGR, 
4DNES85R9TIB)  

LaminB TSA-

seq 

Signal 

(BigWig) 

4DN (4DNES16C6XVY, 

4DNESMF4T7QQ)  

Nucleous TSA-
seq 

Signal 
(BigWig) 

4DN (4DNESGAR9ZBW, 
4DNES2RN8ZJ1)  
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LaminB DamID 

Signal 

(BigWig) 

4DN (4DNESOOCOBBA, 

4DNESXZ4FW4T)  

Hi-C 
Contact 
matrix 

4DN (4DNESNMAAN97, 
4DNES2R6PUEK)  

Imputed 

H2AFZ ChIP-
Seq 

Signal 
(BigWig) 4DN (4DNFIB79WDUY)  

Imputed 

H3K27ac 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFIBNZ478I)  

Imputed 

H3K27me3 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFIMJHO898)  

Imputed 
H3K36me3 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFIDU8WT76)  

Imputed 
H3K4me1 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFIBC1VSF6)  

Imputed 

H3K4me2 
ChIP-Seq 

Signal 
(BigWig) 4DN (4DNFIFB7SHA1)  

Imputed 

H3K4me3 
ChIP-Seq 

Signal 
(BigWig) 4DN (4DNFIKRPF9QP)  

Imputed 

H3K79me2 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFIBS37Z1K)  

Imputed 

H3K9ac ChIP-

Seq 

Signal 

(BigWig) 4DN (4DNFINBZ9NNY)  

Imputed 
H3K9me3 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFILJFE7WW)  

Imputed 
H4K20me1 

ChIP-Seq 

Signal 

(BigWig) 4DN (4DNFI13RAB7H)  

CUT&RUN 

CTCF 

Raw 

(fastq) 4DN (4DNES1RQBHPK)  

CUT&RUN 

H2A.Z 

Raw 

(fastq) 4DN (4DNESHPUFWTR)  

CUT&RUN 

H3K27ac 

Raw 

(fastq) 4DN (4DNESIMWCLF8)  
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CUT&RUN 

H3K27me3 

Raw 

(fastq) 4DN (4DNES8TY5P5P)  

CUT&RUN 
H3K4me1 

Raw 
(fastq) 4DN (4DNESRFWR5SV)  

CUT&RUN 

H3K4me2 

Raw 

(fastq) 4DN (4DNESEQW5QAI)  

CUT&RUN 
H3K4me3 

Raw 
(fastq) 4DN (4DNESPE6J9FU)  

iMARGI 

Read 

pairs  4DN (4DNES9Y1GHK4) 

Only interchromosomal repetitive 

element (RE)-containing chromatin-
associated RNAs (caRNAs) read pairs 

are used 

 

 

 

Data acquisition and processing 
We obtained TSA-seq, Lamin-B-DamID, and Hi-C data for H1-hESCs and HFFc6 from the 

4DN data portal (http://data.4dnucleom.rog). The data generation and processing pipeline for 

TSA-seq data is described in {Chen, 2018 #1443}{Zhang, 2021 #1892}. The data generation 

and processing pipeline for DamID data is described in {Leemans, 2019 #1932}. For the 

SPIN states inference, we used Hi-C data generated by the formaldehyde (FA) _ 

disuccinimidyl glutarate (DSG) Hi-C protocol (1% FA followed by incubation with 3 mM DSG) 

using restriction enzyme DnpII {Akgol Oksuz, 2021 #1887}. We binned TSA-seq, Lamin-B-

DamID and Hi-C mapped reads at 25 kb resolution. We then identified significant 

interactions from the normalized Hi-C data in each cell type previously described {Wang, 

2021 #1783}.  
 

Identifying SPIN states for large-scale genome compartmentalization 
In this work, we used a modified SPIN method to perform joint modeling across multiple cell 

types. To ensure TSA-seq and DamID scores across different cell types are comparable, we 

first applied a data normalization method to transform data into a Gaussian or more-

Gaussian-like distribution. To do that we identified genomic bins that are spatially stable by 

calculating the Pearson correlation of interchromosomal Hi-C interactions for each non-

overlapping 25 kb genomic bin. Bins were then ranked based on the average Pearson 

correlation coefficient, and the top 25% were selected as spatially conserved regions. We 

then obtained TSA-seq or DamID scores for these bins in all cell types and standardized 

each data track by fitting a power-transformation function. We used the Yeo-Johnson 

transformation function with the default parameters from the Python scikit-learn package. 

Next, we modified the framework of SPIN by jointly modeling the probability across multiple 
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cell types. The hidden Markov random field (HMRF) model is defined on an undirected graph 

  for each cell type, where in our case represents non-overlapping 25kb 

genomic bins and represents the cell-type specific edges (i.e., significant Hi-C 

interactions) in cell type . For each is a vector with dimension 
indicating the observed TSA-seq and DamID signal of this bin in cell type . Each node 

also has a hidden state for each cell type, representing its underlying spatial 

environment relative to different nuclear landmarks that we want to estimate. In this work, we 

assume that the set of hidden states are shared across cell types. Edges in 

the graph are cell type-specific and there are no edges that are connecting nodes from 

different cell types. Therefore, the hidden state is only dependent on cell-type specific 

observation and the neighbors of node ( ) in 

cell type . The overall objective is to estimate the hidden states for all nodes in all cell 

types that maximize the following joint probability as shown below: 

 
To estimate the number of SPIN states, we applied the same approaches as we used in the 

previous version of the SPIN method {Wang, 2021 #1783}. We used both the Elbow method 

based on K-means clustering and AIC/BIC scores to search for the optimal number of SPIN 

states. Both AIC and BIC scores decrease as the number of states increases. We found that 

the slope of the curve drops close to zero as the number of states exceeds 9. So, we chose 

9. 
 

Processing other epigenomic data 
We downloaded or processed other epigenomic data and compared SPIN states with these 

datasets. For ChIP-seq datasets, we downloaded the processed p-value tracks from the 

ENCODE website for H1-hESC and Avocado {Schreiber, 2020 #1904}{Schreiber, 2021 

#1905} imputed p-value tracks from the 4DN data portal. Multi-fraction Repli-seq data were 

collected from {Zhao, 2020 #1908}. For CUT&RUN data, we downloaded raw sequencing 

reads from the 4DN data portal and processed them using a similar procedure according to 

the standard ENCODE ChIP-seq pipeline. First, we mapped reads to hg38 reference 

genome using Bowtie2 (version 2.2.9) with the default parameters. We then used MACS3 to 

generate p-value tracks as well as peaks for CUT&RUN data. The enrichment score of 
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epigenomic data on SPIN states is determined by the log2 ratio between the average 

observed signals on each SPIN states over genome-wide expectation.  
 

SPIN states enriched caRNA sequence features. 
Processing of iMARGI data was performed with iMARGI-Docker {Wu, 2019 #1910}. To 

quantify enrichment of repetitive element (RE)-containing chromatin-associated RNAs 

(caRNAs) with specific chromatin states, we computed an enrichment score (log2 

observed/expected interaction frequencies) for each RE caRNA class and SPIN states. 

Observed frequencies were derived from the number of iMARGI read pairs with RNA ends 

mapped to RE class of interest and DNA ends mapped to SPIN states. Expected 

frequencies computed as the total number of iMARGI read pairs multiplied by the product of 

the marginal probabilities of RE class abundance (proportion of all caRNAs mapping to each 

RE class, irrespective of DNA mapping locations) and SPIN state abundance (proportion of 

DNA reads mapping to each SPIN state). Only inter-chromosomal iMARGI pairs were 

analyzed to mitigate potential biases from nascent RNA transcripts interacting with proximal 

genomic regions. 
 

Nascent transcription measured by iMARGI 
iMARGI RNA ends coverage are derived from RNA, DNA interactions represented in bedpe 

files generated by iMARGI docker {Wu, 2019 #1910}. The RNA end abundance bigwig file is 

generated by calculating the pileup reads coverage (R, coverage function) on the genome 

using RNA ends only in a strand specific manner. 

 

 

 

The iMARGI datasets used for this paper are as follows: 

 

Cell line DCIC accession 

H1  4DNESNOJ7HY7 

HFFc6  4DNES9Y1GHK4 

K562 4DNESIKCVASO 

 

The bigwig tracks of iMARGI's RNA reads are as follows: 
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Cell line Treatmen

t 

Strand DCIC accession 

H1 Control Plus 4DNFIOYVWEYZ 

H1  Control Minus 4DNFI2LXIREI 

 

 

 

4. Methods for Integrated Genome Structure Modeling 
 
Datasets 
The 4DN accession codes to the input data used in simulating and analyzing the genome 

structures are given in the table below. 

 

 Hi-ESC HFFc6 

Ensemble Hi-C 4DNESX75DD7R {Akgol 

Oksuz, 2021 #1887} 
4DNESNMAAN97 {Akgol 

Oksuz, 2021 #1887} 

Lamina DamID 4DNESXKBPZKQ  4DNESXZ4FW4T 

SPRITE 4DNESASBN1JK {Bhat, 2023 

#1958} 

4DNESJYGTI8S {Bhat, 2023 

#1958} 

TSA-seq 4DNFI625PP2A {Zhang, 2021 

#1892} 

4DNFI6FTPH5V {Zhang, 2021 

#1892} 

RNA-seq 4DNES3IOYG74  

GSE75748 {Chu, 2016 #1959} 

4DNESFH3EHTU  

GSE75748 {Chu, 2016 #1959} 

Histone ChIP-
seq 

ENCFF986PCY {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF088MXE {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF426TLD {ENCODE-

Project-Consortium, 2012 

#1015} 

ENCFF792IOR {ENCODE-

Project-Consortium, 2012 

#1015} 
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ENCFF084JKQ {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF183MHJ {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF860NVB {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF401PZS {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF156JZY {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF065VIF {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF445UVT {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF488THD {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF780FNS {Roadmap 

Epigenomics Consortium, 

2015 #1286} 

ENCFF994SSG {ENCODE-

Project-Consortium, 2012 

#1015} 

ENCFF690KUY {ENCODE-

Project-Consortium, 2012 

#1015} 

ENCFF995LLA {ENCODE-

Project-Consortium, 2012 

#1015} 

ENCFF070SWD {ENCODE-

Project-Consortium, 2012 

#1015} 

 

 

 

 
Data preprocessing was performed as described in Boninsegna et al. {Boninsegna, 2022 

#1914}, with exception of parameter 𝑓!"#"$%&' = 16 for Hi-C preprocessing.  

 
Genome representation 
The genome is represented at 200 kilobase pair resolution as described in {Boninsegna, 

2022 #1914}{Yildirim, 2023 #1916}, resulting in 𝑁 = 29838 chromatin regions, modeled as 

hard spheres of radius 𝑟( = 118𝑛𝑚. The HFFc6 nucleus is modeled as an ellipsoid of 
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semiaxes (𝑎, 𝑏, 𝑐) = (7840, 6480,2450)𝑛𝑚, while the the H1ESC envelope is represented by 

a sphere of radius 𝑅 = 5,000𝑛𝑚.  

 

We define the population of single cell genome structures as a set of 𝑆	diploid genome 

structures 𝑋 = {𝑋), … , 𝑋*}; A genome structure 𝑋+ is a set of 3-dimensional vectors 𝑋+ =

{�⃗�%+: �⃗�%+ ∈ 𝑅,, 𝑖 = 1,2, … ,𝑁} representing the center coordinates of each chromatin domain 

within the structure s:,  𝑁 being the total number of chromatin domains in the genome and 

𝑥⃑%+ = (𝑥%+, 𝑦%+, 𝑧%+, ) ∈ 𝑅, indicates the coordinates of a 200k base pair genomic region 𝑖 in 

structure 𝑠. We use the notation 𝐼 = (𝑖, 𝑖′) to indicate the genomic region, where 𝑖 and 𝑖′ 

represent the two alleles of genomic region 𝐼. 

 

Data-driven simulation of genome structures 

Genome structure populations were generated with IGM following procedures described in 

{Boninsegna, 2022 #1914}. The goal is to determine a population of 1,000 diploid 3D 

genome structures 𝑋 statistically consistent with all input data from different available 

genomics experiments. Given a collection of input data 𝐷 from different data sources, 𝐷 =

{𝐷-|𝑘 = 1,… , 3} (here, ensemble Hi-C, lamina DamID and SPRITE, see data availability 

table above), we aim to estimate the structure population 𝑋 such that the likelihood 

𝑃({𝐷-}|𝑋) is maximized. To represent missing information at single cell and homologous 

chromosome level, we introduce data indicator tensors 𝐷∗ = {𝐷-∗|𝑘 = 1,… , 𝐾 = 3}, which 

augment missing information about allelic copies in single cells. Thus, the latent variables 

are a detailed expansion of the diploid and single-structure representation. 

 

To determine a population of 3D genome structures consistent with all experimental data, we 

formulate a hard Expectation-Maximization (EM) problem, where we jointly optimize all 

genome structure coordinates and all latent variables. Given {𝐷-}, we aim to estimate the 

structure population 𝑋 and latent indicator variables {𝐷-∗}	such that the likelihood 𝑃(𝑋) is 

maximized. We thus aim to find the optimal structures and the optimal latent variables which 

satisfy: 𝑿O,𝔇∗Q = argmax
𝐗,𝒟∗

𝑃(𝔇,𝔇∗|𝑿) = argmax
𝐗,𝒟∗

∏ 𝑃(𝒟-|𝒟-∗ , 𝑿)- 	 ⋅ ∏ 𝑃(𝒟-∗|𝑿)- 	, This is a high 

dimensional, hard Expectation Maximization problem and it is solved iteratively by 

implementing a series of optimization strategies for scalable and effective model estimation. 

Any iteration first optimizes the latent variables, by using the input data {𝐷-} and the 

coordinates of all genomic regions 𝑋($) from the previous iteration step, i.e., 

 	𝔇∗($4)) = arg𝑚𝑎𝑥𝔇∗ 	 𝑃(𝔇|𝔇∗, 𝑿$)𝑃(𝔇∗|𝑿$). Then, coordinates of the genomic regions are 

optimized, based on the data deconvolution 𝐷∗($), i.e. 	𝑿$4) =
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𝑎𝑟𝑔𝑚𝑎𝑥6	𝑃[𝔇\	𝔇∗($), 𝑿]𝑃[	𝔇∗($)\𝑿], and additional constraints such as the volume 

confinement effect by the nuclear envelope, chromosomal chain connectivity and excluded 

volume. The process is iterated until convergence is reached. Overall, the data 

deconvolution process ensures that the structure population expresses the single-cell 

variability of genome organization, while also aggregately reproducing the ensemble 

behavior (e.g, the ensemble contact probabilities). Details on the probabilistic formulation 

underlying the optimization process and how that is designed and implemented for the 

different data sources can be found in Boninsegna et al. {Boninsegna, 2022 #1914}, and 

accompanying Supporting Information. 

 

Structural features 
The population of 1,000 single cell 3D genome structures was used to calculate a host of 

structural features 𝑓	that characterize the folding of each genomic region. All features and 

their cell-to-cell variability are calculated as described in {Boninsegna, 2022 #1914}{Yildirim, 

2023 #1916}, unless otherwise noted.  

 

Variability If applicable, cell-to-cell variability 𝛿𝑓8 of structural feature 𝑓 for a chromatin region 

𝐼 (from chromosome 𝑐) is defined as: 𝛿𝑓8 =
9[;]"
9[;]#

, 𝜎[𝑓]8 indicating the standard deviation of 

the feature value across the population and 𝜎[𝑓]= being the mean standard deviation of the 

feature values of all regions within the same chromosome. 𝛿𝑓8 > 0 (< 0) indicates high (low) 

variability of that feature at locus 𝐼. 

 

● RAD: Normalized average radial position and 𝛿𝑅𝐴𝐷 as its cell-to-cell variability 
is calculated as the normalized radial distance of a locus 𝐼 to the nuclear center 

averaged over all structures in the population:   

 

𝑅𝐴𝐷8 =
1
𝑆
e

1
2

+

e𝑟%+
%∈8

 

 

𝑟?%+	 = (#$%
"
)? + (@$%

A
)? + (B$%

=
)? being the squared radial distance of locus 𝑖 in structure 𝑠, and 

(𝑎, 𝑏, 𝑐) being the nuclear semi-axes. The cell-to-cell variability of the radial position is 

defined 𝛿𝑅𝐴𝐷8. 

 

Local folding properties These features encode local properties of the chromatin fiber and 

chromatin-chromatin interactions. 
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● Local chromatin fiber compaction (Rg) indicates the chromatin local compactness. 

If 𝑅C[𝑖, 𝑠]	 indicates the radius of gyration of a 1Mb chromatin segment centered at 

the locus of interest in structure s, then 

 

𝑅𝑔[𝐼] 	=
1
𝑆
e

1
2

*

e𝑅C[𝑖, 𝑠]
%∈8

 

 

The compaction variability is denoted with 𝛿𝑅𝑔. 

 
● Interchromosomal contact probability (ICP) indicates the average fraction of trans 

interactions out of all contacts formed by a genomic region 𝐼, 

 

𝐼𝐶𝑃[𝐼] 	=
1
𝑆
e

1
2

*

e
𝑛+%,$D"'+

𝑛+%,$D"'+ + 𝑛+%,=%+%∈8

 

 

 𝑛+%,$D"'+(𝑛+%,=%+)	being the number of trans (cis) contacts formed by region 𝑖 in structure 𝑠. 

 

● Interior localization frequency (ILF) indicates the fraction of structures in which a 

locus 𝐼 (either copy) occupies an inner position,  

 

𝐼𝐿𝐹[𝐼] =
1
𝑆
e𝜃(𝑅𝐴𝐷% ≤

1
2
	𝑜𝑟	𝑅𝐴𝐷%& ≤

1
2
)

*

 

 

𝜃	being the Heaviside function 

● Median trans AB ratio (transAB) For each chromatin region 𝑖 we define its “trans” A 

𝑛$%+,E and B 𝑛$%+,F neighborhoods  as 𝑛$%+,E(𝑛$%+,F) = #{𝑗: 𝑐ℎ𝑟[𝑖] 	≠ 𝑐ℎ𝑟[𝑗] 	∧ |𝑥%+ −

𝑥G+| ≤ 500	𝑛𝑚	 ∧ 𝑗 ∈ 𝐴(𝐵)	}; 𝑗	 ∈ 𝐴/𝐵 indicates locus 𝑗 is assigned to compartment 

A/B. The median trans AB ratio for that region across the population is computed by 

pooling the values from all homologues and structures,  

 

𝑡𝑟𝑎𝑛𝑠𝐴𝐵8 = 𝑚𝑒𝑑𝑖𝑎𝑛[{
𝑛$%+,E
𝑛$%+,F

}%∈8,+]	

 

The values are then rescaled so that 0	 ≤ 𝑡𝑟𝑎𝑛𝑠𝐴𝐵8	 ≤ 1. 
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Prediction of nuclear body’s locations using Markov clustering 
A chromatin interaction network (CIN) is calculated for nuclear body associated chromatin 

regions as described in {Yildirim, 2023 #1916}. Speckle associated chromatin regions are 

defined as the top 10% 200 kb regions with highest SON-TSA seq signal, nucleolus 

associated chromatin regions are 200-kb regions overlap with nucleolus organizing regions 

identified in {Németh, 2010 #1019}. Spatial partitions of nuclear bodies are further calculated 

via the Markov Clustering Algorithm (MCL). Specifically, MCL clustering is performed for 

each nuclear body’s CIN with mcl tool in the MCL-edge software {Enright, 2002 #1078}. 

Speckle locations are defined as the geometric center of speckle partitions identified by MCL 

in speckle CINs. nucleolus locations are identified following the same protocol in nucleolus 

CINs. Only spatial partitions with size larger than three chromatin regions are considered for 

downstream analysis. 

 

Structure features defining the location of genomic regions with respect to nuclear bodies 

and compartments: 

 

SpD, NuD, LaD define the population averaged distance of a genomic region to the nearest 

nuclear speckle, nucleolus or the nuclear envelope, respectively, while SAF, NAF, LAF 

quantify the frequency with which a genomic region is in association with a speckle, nucleus 

or the nuclear envelope in the population of cells. Approximate locations of nuclear speckles 

and nucleoli are predicted in each single cell structure following a procedure described in 

{Yildirim, 2023 #1916}. Specifically, we identified locations of nuclear bodies in single cells 

by the geometric centers of highly connected subgraphs determined from a chromatin 

Interaction network, where each node represents a chromatin region with high probability to 

be associated with a specific nuclear body and edges if their distances is smaller than an 

interaction cutoff. Details of the procedure are described in {Yildirim, 2023 #1916}.  

 

● Average distance to the lamina (LAD) and its cell-to-cell variability (𝛿𝐿𝐴𝐷)  is the 

(normalized) radial distance of a locus 𝐼 to the nuclear lamina averaged averaged 

over the cell population: 

𝐿𝐴𝐷8 =
1
𝑆
e

1
2

+

e(1 − 𝑟%+)
%∈8

 

The cell-to-cell variability is defined by 𝛿𝐿𝐴𝐷8 

 

● Average distances to closest speckle (SpD) and nucleolus (NuD) and their cell-
to-cell variabilities (𝛿𝑆𝑝𝐷, 𝛿𝑁𝑢𝐷) 
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𝑆𝑝𝐷8 =
1
𝑆
e

1
2

+

e𝑑%+
*H

%∈8

	,								𝑁𝑢𝐷8 =
1
𝑆
e

1
2

+

e𝑑%+
IJ

%∈8

					

 

where 𝑑%+*H	(𝑑%+IJ) is the distance of genomic region 𝑖 to the predicted closest speckle (or 

nucleolus) in structure 𝑠. The related variability across the population is 𝛿𝑆𝑝𝐷8(𝛿𝑁𝑢𝐷8). 

 

● Association frequencies with nuclear bodies (SAF, LAF, NAF) The speckle 

association frequency is defined as: 

  

𝑆𝐴𝐹8 =
1
𝑆
e

1
2

+

e𝜃(𝑑*H%+ ≤ 𝑑*H)
%∈8

 

where 𝑑*H = 500𝑛𝑚 and 𝜃 is the Heaviside distribution. Analogous formulas are valid for 

association frequencies of genomic regions with the lamina (LAF) and nucleoli (NAF): 

 

𝐿𝐴𝐹8 =
1
𝑆
e

1
2

+

e𝜃(𝑑K"!%+ ≤ 𝑑K"!)
%∈8

, 𝑁𝐴𝐹8 =
1
𝑆
e

1
2

+

e𝜃(𝑑IJ%+ ≤ 𝑑IJ)
%∈8

 

 

 

With 𝑑K"! = 0.2𝑅𝐴𝐷 and 𝑑IJ = 1000	𝑛𝑚. 

  

 
Calculation of enrichment scores for expression/genes/SPIN groups for structure 
features. All structure feature values are min-max normalized to scale the feature value to a 

0-1 range. For structure features RAD, SpD and NuD the normalized value is subtracted by 

1 to signify lower value for closer proximity to the respective nuclear bodies. 

 

To calculate the enrichment fold of a structure feature in a selected group (either selected 

based on gene expression, genes, SPIN, etc.), we calculated the log2 ratio of the feature 

mean within this group over the average mean value calculated from 100 random 

permutations of chromatin regions in the genome.  

 
Dimension reduction of structural features with t-Distributed Stochastic Neighbor 
Embedding (tSNE).  
Structure features RAD, LAF, TransAB, RG, SpD, ICP are normalized by Z-score and 

combined in feature vector for each genomic region. The tSNE algorithm in python scikit-

learn library is then applied to the structure feature vector of all chromatin regions with the 
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following parameters: verbosity level of 1, perplexity of 80, maximum of 300 iterations for the 

optimization, and random state seed of 123 to ensure reproducibility. The first two 

components are selected for 2D visualization.  

 

The categorization of gene into different expression groups 
Expected gene counts were estimated by the RSEM package from the alignment bam file 

and are then normalized by using the NOIseq R package into RPKM values. For genes with 

non-zero RPKM value, the lower threshold for expression is defined as the 25 percentile 

(Q1) of the RPKM values; genes with expression level above 0 but below the lower threshold 

are defined as lowly expressed genes. The upper threshold for expression is defined as the 

75 percentile (Q3) of the RPKM values; genes with expression level above the upper 

threshold are defined as highly expressed genes.  

 
Calculated enhancer features 
E: The number of active enhancers within a 200 kb window where the gene TSS is located. 

E/G: The number of active enhancers within a 200 kb window normalized by the total 

number of transcription starts sites of genes.  

EN_Inter/G: The number of active enhancers from other chromosomes that are located 

within a spatial distance of 350 nm, normalized by the number of transcription starts sites of 

genes within the local 200 kb window. 

EN_Intra/G: The number of active enhancers within the same chromosome that are located 

within a spatial distance of 350 nm, normalized by the number of transcription starts sites of 

genes within the local 200 kb window. 
EN_Intra(<2Mb)/G: The number of active enhancers within a 2Mb sequence distance on the 

same chromosome that are located within a spatial distance of 350 nm, normalized by the 

number of transcription starts sites of genes within the local 200 kb window. 
 

5. Methods for single cell 3D genome analysis 
 

Cell culture  
The modified WTC-11 (GM25236) hiPS cell line with GFP tagged AAVS1 locus (clone 6 and 

clone 28) was cultured following the 4DN approved SOP 

(https://data.4dnucleome.org/protocols/d5889062-ec16-4246-9606-8d51f6b02dfa/) with two 

minor differences: 1)  For Penicillin/Streptomycin, catalog #15140-122 (Gibco) was used with 

a final concentration of 1% (v/v); 2) The density of seeding cells into 6-well plate was 50-

100K. 
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Generating scHi-C data  
The scHi-C libraries were prepared using methods previously described with slight 

modifications {Flyamer, 2017 #1434} In brief, 1-3 million crosslinked WTC-11 cells were first 

lysed and permeabilized by 0.5% SDS. Then the cells were incubated overnight at 37 °C 

with 300 U MboI followed by proximity ligation with T4 ligase at room temperature with slow 

rotation for 4 hours. Then the nuclei were stained with Hoechst and the single 2N nuclei 

were sorted by FACS into wells of 96-well plate. After overnight reverse crosslinking at 65 

°C, the 3C-ligated DNA in each cell was amplified using GenomiPhi v2 DNA amplification kit 

(GE Healthcare) for 4.5 hours. After purification with AMPure XP magnetic beads and 

quantification, 10ng WGA product was used to construct a library with Tn5. The detailed 

experimental procedures can be found in 4DN portal 

(https://data.4dnucleome.org/protocols/3286b08d-d1d6-4853-a201-7dd08400d357/). 

 

ScHi-C data can be found here: 

For clone 6: 

 https://data.4dnucleome.org/experiment-set-replicates/4DNESJQ4RXY5/   

 

and for clone 28:  

https://data.4dnucleome.org/experiment-set-replicates/4DNESF829JOW/  

 
The Strings and Binders (SBS) polymer model of the studied DPPA locus 
To investigate at the single-molecule level the 3D folding of the DPPA locus (chr3: 108.3Mb-

110.3Mb) in WTC-11 pluripotent stem cells, we used the Strings and Binders (SBS) polymer 

model {Nicodemi, 2009 #1925}{Barbieri, 2012 #1781}. In the SBS, a chromatin region is 

represented as a self-avoiding polymer chain of beads, along which different types of binding 

sites are located for diffusing cognate molecular binders that can bridge them. The specific 

attractions between the binders and the polymer binding sites drive the folding of the system 

via thermodynamic mechanisms of polymer phase separation {Conte, 2020 #1924}. The 

model binding domains are determined by using the PRISMR algorithm, which infers the 

optimal, i.e., minimal, sets of different types of polymer binding sites by taking as input only 

bulk Hi-C contact data {Bianco, 2018 #1945}. In our studied 2Mb wide DPPA locus, PRISMR 

returned 10 different binding domains. To derive a statistical ensemble of in-silico DPPA 

single-molecule 3D conformations, we performed massive Molecular Dynamics (MD) 

simulations. In the MD implementation of the model, the system of polymer beads and 

binders is subject to a stochastic Langevin dynamics based on classical interaction 

potentials of polymer physics with standard parameters {Kremer, 1990 #1962}{Conte, 2020 
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#1924}. We ran the SBS simulations up to 108 MD time iteration steps, when stationarity is 

fully reached. To ensure statistical robustness, we collected up to 103 independent model 

conformations in the steady-state. We used the free available LAMMPS software (v. 

30july2016) to run MD simulations highly optimized for parallel computing {Thompson, 2022 

#1963}. 

 

 

6. Methods for the section “Relationship among A/B compartments, SPIN states, 
TADs/subTADs, loops, and replication timing” 

 

A/B compartment detection 
We called compartments in Hi-Cv2.5 data generated from H1 human ES cells (H1-hESC; 

{Akgol Oksuz, 2021 #1887} (https://data.4dnucleome.org/files-

processed/4DNFIOUDCJRH/) via eigenvector decomposition on each 25 kb chromosomal 

balanced matrix. We then normalized each matrix by an expected distance dependence 

mean counts value with removal of rows or columns with less than 2% non- zero counts 

coverage. We transformed to a z-score each off-diagonal count and a Pearson correlation 

matrix was computed. Subsequently, we performed eigenvector decomposition on the z-

scored Pearson correlation matrix using LA.eig() (linalg package in numpy), selecting the 

eigenvector with the largest eigenvalue. We identified inflection points demarcating 

boundaries of compartments by genomic coordinates with a transition in eigenvector sign. 

We assigned compartments to either an A or B identity by collecting intervals of same 

eigenvector sign orientation (positive or negative) and counting total number of unique 

genes per direction then reassigning those with greater gene number intersection as A and 

the lesser as B. 

  

TAD/subTAD detection 
We called TADs and subTADs as previously reported {Norton, 2018 #1620}{Zhang, 2019 

#1748}{Emerson, 2022 #1935}{Chandrashekar, 2024 #1964} in 10 kb binned Hi-Cv2.5 data 

generated from H1-h1ESC (https://data.4dnucleome.org/files-processed/4DNFI82R42AD/))                                                               

using          3DNetMod 

(https://bitbucket.org/creminslab/cremins_lab_tadsubtad_calling_pipeline_11_6_2021),      

as previously described (https://data.4dnucleome.org/files-processed/4DNFIR94OF6S/). 
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Dot detection 
We used dots indicative of loops called in Hi-C data from H1-hESC 

(https://data.4dnucleome.org/files- processed/4DNFIEEF14ST/) as recently described using 

our published methods 

(https://bitbucket.org/creminslab/cremins_lab_loop_calling_pipeline_11_6_2021/src/initial/) 

{Emerson, 2022 #1935}{Chandrashekar, 2024 #1964}. Using geometric donut-shaped, 

lower-left, vertical, and horizontal filters (parameters p=2 bins, w=10 bins), we compute an 

expected interaction frequency for every given bin-bin pair. We computed p-values for each 

bin-bin pair using a Poisson distribution and corrected for multiple testing using the 

Benjamini-Hochberg procedure. Final clusters were identified using dynamic false discovery 

rate (FDR) thresholding. 

  

SPIN-centric intersection with A/B compartments 
We stratified H1-hESC SPIN states into compartment A or B if they either co-register with a 

Jaccard index of greater than 1.70 or are embedded within a compartment. All other SPINs 

partially overlapping compartments were assigned into an ‘other’ category. 

  

TAD/subTAD-centric intersection with SPIN states 
We utilized H1-hESC dot and dotless TAD/subTADs previously described 

(https://data.4dnucleome.org/files-processed/4DNFIW5EIIO2/       and 

https://data.4dnucleome.org/files-processed/4DNFIU7GTTMW/) {Emerson, 2022 #1935}. 

We classified dot TAD/subTADs as those in which loops intersect the midpoint (i.e. apex of 

the TAD/subTAD triangle) +/- 20% the size of the domain. All remaining TAD/subTADs 

were assigned as dotless. We then intersected dot and dotless TAD/subTADs with SPIN 

states. All those with a Jaccard index of greater than 0.70 were stratified as co-registering 

or residing within a SPIN state. We then further stratified dot and dotless TADs co-

registered/embedded within SPINs into those that were further co-registered/embedded 

within A or B compartments with Jaccard index of greater than 0.70. All TADs/subTADs not 

co-registered/embedded in SPINs nor co-registered/embedded in compartments were 

assigned into an ‘other’ category. 

  

RNA-seq and iMARGI 
We used RNA-seq (https://www.encodeproject.org/experiments/ENCSR537BCG/) and 

iMARGI (http://sysbiocomp.ucsd.edu/public/wenxingzhao/H1_new/05-09-

2019_Tri_iMARGI_H1- control.RNA.minus.bw        and                                     

 http://sysbiocomp.ucsd.edu/public/wenxingzhao/H1_new/05-09- 

2019_Tri_iMARGI_H1-control.RNA.plus.bw) data generated in h1ESCs. iMARGI’s RNA-
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end reads represent nascent transcripts (https://doi.org/10.1101/2021.06.10.447969). The 

RNA-end and DNA-end reads were processed with iMARGI-Docker 

(https://doi.org/10.1038/s41596-019-0229-4) and mapped to the human hg38 reference 

genome and processed as described. See data availability through the 4DN portal below. 

  

High-resolution 16 fraction Repli-seq 
We used 16 fraction Repli-seq data from h1ESCs (https://data.4dnucleome.org/experiment- 

sets/4DNESXRBILXJ/) processed as described into normalized and scaled data arrays 

(https://data.4dnucleome.org/files-processed/4DNFI3N8GHKR/) {Emerson, 2022 #1935}. 

We identified initiation zones (https://data.4dnucleome.org/files-

processed/4DNFIRF7WZ3H/) as described {Emerson, 2022 #1935}. Raw counts in each 

fraction (Si,j) were normalized by sequencing depth by virtue of read per million (RPM) such 

that Snorm,j,50kb_bin = Sj, 50kb_bin / Si,j * 1e6. Repli-seq arrays were subsequently constructed 

from RPM bedgraphs to form 16 rows with each row representing an S phase fraction and 

each column representing a 50 kb bin. The array was smoothed by applying a Gaussian 

filter and scaled such that each column sums to 100. 

 

Data Visualizations 
We visualized h1ESCv2.5 Hi-C (https://data.4dnucleome.org/files-

processed/4DNFI82R42AD/) counts at SPIN state calls or dot and dotless TADs/subTADs 

by adding 60% of the size of the domain or SPIN to the edges of the maps and stretching to 

a defined length L. Each domain or SPIN was used once in the visualization and the counts 

in every pixel were normalized by mean distance-dependence expected value and then 

averaged across all 2D matrices. We similarly visualized high-resolution 16 fraction Repli-

seq, total RNA-seq, iMARGI, and compartment eigenvectors resized to the same intervals 

as TADs, subTADs, or SPIN states. Signal for high- resolution 16 fraction Repli-seq is the 

average pileup, total RNA-seq and iMARGI is the median pileup of averaged plus and 

minus strands. The compartment eigenvector is the mean pileup signal. We resized to 

defined length L with the resize() method in OpenCV image package 

(https://pypi.org/project/opencv-python/). 

 
Initiation Zone Resampling Test 
We computed the proportion of early and late IZs intersecting with Dot TAD/subTAD 

boundaries (https://data.4dnucleome.org/files-processed/4DNFIWNJ5RR7/), Dotless 

boundaries (https://data.4dnucleome.org/files-processed/4DNFIT6QE9YU/), and no 

boundaries. To create a null set of IZs, we computationally sampled the genome for random 
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intervals matched by number, size, and A/B compartment distribution of real early or late 

IZs. We created a null distribution by sampling 1.5x108 times and computing a one-tailed 

empirical pvalue as the area under the null distribution to the right of the real IZs. We used 

only null and real IZ sets in autosomal regions with sufficient counts for the statistical test by 

filtering unmappable telomeric/centromeric regions. 

  

Chromatin dataset processing 
CUT&Run datasetx have been processed by trimming adaptors using cutadapt, locally 

mapping the reads using bowtie2, filtering for quality, removing duplicates and ENCODE 

blacklisted regions (ENCFF419RSJ) using samtools and computing the coverage using 

deeptools. Average chromatin landscape at IZs has been computed using HOMER on a 

1Mb region centered on each IZ centre and plotted using R. Chromatin profile has been 

plotted using the WashU browser and IGV on chr2:20,404,583-58,108,703. 

  

Initiation Zone integration with chromatin and transcription 
HCT116, H1ESC and mESC IZs have been grouped by replication timing by splitting the 

corresponding Repli-seq data into quartiles. Matching random regions have been 

generated by shuffling the IZs regions within their respective replication timing quartile 

using bedtools. Insulation score at IZs and random regions has been computed by 

extracting the minimum insulation score in each IZ or random region using bedtools. 

Accessibility at IZs and random region has been computed by extracting the total ATAC-

seq signal at each IZ or random region using bedtools. H1ESC RNA-seq data have been 

processed by mapping reads on hg38 using Hisat2, filtering for quality using samtools and 

computing the coverage using bedtools. Expression at IZs and random regions has been 

computed by extracting the total RNA-seq coverage (adding plus and minus strands for the 

H1ESC RNA-seq) at each IZ or random region using bedtools. H1ESC Cut&Run chromatin 

marks dataset have been processed by trimming adaptors using cutadapt, locally mapping 

the reads using bowtie2, filtering for quality, removing duplicates and ENCODE blacklisted 

regions      using samtools and computing the coverage using deeptools. Average 

chromatin marks at IZs and random region has been computed using HOMER on a 1Mb 

region centered on each IZ centre. Figures have been plotted using R. 
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Data accessibility 
  

Hi-C 
● h1ESC Hi-C 2.5 source: https://data.4dnucleome.org/files-

processed/4DNFI82R42AD/ 

● h1ESC dot domains: https://data.4dnucleome.org/files-processed/4DNFIW5EIIO2/ 

● h1ESC dotless domains: 

https://data.4dnucleome.org/files- 

processed/4DNFIU7GTTMW/ 

● h1ESC dot boundaries: https://data.4dnucleome.org/files-

processed/4DNFIWNJ5RR7/ 

● h1ESC dotless boundaries: 

https://data.4dnucleome.org/files- 

processed/4DNFIT6QE9YU/ 

● h1ESC loops: https://data.4dnucleome.org/files-processed/4DNFIEEF14ST/ 

● h1ESC TADs/subTADs: https://data.4dnucleome.org/files-

processed/4DNFIR94OF6S/ 
  

16 fraction Repli-seq 
● h1ESC raw fastq: https://data.4dnucleome.org/experiment-sets/4DNESXRBILXJ/ 

● h1ESC read depth scaled normalized array for IZ calls & 

visualization: https://data.4dnucleome.org/files-

processed/4DNFI3N8GHKR/ 

● h1ESC Early, Early-mid, Late IZs on read depth 

normalized: https://data.4dnucleome.org/files-

processed/4DNFIRF7WZ3H 

 

RNA 
● h1ESC RNA-seq source: 

https://www.encodeproject.org/experiments/ENCSR537BCG/ 

● h1ESC RNA-seq processed file: 

https://www.encodeproject.org/files/ENCFF584VXW/ (plus strand signal of unique 

reads) https://www.encodeproject.org/files/ENCFF307LLA/ (minus strand signal of 

unique reads) 

● h1ESC raw files: http://sysbiocomp.ucsd.edu/public/wenxingzhao/H1_new/05-09- 

2019_Tri_iMARGI_H1-control.RNA.minus.bw; 
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http://sysbiocomp.ucsd.edu/public/wenxingzhao/H1_new/05-09-

2019_Tri_iMARGI_H1- control.RNA.plus.bw 
  

SPIN states 
● h1ESC and HFFc6 SPIN states are in Supplemental Table 1. 

 

h1ESC 
● h1ESC A/B Compartments: 

https://data.4dnucleome.org/files- 

processed/4DNFIOUDCJRH/ 
  
  

Contact map 
● H1ESC: https://data.4dnucleome.org/files-processed/4DNFIIMZB6Y9/ 

  

ATAC-seq 
● HCT116: https://www.encodeproject.org/files/ENCFF624HRW/ 

● mESC: https://data.4dnucleome.org/files-processed/4DNFI6HY3NE7/ 

● H1ESC: https://data.4dnucleome.org/files-processed/4DNFICPNO4M5/ 

 

Histones marks 
● H1ESC, H2AZ: https://data.4dnucleome.org/experiments-

seq/4DNEXHDA1L74/ (reanalyzed) 

● H1ESC, H3K27AC: https://data.4dnucleome.org/experiments-

seq/4DNEX5EQJ2P2/ (reanalyzed) 

● H1ESC, H3K4me3: https://data.4dnucleome.org/experiment-set-

replicates/4DNESPE6J9FU 
● H1ESC, H3K4me1: https://data.4dnucleome.org/experiments-

seq/4DNEXOKGNAEQ/ (reanalyzed) 

● HCT116, H2AZ: https://data.4dnucleome.org/files-processed/4DNFIPHO57I2/ 

● HCT116, H3K27Ac: https://data.4dnucleome.org/files-processed/4DNFIYNC2EO5/ 

● HCT116, H3K4me3: https://data.4dnucleome.org/files-processed/4DNFIT9DN6JI/ 

● mESC, H3K27Ac: https://data.4dnucleome.org/files-processed/4DNFIXE23VC7/ 

● mESC, H3K4me3: https://data.4dnucleome.org/files-processed/4DNFIQYJLKKH/ 

● mESC H2AZ: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4802378 

(reanalyzed) 
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Gene expression 
● HCT116: https://www.encodeproject.org/files/ENCFF766TYC/ 

● mESC: https://data.4dnucleome.org/files-processed/4DNFI4XVSIFH/ 
  

IZs 

 

H1ESC 

IZs 4DNFI5OBN63G https://data.4dnucleome.org/files-

processed/4DNFI5OBN63G 

HCT116 IZs 4DNFIYO3H24N https://data.4dnucleome.org/files-

processed/4DNFILNNSFMD/ 

mESC IZs 4DNFI53E1A38 https://data.4dnucleome.org/files-

processed/4DNFI53E1A38/ 

  

 

2-fractions repli-seq 
  

● H1ESC: https://data.4dnucleome.org/experiments-seq/4DNFIWSH27RS ; 

https://data.4dnucleome.org/experiments-seq/4DNFIQ6F59NT 

● HCT116: https://data.4dnucleome.org/files-processed/4DNFIM9S18WO/ ; 

https://data.4dnucleome.org/files-processed/4DNFIC4VUF86 

● mESC: https://data.4dnucleome.org/files-processed/4DNFIPB7M5B6 ; 

https://data.4dnucleome.org/files-processed/4DNFIRHK7RZF 
 

Insulation score 
  

● H1ESC: https://data.4dnucleome.org/files-processed/4DNFIUK3UVZX 

● HCT116: https://data.4dnucleome.org/files-processed/4DNFIGKFF445/ 

● mESC: https://data.4dnucleome.org/files-processed/4DNFI2LE1KZL/ 
   
 
iMARGI datasets 

● h1ESC: https://data.4dnucleome.org/experiment-set-replicates/4DNESNOJ7HY7/ 

 
 

7 Methods for predicting Hi-C maps from sequence (Akita) 
 

Two convolutional neural network models with the Akita architecture {Fudenberg, 2020 

#1938} were trained, one on H1-hESC and one on HFFc6 Micro-C data. Micro-C data was 
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downloaded from the 4DN data portal {Reiff, 2022 #1966} and processed as previously 

described {Fudenberg, 2020 #1938}.  The coordinates of the deletion at the TAL1 locus with 

experimentally verified changes on genome folding was obtained from Hnisz et al. {Hnisz, 

2016 #1374}. The deletion was centered and systematically extended on both sides to get 

the input sequence for Akita (220 bp). 

 

FIMO {Grant, 2011 #1967} was used to scan the human genome (hg38) to identify the 

potential binding sites (p-value <  1e-5) of cell type specific transcription factors 

POU2F1::SOX2 (MA1962.1) and FOSL1::JUND (MA1142.1) using their annotations in the 

JASPAR database {Castro-Mondragon, 2022 #1968}. TAD boundaries in the Micro-C 

datasets at 5 kb resolution were downloaded from the 4DN data portal. The ones that were 

not shared between the cell types (no boundary in the other cell type within 20 kb) were 

identified as cell-type-specific TAD boundaries. The binding sites overlapping cell-type-

specific TAD boundaries of each cell type were extracted using bedtools {Quinlan, 2010 

#1969}. In-silico mutagenesis was performed on the resulting binding sites by replacing the 

motifs with random sequences to evaluate their effects on predicted genome folding. Motif 

logos were visualized using the contribution scores of the motifs, which were computed by 

DeepExplainer (DeepSHAP implementation of DeepLIFT) {Avsec, 2021 #1946}{Shrikumar, 

2019 #1971}. 

 

 


