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Abstract

Heart failure with preserved ejection fraction (HFpEF) is rapidly growing as the most common form of heart failure. Among
HFpEF phenotypes, the cardiometabolic/obese HFpEF — HFpEF driven by cardiometabolic alterations — emerges as one
of the most prevalent forms of this syndrome and the one on which recent therapeutic success have been made. Indeed,
pharmacological approaches with sodium-glucose cotransporter type 2 inhibitors (SGLT2i) and glucagon-like peptide-1
receptor agonists (GLP-1RA) have proved to be effective due to metabolic protective effects. Similarly, lifestyle changes,
including diet and exercise are crucial in HFpEF management. Increasing evidence supports the important role of diet and
physical activity in the pathogenesis, prognosis, and potential reversal of HFpEF. Metabolic derangements and systemic
inflammation are key features of HFpEF and represent the main targets of lifestyle interventions. However, the underlying
mechanisms of the beneficial effects of these interventions in HFpEF are incompletely understood. Hence, there is an unmet
need of tailored lifestyle intervention modalities for patients with HFpEF. Here we present the current available evidence
on lifestyle interventions in HFpEF management and therapeutics, discussing their modalities and potential mechanisms.
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Introduction

Heart Failure with preserved ejection fraction (HFpEF)
currently represents the most common form of heart failure
(HF) [1], and its prevalence is increasing by 10% per decade
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relative to HF with reduced ejection fraction (HFrEF) [2].
This gap is expected to increase further in the coming years
as a result of the cardiovascular aging of the population and
the increasing prevalence of HFpEF-predisposing condi-
tions, such as hypertension, obesity, metabolic syndrome
(MetS), and diabetes in particular [3, 4]. Although HFpEF
presents with similar symptoms as in HFrEF, it shows dif-
ferent pathophysiological mechanisms, with the transition
from HFpEF to HFrEF being rare [3, 5]. HFrEF cornerstone
neurohormonal therapies have failed to improve outcomes
in HFpEF, shifting the therapeutic target in HFpEF towards
metabolic-based pharmacological strategies [6]. Indeed,
only novel pharmacological approaches such as sodium-glu-
cose cotransporter type 2 inhibitors (SGLT2i) and glucagon-
like peptide-1 receptor agonists (GLP-1RA) have revealed
favorable impacts on clinical outcomes in HFpEF, improving
quality of life of patients due to their metabolic protective
effects [7, 8].

HFpEF presents a large phenotypical heterogeneity cou-
pled with a high comorbidity burden and a complex multio-
rgan systemic pathophysiology [9]. Among various HFpEF
phenotypes, the cardiometabolic/obese HFpEF — elicited by
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metabolic alterations — represents the most prevalent form
of this syndrome [10]. According to the World Obesity Atlas
2023 report, 38% of the population worldwide is currently
either overweight or obese, and by 2035, the global over-
weight and obesity prevalence is expected to reach 51% [11].
A body mass index (BMI) of > 25 kg/m? is associated with a
greater risk of HFpEF than HFrEF [12] and more than 80%
of patients with HFpEF are overweight or obese [13]. Obe-
sity contributes to risk factors for MetS, a condition char-
acterized by the coexistence of visceral adiposity, dyslipi-
demia, type 2 diabetes, and hypertension strongly predicting
HFpEF [14]. The increasing prevalence of diabetes is also
reported worldwide by epidemiological data, raising from 30
to 400 million people since 1985 [15]. Western diet (WD),
composed of high saturated fat and sugar [16] and associated
with a Western lifestyle of sedentary behavior in the form
of prolonged sitting during work and transportation [17],
is an important modifiable risk factor for cardiometabolic
HFpEF. Saturated fats and refined carbohydrates produce a
high caloric influx into adipose tissue and often exceed the
storage capacity of adipocytes. This causes increased serum
lipids, enhanced lipid uptake by non-adipose tissues, and
ectopic lipid accumulation [18].

The American Heart Association created “Life’s simple
7” measures to achieve ideal cardiovascular health including
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(1) quitting smoking, (2) eating healthy, (3) being active,
(4) losing weight, (5) managing blood pressure (BP), and
(6) controlling of cholesterol and (7) plasma glucose levels
[19]. Diet and lifestyle changes play a pivotal role in the
prevention and treatment of cardiovascular disease and ben-
eficial effects based on AHA measures are well documented
in HF [20]. Complying with these measures seems to be par-
ticularly important for HFpEF [21]. Indeed, dietary habits
have been involved in the pathogenesis [22-24], prognosis
[25-27], and potential reversal of HFpEF [28]. Similarly, in
HFpEF, exercise training shows beneficial effects on dias-
tolic disfunction, enhances skeletal muscle structure and
function, and reduces adiposity and inflammation [29-32].
However, the specific impact of different types of lifestyle
intervention on mechanisms of HFpEF remains largely
unknown.

Metabolic derangements and systemic
inflammation in cardiometabolic HFpEF

Metabolic derangements and systemic inflammation
are reported as the main pathophysiological features of
HFpEF (Fig. 1) [18]. The presence of insulin resistance
(IR) and oxidative stress is well documented in HFpEF,
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Fig.1 Scheme depicting predisposing conditions of cardiometabolic stress driving HFpEF as well as main pathophysiological features of
HFpEF and potential lifestyle interventions. Created with BioRender.com licensed to G.G.S
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resulting as the common hallmarks of cardiometabolic
comorbidities [15, 33, 34]. IR worsens glucose uptake
and utilization in cardiomyocyte and triggers cardiac
metabolic remodeling, shifting from glucose oxidation
to fatty acids oxidation (FAO) via the Randle cycle [35].
Altered cardiac substrate utilization in HFpEF is another
key aspect of HFpEF pathophysiology triggering meta-
bolic remodeling. Clinical [36, 37] and pre-clinical [38]
studies suggested suppressed fatty acids (FAs) metabolism
in HFpEF hearts, using indirect measurements of cardiac
energy metabolism. However, direct flux measurements
revealed an altered metabolic profile towards a switch in
substrate utilization from glucose oxidation to FAO [39].
These findings are in line with previous results obtained in
obesity and diabetes, showing up-regulated FAO [39—41]
accompanied by decreased glucose oxidation [42-44].
Increased lipolysis in adipose tissue due to IR [45] and
excessive reliance on free FAs [18] are linked to up-reg-
ulated uptake of FAs in cardiomyocytes [39]. The result-
ing lipids overload leads to the accumulation of lipotoxic
intermediates — as diacylglycerols (DAGs), ceramides,
and triglycerides (TGs) [35] — oxidative stress [18], and
altered ATP production [46].

A healthy adult heart requires around 6 kg of ATP per
day, representing a highly energy-demand organ [47]. Dias-
tole — in which ATP is used to break actomyosin cross-
links allowing cardiac relaxation — represents the most
energetically demanding phase of cardiac cycle [48]. Most of
ATP heart sources rely on free fatty acids (FFAs) oxidation
(~70%), with glucose, ketone bodies (KBs), and amino acids
playing a complementary role as alternative substrates [35].
Healthy cardiac tissue is metabolically flexible, adapting
its substrate usage based on nutrient availability, local and
systemic conditions, allowing ATP generation to continue
in fed, fasting, and high-demand states [49]. Conversely, a
failing heart is typically characterized by a loss of meta-
bolic flexibility [49] and fails to respond to dynamic changes
in energy demand. Indeed, patients with HFpEF show a
20-27% reduction in phosphocreatine (PCr)/adenosine
triphosphate (ATP) ratio, which represents an index of the
energetic state of the heart and reflects the balance of energy
consumption and energy supply in the heart [S0-52]. ATP
provides a direct energy source for cellular reactions, while
PCr acts as an energy storage and transport compound via
the “creatine kinase-PCr energy shuttle” [53]. PCr buffers
ATP in cardiomyocytes during high demand conditions. A
low ratio between these high-energy phosphate compounds
in human hearts, as non-invasively assessed with >'Phos-
phorus magnetic resonance spectroscopy (°*'P-MRS), sug-
gests compromised mitochondrial function [54]. Previous
clinical studies demonstrated that this ratio is reduced in
failing human myocardium [53]. In obesity and diabetes loss
of metabolic flexibility is associated with impaired glucose

oxidation and concomitant cardiac hypertrophy and dysfunc-
tion [55]. Thus, strategies aiming to restore the resilience
between energy substrates are warranted to maintain the
ATP production in HFpEF [56].

A systemic low-grade inflammation stemming from comor-
bidities-driven metabolic derangements (i.e., meta-inflamma-
tion) represents the other key feature of HFpEF [57], implying
an increased burden of oxidative and nitrosative stress [58,
59]. Metabolic derangements, such as hyperglycemia and
increased adiposity, promote the release of cytokines and pro-
inflammatory adipokines, triggering systemic inflammation
and immune alterations [18, 60, 61]. Moreover, evidence in
hypertensive patients reports an association between hyper-
glycaemia and increased risk of diastolic dysfunction even in
the absence of diabetes [62]. Adipocyte-derived saturated FAs
(SFAs) activate toll-like receptor 4 (TLR4) in macrophages,
causing the release of tumor necrosis factor-alpha (TNF-a)
and interleukin-6 (IL-6) [18]. The latter affects directly car-
diomyocytes, stimulating mitogen-activated protein kinases
(MAPKS) and nuclear factor kappa-light-chain-enhancer of
activated B (NFkB) signaling, inhibiting Akt, and promoting
diastolic dysfunction [63, 64]. Systemic meta-inflammation,
together with the paracrine effects of epicardial tissue, elicits
HFpEF cardiac remodeling through increasing cardiomyocyte
hypertrophy and myocardial fibrosis [18].

Moderate weight loss of 5-10 kg through dietary and
exercise interventions results in a clinically meaning-
ful reduction of cardiometabolic risk [65]. Interestingly,
weight loss leads to lower myocardial oxygen consumption
and decreased myocardial FAO [66], increasing myocardial
glycolysis, myocardial glucose oxidation [67], and PCt/ATP
in obese patients [68]. In addition, weight loss decreases
circulating lipids, improves IR and inflammation [69, 70]
and reduces systolic BP by at least 1 mmHg per kg of weight
loss [71].

Dietary management of HFpEF

Dietary management of HFpEF provides benefits to the
cardiovascular and muscle-skeletal system as a whole [20].
Importantly, most of the evidence to date were collected
in HF mixed populations, with a limited number of studies
focusing on HFpEF subjects (Table 1).

Manipulation of micro/macronutrients
or modulation of specific clinical traits

Manipulation of single micro/macronutrients or modulation
of a specific clinical trait has been adopted as a potential
dietary strategy for patients with HFpEF.

Management of salt intake has been associated with sig-
nificant amelioration in quality of life (QoL) and outcomes
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in HF subjects, reducing congestion and edema [72-75].
However, the effects of sodium restriction in HFpEF remain
controversial. Aggressive sodium and fluid restriction in 53
decompensated HFpEF patients showed no neurohormonal
benefits [76]. In addition, an observational study [77] ana-
lyzing data from the TOPCAT trial [78] found an association
between overstrict dietary salt restriction and worse progno-
sis in HFpEF patients.

Unsaturated fatty acids (UFAs) comprise monounsatu-
rated fatty acids (MUFAs) and polyunsaturated fatty acids
(PUFASs) and are associated with favorable cardiovascular
outcomes in obese and hypertensive patients [27, 79]. Foods
rich in MUFAs are olive oil, avocados, nuts, and seeds,
while sources of PUFAs are fatty fish, flaxseeds, chia seeds,
walnuts, sunflower, and corn oil [79, 80]. Most MUFAs and
®-3 PUFAs, such as alpha-linolenic acid (ALA), eicosapen-
taenoic acid (EPA), and docosahexaenoic acid (DHA) show
protective effects for metabolic and physiological processes,
as well as inflammatory response [80]. The beneficial effect
of UFAs on improving insulin sensitivity has been reported
in vitro [81, 82] and in vivo studies [83, 84]. Studies on eval-
uating the effects of UFAs for HFpEF patients are extremely
limited. Only one completed trial (NCT03310099) reported
that an UFA-rich foods diet consumption for 84 days
in 9 obese symptomatic HFpEF patients improved cardi-
orespiratory fitness (CRF) and clinical outcomes [85] and
one on-going trial [the UFA-Preserved 2 (NCT03966755)]
is set to follow up on this. Further studies are needed to fully
understand the role of UFAs in the management of HFpEF.

Carbohydrate manipulation may represent another
dietary strategy in HFpEF. Significant weight reduc-
tion following a low carbohydrate diet for 16 weeks
(ACTRN12620001278921) is reported in patients with dia-
betic cardiomyopathy (DMCM) [86]. A low carbohydrate
diet, which falls below 130 g of carbohydrates per day, may
improve systemic IR, whole-body metabolism, and tissue
functions [87]. Moreover, it shows favorable effects on low-
grade inflammation in patients with type 2 diabetes (T2D)
[88]. A low carbohydrate diet for 2 months was found to
improve oxygen saturation in HF [89], but the clinical rel-
evance could not be established [90].

A strategy for obesity management is calorie restric-
tion (CR). Indeed, CR — i.e., reduction of caloric intake
by 30-40% — shows positive effects on cell metabolism,
resulting in weight loss and reducing systemic inflamma-
tion and oxidative stress [91]. Moreover, CR improves
metabolic parameters, such as insulin sensitivity and
lipid metabolism [92, 93]. CR or interventions aim-
ing to rescheduling the time of feeding during the day
[intermittent fasting and time restricting eating (TRE)]
demonstrated to reduce cardiovascular events in obesity,
diabetes, and metabolic syndrome [91]. A significant

@ Springer

improvement in VO, peak was shown in 100 obese patients
with HFpEF treated with CR and aerobic exercise train-
ing for 20 weeks (NCT00959660), suggesting an additive
effect of both interventions in obese HFpEF [94]. In addi-
tion, a 6-month CR diet program in 38 obese hyperten-
sive HFpEF patients followed by > 5 kg weight reduction,
led to reduction in NT-proBNP circulating levels. This
was followed by an improvement in diastolic function and
6 minute walk distance (6MWD) [95]. CR inhibits the
IGF-1/insulin pathway and improves protein quality con-
trol in skeletal muscle [96]. CR may reverse mitochondrial
dysfunction in aging muscle stem cells (MuSCs) restoring
myofiber growth and intrinsic muscle function, showing
beneficial effects on muscle oxygen supply, exercise capac-
ity, and QoL of HFpEF patients [97]. In support of this,
intermittent fasting, reached by limiting caloric intake to
8 hours during the day-time, reduced cardiovascular risk
in resistance-trained men [98]. In addition, a program of
10 hours-TRE for 12 weeks reduced BP and LDL choles-
terol levels in patients with MetS [99]. Intermittent fasting
and TRE induced a shift from fat to ketone metabolism
and modulation of cellular adaptive responses, such as
autophagy [91, 100]. A calorie-restricted high-protein diet
for 3 months (30% protein, 40% carbohydrates, and 30%
fat) in a HF population, including a 43.3% of HFpEF sub-
jects [90], reduced cardiometabolic risk with significant
improvements in BP in comparison to a standard-content
protein diet (15% protein, 55% carbohydrates, and 30%
fat) [101]. Thus, CR shows significant cardiometabolic
effects, such as improving cardiorespiratory fitness (CRF),
reducing body weight, ameliorating insulin sensitivity and
glucose metabolism, improving lipid profile, and reducing
systemic inflammation. These effects make CR potentially
clinically relevant in the treatment of patients with HFpEF.

Supplementation of several synthetic and natural com-
pounds — known as calorie restriction mimetics (CRMs)
— may represent a valid alternative to CR, mimicking
its physiological and molecular effects [91]. Examples of
CMRs are represented by spermidine, resveratrol, cur-
cumin, and epigallocatechin-3-gallate, which have shown
promising results in mouse models [91]. In particular,
spermidine — a naturally occurring polyamine found in
soybeans, mature cheese, mushrooms, and broccoli —
promotes cardioprotective autophagy [102] and attenuates
cardiac senescence due to prevention of oxidative stress
and improvement in mitochondrial function in preclini-
cal HFpEF [103, 104]. In addition, the anti-inflammatory
properties of spermidine are reported through induc-
ing anti-inflammatory (M2) macrophage expression and
decreasing TNF-a levels [105, 106]. Clinical implications
of spermidine supplementation in HFpEF and cardiometa-
bolic diseases are currently still unclear.
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Dietary supplementations

Dietary supplementation studies tested the effects of dietary
micro/macronutrients in HFpEF in the form of tablet, cap-
sule, liquid, or powder.

Inorganic nitrate/nitrite (IN) supplementation in HFpEF
showed BP lowering effect, especially during exercise [107].
Moreover, the anti-inflammatory effects of IN supplemen-
tation in atherosclerosis and systemic inflammation have
been reported [108]. However, a recent clinical trial in 92
patients with HFpEF (NCT02713126) demonstrated that IN
supplementation (40 mg, three times daily) for 12 weeks did
not provide additional benefits from exercise training [109].
A meta-analysis of 8 randomized controlled trials (RCTs)
confirmed the absence of benefits of IN supplementation in
improving exercise capacity in HFpEF [107].

The REDUCE-IT trial revealed the potential therapeutic
benefit of icosapent ethyl supplementation in reducing car-
diovascular risk by targeting inflammation in patients with
HF (NCT01492361). Icosapent ethyl showed anti-inflam-
matory properties by reducing the level of high-sensitivity
C-reactive protein (hs-CRP) as an inflammatory biomarker,
alongside its lowering effects on triglyceride levels from
baseline to 2 years compared to placebo [110]. Further stud-
ies are needed to confirm the veracity of these effects in the
context of systemic inflammation in patients with HFpEF.

Coenzyme Q,, (CoQ,) supplementation in T2D db/db
mouse models revealed attenuation of diastolic dysfunc-
tion and cardiac remodeling [111]. Supplementation of
CoQ is also associated with a rise in adiponectin levels,
which in turn leads to a decrease in inflammatory response
mediated by TNF-a [112]. The Q-SYMBIO trial [113]
reported that a long-term CoQ,, supplementation reduced
major adverse cardiovascular events and improved symp-
toms in patients with chronic HF, including 7% HFpEF [90].
In addition, a short-term CoQ,, supplementation (30 days)
in 30 HFpEF patients led to statistically significant within-
group changes in diastolic function, despite these were
not significantly different from the control [114]. Ubiqui-
nol — the active form of CoQ,, — and D-ribose showed
a positive impact on HFpEF symptoms in a RCT study
(NCTO03133793) [115]. However, a RCT in elderly HFpEF
patients (NCT02779634) reported no effects of CoQ;, sup-
plementation (100 mg, three times daily) on diastolic func-
tion [116].

L-carnitine is an amino acid derivative that plays a criti-
cal role in lipid metabolism through transporting long-chain
FAs to mitochondria for oxidation [117]. Decreased L-car-
nitine content has been reported in the failing heart [118].
L-carnitine may prevent myocardial fibrosis and HFpEF,
through enhanced production of prostacyclin [119], and
has been shown to promote weight loss, improve IR, and
reduce appetite and food intake through a direct effect on

the hypothalamus in obese adults [120]. In addition, admin-
istration of L-carnitine in animal with myocardial infarc-
tion shows effects in reducing oxidative stress and enhanc-
ing antioxidant enzyme activity through the inhibition of
TNF-a and IL-1p [121]. Eighteen patients with HFpEF,
presenting reduced L-carnitine at the baseline level, were
supplemented with L-carnitine (300 mg daily) for 1 year
(UMINO000011905) [122]. The study reported signifi-
cant weight loss but no improvements in left ventricular
(LV) diastolic function.

Vitamin D (VD) deficiency is associated with reduced
functional capacity in patients with diastolic dysfunction
or HFpEF [123]. Low VD levels are also associated with
impaired glucose tolerance in nondiabetic hypertensive
patients and may contribute to organ damage [124]. Serum
25-hydroxyvitamin D [25(OH)D] levels < 50 nmol/L have
been associated with increased LV mass and LV hyper-
trophy in hypertensive patients [125]. VD appears to have
cardiovascular protective effects by modulating inflamma-
tory cytokines, reducing oxidative stress, and regulating the
systemic renin—angiotensin—aldosterone system [126, 127].
VD supplementation improves glycaemic homeostasis and
insulin sensitivity among adults at risk for T2D [128] and
showed anti-inflammatory properties in a population of
healthy Saudi males [129]. These effects point to poten-
tial positive effects on cardiometabolic health in patients
with HFpEF. However, a 6-month VD supplementation
(50,000 IU of vitamin D3 daily and calcium citrate 400 mg
twice daily) in a mixed HF population (NCT01125436)
showed no beneficial effects on aerobic capacity and physi-
cal performances [130].

Subtle differences in regulation of cortisol levels in
hypertensive patients are associated with impaired glucose
tolerance and IR [131], and minimal excess of cortisol in
hypertensive patients contributes independently to LV
hypertrophy and concentric remodeling, potentially contrib-
uting to LV diastolic dysfunction and HFpEF [132]. Supple-
mentation of ®-3 PUFAs showed an association with lower
cortisol levels and inflammation [133] and prevented fibro-
sis and diastolic dysfunction in transverse aortic constric-
tion (TAC) animal models with pressure overload-induced
cardiac hypertrophy, by activation of the cyclic guanosine
monophosphate (GMP)/protein kinase G pathway in car-
diac fibroblasts [134]. These findings suggest the clinical
potential of -3 PUFAs supplementation. The MESA study
[135] found an association between higher plasma EPA and
lower risk of HF, including HFrEF and HFpEF. In addi-
tion, a retrospective study on 140 hospitalized decompen-
sated HFpEF patients indicated that low DHA plasma levels
were associated with an increase in all-cause death, sug-
gesting a potential role of DHA for diagnosis and therapies
in such patients [136]. The GISSI-HF trial in a mixed HF
population (HFrEF and HFpEF), including 634 patients with
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HFpEF [90], revealed beneficial effects of treatment with
®-3 PUFAs towards reduced mortality and hospitalization
[137]. The OCEAN trial [138] showed that supplemented
EPA +DHA in a 2:1 ratio (four capsules of 400/200 EPA/
DHA 500 mg per capsule daily) and EPA alone (four cap-
sules of almost pure EPA 500 mg per capsule daily) for
12 weeks led to improved cognitive depressive symptoms
related to HF. A clinically relevant improvement in physical
function was also reported [138], given that the HF popula-
tion was composed of 35% patients with HFpEF [90].

Protein supplementation (1.2 g/kg bodyweight per day)
associated with low-intensity exercise in 23 obese HFpEF
patients for 12 weeks showed benefits on physical and car-
diovascular function [139]. In another RCT in a mixed HF
population (NCT02240511), branched-chain amino acid
(BCAA) supplementation (10 g daily) for 3 months was
associated with resistance exercise (RE) [140]. BCAAs are
supposed to have an anabolic effect in HF patients, acting as
“fuel” during exercise and maintaining muscle mass metab-
olism [141]. The study did not find benefits from BCAA
supplementation and beneficial effects in VO, peak were
attributed to resistance exercise program [140].

Dietary regimens

Dietary regimen studies tested the effectiveness of manip-
ulation of foods and beverages composing the entire diet
regimen.

The GOURMET-HF trial [142], including both HFrEF
and HFpEF patients, demonstrated that the Dietary Approach
to Stop Hypertension (DASH)/sodium-restricted (SDR) diet
has a favorable trend in rehospitalization at 30 days. Other
studies [143, 144] confirm the effectiveness of the DASH/
SDR diet in treating hypertension, reducing 24-h systolic
and diastolic BP, and improving diastolic LV relaxation,
chamber stiffness, and ventricular-arterial coupling in
HFpEF patients. The DASH-DHF 2 trial (NCT01942395)
has been designed to confirm the findings of earlier studies
in HFpEF patients with history of hypertension. Another
clinical trial (NCT05236413) has been recently designed to
evaluate the effects of the DASH diet combined with high-
intensity interval training (HIIT).

The effects of a low-energy diet (LED) in reduction of
myocardial steatosis and improving of diastolic filling in
T2D are well known [145]. LED through a low-energy
meal replacement plan (MRP) has been proposed as an
alternative to achieve weight loss and improve cardiovas-
cular outcomes. This dietary pattern comprises an average
of approximately 810 kcal/day (30% protein, 50% carbo-
hydrate, and 20% fat) [146]. Low-energy MRP leads to
weight loss, improvement of diabetes-related cardiometa-
bolic risk [147], and reverse of cardiovascular remodeling
in obese adults with T2D [146]. The ALLEVIATE trial
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aims to evaluate the impact of low-energy MRP on symp-
tomatology, physical activity, and QoL in patients with
HFpEF and diabetes (NCT04173117). The AMEND trial
(NCTO05887271) is currently evaluating the results of low-
calorie replacement plan in obese HFpEF adults.

The ketogenic diet (KD) is widely adopted to reach weight
loss through increased lipolysis [148]. A recent study in a pre-
clinical setting [149] showed that ketone supplementation can
ameliorate the HFpEF phenotype in mice. Ketone body usage
in HFrEF patients showed beneficial hemodynamic effects
[150], and clinical studies in HFpEF are awaited. However,
caution is needed because of evidenced detrimental effects
of KD on cardiovascular health, raising circulating FA levels,
which contribute to cardiac lipotoxicity and adversely modi-
fies cardiac muscle energy metabolism [151]. An on-going
RCT (NCT04235699) is designed to evaluate the effects of a
low carbohydrate KD on exercise tolerance in patients with
HFpEF. Another on-going trial (NCT06081543) is designed
to evaluate the effects of a low carbohydrate KD versus a
low-fat diet on exercise tolerance in participants with HFpEF
and diabetes, pre-diabetes, or MetS, or obesity. A prospective
pilot study (NCT04942548) aims to examine the impact of
low carbohydrate KD on functional and clinical outcomes,
and QoL in patients with HFpEF and related pulmonary
hypertension HFpEF (PH-HFpEF).

The Mediterranean diet (MedDiet) indicates a dietary
pattern including daily consumption of non-refined cereals,
olive oil as the principal source of lipids, moderate intake of
fish, poultry, potatoes, eggs, and sweets; monthly consump-
tion of red meat, and regular physical activity [152]. The
diet involves moderate consumption of alcohol with meals,
preferably red wine [152]. Excess alcohol intake might con-
tribute to development of HFpEF and hypertension related
organ damage [153, 154]. MedDiet is composed of bioactive
molecules, such as ®-3 PUFAs (e.g., EPA, DHA), MUFAs
(e.g., oleate), and polyphenols, which confer cardioprotec-
tive effects [152]. The MEDIT-AHF trial observed that a
greater adherence to MedDiet was associated with a signifi-
cant reduction in HF hospitalizations following an admission
for acute HF, although not with reduced long-term mortality
[155]. The PREDIMED trial revealed the positive effects
of MedDiet on systemic inflammation markers in patients
with HF and MetS [156, 157]. The Hellenic Heart Failure
Study, which included 38% of patients with HFpEF, con-
firmed these positive effects, opening new horizons about
its potential benefits [158].

Other dietary regimens might have a positive impact on
HFpEF. For instance, plant-based diets such as vegan, lacto-
ovo vegetarian, and pesco-vegetarian offer positive effects
on cardiometabolic health [159]. Vegetarian diets reduce BP,
blood glucose, and lipids levels, with a positive impact on
inflammation and body weight [159]. The effects of vegetar-
ian diets in HFpEF should be further explored.
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In summary, dietary management for HFpEF exhibits
various effects on cardiovascular and metabolic health.
Modulation of specific nutrients or manipulation of body
composition with CR hold promise but require further vali-
dation to pave the way for tailored dietary interventions.
Dietary supplementation and regiment studies in HFpEF
have, to date, yielded mixed results. While partially dietary
supplementation or regiments show promise, more targeted
and extensive studies are required to establish their efficacy.

Physical activity in HFpEF

The American College of Cardiology (ACC)/American
Heart Association (AHA) guidelines include a Class 1 rec-
ommendation (level of evidence A) for exercise training in
patients with HF, without a distinction between HFpEF and
HFrEF [160], although the association between physical
activity and HFpEF is stronger than with other forms of HF
[161]. Evidence suggests amelioration of diastolic function,
CREF, exercise capacity, and quality of life (QOL) with exer-
cise training in HFpEF [162-164]. Other studies reported
reduction in the hospitalization [165] or fewer cardiac events
[166] after exercise interventions in HFpEF. Importantly, a
meta-analysis of 6 RCTs [167] reported no exercise-related
major adverse events demonstrating the safety of exercise
training.

Common indicators of CRF are VO, peak (mL/kg/min)
and 6MWD, which represents a valid practical alternative
[168]. VO, peak measures the ability to transport (cardiac
output) and use (arteriovenous O2 difference) oxygen and
is a strong predictor of patients’ functional capacity with
significant prognostic value [169, 170]. HFpEF patients pre-
sent a similar VO, peak to that in age-matched patients with
HFrEF, which is severely reduced (by around 30%) when
compared with age-matched healthy individuals [171].

Exercise intolerance and skeletal muscle
dysfunction

HFpEF-related-cardiometabolic alterations are linked
to worse physical fitness [2]. Patients with HFpEF often
exhibit exercise intolerance (EI) and exertional symptoms
[172], which are linked to limited O, transport and utiliza-
tion due to central and peripheral mechanisms [173] and
associated with concentric remodeling [174]. Central and
peripheral alterations include cardiac (blunted stroke vol-
ume augmentation, chronotropic incompetence, exagger-
ated increase in filling pressures); pulmonary (pulmonary
vascular remodeling, impaired gas exchange, pulmonary
hypertension); vascular (central artery stiffness, reduced
peripheral artery vasodilator response, microvascular
dysfunction); and skeletal muscle (reduced mass, excess

adipose infiltration, mitochondrial dysfunction) altera-
tions [170]. The latter leads to reduced aerobic exercise
capacity of patients with HFpEF, as assessed by 6MWD
and VO, peak. Moreover, compromised physical activity
and HFpEF-related EI are associated with poor QoL and
clinical outcomes and higher incidence of hospitalization
[175].

HFpEF-related EI is partly attributed to skeletal mus-
cle dysfunction. Skeletal muscle structure and function in
HFpEEF are involved in sarcopenic obesity (SO), which is
defined as the coexistence of excessive BMI and low mus-
cle mass with multiple comorbidities, excessive visceral
adiposity, and heightened systemic inflammation [176]. SO
exacerbates cardiometabolic risk, imposing a substantial
burden on physical activity and poor QoL [177]. Stratify-
ing HF patients by BMI and body composition could help
identify those with SO, where targeted lifestyle interven-
tions to maintain or increase lean mass might be clinically
beneficial [178].

HFpEF-related skeletal muscle dysfunction is similar to
what is described for HFrEF, and it is not merely a conse-
quence of deconditioning since it develops even when levels
of physical activity are maintained during HF development
[179, 180]. The pattern of skeletal muscle abnormalities dif-
fers from deconditioning, especially as regards fiber-type
shift [170]. Abnormal skeletal muscle mitochondrial function
[181-183] linked to a perturbed MuSCs homeostasis, involv-
ing Hedgehog and apelin pathways signaling has been found
[184]. Blunted overload-induced myofiber growth of skel-
etal muscle is reported in HFpEF despite adequate physical
stimulation and ascribed in part to mitochondrial dysfunction
[97]. Thus, patients with HFpEF show reduced mitochondrial
content and skeletal muscle type I fiber. This contributes to a
faster rate of high-energy phosphate depletion during exercise
and impaired recovery afterward, as assessed by a study with
phosphorous magnetic resonance spectroscopy [181].

Skeletal muscle metabolic abnormalities are linked
to functional limitations of patients with HFpEF. On the
other hand, evidence suggests that targeting skeletal mus-
cle metabolism might be a promising approach to improv-
ing the EI of HFpEF patients [181]. Exercise training leads
to peripheral adaptations, such as increased mitochondrial
density and function, myoglobin content, capillary density,
and blood flow redistribution [185]. Although no significant
changes to central artery stiffness are reported, peripheral
benefits are observed [94, 163, 186]. Given the high plastic-
ity and predisposition in skeletal muscle [187], increased
VO, peak from exercise training results in increased diffu-
sion capacity and oxygen extraction by the exercising mus-
cles [185, 188]. In particular, aerobic training conducted
alone or combined with strength training for 3 to 6 months
resulted in a safe and effective therapy and enhanced aerobic
capacity, endurance, and QoL in HFpEF patients [189].
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Exercise interventions modalities and outcomes

A recent scientific statement from ACC/AHA analyzed data
of the 11 latest RCTs on supervised exercise training (SET)
for chronic HFpEF subjects [170]. Training approaches
range from walking and stationary cycle ergometry to high-
intensity interval training (HIIT), strength training, and
dancing in both facility setting and home-based training
[170]. SET generally occurred 3 sessions per week, from 1 to
8 months, with intensity from 40 to 90% of exercise capacity
and individual sessions from 25 to 60 min [170]. SET signif-
icantly ameliorates 6 MWD and baseline peak VO, by 14%,
compared to a reduction in baseline peak VO, by 0.2% in
the control group [170]. For comparison, an increase in peak
VO, of 6-7% is considered clinically meaningful in patients
with HFrEF [190, 191]. However, effects on QoL have been
mixed, with some studies concluding no benefits and others
demonstrating improved QoL scores [170]. The same applies
to cardiovascular and peripheral parameters, showing mixed
data among RCTs. Improvements in diastolic function have
been demonstrated in some studies, whereas no changes are
reported by other investigations [170]. However, the authors
conclude that the strength of currently available data on SET
and the sparsity of effective therapies for HFpEF provide the
rationale for increasing efforts to promote exercise-based
therapies for patients [170].

HIIT has recently emerged as an alternative to moderate-
intensity continuous training (MICT) in cardiac rehabilita-
tion [192]. HIIT resulted as the best exercise modality in
improving VO, peak and QoL in a period of about 16 weeks,
followed by low intensity training (LIT) with a low-calorie
diet as regards effectiveness [193]. HIIT consists of repeated
sessions of brief and intermittent exercise that induce > 85%
of VO, peak, alternated by sessions of rest or LIT for recov-
ery [194, 195]. However, LIT — continuous exercise at a
gentle pace, such as walking, light cycling, or slow swim-
ming — with a low-calorie diet resulted as the best lifestyle
change in improving 6MWD [193]. Other studies reported
the beneficial effects of HIIT in patients with cardiometa-
bolic disorders and chronic diseases, suggesting its effective-
ness in improving metabolic health [196-198]. However, the
OptimEx-Clin study [199] found no statistically significant
differences at 3 months in VO, peak by comparing HIIT
to moderate intensity continuous training (MICT). Besides
this, the findings did not support either HIIT or MICT com-
pared with guideline-based physical activity for patients
with HFpEF [199].

In summary, exercise training is highly recommended for
HFpEF patients, ameliorating diastolic dysfunction, CRF,
exercise capacity, and QoL, while reducing hospitalizations
and bringing peripheral beneficial effects, particularly in skel-
etal muscle. Patients with HFpEF often experience EI due
to multiple systemic alterations. In this context, the aerobic
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capacity and endurance of patients may be enhanced with
exercise training, utilizing HIIT as the most effective exercise
modality.

Future perspectives

The relationship between lifestyle interventions and cardio-
metabolic HFpEF seems to be stronger than in other forms of
HF. Given this, dietary interventions can/should be targeted on
the metabolic profile of HFpEF patients for precision medicine
approaches, to optimize dietary plans considering the unique
metabolic disturbances of each patient. For example, as gut
microbiome influence in HFpEF is increasingly recognized
[200], future dietary interventions may include strategies to
modify gut microbiome composition, to enhance its beneficial
effects on systemic inflammation and altered metabolism.

The benefits of CR and intermittent fasting in improving
metabolic health and inflammation are also emerging. Future
studies may focus on optimizing protocols for patients with
HFpEF, determining the most effective duration and fre-
quency of fasting periods. Moreover, the nutraceutical prop-
erties of some food components reveal potential benefits,
targeting specific pathophysiological mechanisms in HFpEF,
such as oxidative stress and inflammation. In this regard,
further studies on the effect of polyphenols in HFpEF are
required, considering their anti-inflammatory and antioxi-
dant properties [201, 202]. Similarly, further investigations
should also focus on the effects of spermidine due to its anti-
inflammatory and cardioprotective properties.

Combined aerobic and resistance training could pro-
vide synergistic effects for patients with HFpEF. Different
exercise modalities may be integrated to target both cardio-
vascular and muscular health, enhancing both cardiometa-
bolic and physical function. HIIT — which emerges as the
most effective exercise modality — shows superior benefits
in improving exercise capacity and QoL in patients with
HFpEF. Future studies may refine HIIT protocols, including
intensity and duration to maximize advantages and ensure
safety for patients. Importantly, lifestyle intervention stud-
ies should consider and further investigate the long-term
adherence of patients, which remains a challenge and may
attenuate lifestyle intervention benefits.

Conclusion

Systemic inflammation and metabolic derangements are the
main pathophysiological characteristics of HFpEF. Dietary
and exercise interventions play a pivotal role in managing
both features. Control of body weight, dietary plans, and
regular physical activity can significantly improve clinical
outcomes in patients with HFpEF. A better understanding of
lifestyle intervention modalities will greatly help researchers
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and clinicians in the management of patients with HFpEF,
considering the formulation of multidisciplinary treatment
programs. In this perspective, the combination of lifestyle
interventions with pharmacological therapies may plausibly
show greater effects.
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