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A B S T R A C T

Introduction: Whole Exome Sequencing (WES) has emerged as an efficient tool in clinical cancer diagnostics to
broaden the scope from panel-based diagnostics to screening of all genes and enabling robust determination of
complex biomarkers in a single analysis.
Methods: To assess concordance, six formalin-fixed paraffin-embedded (FFPE) tissue specimens and four com-
mercial reference standards were analyzed by WES as matched tumor-normal DNA at 21 NGS centers in Ger-
many, each employing local wet-lab and bioinformatics. Somatic and germline variants, copy-number alterations
(CNAs), and complex biomarkers were investigated. Somatic variant calling was performed in 494 diagnostically
relevant cancer genes. The raw data were collected and re-analyzed with a central bioinformatic pipeline to
separate wet- and dry-lab variability.
Results: The mean positive percentage agreement (PPA) of somatic variant calling was 76 % while the positive
predictive value (PPV) was 89 % in relation to a consensus list of variants found by at least five centers. Variant
filtering was identified as the main cause for divergent variant calls. Adjusting filter criteria and re-analysis
increased the PPA to 88 % for all and 97 % for the clinically relevant variants. CNA calls were concordant for
82 % of genomic regions. Homologous recombination deficiency (HRD), tumor mutational burden (TMB), and
microsatellite instability (MSI) status were concordant for 94 %, 93 %, and 93 % of calls, respectively. Variability
of CNAs and complex biomarkers did not decrease considerably after harmonization of the bioinformatic pro-
cessing and was hence attributed mainly to wet-lab differences.
Conclusion: Continuous optimization of bioinformatic workflows and participating in round robin tests are
recommended.

1. Introduction

Currently, the implementation of clinical Whole Exome Sequencing
(WES) in predictive molecular cancer diagnostics is expedited by
decreasing sequencing costs and government reimbursement schemes in
Germany. WES offers several substantial advantages [1] over
sequencing panels, such as eliminating the risk to miss targetable al-
terations in the coding sequences of the genome and enabling post-hoc
retrospective research in an unrestricted manner once new putative
targets emerge. Further, using WES provides a more robust measure-
ment of complex biomarkers [2,3].

To evaluate reproducibility between different pipelines and uncover
opportunities for improvement of workflows, we compared an unprec-
edented number of diagnostic centers regarding their initial imple-
mentation of WES analysis. Previous WES implementation studies with
clinical focus were either single center [4–6], or focused on limited
metrics, such as single complex biomarkers or only variant calling
[7–17]. An earlier study performed in Germany included a smaller
number of laboratories investigated WES of fresh frozen tissue samples
[1]. WES for cancer patients from FFPE samples has not been compared
between a large number of centers before.

Six clinical FFPE tissue specimens and four commercial reference
samples of matched tumor and normal DNA samples were analyzed in
the German National Initiative for Personalized Medicine (DNPM) at 21
participating centers, using locally established wet-lab workflows and
dry-lab bioinformatics pipelines. Somatic and germline mutations in
diagnostically relevant genes, complex biomarkers, and copy-number
alterations (CNAs) were reported and evaluated for concordance. Dis-
crepancies were cooperatively assessed to identify relevant factors for
optimization and harmonization of WES in clinical cancer diagnostics.
Additionally, raw sequencing data sets were re-analyzed using a central
bioinformatic pipeline to separate wet- and dry-lab variability. This
study presents the results of a national comprehensive FFPE tissue
specimen based evaluation for WES analysis in a clinical routine diag-
nostic setting.

2. Material and methods

Six FFPE tissue specimens were selected to represent various cancer
types and biological features (Table 1). Broad consent was given by
the patients and all analysis were performed in line with the Decla-
ration of Helsinki. Further, four reference samples were included
with two cases of low and high tumor mutational burden (TMB), as

well as two cases of low and high Homologous Recombination
Deficiency (HRD) score. Matched tumor-normal DNA from FFPE
tissue specimens was extracted centrally. DNA from the FFPE spec-
imen and the reference samples were shipped to the 21 participants
for wet- and dry-lab analysis.
Each center used their wet and dry-lab protocols to analyze a defined
set of parameters, including somatic and germline variants, CNA, and
complex biomarkers. Next, the results were gathered and compared
for concordance and against the known values of the reference
samples. Raw data was collected as unfiltered variant calls and un-
aligned reads. Those were re-analyzed using the pipeline of Center-5

Table 1
Samples used in the pilot study with previously determined characteristics from
TSO500 (samples 3 - 16) and reference material (samples 17 – 20). Complex
biomarker were were not determined (N.D.) for all samples. *CytoSNP;
+confirmed by Marker panel; ‡determined by Seraseq.

Sample
ID

Entity / Reference Pathological
tumor purity
(%)

HRD TMB MSI
(%)

3 Undifferentiated
pleomorphic sarcoma
of the lateral femur

90 70 * 3.6 1.23

4 SMARCA4 deficient
undifferentiated
uterine sarcoma
(SDUS)

80 N.D. 39.4 56.3+

9 Breast cancer of no
special type (NST)

80 N.D. 3.2 1.65

13 Endometrioid
carcinoma grade 2

80 N.D. 77.3 58.5+

14 Moderately
differentiated
adenocarcinoma of
the colon

50 2 44.7 20.34+

16 Moderately
differentiated
adenocarcinoma of
the colon

80 11 48.6 62.6+

17 Seraseq TMB Mix
Score 7

66 N.D. 7‡ N.D.

18 Seraseq TMB Mix
Score 13

66 N.D. 13‡ N.D.

19 Seraseq gDNA HRD
Low-Positive

66 58‡ N.D. N.D.

20 Seraseq gDNA HRD
Negative

66 33‡ N.D. N.D.
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to separate effects of wet and dry-lab. Detailed information can be
found in the Supplementary Methods.

3. Results

WES was performed using local wet-lab and bioinformatic pipelines
(Supplementary Table 1). Most centers successfully sequenced all of the
samples, while Center-1 and Center-11 excluded samples 3 and 16
because of sequencing quality issues.

Across 18 centers and the sequenced tumor samples, the median
mean target coverage was 268x (lower quartile 218, upper quartile
354). A total of 154 (88 %) samples were covered with > 100x for at
least 80 % of the target region (Supplementary Figure 1). Of the
remaining three centers, two (Center-10 and Center-12) had a lower
mean coverage (87x and 73x), while Center-19 had a considerably
higher coverage (1374x).

3.1. Somatic variants

Somatic variants in the predefined list of 454 diagnostically relevant
cancer genes (Supplementary Table 2) were compared by chromosomal
position and base alteration. Based on a total of 1014 unique non-
synonymous somatic variants detected by 5799 variant calls, we
defined a consensus list of 321 variants that were called by at least five

centers (Fig. 1a). The distribution of missed variant calls shows that
more variant calls (60 %) where missed by few (1–5 centers), while 40 %
of calls where missed by more centers (Supplementary Figure 2a).
Across centers, a positive percentage agreement of 76 % (5000 variant
calls) was reached with respect to this list. By contrast, a total of 1590
(24 %) variant calls were missed by one or more centers which were
examined in an in-depth analysis to uncover the causes for the dis-
crepancies (Fig. 1a). Of the missed variants, 750 (47 %) could be found
by reviewing the unfiltered variant calls and were reported to the
respective centers for review. Variant filters, including PASS filter (18.3
%) and low variant allele fraction (24.4 %) were reported as predomi-
nant causes for not reporting (Fig. 1b). Several local filter rules that were
only used in a single or in few centers were observed (Supplementary
Figu. 2b). Further, several missed calls were due to incorrect filter rules
and reported as erroneous.

For 31 % of the reported variant calls the VAF was below 5 %. In the
consensus list only four variants (1 %) were below this threshold as
many centers filtered variant calls with a fixed VAF threshold. We
evaluated the influence of a central VAF cut-off on PPV and PPA. For a
5 % VAF cut-off the mean PPV increased from 89 % to 91 %, due to the
removal of possible false-positives, the mean PPA increased from 74 %
to 75 %. For a 10 % VAF cut-off the mean PPV increased further to 95 %,
while the mean PPA increased from 74 % to 80 % as more consensus
variants were found between 5–10 % VAF (55 Variants, 17 %).

Fig. 1. Somatic variant calls. a: Variants separated by occurrence. b: Reasons reported by centers for missed variants. c: Fractions of missed variants found by another
method or not found separated by center.
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Of the remaining 829 missed calls, 580 (70 %) could be identified by
the re-analysis of raw-data with the central bioinformatics pipeline. An
additional 127 variants were found but filtered out by either depth,
variant allele fraction (VAF) or PASS filter. Overall, only 122 (1.9 %) of
all expected somatic variant calls were not identified by either initial
analysis, raw variant calls or re-analysis. Those variants showed a low
mean VAF of 2.4 %. The fractions of found to miss ratio varied among
the centers (Fig. 1c). The set of missed variant calls showed a significant
enrichment of InDels (Supplementary Figure 3a). The missed InDels
were often located at homopolymer sites (120 of 144 = 83 %). Further, a
negative correlation of PPA with the sample sequencing depth was
observed (slope=− 0.011, p = 0.007, Supplementary Fig. 3b).

A total of 628 variants were only reported by single centers (Fig. 1a)
of which all but 21 variants could be classified as either low VAF (< 5 %
or< 10 %), low depth (< 100 reads), InDels or variants at homopolymer
sites. Most of these variants were reported by centers 11, 13, 16, 20 and
especially 19, which reported the most variants which was in line with a
much higher sequencing coverage.

In the absence of a gold-standard for somatic variants in the analyzed
cases different consensus lists were selected based on the number of
missed calls. For each of the lists, PPA and positive predictive value
(PPV) were determined. The median PPA for the five-center consensus

list (16 missed calls allowed) was 75 %, while a median PPV of 89 %was
reached (Fig. 2a,b). Considerably lower PPVs were observed for the five
centers that submitted the highest numbers of variants (listed above).

Based on the five-center consensus list, the unfiltered variant calls of
each center were searched for the missed calls. Including these variant
calls led to a considerable increase of PPA for previously lower per-
forming centers (Fig. 2c, middle). Re-analysis of raw data using the same
bioinformatics pipeline further increased the PPA to a mean of 88 %.
This correction especially improved the results of the worst performing
centers (Fig. 2c, right). Clustering of centers by detected somatic vari-
ants showed no relation to wet- or dry-lab procedures (Supplementary
Fig 4). No correlation between self-reported experience with WES
analysis and variant calling performance (PPA, PPV) was observed (p
values between 0.3 - 0.6).

The five center consensus list was screened for druggable targets
using OncoKB without considering cancer type [18]. Altogether, there
were 31 druggable variants, of which on average 80 % were identified
by the centers (523 calls). An additional 17 % (111 calls) could be found
either in the list of raw variant calls or with the re-analysis of raw-data as
described previously, resulting in total of 97 % of the druggable variants
that were identified (Fig. 3).

Fig. 2. Positive percentage agreement (PPA) and positive predictive values (PPV) of variant calls. a: PPA in relation to allowed missed calls and inversely to the
consensus counts. For zero missed calls a consensus of all 21 centers is found, for 16 allowed misses a consensus of five centers is found. The consensus counts were
created by selecting the variants missed by at most the number of centers annotated at the bottom. The top shows the number of variants for each of the consensus
counts. b: PPV in relation to decreasing consensus counts. c: Change in PPA for unfiltered calls (middle), or the single re-analysis with basic filters (PASS filter, VAF
>= 3.5 %, depth >= 100) in relation to the five center consensus.
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3.2. Germline variants

In total, 10 centers reported pathogenic and likely pathogenic
germline variants and their classification. The consensus results, i.e.,
variants identified by at least five centers, included two (likely) patho-
genic variants in PMS2 (p.E504X) and BRCA1 (p.Q1756Pfs*74) and two
variants classified as (likely) benign or of unknown significance (VUS) in
RET (p.Y791F) and TP53 (p.R283C), reported as likely pathogenic by
one center (Supplementary Figure 5a). The BRCA1 variant was identi-
fied by all centers. The PMS2 variant was not reported by two centers
due to a pseudogene filter. The variants in RET and TP53 were each
identified by all but one center.

All of the centers classified the germline variants according to ACMG
criteria. Classification of the BRCA1 variant was concordant and re-
ported as pathogenic by nine centers and as likely pathogenic by the
remaining center. The classification of the PMS2 variant was more
heterogeneous, with a consensus classification as likely pathogenic
(pathogenic: 2 centers, likely pathogenic: 6 centers, quality filtered: 2

centers). The consensus classification for the variants in RET and TP53
was benign (7 out of 10 centers in each case), while being reported as
either VUS or likely pathogenic by two centers. ACMG criteria for the
pathogenic variants in BRCA1 and PMS2 showed high similarity
(Supplementary Figure 5b), with differences leading to differential
classification of the PMS2 variant as pathogenic or likely pathogenic. In
line with the detected (likely) pathogenic variants in BRCA1 and PMS2,
high HRD and MSI scores were observed for the corresponding tumors,
respectively.

3.3. Somatic copy number alterations

Genome-wide allele-specific CNA segments with absolute CN were
submitted by 18 centers. Pairwise comparison of genomic regions across
the whole genome lead to an agreement of 61 % of bases with 11 % of
bases matching when accounting for genome duplications, 28 % of bases
showed divergent values (Fig. 4a). Re-analysis of raw data with a single
pipeline improved the concordance to 72 % match and while

Fig. 3. Variants filtered for possible therapeutic targets. Each box shows a reported calls, they are colored for better samples separation. 51 missed variant calls were
found in the raw calls and were annotated with the reason for the miss as reported by the respective center. Further 60 variants were found using the central
bioinformatic pipeline. White fields indicate that neither local nor central could find the variant call.
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duplication match decreased to 7 % (Supplementary Figure 6a). Hier-
archical clustering of CNA revealed three main clusters, which can be
attributed to differences by bioinformatics tools (Fig. 4b), re-analysis of
raw data with a central pipeline led to a clustering by panel for most
centers (Supplementary Figure 6b).

Concordance of gene amplifications, deep deletion and LOH calls
was calculated in reference to alterations found by at least five centers in
the list of 454 diagnostically relevant genes (Supplementary Table 2).
While the mean PPA for the detection of amplifications was moderate
(59 %), a mean PPV of 77 % was achieved (Fig. 4 c). Concordance of
deep and LOH calls were observed to be higher with a mean PPV of 81 %
and mean PPV of 82 % (Fig. 4d). Re-analysis of raw data with a single
pipeline improved the PPA for detection of amplifications only by 10 %,
while the PPV did not change. Similarly, PPA for the detection of de-
letions was improved by only 1 %, PPV remained unchanged
(Supplementary Figure 6c,d).

Gene specific copy number alterations were investigated for genes
with level 1–4 of OncoKb [18] and found two elevated CN forMDM2 and
MET, as well as two high-level amplifications: sample 3 FGFR1 with a
median of 17 copies found by 16 of 18 centers and ERBB2 in sample 20
with a median of 19 copies found by 16 of 18 centers (Supplementary
Fig. 7a). A deep deletion of CDKN2A was found by 6 centers in sample 3
as well as a varying counts of losses for CDKN2A in sample 17 and TP53
in sample 20 (Supplementary Figure 7b).

3.4. Complex biomarkers

HRD scores were determined using eight different bioinformatics
segmentation tools (Fig. 5a) and three different methods to count
genomic scars. Fourteen centers reported results using the commonly
used cut-off of 42 inferred from breast and ovarian carcinoma [19], one
center used a cut-off of 65, while the six remaining centers did not
perform HRD classification (Supplementary Table 1). Unanimous status
calls were observed for four of 10 samples. Overall, 134 (93 %) of the
status calls were consistent across centers. Identical status calls were
reported for the reference samples (Fig. 5a). Correlations of HRD scores
between centers showed a mean of 0.88 ± 0.18 with a 75 % percentile
above 0.98, with only Center-1 showing correlations below 0.69, which
applied a different cut-off and used a different bioinformatics tool
(Supplementary Figure 8).

Overall, 163 TMB status calls (93 %) showed agreement, based on
the cut-off 10 Mut/Mb for TMB-high vs. low (Fig. 5b). Most centers were
in agreement of the status calls, but some center-specific discordance
were observed: Center-11 showed overall lower TMB values, this center
also had the most missed somatic variant calls. Center-20 showed
considerably higher TMB values. Other deviations from the consensus
were close to the cut-off point. For the two reference samples, 33 status
calls (86 %) were concordant over all centers. Correlation of TMB values
showed a mean of 0.89 ± 0.2 with 99 % of calls in the 75 % percentile.

Four different bioinformatics tools were utilized for the calculation
of MSI scores in 20 centers, one center did not submit MSI values. MSI

Fig. 4. Comparison of CNA calls. a: Pairwise comparison of CN profiles by sample and separated into segments with matching (green), not matching (red), and
matching when normalized for genome duplications (purple). b: Hierarchical clustering of CN profiles annotated with bioinformatic segmentation tool. c: Gene
amplification calls by center in relation to the five center consensus. d: Gene deep deletion or LOH calls in relation to the five center consensus.
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Fig. 5. Reported values for complex biomarkers. a: HRD scores ordered by segmentation tool, cut-off 42 was used in all but Center-1. b: Missense TMB values colored
by TMB status with 10 Mut/MB cut-off. c: MSI percentage unstable sites ordered by bioinformatic tool with the cut-off value. The rightmost column shows the
fraction of instable sites by MSI assay. d: Interclass correlation (ICC) for the three biomarkers from both bioinformatic pipelines. e: ICC for the main mutational
signatures from the original data, the two algorithms from the central pipeline, and between the two algorithms.
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status was determined with different cut-off values. Six centers did not
submit a cut-off value. In seven samples full concordance was observed,
while overall 132 (94 %) status calls were concordant (Fig. 5c). The
majority status calls were consistent with assay-based (qPCR or gold
standard fragment length analysis) and TSO500 status calls. MSI values
showed the highest mean correlation (0.96 ± 0.07) with only Center-9
displaying a correlation coefficient below 0.9.

Re-analysis of biomarkers from the raw data with the central pipeline
improved of status calls concordance for MSI (+2 %pt), while no
improvement for TMB (+0 %pt) and decrease for HRD status calls
(− 3 %pt) were observed (Supplementary Figure 9). Comparative
Interclass correlation (ICC) between original and central bioinformatics
showed varying results for the original data (TMB: 0.30, MSI: 0.59, HRD:
0.77). The largest impact on variance was found to be center-specific as
values for TMB and MSI were improved distinctly by removing two
highly variant centers regarding TMB (Center-11 and Center-20,
increased ICC from 0.30 to 0.77) and five centers applying different
cut-offs in the MSI analysis (increased from 0.59 to 0.72) (Fig. 5d).
Changes in ICC between original and central bioinformatics were com-
parable to the improvements of status calls discussed before with better
concordance for MSI (0.59/0.72 to 0.92) and slight changes in TMB
(0.30/0.77 to 0.77) and HRD (0.77 to 0.77) (Fig. 5d).

A total of 67 different single base substitution (SBS) signatures were
submitted by 10 centers using three different bioinformatics tools
showing a mean ICC of 0.36 (Fig. 5e, original). Re-analysis of all raw
data with two bioinformatics tools substantially improved the mean ICC
to 0.73 and 0.88 (Fig. 5e, central). ICC comparing both central methods
shows high correlation for the signatures SBS2, SBS4 and SBS13. Lower
ICC was observed for the more prevalent signatures SBS1 and SBS5. The
signature SBS6 was called, yet, in different samples (Fig. 5e, central).

HLA class I status was determined by 10 centers using six different
bioinformatic tools. Overall, 576 of 660 (87 %) HLA calls were
concordant. Hierarchical clustering indicated a strong correlation of
HLA predictions for all but one tool (Supplementary Figure 10).

4. Discussion

As data on inter-center comparability of diagnostic WES using FFPE
material are scarce [1], we initiated a national WES benchmark study
involving 21 major cancer centers in Germany. DNA of six paired tumor
and normal specimen and four reference samples was analyzed with
local wet-lab workflows and bioinformatics pipelines, as well as a cen-
tral bioinformatics pipeline to allow separation between wet-lab and
dry-lab variability.

Somatic variant calls showed an average PPA of 76 % compared to
the five-center consensus list. Deviations could largely be explained by
different variant filter rules. Re-analysis revealed that in principle an
average PPA of 98 % was achievable from the raw-data. Therapeutically
relevant variants reached an average PPA of 80 %, which potentially
could be improved to 97 %. An influence of using FFPE instead of fresh-
frozen samples on concordances was not observed [1].

Based on unfiltered somatic variant calls and re-analysis we were
able to determine the main factors for the four centers with overall lower
concordance: Center-1 used different bioinformatics tools
(Supplementary Table 1) and most variant calls could be found in the re-
analysis (Fig. 1c). Center-10 missed most variant calls due to lower
coverage (87x) as variants were found, but often not labeled as PASS
(Supplementary Figure 2a). Center-3 implied a strict manual filter
accountable for about two-thirds of missed calls while most others were
filtered due to a misconfigured pipeline (Supplementary Figure 2b).
Center-20 implied strict variant filtering and variants could often be
found in the unfiltered calls (Fig. 2c).

Four germline variants in cancer risk genes were identified and
classified with high concordance between centers, with some notable
exceptions. Two centers did not report the variant in PMS2, which lies in
a region in exon 11 which is homologous to a correponding region of the

pseudogene PMS2CL and was therefore removed by the center’s quality
filters. While almost all centers agreed that the variants in RET and TP53
are (likely) benign, one center classified these variants as likely patho-
genic. At the time of the round robin test the two variants were anno-
tated as likely pathogenic in at least one of the three databases OnkoKB,
CKB and LOVD used by this. In the meantime, the RET variant class was
reduced to class 2–3 in all three databases, while the TP53 variant
remained a class 4 only in CKB, showing that pathogenicity classification
is highly dependent on utilized databases.

CNA concordance was observed for 72 % of the genomic regions,
which was very similar to 76 % of matching regions observed in the
earlier study in fresh frozen tissue specimens [1].

Deviations between bioinformatic tools were also observed, a results
that ties well with a systematic evaluation of wet-lab influences and
bioinformatics evaluation on CNV calling [20]. The differences between
centers were not resolved by using the same bioinformatics tools as seen
for SNVs. Therefore, the underlying cause appears to be wet-lab driven.
In line with this notion, a recent study showed that WES and FFPE
processing had a large impact on CNV concordance, especially on losses
[20].

Status calls for HRD, TMB, and MSI agreed for 93 %, 93 %, and 94 %
across samples and centers, respectively, even though different bioin-
formatics tools were used. The results align with previous results in fresh
frozen tissue specimens (HRD: 96 %, TMB: 99 %, MSI: 100 %). Re-
analysis in the central pipeline did not increase the concordances
beyond well-aligned wet- and dry-lab procedures. The estimation of
HRD scores is strongly influenced by the estimation of tumor purity and
ploidy [21]. For the artificial reference sample 17 different ploidy so-
lutions between 1.8 and 4.4 were chosen, which presumably lead to
deviant results of the HRD score estimation while results were around
the cut-off value of 42 further increasing the discrepancies. The
re-analysis showed a higher concordance, but the scores still scattered
around the cut-off (Supplementary Figure 9). The influence of the seg-
mentation tool, as shown in Fig. 2a, seems to be minor, except for
Center-1, as neither a systematic deviation is apparent between the
tools, nor did the re-analysis improve HRD scores. Re-analysis of MSI
still showed large deviations in status for sample 14, where also a high
variance in bioinformatically estimated tumor purity between
10–100 % were observed, emphasizing the difficulties in evaluating this
sample (Supplementary Figure 9).

Aside from the center-specific deviations described before,
increasing sequencing depth correlated with less missed variant calls
(Supplementary Figure 3). However, no clustering by sequencing depth
was observed (Supplementary Figure 4), indicating that low sequencing
depth lead to less variant identification, yet, beyond a certain depth, it
does not increase concordance. No significant correlation between
sequencing depth and PPV or PPA of CNA were found (p values between
0.2 - 0.6).

Findings in this study are limited by the absence of a gold standard
for somatic mutations, complex biomarkers, and CNA for clinical sam-
ples. Missed somatic variants could be recovered in unfiltered VCFs,
however, this approach needs to be balanced with false positive detec-
tion. Furthermore, it should be noted that the central bioinformatics
pipeline used in the re-analysis of raw data only represents a single
possible approach. Other bioinformatics tools could improve the
concordance further.

Previous studies have laid the foundation for clinical WES [22] and
highlighted the benefits of moving from gene panels to WES, which al-
lows for rapid and flexible expansion of the reportable gene list and
precise measurement of complex biomarkers while reducing the burden
of assay revalidation [23]. Our multicentric benchmark study, which is
to our best knowledge the largest of its kind, closes a significant gap in
the field, supports the implementation of decentralized WES in clinical
diagnostics for cancer patients and demonstrates its fundamental feasi-
bility. The results also highlight processes in the dry laboratory that
require further standardization and harmonization. Finally, our study
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provides a basis and blueprint for the design of standardized EQA
schemes for clinical WES.
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