
Enhancing Biomarker-Based Oncology
Trial Matching Using Large Language
Models
Nour Al Khoury1, Maqsood Shaik1, Ricardo Wurmus1, Altuna Akalin1,*

1. Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin,
Germany

*Corresponding author: altuna.akalin@mdc-berlin.de

Abstract

Clinical trials are an essential component of drug development for new cancer

treatments, yet the information required to determine a patient's eligibility for enrollment

is scattered in large amounts of unstructured text. Genomic biomarkers are especially

important in precision medicine and targeted therapies, making them essential for

matching patients to appropriate trials. Large language models (LLMs) offer a promising

solution for extracting this information from clinical trial data, aiding both physicians and

patients in identifying suitable matches. In this study, we explore various LLM strategies

for extracting genetic biomarkers from oncology trials to improve patient enrollment

rates. Our results show that open-source language models, when applied

out-of-the-box, effectively capture complex logical expressions and structure genomic

biomarkers in disjunctive normal form, outperforming closed-source models such as

GPT-4 and GPT-3.5-Turbo. Furthermore, fine-tuning these open-source models with

additional data significantly enhances their performance.
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Introduction

Cancer is one of the leading causes of death in the world 1. According to the Global

Cancer Observatory (GLOBOCAN) statistics produced by the International Agency for

Research on Cancer (IARC), the estimation for the year 2022 is almost 20 million new

cases of cancer and around 9.7 million cancer deaths, globally 2. Surgery,

chemotherapy, and radiotherapy, individually or in combination, represent the standard

treatments for cancer patients 3,4,5. Nevertheless, although these traditional methods are

successful, they still have limitations. For instance, surgical removal of cancer is the

most risk-averse option, but it is only possible in its early stages 5. Moreover,

chemotherapy and radiotherapy are not effective for all cancer types 3, as they are not

devoid of side effects since they attack cancerous cells as well as healthy cells 4,6. A

promising direction in cancer treatment is precision medicine, which involves studying

the patients' genetics, lifestyle, and environmental information to guide treatment

decisions 7. This approach improves care quality while reducing the need for

unnecessary diagnostic tests and therapies by guiding healthcare decisions toward the

most effective treatments for a given patient 8.

Therapies targeting specific genes or associated with certain response biomarkers have

demonstrated considerable promise in the treatment of patients with different cancer

types 1,9,10. According to a study conducted on clinical trial records from 2000 to 2015,

clinical trials that use biomarkers for patient stratification have higher success rates,

particularly for oncology clinical trials 11. As of 2022, the FDA acknowledges 45 genes

and MSI-H and TMB-H as biomarkers that can predict a patient's response to a drug

and five tumor-agnostic genomic biomarkers 12. Despite the benefits of increasing

patient participation in clinical trials, such as accelerating the development of treatments

and improving trial generalizability 13, many clinical trials fail to be completed due to poor

recruitment, amongst other reasons 14,15,16. Even though the final decision to participate

in a trial is in the hands of the patient, various barriers often prevent patients from being

offered the opportunity to enroll in the trial enrollment process 17. A systematic review

defined four barrier domains affecting a patient's participation in a trial post-diagnosis,

leading to only 8.1% of 8883 patients being enrolled 17. Physicians may not discuss
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possible trials due to barriers such as treatment preferences 17, lack of awareness 18, or

perceiving the process as time-consuming 19,20,21. Improving enrollment relies on

effective methods to match patients to clinical trials. Although clinical trial information is

available through platforms like clinicaltrials.gov 17, the lack of structured data and

non-standard naming conventions, coupled with the increasing number of trials lead to a

time-consuming and overwhelming search process. In oncology, matching a potential

trial to a patient could be even more complicated due to the increasing use of

biomarkers and non-standard naming conventions.

The issues outlined above create a need for tools that facilitate the search process,

narrowing down to the candidate ongoing trials most suitable for patients, increasing the

likelihood of their enrollment in a suitable trial. Therefore, natural language processing

(NLP) has emerged to expedite the clinical trial matching process 22. Amidst the rise of

LLMs and the large number of ongoing clinical trials, many approaches have emerged

to automate patient-to-trial matching, speeding up the process and increasing the

chances of finding a suitable trial. Existing approaches apply either an end-to-end

matching 23,24,25 or a structure-then-match strategy 22,26. In an end-to-end strategy, the

LLM is used to compare a patient's record with an unstructured clinical trial document

and return a final decision on the trial's eligibility or ranking. In the structure-then-match

strategy, the LLM is used to extract and structure entities from the clinical trial text,

followed by the matching process. This process is straightforward, assuming the

structuring part is done well.

In this study, we took a structure-then-match approach to enhance biomarker-based

patient-to-trial matching by improving the biomarker extraction process from clinical

trials. We evaluate the model’s ability to simultaneously extract genomic biomarkers

from a clinical trial, pre-process the extracted data, and structure the logical connections

(AND/OR) between biomarkers in the disjunctive normal form (DNF) 22. The DNF is a

representation of a logical formula as a disjunction (OR) of conjunctions (ANDs).

To achieve this, we investigated multiple large language models using various

prompting techniques and fine-tuned an open-source model as depicted in Figure 1.
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With our fine-tuned model, we achieved superior performance in extracting and

structuring biomarkers in the DNF form.

Figure 1: Overall Framework for Biomarker Extraction and Evaluation. This figure illustrates the prompting

techniques explored for extracting genetic biomarkers from clinical trials. It underlines the evaluation of

the extraction process both with and without assessing the model's capability to organize the biomarkers

in Disjunctive Normal Form (DNF). The framework includes several prompting approaches, including

zero-shot, one-shot, two-shot prompting, and prompt chaining, which involves sequential prompts for

biomarker extraction and processing. The framework also highlights the usage of fine-tuned models.
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Results

Data curation and trial data characteristics

As biomarkers are an important part of cancer drug development and diagnostics, we

focused on curating a representative data set. The CIViC database (https://civicdb.org)

is an open-source knowledgebase that includes extensive cancer-related biomarker

datasets. We identified 500 biomarkers related to cancer diagnostics and therapy.

Based on the large-scale AACR-genie cancer patient cohort, which included data from

171,957 patients, we estimate that at least a subset of these biomarkers are present in

23.56% of cancer patients. In terms of cancer types, colorectal cancer, breast cancer,

and glioma are those with most frequent biomarkers (Figure 2)
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Figure 2: Distribution of Top 20 Cancer Types. Bar chart showing the distribution of the top 20 cancer

types among patients who matched at least one of the 500 biomarkers selected from CIViC. The patients'

records are collected from the American Association for Cancer Research (AACR) Project GENIE.

We have obtained the ongoing oncology clinical trials from clinicaltrials.gov. A clinical

trial typically includes a summary of the trial plan, followed by a detailed description, and

the inclusion and exclusion eligibility criteria required for enrollment. Then we query the

trials with the list of biomarkers from the CIViC database. This allowed us to select 296

unique trials with the potential presence of a biomarker in the eligibility criteria. From

these trials, we manually annotated 166 of the trials, detailing the inclusion and

exclusion biomarkers for each trial in JSON format. We removed one outlier sample that

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2024. ; https://doi.org/10.1101/2024.09.13.612922doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.13.612922
http://creativecommons.org/licenses/by-nd/4.0/


had a significantly larger token count (Supplementary Figure 1). We then split the data

into a 70:30 ratio resulting in 116 training samples and 50 testing samples.

We prepared the training dataset for fine-tuning with Direct Preference Optimization

(DPO) and split it into an 80:20 ratio which resulted in the first fine-tuning dataset

DPO-92 with 92 samples as training set and 23 samples as validation set. To create a

second fine-tuning dataset, the original dataset, DPO-92 was augmented with 80

synthetically generated samples using GPT-4 (See “Generation of Synthetic Dataset”

for details). These additional samples underwent the same process of preparation for

fine-tuning with DPO. The combined dataset was split following an 80:20 ratio resulting

in the dataset DPO-156 with 156 samples for training and 39 samples for validation.

Refer to “DPO Dataset Preparation” for more details.

Zero-shot, Few-shot and Prompt Chaining Performance

We employ the models using three prompting techniques: zero-shot prompting where

the model is given instructions to be followed, prompt chaining where the task is

performed using a chain of requests to the model, and finally, few-shot prompting where

the model is provided with examples to demonstrate the task. Refer to the methods

section for a detailed description of the prompting techniques.

In Table 1 we report the models’ performance with the prompting techniques using a

preliminary evaluation approach where we only measure the model's ability to extract

the inclusion and exclusion biomarkers found in the clinical trial. With zero-shot

prompting, GPT-3.5-Turbo had a moderate performance in the extraction of the

inclusion biomarkers with an F2 score 0.45. However, the model struggled with the

extraction of exclusion biomarkers resulting in one of the lowest F2 scores (0.06).

Swapping GPT-3.5-Turbo with GPT-4 led to better performance with an F2 score of 0.56

for the inclusion biomarkers and 0.42 for the exclusion biomarkers.

NousResearch/Hermes-2-Pro-Mistral-7B

(https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) is a large language

model that excels at generating structured JSON outputs. Moreover, the model it was
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fine-tuned from, Mistral-7B, exhibits superior performance over LLAMA-7B across all

benchmarks and outperformed LLAMA-34B in mathematical and coding tasks 27.

Hermes-2-Pro-Mistral-7B, demonstrated remarkable capabilities, outperforming the

closed-source models at extracting both inclusion and exclusion biomarkers, achieving

F2 scores of 0.98 and 0.66, respectively.

Splitting the task into two subtasks with the prompt chaining technique where the first

prompt’s output is the input to the second had opposite effects on GPT-3.5-Turbo and

GPT-4. For GPT-3.5-Turbo, prompt chaining resulted in a noticeable decline in

performance compared to zero-shot prompting. The F2 score for the inclusion

biomarkers decreased by approximately 42%, while the F2 score for the exclusion

biomarkers decreased by around 16%. In contrast, GPT-4 ’s performance increased

with prompt chaining to reach an F2 score of 0.76 for the inclusion biomarkers and 0.70

for the exclusion biomarkers. Few-shot prompting (1S and 2S) showed improvement

over zero-shot prompting and prompt chaining for GPT-3.5-Turbo. However, providing

two-shot prompting did not improve over one-shot prompting; overall there was a slight

decrease in performance. This finding is surprising, as we generally observe an

increase in performance with an increase in the number of examples provided to the

model 28, suggesting that the selected examples might have introduced some conflict or

caused the model to overfit.

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision
↑

Recall ↑ F2 ↑ Precision
↑

Recall ↑ F2 ↑

GPT-3.5-Turbo (0S) 0.61 0.42 0.45 0.02 0.18 0.06

GPT-3.5-Turbo (PC) 0.21 0.28 0.26 0.02 0.13 0.05

GPT-3.5-Turbo (1S) 0.46 0.60 0.56 0.06 0.21 0.14

GPT-3.5-Turbo (2S) 0.40 0.59 0.54 0.05 0.13 0.10

GPT-4 (0S) 0.55 0.56 0.56 0.47 0.41 0.42

GPT-4 (PC) 0.77 0.76 0.76 0.75 0.68 0.70

Hermes-2-Pro-Mistral-7B (0S) 1 0.97 0.98 0.42 0.77 0.66
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Table 1: Performance of the open-source and closed-source base models using the different prompting

techniques in extracting the inclusion and exclusion biomarkers from the clinical trials free-text

documents. The prompting techniques applied include zero-shot (0S) prompting, where the prompt

describes the input, output, and task; one-shot (1S) prompting, where an additional example is provided

to demonstrate the task; two-shot (2S) prompting, where two examples are given to illustrate the task;

and prompt chaining (PC), which divides the task into subtasks with the output of one prompt serving as

input for the next. Here, we apply a chain of two prompts where the first prompt handles extraction and its

output is the input to the second prompt that handles the pre-processing and structuring the biomarkers in

the JSON output.

Figure 3: Representation of Extracted Biomarkers in the Disjunctive Normal Form. The figure represents a

snippet of the inclusion criteria in the clinical trial NCT04092673. The figure highlights the inclusion

requirements for two cohorts EMBF and EMBH. Cohort one EMBF requires the tumor to be ER+ with

FGFR amplification. Cohort two required the patient’s tumor to be ER+ and HER2+. These criteria are

translated into a structured JSON output in the Disjunctive Normal Form (DNF), reflecting that patients

are eligible if they meet either the condition of ER+ with FGFR amplification or ER+ with HER2+.

In Table 2 we show the results with a more mature evaluation approach where we

assess the models' ability to not only extract the biomarkers correctly but to also
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structure the biomarkers in disjunctive normal form (DNF) in the JSON output as seen in

Figure 3. GPT-3.5-Turbo with zero-shot prompting performed the worst with an F2 score

of nearly zero for the inclusion and exclusion biomarkers. GPT-4 had an overall

moderate performance with an F2 score of 0.29 for the inclusion and an F2 score of

0.43 for the exclusion biomarkers, hence outperforming GPT-3.5-Turbo. The

open-source model Hermes-2-Pro-Mistral-7B with zero-shot prompting outperformed

GPT-3.5-Turbo and GPT-4. At the extraction of the inclusion biomarker,

Hermes-2-Pro-Mistral-7B was approximately 3.24 times better than GPT-4 with an F2

score of 0.94, and around 1.5 times better for the exclusion biomarkers with an F2 score

of 0.65.

Employing GPT-3.5-Turbo with prompt chaining (PC) increased its performance slightly

to reach an F2 of 0.14 for the inclusion biomarkers and an F2 score of 0.06 for the

exclusion biomarkers. However, for GPT-4, applying chain prompting led to a decrease

in performance, specifically, the model’s F2 score decreased by 7% compared to

zero-shot prompting in both inclusion and exclusion biomarker extractions.

Providing an example to demonstrate the task to GPT-3.5-Turbo (1S) caused a

surprising improvement in its performance for the inclusion biomarkers to have an F2

score of 0.53. However, for the exclusion biomarkers even though there was an

improvement compared to the zero-shot prompting (0S) and prompt chaining, the model

still performed poorly with an F2 score of 0.12. When comparing two-shot prompting

(2S) to one-shot prompting (1S) for GPT-3.5-Turbo, the F2 score was nearly zero. In

contrast, there was no noticeable change in the performance of the inclusion

biomarkers.

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision
↑

Recall ↑ F2 ↑ Precision
↑

Recall ↑ F2 ↑

GPT-3.5-Turbo (0S) 0.18 0.04 0.05 0 0 0

GPT-3.5-Turbo (PC) 0.15 0.13 0.13 0.02 0.12 0.06

GPT-3.5-Turbo (1S) 0.47 0.54 0.53 0.05 0.18 0.12
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Table 2: Performance of the open-source and closed-source base models using the different prompting

techniques (zero-shot (0S), one-shot (1S), two-shot (2S) and prompt chaining (PC)) in extracting the

inclusion and exclusion biomarkers from clinical trials documents while structuring them in the JSON

output while adhering to the disjunctive normal form (DNF).

Fine-tuned model performance

Table 3: Performance of the fine-tuned open-source models with Direct Preference Optimization (DPO)
using zero-shot prompting in extracting the inclusion and exclusion biomarkers from clinical trial
documents. The models Hermes-FT and Hermes-FT-synth are fine-tuned from Hermes-2-Pro-Mistral-7B
with a training dataset of 92 and 156 samples, respectively.

Table 4: Performance of the fine-tuned models Hermes-FT and Hermes-FT-synth using zero-shot

prompting in extracting the inclusion and exclusion biomarkers from clinical trials documents while

structuring them in the JSON output while adhering to the disjunctive normal form (DNF).

As mentioned in the previous section, applying Hermes-2-Pro-Mistral-7B with zero-shot

prompting already showed impressive results in performing our task, compared to the

Inclusion Biomarkers Exclusion Biomarkers

Technique Precisio
n ↑

Recall ↑ F2 ↑ Precisio
n ↑

Recall ↑ F2 ↑

Hermes-FT (0S) 0.65 0.97 0.88 0.25 0.95 0.61

Hermes-FT-synth (0S) 0.99 0.88 0.90 0.82 0.96 0.93

Inclusion Biomarkers Exclusion Biomarkers

Technique Precision ↑ Recall ↑ F2 ↑ Precision ↑ Recall ↑ F2 ↑

Hermes-FT (0S) 0.63 0.93 0.85 0.31 0.95 0.67

Hermes-FT-synth (0S) 0.99 0.84 0.86 0.86 0.96 0.94
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closed-source models. However, we notice a discrepancy between inclusion and

exclusion in the model’s abilities to extract the biomarkers and organize them in the

DNF form as seen in table 1 and table 2. To potentially improve the extraction of

exclusion biomarkers, we fine-tuned the model using Direct Preference Optimization

(DPO). The purpose of fine-tuning is to adapt the LLM to a more specialized task by

adjusting its parameters. The DPO algorithm adjusts the model’s parameters to

increase the likelihood of generating the desired output by dragging the probability

distribution towards the preferred answer and away from the undesired one. Here, we

fine-tuned two models initiated from Hermes-2-Pro-Mistral-7B. The first model

Hermes-FT and the second Hermes-FT-synth with the labeled datasets DPO-92 and

DPO-156, respectively. For more details on the datasets, please refer to the Methods

section “DPO Dataset Preparation”. Table 3 demonstrates how fine-tuning the model

with DPO-92 which includes 92 manually annotated samples decreased the overall

performance. We observe a 10% decrease in the F2 score for the extraction of inclusion

biomarkers and approximately a 7.5% decrease for the extraction of exclusion

biomarkers. Nevertheless, Hermes-FT-synth, fine-tuned with a larger dataset

(DPO-156) demonstrated superb capabilities, outperforming all models with F2 scores

of 0.90 and 0.93 for inclusion and exclusion biomarkers, respectively. Despite the

overall superiority in performance, the model demonstrated a slight decrease in recall

for inclusion biomarkers extraction was observed compared to the base model,

Hermes-2-Pro-Mistral-7B. This suggests that the fine-tuned model overlooked some

biomarkers during extraction. This behavior could be attributed to the model learning to

optimize the extraction of exclusion biomarkers during fine-tuning, thereby reducing

hallucination and false positives. It is also possible that during fine-tuning, the model

experienced changes in how it handles inclusion and exclusion criteria, causing it to

provide brief responses to minimize hallucination in inclusion biomarkers, which led to a

decrease in recall.

In table 4, using Hermes-FT to extract and structure the biomarkers in DNF yielded

unexpected results: a decrease in inclusion biomarkers' performance with an F2 score

of 0.85, alongside a marginal increase in extraction of exclusion biomarkers with an F2
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score of 0.67. Hermes-FT-synth resulted in the overall best performance with an F2

score of 0.86 for inclusion biomarkers and 0.94 for exclusion biomarkers.

Figure 4: Comparison of biomarker extraction across models. This figure presents a comparative analysis

of F2 scores for the base models: gpt-3.5-turbo, gpt-4, Hermes-2-Pro-Mistral-7B, and the fine-tuned

models: Hermes-FT and Hermes-FT-synth using multiple prompting techniques: zero-shot (0S), prompt

chaining (PC), one-shot (1S), and two-shot (2S). The figure highlights the performance in extracting the

inclusion biomarkers (a) and the exclusion biomarkers (b) without considering the model’s abilities in

formatting the biomarkers in the Disjunctive Normal Form (DNF).

Figure 5: Comparison of biomarker extraction and representation in the Disjunctive Normal Form (DNF)

across models. The figure presents a comparative analysis of F2 scores for the base models:

gpt-3.5-turbo, gpt-4, Hermes-2-Pro-Mistral-7B, and the fine-tuned models: Hermes-FT and
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Hermes-FT-synth using multiple prompting techniques: zero-shot (0S), prompt chaining (PC), one-shot

(1S), and two-shot (2S). The figure demonstrates the performance in extracting the inclusion biomarkers

(a) and the exclusion biomarkers (b) while considering the model’s abilities in organizing the biomarkers

in the Disjunctive Normal Form (DNF).

Discussion

In this study, we explore the capabilities of both closed-source and open-source LLMs

to enhance patient matching to biomarker-driven oncology trials. Our results

demonstrated a significant discrepancy between the closed-source models and the

open-source model. This observed difference suggests that an increase in the volume

of the model does not necessarily mean better performance 29 and highlights the

importance of the training process. The closed-source models GPT-3.5-Turbo and

GPT-4 underwent Reinforcement Learning with Human Feedback (RLHF) which helped

the models excel at various standard natural language tasks. However, RLHF suffers

from a phenomenon known as the “alignment tax” 30, which states that the model’s

ability to generate more human-like responses is at the expense of the model’s deeper

understanding of tasks 31,32. In our work, where the model is required to handle a

multi-step task, GPT-3.5-Turbo and GPT-4 models struggle to fully comprehend this

complex task, even when applied with prompt chaining, one-shot, and two-shot

prompting. While the 7 billion parameter model, Hermes-2-Pro-Mistral-7B, that

underwent supervised fine-tuning from Mistral-7B, with zero-shot prompting had overall

better reasoning capabilities outperforming the closed-source models.

In our work, the open-source model, out-of-the-box, demonstrated superior

performance. However, the model presented a disparity in accuracy between the

inclusion and exclusion biomarkers. Fine-tuning the model with Direct Preference

Optimization using a training dataset consisting of manually samples generated and

synthetically generated samples by GPT-4 not only helped close this gap but also

achieved the best overall performance (Hermes-FT-synth).

Our study also reveals several key findings. For instance, GPT-3.5-Turbo with few-shot

prompting performed competitively with GPT-4 in zero-shot prompting. However, the

results highlight the importance of the examples selected as we notice a significant
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increase in performance when extracting the inclusion biomarkers while the model still

suffered at extracting the exclusion biomarkers. Furthermore, with two-shot prompting

the model’s performance decreased suggesting a bias in the first example towards our

test set since adding a second example introduced conflict for the model causing it to

hallucinate more. We discovered that prompt chaining was less reliable than zero-shot

prompting. This might be that in prompt chaining the prompts are interdependent

leading to a decrease in coherence, and leaving the model with not enough context to

efficiently extract biomarkers 33. Another key finding is that fine-tuning with DPO

presents challenges related to dataset size. Fine-tuning with a relatively small dataset

decreased the model’s performance (Hermes-FT) due to overfitting and poor

generalization 34. Augmenting the training set with synthetically generated samples with

GPT-4 improved the model’s (Hermes-FT-synth) overall surpassing other models

without having negative effects.

Our results demonstrated that leveraging LLMs to extract a structured output while

adhering to the disjunctive normal form is possible. This added layer of complexity

provided insights into the models' reasoning abilities and capacity to handle real-world

clinical data effectively. An adequate amount of training data is crucial since it allows for

a successful supervised fine-tuning. Augmenting manually annotated samples with

synthetic data reduces the time needed for the generation of a fully human-annotated

dataset, opening the door for improved fine-tuning.

This study is not without its limitations. The dataset we used for testing our models’

performance is rather small. This small dataset allows us to compare the models’

performance and demonstrate the potential of LLM in performing complex tasks

requiring reasoning abilities. However, the test set does not fully encapsulate the

complexity of clinical trials criteria. Moreover, in few-shot learning, the selected

examples showed a clear bias to the samples in our test set. To avoid such overfitting,

more advanced prompting techniques, such as Retrieval-Augmented Generation 35,

could be applied. While our study incorporated a wide range of prompting techniques

and fine-tuning with DPO, two suggestions could help improve performance:

hyperparameters tuning during supervised fine-tuning, and testing newly released
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models such as LLAMA3 (https://github.com/meta-llama/llama3) that may provide better

results. In addition, we are only focusing on biomarkers in this study, other criteria such

as disease stage, disease type, age, gender, and previous therapies are also important

for eligibility for an oncology trial. However, with the increasing importance of

biomarkers in oncology therapies the goal of this work is to improve this aspect of

trial-matching performance.

Methods

Dataset curation and annotation

We retrieved and processed clinical trials from the clinicaltrials.gov database and

performed keyword filtering to focus our study on oncology-related clinical trials, which

resulted in around 15,856 trials stored in the vector database, ChromaDB. A clinical trial

is a text document with a brief description mentioning the purpose of the trial, a detailed

description of the trial and the participation criteria that lists the inclusion criteria

required for a patient to be considered for enrollment and the exclusion criteria that if

the patient possesses would disqualify them from participating in the trial. Our database,

ChromaDB, includes only the “brief description” and “eligibility criteria” sections from the

clinical trials document.

To select trials that contained genomic biomarkers from our database, we used a list of

500 genomic biomarkers from the CIViC database to perform a semantic search against

the cancer clinical trials.

Next, we manually annotated 166 clinical trials by assigning each trial the corresponding

JSON output containing the inclusion and exclusion biomarkers present in that trial.

After annotation, we assessed the token distribution to identify outliers that exhibit a

significantly larger token count, which we removed to ensure uniformity in the data for

downstream analysis. We used 70% of the trials for supervised fine-tuning as a training

dataset (train set) and 30% as a test dataset
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Manual Annotation:

The expected output is JSON with two keys, “inclusion_biomarker” and

“exclusion_biomarker”. The “inclusion_biomarker” contains the genomic biomarkers

required for a patient's consideration in the enrollment process. In contrast,

“exclusion_biomarker” contains genomic biomarkers that result in the patient being

excluded from the trial enrollment process. To accurately capture the logical

connections between biomarkers in the trial (AND/OR logic), we represent them in the

Disjunctive Normal Form (DNF).

The DNF which can be described as the disjunction (OR) of conjunctions (ANDs),

provides a standardized approach to expressing complex logical connections. In the

context of our study, we implement a list of lists data structure to represent the

biomarkers in the DNF formula. Each inner list represents a conjunction clause (AND),

where all biomarkers conditions in that list must be satisfied. The outer list connects

these conjunction clauses through disjunction (OR), where only one of the inner

conjunction clauses must be met. This DNF structure allows for a better representation

of the complex relationships between genomic biomarkers in clinical trials, enabling

more precise patient-trial matching.

Generation of Synthetic Dataset

To augment the training dataset used in the supervised fine-tuning process, we

generated synthetic samples with GPT-4 employed with the prompt provided in

Supplementary Fig.2. We included four examples selected from our training dataset in

the prompt, with the placeholders in the template indicating where we inserted the

examples. Additionally, we appended at the end of the prompt “Trial:” to encourage the

language model to generate a new clinical trial that matches the style and format of the

given examples. The generated samples comprise a clinical trial input and the

corresponding JSON output containing the inclusion and exclusion biomarkers.
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Additionally, we predicted the JSON output for our four examples using GPT-4 with

zero-shot prompting (Supplementary Fig.3) to ensure the output was coming from the

same distribution to increase the consistency and reliability of the generated samples.

Then, we manually reviewed the generated trials to ensure their quality and that they do

not contain any unusual or unexpected content that could negatively impact the

performance. Finally, we added the synthetically generated samples to the manually

annotated training set.

DPO Dataset Preparation

In this section, we describe the process we followed to prepare our dataset for

fine-tuning with Direct Preference Optimization (DPO) 36. The DPO algorithm is a

technique used to optimize the language model for a downstream task. This algorithm

optimized the model by increasing the likelihood of preferred responses (winning

completions) and decreasing the likelihood of less preferred responses (losing

completions). Refer to “Direct Preference Optimization (DPO) Fine-tuning” section for

more details.

We generated two datasets for fine-tuning with DPO, the first deriving from the manually

annotated dataset (115 samples) and the second from the mixed dataset (195

samples). A dataset suitable for fine-tuning with DPO should include the input prompts,

winning completions ( ) and losing completions ( ). The winning completions were𝑦
𝑊

𝑦
𝐿

either obtained through manual annotation or synthetically generated by GPT-4, with the

latter being reviewed and validated by human annotators. To generate the losing

completion, we sample from the supervised fine-tuned (SFT) model

Hermes-2-Pro-Mistral-7B that we used later for fine-tuning, which we will further

describe later.

We used the zero-shot prompt template from Supplementary Fig.4 to generate the

prompt for each sample. Once the prompts are prepared, we tokenize them with left

padding enabled to ensure that all inputs have the same length.

Using the tokenized prompts, we perform inference with the Hermes-2-Pro-Mistral-7B

model, setting the temperature to zero. The generated completion is the losing
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completion. This inference process was repeated for every sample in each of the

datasets.

We further split the samples into 80% as a training set to fine-tune the model and 20%

as a validation set to avoid overfitting during fine-tuning.

Language Models

We investigate the performance of the closed-source models from OpenAI

GPT-3.5-turbo and GPT-4, as well as the open-source model

NousResearch/Hermes-2-Pro-Mistral-7B.

Even though for previous GPT models details about model architecture and training

process were transparent, these details have not been disclosed for GPT-3.5-turbo and

GPT4 models. From previous models, we know that GPT models are based on

decoder-only transformers, a variant of the original transformer architecture 31. It was

reported that GPT-3.5-Turbo is the most capable model from the GPT-3.5 series 32. In

this paper, we use the GPT-3.5-Turbo-0125 and GPT-4 (GPT-4-0613) models.

Additionally, the technical report released by OpenAI 31 mentions that GPT-4

outperforms their previous 175B parameter GPT-3 model.

Hermes-2-Pro-Mistral-7B is fine-tuned using teknium/OpenHermes-2.5

(https://huggingface.co/datasets/teknium/OpenHermes-2.5) from Mistral-7B 27, a

pre-trained generative text model with seven billion (7B) parameters and a context

length of 8192.

Prompting Techniques

Language models are versatile multitask learners 37, during training on large and diverse

datasets, the pre-trained models learn to perform different tasks. The models' ability to

learn a variety of tasks led to the success of natural language prompting, a method

used to condition the model to perform a specific task without updating any of the

pre-trained weights 38. A prompt is used to provide the model with the necessary
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information to generate the desired output. Multiple techniques of prompting exist, in

this study we employ zero-shot prompting, few-shot prompting and prompt chaining.

- Zero-shot prompting: The model is given, at inference time, a prompt that

includes the description of the task that the LLM should perform. It usually

includes details about the task, the user’s input and the format of the output to be

returned by the language model 39.

- Few-shot learning: Often referred to as in-context learning. Few-shot learning is

similar to zero-shot prompting, but in addition, at inference, the model is provided

with a set of examples that demonstrate the task 38. Each example typically𝑘

includes an input and the corresponding expected output. Typically, in few-shot

learning the model is given examples and then followed by the user’s input.𝑘

- Prompt chaining: Recent work 40 has shown that for complex tasks,

decomposing the task into subtasks and chaining together prompts of each

subtask can increase output quality. The idea behind prompt chaining is that the

output from one prompt is the input of the following prompt, with each sub-task

building on the last. This approach should in principle allow the model to tackle

complex tasks that may be difficult to accomplish in a single prompt

incrementally.

In the zero-shot prompts (Supplementary fig.3-4) we start by giving a summary of our

task. In our instructions, we define in detail the biomarkers as any changes at the level

of chromosomes, genes, or proteins and the exact JSON output expected including a

detailed definition of the DNF logic and how to represent it in the output. One step

further, to decrease false positives, we added a description of some common eligibility

criteria such as cancer type, pregnancy history, age, gender, etc. and instructed the

language model to ignore this information since they do not classify as genetic

biomarkers. We also reiterate and mention the important information more than once

such as to focus on genomic biomarkers and ignore other details. At the end we

describe the processing steps to be performed on the extracted biomarkers. It is

noteworthy that while GPT and Hermes-2-Pro-Mistral-7B prompts differ in structure and

wording, the fundamental details remain the same.
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In our study, we applied two forms of few-shot learning: one-shot prompting, where the

model is given only one example ( ), and two-shot prompting, where the model is𝑘 = 1

given two examples ( ). The one-shot (Supplementary fig.7) and two-shot𝑘 = 2

(Supplementary fig.8) prompts used with GPT-3.5-Turbo are similar to the zero-shot

prompt with the exception of the additional examples consisting of a clinical trial input

document and the corresponding JSON output.

For the chain of prompts (Supplementary fig.5-6) used with GPT models, the aim was to

reduce the number of tokens in the prompt and simplify the task for the language model

by splitting it into two subtasks where the first prompt (Supplementary fig.5) focuses on

the task of extracting relevant biomarkers from the clinical trial input and returning a list

with AND/OR indicators. While the second prompt’s (Supplementary fig.6) focus is

processing the biomarkers and structuring the final JSON output with DNF.

Direct Preference Optimization (DPO) Fine-tuning

Fine-tuning is a technique used to adapt the LLM to a downstream task and return

responses that meet specific requirements. Compared to prompting techniques, during

fine-tuning the model’s pre-trained parameters are adjusted. The Direct Preference

Optimization algorithm (DPO) optimizes the language model (also referred to as policy)

by using preference data directly and minimizing the loss function:

𝐿
𝐷𝑃𝑂

(π
θ
; π

𝑟𝑒𝑓
) =  − 𝐸

(𝑥,𝑦
𝑤

,𝑦
𝐿
)~𝐷

𝑙𝑜𝑔σ β𝑙𝑜𝑔
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𝑊
|𝑥)
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𝐿
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Where is the prompt and is the completion. The annotation refers to the winning𝑥 𝑦 𝑦
𝑊

completion (desired output), the completion humans prefer over the losing 𝑦
𝐿

completion (rejected output). This loss function directly optimizes the policy model with

parameters to increase the probability of the preferred completionsθ π
θ
(𝑦

𝑊
|𝑥)

compared to the dispreferred completions . The reference model probabilities inπ
θ
(𝑦

𝐿
|𝑥)

the denominator constrain the update to not deviate too far from the original.
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Fine-tuning large language models can be very expensive, it requires a lot of GPU

memory. Parameter-efficient fine-tuning methods, such as Quantized Low Rank

Adaption (QLoRA) 41, allow the adaptation of models with a large number of parameters

without sacrificing performance by significantly reducing the number of trainable

parameters. QLoRA combines the concept of quantization and Low-Rank Adaptation

(LoRA) 42. The LoRA technique assumes that a small number of weight parameters

require adaptation when fine-tuning a pre-trained model with full-rank weight matrix

for a downstream task. LoRA takes advantage of this by decomposing into𝑊
0
 ϵ 𝑅𝑑×𝑘 𝑊

0

two low-rank matrices and , and rank , such that:𝐵 ϵ 𝑅𝑑×𝑟 𝐴 ϵ 𝑅𝑟×𝑘 𝑟 ≪ 𝑚𝑖𝑛(𝑑, 𝑘)

𝑊
0

+ ∆𝑊 = 𝑊
0

+ 𝐵𝐴

During fine-tuning, is fixed, and matrices A and B contain the trainable parameters.𝑊
0

Initially, ∆W is zero since a random Gaussian initialization is used for and zero𝐴

initialization for . LoRA also rescales by , where is a constant and is the𝐵 ∆𝑊 𝑥 α/𝑟 α 𝑟

rank. This low-rank approximation allows efficient fine-tuning of a small subset of

adapted weights and . Additionally, QLoRA involves freezing the pre-trained𝐵 𝐴

parameters in a quantized representation while fine-tuning the extra set of Low-Rank

Adapters.

We employed DPO with QLoRA to fine-tune the Hermes-2-Pro-Mistral-7B model. During

the training process, we used the paged AdamW 32bit optimizer with a learning rate of

5e-5, specifying the step size taken by the optimizer during backpropagation to adjust

the trainable parameters and minimize the loss function. Moreover, we allow the model

to train for 200 steps with a batch size of 8. For the beta factor in the DPO loss function

we used the default value 0.1.

For the LORA configuration, the rank is set to 2 and the scaling factor to 4. The

trainable parameters are limited to the linear projection layers of the self-attention and

multilayer perceptron modules. Furthermore, a dropout probability for the LORA layers

of 0.05 is applied.
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The Hermes-2-Pro-Mistral-7B model weights are quantized to a 4-bit representation to

reduce memory footprint. During the forward and backward propagation, the model

weights are represented in Float16, making it suitable for neural network computations

while maintaining sufficient precision.

Data availability

The prompts, data, and results are available at https://github.com/BIMSBbioinfo/oncotrialLLM.

Code availability

The source code is available at https://github.com/BIMSBbioinfo/oncotrialLLM. Additionally, the
fine-tuning and fine-tuned models can be found at https://huggingface.co/nalkhou. Live demo of
certain techniques for biomarker-based trial matching can be tested at http://onconaut.ai
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