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Abstract
Heart failure with preserved ejection fraction (HFpEF) is rapidly growing as the most common form of heart failure. Among 
HFpEF phenotypes, the cardiometabolic/obese HFpEF — HFpEF driven by cardiometabolic alterations — emerges as one 
of the most prevalent forms of this syndrome and the one on which recent therapeutic success have been made. Indeed, 
pharmacological approaches with sodium-glucose cotransporter type 2 inhibitors (SGLT2i) and glucagon-like peptide-1 
receptor agonists (GLP-1RA) have proved to be effective due to metabolic protective effects. Similarly, lifestyle changes, 
including diet and exercise are crucial in HFpEF management. Increasing evidence supports the important role of diet and 
physical activity in the pathogenesis, prognosis, and potential reversal of HFpEF. Metabolic derangements and systemic 
inflammation are key features of HFpEF and represent the main targets of lifestyle interventions. However, the underlying 
mechanisms of the beneficial effects of these interventions in HFpEF are incompletely understood. Hence, there is an unmet 
need of tailored lifestyle intervention modalities for patients with HFpEF. Here we present the current available evidence 
on lifestyle interventions in HFpEF management and therapeutics, discussing their modalities and potential mechanisms.
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Introduction

Heart Failure with preserved ejection fraction (HFpEF) 
currently represents the most common form of heart failure 
(HF) [1], and its prevalence is increasing by 10% per decade 

relative to HF with reduced ejection fraction (HFrEF) [2]. 
This gap is expected to increase further in the coming years 
as a result of the cardiovascular aging of the population and 
the increasing prevalence of HFpEF-predisposing condi-
tions, such as hypertension, obesity, metabolic syndrome 
(MetS), and diabetes in particular [3, 4]. Although HFpEF 
presents with similar symptoms as in HFrEF, it shows dif-
ferent pathophysiological mechanisms, with the transition 
from HFpEF to HFrEF being rare [3, 5]. HFrEF cornerstone 
neurohormonal therapies have failed to improve outcomes 
in HFpEF, shifting the therapeutic target in HFpEF towards 
metabolic-based pharmacological strategies [6]. Indeed, 
only novel pharmacological approaches such as sodium-glu-
cose cotransporter type 2 inhibitors (SGLT2i) and glucagon-
like peptide-1 receptor agonists (GLP-1RA) have revealed 
favorable impacts on clinical outcomes in HFpEF, improving 
quality of life of patients due to their metabolic protective 
effects [7, 8].

HFpEF presents a large phenotypical heterogeneity cou-
pled with a high comorbidity burden and a complex multio-
rgan systemic pathophysiology [9]. Among various HFpEF 
phenotypes, the cardiometabolic/obese HFpEF — elicited by 
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metabolic alterations — represents the most prevalent form 
of this syndrome [10]. According to the World Obesity Atlas 
2023 report, 38% of the population worldwide is currently 
either overweight or obese, and by 2035, the global over-
weight and obesity prevalence is expected to reach 51% [11]. 
A body mass index (BMI) of > 25 kg/m2 is associated with a 
greater risk of HFpEF than HFrEF [12] and more than 80% 
of patients with HFpEF are overweight or obese [13]. Obe-
sity contributes to risk factors for MetS, a condition char-
acterized by the coexistence of visceral adiposity, dyslipi-
demia, type 2 diabetes, and hypertension strongly predicting 
HFpEF [14]. The increasing prevalence of diabetes is also 
reported worldwide by epidemiological data, raising from 30 
to 400 million people since 1985 [15]. Western diet (WD), 
composed of high saturated fat and sugar [16] and associated 
with a Western lifestyle of sedentary behavior in the form 
of prolonged sitting during work and transportation [17], 
is an important modifiable risk factor for cardiometabolic 
HFpEF. Saturated fats and refined carbohydrates produce a 
high caloric influx into adipose tissue and often exceed the 
storage capacity of adipocytes. This causes increased serum 
lipids, enhanced lipid uptake by non-adipose tissues, and 
ectopic lipid accumulation [18].

The American Heart Association created “Life’s simple 
7” measures to achieve ideal cardiovascular health including 

(1) quitting smoking, (2) eating healthy, (3) being active, 
(4) losing weight, (5) managing blood pressure (BP), and 
(6) controlling of cholesterol and (7) plasma glucose levels 
[19]. Diet and lifestyle changes play a pivotal role in the 
prevention and treatment of cardiovascular disease and ben-
eficial effects based on AHA measures are well documented 
in HF [20]. Complying with these measures seems to be par-
ticularly important for HFpEF [21]. Indeed, dietary habits 
have been involved in the pathogenesis [22–24], prognosis 
[25–27], and potential reversal of HFpEF [28]. Similarly, in 
HFpEF, exercise training shows beneficial effects on dias-
tolic disfunction, enhances skeletal muscle structure and 
function, and reduces adiposity and inflammation [29–32]. 
However, the specific impact of different types of lifestyle 
intervention on mechanisms of HFpEF remains largely 
unknown.

Metabolic derangements and systemic 
inflammation in cardiometabolic HFpEF

Metabolic derangements and systemic inflammation 
are reported as the main pathophysiological features of 
HFpEF (Fig. 1) [18]. The presence of insulin resistance 
(IR) and oxidative stress is well documented in HFpEF, 

Fig. 1  Scheme depicting predisposing conditions of cardiometabolic stress driving HFpEF as well as main pathophysiological features of 
HFpEF and potential lifestyle interventions. Created with BioRender.com licensed to G.G.S
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resulting as the common hallmarks of cardiometabolic 
comorbidities [15, 33, 34]. IR worsens glucose uptake 
and utilization in cardiomyocyte and triggers cardiac 
metabolic remodeling, shifting from glucose oxidation 
to fatty acids oxidation (FAO) via the Randle cycle [35]. 
Altered cardiac substrate utilization in HFpEF is another 
key aspect of HFpEF pathophysiology triggering meta-
bolic remodeling. Clinical [36, 37] and pre-clinical [38] 
studies suggested suppressed fatty acids (FAs) metabolism 
in HFpEF hearts, using indirect measurements of cardiac 
energy metabolism. However, direct flux measurements 
revealed an altered metabolic profile towards a switch in 
substrate utilization from glucose oxidation to FAO [39]. 
These findings are in line with previous results obtained in 
obesity and diabetes, showing up-regulated FAO [39–41] 
accompanied by decreased glucose oxidation [42–44]. 
Increased lipolysis in adipose tissue due to IR [45] and 
excessive reliance on free FAs [18] are linked to up-reg-
ulated uptake of FAs in cardiomyocytes [39]. The result-
ing lipids overload leads to the accumulation of lipotoxic 
intermediates — as diacylglycerols (DAGs), ceramides, 
and triglycerides (TGs) [35] — oxidative stress [18], and 
altered ATP production [46].

A healthy adult heart requires around 6 kg of ATP per 
day, representing a highly energy-demand organ [47]. Dias-
tole — in which ATP is used to break actomyosin  cross-
links allowing cardiac relaxation — represents the most 
energetically demanding phase of cardiac cycle [48]. Most of 
ATP heart sources rely on free fatty acids (FFAs) oxidation 
(~ 70%), with glucose, ketone bodies (KBs), and amino acids 
playing a complementary role as alternative substrates [35]. 
Healthy cardiac tissue is metabolically flexible, adapting 
its substrate usage based on nutrient availability, local and 
systemic conditions, allowing ATP generation to continue 
in fed, fasting, and high-demand states [49]. Conversely, a 
failing heart is typically characterized by a loss of meta-
bolic flexibility [49] and fails to respond to dynamic changes 
in energy demand. Indeed, patients with HFpEF show a 
20–27% reduction in phosphocreatine (PCr)/adenosine 
triphosphate (ATP) ratio, which represents an index of the 
energetic state of the heart and reflects the balance of energy 
consumption and energy supply in the heart [50–52]. ATP 
provides a direct energy source for cellular reactions, while 
PCr acts as an energy storage and transport compound via 
the “creatine kinase-PCr energy shuttle” [53]. PCr buffers 
ATP in cardiomyocytes during high demand conditions. A 
low ratio between these high-energy phosphate compounds 
in human hearts, as non-invasively assessed with 31Phos-
phorus magnetic resonance spectroscopy (31P-MRS), sug-
gests compromised mitochondrial function [54]. Previous 
clinical studies demonstrated that this ratio is reduced in 
failing human myocardium [53]. In obesity and diabetes loss 
of metabolic flexibility is associated with impaired glucose 

oxidation and concomitant cardiac hypertrophy and dysfunc-
tion [55]. Thus, strategies aiming to restore the resilience 
between energy substrates are warranted to maintain the 
ATP production in HFpEF [56].

A systemic low-grade inflammation stemming from comor-
bidities-driven metabolic derangements (i.e., meta-inflamma-
tion) represents the other key feature of HFpEF [57], implying 
an increased burden of oxidative and nitrosative stress [58, 
59]. Metabolic derangements, such as hyperglycemia and 
increased adiposity, promote the release of cytokines and pro-
inflammatory adipokines, triggering systemic inflammation 
and immune alterations [18, 60, 61]. Moreover, evidence in 
hypertensive patients reports an association between hyper-
glycaemia and increased risk of diastolic dysfunction even in 
the absence of diabetes [62]. Adipocyte-derived saturated FAs 
(SFAs) activate toll-like receptor 4 (TLR4) in macrophages, 
causing the release of tumor necrosis factor-alpha (TNF-α) 
and interleukin-6 (IL-6) [18]. The latter affects directly car-
diomyocytes, stimulating mitogen-activated protein kinases 
(MAPKs) and nuclear factor kappa-light-chain-enhancer of 
activated B (NFkB) signaling, inhibiting Akt, and promoting 
diastolic dysfunction [63, 64]. Systemic meta-inflammation, 
together with the paracrine effects of epicardial tissue, elicits 
HFpEF cardiac remodeling through increasing cardiomyocyte 
hypertrophy and myocardial fibrosis [18].

Moderate weight loss of 5–10 kg through dietary and 
exercise interventions results in a clinically meaning-
ful reduction of cardiometabolic risk [65]. Interestingly, 
weight loss leads to lower myocardial oxygen consumption 
and decreased myocardial FAO [66], increasing myocardial 
glycolysis, myocardial glucose oxidation [67], and PCr/ATP 
in obese patients [68]. In addition, weight loss decreases 
circulating lipids, improves IR and inflammation [69, 70] 
and reduces systolic BP by at least 1 mmHg per kg of weight 
loss [71].

Dietary management of HFpEF

Dietary management of HFpEF provides benefits to the 
cardiovascular and muscle-skeletal system as a whole [20]. 
Importantly, most of the evidence to date were collected 
in HF mixed populations, with a limited number of studies 
focusing on HFpEF subjects (Table 1).

Manipulation of micro/macronutrients 
or modulation of specific clinical traits

Manipulation of single micro/macronutrients or modulation 
of a specific clinical trait has been adopted as a potential 
dietary strategy for patients with HFpEF.

Management of salt intake has been associated with sig-
nificant amelioration in quality of life (QoL) and outcomes 
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in HF subjects, reducing congestion and edema [72–75]. 
However, the effects of sodium restriction in HFpEF remain 
controversial. Aggressive sodium and fluid restriction in 53 
decompensated HFpEF patients showed no neurohormonal 
benefits [76]. In addition, an observational study [77] ana-
lyzing data from the TOPCAT trial [78] found an association 
between overstrict dietary salt restriction and worse progno-
sis in HFpEF patients.

Unsaturated fatty acids (UFAs) comprise monounsatu-
rated fatty acids (MUFAs) and polyunsaturated fatty acids 
(PUFAs) and are associated with favorable cardiovascular 
outcomes in obese and hypertensive patients [27, 79]. Foods 
rich in MUFAs are olive oil, avocados, nuts, and seeds, 
while sources of PUFAs are fatty fish, flaxseeds, chia seeds, 
walnuts, sunflower, and corn oil [79, 80]. Most MUFAs and 
ω-3 PUFAs, such as alpha-linolenic acid (ALA), eicosapen-
taenoic acid (EPA), and docosahexaenoic acid (DHA) show 
protective effects for metabolic and physiological processes, 
as well as inflammatory response [80]. The beneficial effect 
of UFAs on improving insulin sensitivity has been reported 
in vitro [81, 82] and in vivo studies [83, 84]. Studies on eval-
uating the effects of UFAs for HFpEF patients are extremely 
limited. Only one completed trial (NCT03310099) reported 
that an UFA-rich foods diet consumption for 84  days 
in 9 obese symptomatic HFpEF patients improved cardi-
orespiratory fitness (CRF) and clinical outcomes [85] and 
one on-going trial [the UFA-Preserved 2 (NCT03966755)] 
is set to follow up on this. Further studies are needed to fully 
understand the role of UFAs in the management of HFpEF.

Carbohydrate manipulation may represent another 
dietary strategy in HFpEF. Significant weight reduc-
tion following a low carbohydrate diet for 16  weeks 
(ACTRN12620001278921) is reported in patients with dia-
betic cardiomyopathy (DMCM) [86]. A low carbohydrate 
diet, which falls below 130 g of carbohydrates per day, may 
improve systemic IR, whole-body metabolism, and tissue 
functions [87]. Moreover, it shows favorable effects on low-
grade inflammation in patients with type 2 diabetes (T2D) 
[88]. A low carbohydrate diet for 2 months was found to 
improve oxygen saturation in HF [89], but the clinical rel-
evance could not be established [90].

A strategy for obesity management is calorie restric-
tion (CR). Indeed, CR — i.e., reduction of caloric intake 
by 30–40% — shows positive effects on cell metabolism, 
resulting in weight loss and reducing systemic inflamma-
tion and oxidative stress [91]. Moreover, CR improves 
metabolic parameters, such as insulin sensitivity and 
lipid metabolism [92, 93]. CR or interventions aim-
ing to rescheduling the time of feeding during the day 
[intermittent fasting and time restricting eating (TRE)] 
demonstrated to reduce cardiovascular events in obesity, 
diabetes, and metabolic syndrome [91]. A significant 

improvement in  VO2 peak was shown in 100 obese patients 
with HFpEF treated with CR and aerobic exercise train-
ing for 20 weeks (NCT00959660), suggesting an additive 
effect of both interventions in obese HFpEF [94]. In addi-
tion, a 6-month CR diet program in 38 obese hyperten-
sive HFpEF patients followed by > 5 kg weight reduction, 
led to reduction in NT-proBNP circulating levels. This 
was followed by an improvement in diastolic function and 
6 minute walk distance (6MWD) [95]. CR inhibits the 
IGF-1/insulin pathway and improves protein quality con-
trol in skeletal muscle [96]. CR may reverse mitochondrial 
dysfunction in aging muscle stem cells (MuSCs) restoring 
myofiber growth and intrinsic muscle function, showing 
beneficial effects on muscle oxygen supply, exercise capac-
ity, and QoL of HFpEF patients [97]. In support of this, 
intermittent fasting, reached by limiting caloric intake to 
8 hours during the day-time, reduced cardiovascular risk 
in resistance-trained men [98]. In addition, a program of 
10 hours-TRE for 12 weeks reduced BP and LDL choles-
terol levels in patients with MetS [99]. Intermittent fasting 
and TRE induced a shift from fat to ketone metabolism 
and modulation of cellular adaptive responses, such as 
autophagy [91, 100]. A calorie-restricted high-protein diet 
for 3 months (30% protein, 40% carbohydrates, and 30% 
fat) in a HF population, including a 43.3% of HFpEF sub-
jects [90], reduced cardiometabolic risk with significant 
improvements in BP in comparison to a standard-content 
protein diet (15% protein, 55% carbohydrates, and 30% 
fat) [101]. Thus, CR shows significant cardiometabolic 
effects, such as improving cardiorespiratory fitness (CRF), 
reducing body weight, ameliorating insulin sensitivity and 
glucose metabolism, improving lipid profile, and reducing 
systemic inflammation. These effects make CR potentially 
clinically relevant in the treatment of patients with HFpEF.

Supplementation of several synthetic and natural com-
pounds — known as calorie restriction mimetics (CRMs) 
— may represent a valid alternative to CR, mimicking 
its physiological and molecular effects [91]. Examples of 
CMRs are represented by spermidine, resveratrol, cur-
cumin, and epigallocatechin-3-gallate, which have shown 
promising results in mouse models [91]. In particular, 
spermidine — a naturally occurring polyamine found in 
soybeans, mature cheese, mushrooms, and broccoli — 
promotes cardioprotective autophagy [102] and attenuates 
cardiac senescence due to prevention of oxidative stress 
and improvement in mitochondrial function in preclini-
cal HFpEF [103, 104]. In addition, the anti-inflammatory 
properties of spermidine are reported through induc-
ing anti-inflammatory (M2) macrophage expression and 
decreasing TNF-α levels [105, 106]. Clinical implications 
of spermidine supplementation in HFpEF and cardiometa-
bolic diseases are currently still unclear.
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Dietary supplementations

Dietary supplementation studies tested the effects of dietary 
micro/macronutrients in HFpEF in the form of tablet, cap-
sule, liquid, or powder.

Inorganic nitrate/nitrite (IN) supplementation in HFpEF 
showed BP lowering effect, especially during exercise [107]. 
Moreover, the anti-inflammatory effects of IN supplemen-
tation in atherosclerosis and systemic inflammation have 
been reported [108]. However, a recent clinical trial in 92 
patients with HFpEF (NCT02713126) demonstrated that IN 
supplementation (40 mg, three times daily) for 12 weeks did 
not provide additional benefits from exercise training [109]. 
A meta-analysis of 8 randomized controlled trials (RCTs) 
confirmed the absence of benefits of IN supplementation in 
improving exercise capacity in HFpEF [107].

The REDUCE-IT trial revealed the potential therapeutic 
benefit of icosapent ethyl supplementation in reducing car-
diovascular risk by targeting inflammation in patients with 
HF (NCT01492361). Icosapent ethyl showed anti-inflam-
matory properties by reducing the level of high-sensitivity 
C-reactive protein (hs-CRP) as an inflammatory biomarker, 
alongside its lowering effects on triglyceride levels from 
baseline to 2 years compared to placebo [110]. Further stud-
ies are needed to confirm the veracity of these effects in the 
context of systemic inflammation in patients with HFpEF.

Coenzyme  Q10  (CoQ10) supplementation in T2D db/db 
mouse models revealed attenuation of diastolic dysfunc-
tion and cardiac remodeling [111]. Supplementation of 
 CoQ10 is also associated with a rise in adiponectin levels, 
which in turn leads to a decrease in inflammatory response 
mediated by TNF-α [112]. The Q-SYMBIO trial [113] 
reported that a long-term  CoQ10 supplementation reduced 
major adverse cardiovascular events and improved symp-
toms in patients with chronic HF, including 7% HFpEF [90]. 
In addition, a short-term  CoQ10 supplementation (30 days) 
in 30 HFpEF patients led to statistically significant within-
group changes in diastolic function, despite these were 
not significantly different from the control [114]. Ubiqui-
nol — the active form of  CoQ10 — and D-ribose showed 
a positive impact on HFpEF symptoms in a RCT study 
(NCT03133793) [115]. However, a RCT in elderly HFpEF 
patients (NCT02779634) reported no effects of  CoQ10 sup-
plementation (100 mg, three times daily) on diastolic func-
tion [116].

L-carnitine is an amino acid derivative that plays a criti-
cal role in lipid metabolism through transporting long-chain 
FAs to mitochondria for oxidation [117]. Decreased L-car-
nitine content has been reported in the failing heart [118]. 
L-carnitine may prevent myocardial fibrosis and HFpEF, 
through enhanced production of prostacyclin [119], and 
has been shown to promote weight loss, improve IR, and 
reduce appetite and food intake through a direct effect on 

the hypothalamus in obese adults [120]. In addition, admin-
istration of L-carnitine in animal with myocardial infarc-
tion shows effects in reducing oxidative stress and enhanc-
ing antioxidant enzyme activity through the inhibition of 
TNF-α and IL-1β [121]. Eighteen patients with HFpEF, 
presenting reduced L-carnitine at the baseline level, were 
supplemented with L-carnitine (300 mg daily) for 1 year 
(UMIN000011905) [122]. The study reported signifi-
cant weight loss but no improvements in left ventricular 
(LV) diastolic function.

Vitamin D (VD) deficiency is associated with reduced 
functional capacity in patients with diastolic dysfunction 
or HFpEF [123]. Low VD levels are also associated with 
impaired glucose tolerance in nondiabetic hypertensive 
patients and may contribute to organ damage [124]. Serum 
25-hydroxyvitamin D [25(OH)D] levels < 50 nmol/L have 
been associated with increased LV mass and LV hyper-
trophy in hypertensive patients [125]. VD appears to have 
cardiovascular protective effects by modulating inflamma-
tory cytokines, reducing oxidative stress, and regulating the 
systemic renin–angiotensin–aldosterone system [126, 127]. 
VD supplementation improves glycaemic homeostasis and 
insulin sensitivity among adults at risk for T2D [128] and 
showed anti-inflammatory properties in a population of 
healthy Saudi males [129]. These effects point to poten-
tial positive effects on cardiometabolic health in patients 
with HFpEF. However, a 6-month VD supplementation 
(50,000 IU of vitamin D3 daily and calcium citrate 400 mg 
twice daily) in a mixed HF population (NCT01125436) 
showed no beneficial effects on aerobic capacity and physi-
cal performances [130].

Subtle differences in regulation of cortisol levels in 
hypertensive patients are associated with impaired glucose 
tolerance and IR [131], and minimal excess of cortisol in 
hypertensive patients contributes independently to LV 
hypertrophy and concentric remodeling, potentially contrib-
uting to LV diastolic dysfunction and HFpEF [132]. Supple-
mentation of ω-3 PUFAs showed an association with lower 
cortisol levels and inflammation [133] and prevented fibro-
sis and diastolic dysfunction in transverse aortic constric-
tion (TAC) animal models with pressure overload-induced 
cardiac hypertrophy, by activation of the cyclic guanosine 
monophosphate (GMP)/protein kinase G pathway in car-
diac fibroblasts [134]. These findings suggest the clinical 
potential of ω-3 PUFAs supplementation. The MESA study 
[135] found an association between higher plasma EPA and 
lower risk of HF, including HFrEF and HFpEF. In addi-
tion, a retrospective study on 140 hospitalized decompen-
sated HFpEF patients indicated that low DHA plasma levels 
were associated with an increase in all-cause death, sug-
gesting a potential role of DHA for diagnosis and therapies 
in such patients [136]. The GISSI-HF trial in a mixed HF 
population (HFrEF and HFpEF), including 634 patients with 
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HFpEF [90], revealed beneficial effects of treatment with 
ω-3 PUFAs towards reduced mortality and hospitalization 
[137]. The OCEAN trial [138] showed that supplemented 
EPA + DHA in a 2:1 ratio (four capsules of 400/200 EPA/
DHA 500 mg per capsule daily) and EPA alone (four cap-
sules of almost pure EPA 500 mg per capsule daily) for 
12 weeks led to improved cognitive depressive symptoms 
related to HF. A clinically relevant improvement in physical 
function was also reported [138], given that the HF popula-
tion was composed of 35% patients with HFpEF [90].

Protein supplementation (1.2 g/kg bodyweight per day) 
associated with low-intensity exercise in 23 obese HFpEF 
patients for 12 weeks showed benefits on physical and car-
diovascular function [139]. In another RCT in a mixed HF 
population (NCT02240511), branched-chain amino acid 
(BCAA) supplementation (10 g daily) for 3 months was 
associated with resistance exercise (RE) [140]. BCAAs are 
supposed to have an anabolic effect in HF patients, acting as 
“fuel” during exercise and maintaining muscle mass metab-
olism [141]. The study did not find benefits from BCAA 
supplementation and beneficial effects in  VO2 peak were 
attributed to resistance exercise program [140].

Dietary regimens

Dietary regimen studies tested the effectiveness of manip-
ulation of foods and beverages composing the entire diet 
regimen.

The GOURMET-HF trial [142], including both HFrEF 
and HFpEF patients, demonstrated that the Dietary Approach 
to Stop Hypertension (DASH)/sodium-restricted (SDR) diet 
has a favorable trend in rehospitalization at 30 days. Other 
studies [143, 144] confirm the effectiveness of the DASH/
SDR diet in treating hypertension, reducing 24-h systolic 
and diastolic BP, and improving diastolic LV relaxation, 
chamber stiffness, and ventricular-arterial coupling in 
HFpEF patients. The DASH-DHF 2 trial (NCT01942395) 
has been designed to confirm the findings of earlier studies 
in HFpEF patients with history of hypertension. Another 
clinical trial (NCT05236413) has been recently designed to 
evaluate the effects of the DASH diet combined with high-
intensity interval training (HIIT).

The effects of a low-energy diet (LED) in reduction of 
myocardial steatosis and improving of diastolic filling in 
T2D are well known [145]. LED through a low-energy 
meal replacement plan (MRP) has been proposed as an 
alternative to achieve weight loss and improve cardiovas-
cular outcomes. This dietary pattern comprises an average 
of approximately 810 kcal/day (30% protein, 50% carbo-
hydrate, and 20% fat) [146]. Low-energy MRP leads to 
weight loss, improvement of diabetes-related cardiometa-
bolic risk [147], and reverse of cardiovascular remodeling 
in obese adults with T2D [146]. The ALLEVIATE trial 

aims to evaluate the impact of low-energy MRP on symp-
tomatology, physical activity, and QoL in patients with 
HFpEF and diabetes (NCT04173117). The AMEND trial 
(NCT05887271) is currently evaluating the results of low-
calorie replacement plan in obese HFpEF adults.

The ketogenic diet (KD) is widely adopted to reach weight 
loss through increased lipolysis [148]. A recent study in a pre-
clinical setting [149] showed that ketone supplementation can 
ameliorate the HFpEF phenotype in mice. Ketone body usage 
in HFrEF patients showed beneficial hemodynamic effects 
[150], and clinical studies in HFpEF are awaited. However, 
caution is needed because of evidenced detrimental effects 
of KD on cardiovascular health, raising circulating FA levels, 
which contribute to cardiac lipotoxicity and adversely modi-
fies cardiac muscle energy metabolism [151]. An on-going 
RCT (NCT04235699) is designed to evaluate the effects of a 
low carbohydrate KD on exercise tolerance in patients with 
HFpEF. Another on-going trial (NCT06081543) is designed 
to evaluate the effects of a low carbohydrate KD versus a 
low-fat diet on exercise tolerance in participants with HFpEF 
and diabetes, pre-diabetes, or MetS, or obesity. A prospective 
pilot study (NCT04942548) aims to examine the impact of 
low carbohydrate KD on functional and clinical outcomes, 
and QoL in patients with HFpEF and related pulmonary 
hypertension HFpEF (PH-HFpEF).

The Mediterranean diet (MedDiet) indicates a dietary 
pattern including daily consumption of non-refined cereals, 
olive oil as the principal source of lipids, moderate intake of 
fish, poultry, potatoes, eggs, and sweets; monthly consump-
tion of red meat, and regular physical activity [152]. The 
diet involves moderate consumption of alcohol with meals, 
preferably red wine [152]. Excess alcohol intake might con-
tribute to development of HFpEF and hypertension related 
organ damage [153, 154]. MedDiet is composed of bioactive 
molecules, such as ω-3 PUFAs (e.g., EPA, DHA), MUFAs 
(e.g., oleate), and polyphenols, which confer cardioprotec-
tive effects [152]. The MEDIT-AHF trial observed that a 
greater adherence to MedDiet was associated with a signifi-
cant reduction in HF hospitalizations following an admission 
for acute HF, although not with reduced long-term mortality 
[155]. The PREDIMED trial revealed the positive effects 
of MedDiet on systemic inflammation markers in patients 
with HF and MetS [156, 157]. The Hellenic Heart Failure 
Study, which included 38% of patients with HFpEF, con-
firmed these positive effects, opening new horizons about 
its potential benefits [158].

Other dietary regimens might have a positive impact on 
HFpEF. For instance, plant-based diets such as vegan, lacto-
ovo vegetarian, and pesco-vegetarian offer positive effects 
on cardiometabolic health [159]. Vegetarian diets reduce BP, 
blood glucose, and lipids levels, with a positive impact on 
inflammation and body weight [159]. The effects of vegetar-
ian diets in HFpEF should be further explored.
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In summary, dietary management for HFpEF exhibits 
various effects on cardiovascular and metabolic health. 
Modulation of specific nutrients or manipulation of body 
composition with CR hold promise but require further vali-
dation to pave the way for tailored dietary interventions. 
Dietary supplementation and regiment studies in HFpEF 
have, to date, yielded mixed results. While partially dietary 
supplementation or regiments show promise, more targeted 
and extensive studies are required to establish their efficacy.

Physical activity in HFpEF

The American College of Cardiology (ACC)/American 
Heart Association (AHA) guidelines include a Class 1 rec-
ommendation (level of evidence A) for exercise training in 
patients with HF, without a distinction between HFpEF and 
HFrEF [160], although the association between physical 
activity and HFpEF is stronger than with other forms of HF 
[161]. Evidence suggests amelioration of diastolic function, 
CRF, exercise capacity, and quality of life (QOL) with exer-
cise training in HFpEF [162–164]. Other studies reported 
reduction in the hospitalization [165] or fewer cardiac events 
[166] after exercise interventions in HFpEF. Importantly, a 
meta-analysis of 6 RCTs [167] reported no exercise-related 
major adverse events demonstrating the safety of exercise 
training.

Common indicators of CRF are  VO2 peak (mL/kg/min) 
and 6MWD, which represents a valid practical alternative 
[168].  VO2 peak measures the ability to transport (cardiac 
output) and use (arteriovenous O2 difference) oxygen and 
is a strong predictor of patients’ functional capacity with 
significant prognostic value [169, 170]. HFpEF patients pre-
sent a similar  VO2 peak to that in age-matched patients with 
HFrEF, which is severely reduced (by around 30%) when 
compared with age-matched healthy individuals [171].

Exercise intolerance and skeletal muscle 
dysfunction

HFpEF-related-cardiometabolic alterations are linked 
to worse physical fitness [2]. Patients with HFpEF often 
exhibit exercise intolerance (EI) and exertional symptoms 
[172], which are linked to limited  O2 transport and utiliza-
tion due to central and peripheral mechanisms [173] and 
associated with concentric remodeling [174]. Central and 
peripheral alterations include cardiac (blunted stroke vol-
ume augmentation, chronotropic incompetence, exagger-
ated increase in filling pressures); pulmonary (pulmonary 
vascular remodeling, impaired gas exchange, pulmonary 
hypertension); vascular (central artery stiffness, reduced 
peripheral artery vasodilator response, microvascular 
dysfunction); and skeletal muscle (reduced mass, excess 

adipose infiltration, mitochondrial dysfunction) altera-
tions [170]. The latter leads to reduced aerobic exercise 
capacity of patients with HFpEF, as assessed by 6MWD 
and  VO2 peak. Moreover, compromised physical activity 
and HFpEF-related EI are associated with poor QoL and 
clinical outcomes and higher incidence of hospitalization 
[175].

HFpEF-related EI is partly attributed to skeletal mus-
cle dysfunction. Skeletal muscle structure and function in 
HFpEF are involved in sarcopenic obesity (SO), which is 
defined as the coexistence of excessive BMI and low mus-
cle mass with multiple comorbidities, excessive visceral 
adiposity, and heightened systemic inflammation [176]. SO 
exacerbates cardiometabolic risk, imposing a substantial 
burden on physical activity and poor QoL [177]. Stratify-
ing HF patients by BMI and body composition could help 
identify those with SO, where targeted lifestyle interven-
tions to maintain or increase lean mass might be clinically 
beneficial [178].

HFpEF-related skeletal muscle dysfunction is similar to 
what is described for HFrEF, and it is not merely a conse-
quence of deconditioning since it develops even when levels 
of physical activity are maintained during HF development 
[179, 180]. The pattern of skeletal muscle abnormalities dif-
fers from deconditioning, especially as regards fiber-type 
shift [170]. Abnormal skeletal muscle mitochondrial function 
[181–183] linked to a perturbed MuSCs homeostasis, involv-
ing Hedgehog and apelin pathways signaling has been found 
[184]. Blunted overload-induced myofiber growth of skel-
etal muscle is reported in HFpEF despite adequate physical 
stimulation and ascribed in part to mitochondrial dysfunction 
[97]. Thus, patients with HFpEF show reduced mitochondrial 
content and skeletal muscle type I fiber. This contributes to a 
faster rate of high-energy phosphate depletion during exercise 
and impaired recovery afterward, as assessed by a study with 
phosphorous magnetic resonance spectroscopy [181].

Skeletal muscle metabolic abnormalities are linked 
to functional limitations of patients with HFpEF. On the 
other hand, evidence suggests that targeting skeletal mus-
cle metabolism might be a promising approach to improv-
ing the EI of HFpEF patients [181]. Exercise training leads 
to peripheral adaptations, such as increased mitochondrial 
density and function, myoglobin content, capillary density, 
and blood flow redistribution [185]. Although no significant 
changes to central artery stiffness are reported, peripheral 
benefits are observed [94, 163, 186]. Given the high plastic-
ity and predisposition in skeletal muscle [187], increased 
 VO2 peak from exercise training results in increased diffu-
sion capacity and oxygen extraction by the exercising mus-
cles [185, 188]. In particular, aerobic training conducted 
alone or combined with strength training for 3 to 6 months 
resulted in a safe and effective therapy and enhanced aerobic 
capacity, endurance, and QoL in HFpEF patients [189].
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Exercise interventions modalities and outcomes

A recent scientific statement from ACC/AHA analyzed data 
of the 11 latest RCTs on supervised exercise training (SET) 
for chronic HFpEF subjects [170]. Training approaches 
range from walking and stationary cycle ergometry to high-
intensity interval training (HIIT), strength training, and 
dancing in both facility setting and home-based training 
[170]. SET generally occurred 3 sessions per week, from 1 to 
8 months, with intensity from 40 to 90% of exercise capacity 
and individual sessions from 25 to 60 min [170]. SET signif-
icantly ameliorates 6MWD and baseline peak  VO2 by 14%, 
compared to a reduction in baseline peak  VO2 by 0.2% in 
the control group [170]. For comparison, an increase in peak 
 VO2 of 6–7% is considered clinically meaningful in patients 
with HFrEF [190, 191]. However, effects on QoL have been 
mixed, with some studies concluding no benefits and others 
demonstrating improved QoL scores [170]. The same applies 
to cardiovascular and peripheral parameters, showing mixed 
data among RCTs. Improvements in diastolic function have 
been demonstrated in some studies, whereas no changes are 
reported by other investigations [170]. However, the authors 
conclude that the strength of currently available data on SET 
and the sparsity of effective therapies for HFpEF provide the 
rationale for increasing efforts to promote exercise-based 
therapies for patients [170].

HIIT has recently emerged as an alternative to moderate-
intensity continuous training (MICT) in cardiac rehabilita-
tion [192]. HIIT resulted as the best exercise modality in 
improving VȮ2 peak and QoL in a period of about 16 weeks, 
followed by low intensity training (LIT) with a low-calorie 
diet as regards effectiveness [193]. HIIT consists of repeated 
sessions of brief and intermittent exercise that induce ≥ 85% 
of V ̇O2 peak, alternated by sessions of rest or LIT for recov-
ery [194, 195]. However, LIT — continuous exercise at a 
gentle pace, such as walking, light cycling, or slow swim-
ming — with a low-calorie diet resulted as the best lifestyle 
change in improving 6MWD [193]. Other studies reported 
the beneficial effects of HIIT in patients with cardiometa-
bolic disorders and chronic diseases, suggesting its effective-
ness in improving metabolic health [196–198]. However, the 
OptimEx-Clin study [199] found no statistically significant 
differences at 3 months in V ̇O2 peak by comparing HIIT 
to moderate intensity continuous training (MICT). Besides 
this, the findings did not support either HIIT or MICT com-
pared with guideline-based physical activity for patients 
with HFpEF [199].

In summary, exercise training is highly recommended for 
HFpEF patients, ameliorating diastolic dysfunction, CRF, 
exercise capacity, and QoL, while reducing hospitalizations 
and bringing peripheral beneficial effects, particularly in skel-
etal muscle. Patients with HFpEF often experience EI due 
to multiple systemic alterations. In this context, the aerobic 

capacity and endurance of patients may be enhanced with 
exercise training, utilizing HIIT as the most effective exercise 
modality.

Future perspectives

The relationship between lifestyle interventions and cardio-
metabolic HFpEF seems to be stronger than in other forms of 
HF. Given this, dietary interventions can/should be targeted on 
the metabolic profile of HFpEF patients for precision medicine 
approaches, to optimize dietary plans considering the unique 
metabolic disturbances of each patient. For example, as gut 
microbiome influence in HFpEF is increasingly recognized 
[200], future dietary interventions may include strategies to 
modify gut microbiome composition, to enhance its beneficial 
effects on systemic inflammation and altered metabolism.

The benefits of CR and intermittent fasting in improving 
metabolic health and inflammation are also emerging. Future 
studies may focus on optimizing protocols for patients with 
HFpEF, determining the most effective duration and fre-
quency of fasting periods. Moreover, the nutraceutical prop-
erties of some food components reveal potential benefits, 
targeting specific pathophysiological mechanisms in HFpEF, 
such as oxidative stress and inflammation. In this regard, 
further studies on the effect of polyphenols in HFpEF are 
required, considering their anti-inflammatory and antioxi-
dant properties [201, 202]. Similarly, further investigations 
should also focus on the effects of spermidine due to its anti-
inflammatory and cardioprotective properties.

Combined aerobic and resistance training could pro-
vide synergistic effects for patients with HFpEF. Different 
exercise modalities may be integrated to target both cardio-
vascular and muscular health, enhancing both cardiometa-
bolic and physical function. HIIT — which emerges as the 
most effective exercise modality — shows superior benefits 
in improving exercise capacity and QoL in patients with 
HFpEF. Future studies may refine HIIT protocols, including 
intensity and duration to maximize advantages and ensure 
safety for patients. Importantly, lifestyle intervention stud-
ies should consider and further investigate the long-term 
adherence of patients, which remains a challenge and may 
attenuate lifestyle intervention benefits.

Conclusion

Systemic inflammation and metabolic derangements are the 
main pathophysiological characteristics of HFpEF. Dietary 
and exercise interventions play a pivotal role in managing 
both features. Control of body weight, dietary plans, and 
regular physical activity can significantly improve clinical 
outcomes in patients with HFpEF. A better understanding of 
lifestyle intervention modalities will greatly help researchers 
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and clinicians in the management of patients with HFpEF, 
considering the formulation of multidisciplinary treatment 
programs. In this perspective, the combination of lifestyle 
interventions with pharmacological therapies may plausibly 
show greater effects.
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