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Abstract 

Background  Sex differences exist in the prevalence and progression of major glomerular diseases. Podocytes are 
the essential cell-type in the kidney which maintain the physiological blood-urine barrier, and pathological changes 
in podocyte homeostasis are critical accelerators of impairment of kidney function. However, sex-specific molecular 
signatures of podocytes under physiological and stress conditions remain unknown. This work aimed at identifying 
sexual dimorphic molecular signatures of podocytes under physiological condition and pharmacologically chal‑
lenged homeostasis with mechanistic target of rapamycin (mTOR) inhibition. mTOR is a crucial regulator involved 
in a variety of physiological and pathological stress responses in the kidney and inhibition of this pathway may there‑
fore serve as a general stress challenger to get fundamental insights into sex differences in podocytes.

Methods  The genomic ROSAmT/mG-NPHS2 Cre mouse model was used which allows obtaining highly pure 
podocyte fractions for cell-specific molecular analyses, and vehicle or pharmacologic treatment with the mTOR 
inhibitor rapamycin was performed for 3 weeks. Subsequently, deep RNA sequencing and proteomics were per‑
formed of the isolated podocytes to identify intrinsic sex differences. Studies were supplemented with metabolomics 
from kidney cortex tissues.

Results  Although kidney function and morphology remained normal in all experimental groups, RNA sequenc‑
ing, proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochon‑
drial, translation and structural transcripts, protein abundances and regulation of metabolic pathways. Interestingly, 
rapamycin abolished prominent sex-specific clustering of podocyte gene expression and induced major changes 
only in male transcriptome. Several sex-biased transcription factors could be identified as possible upstream regula‑
tors of these sexually dimorphic responses. Concordant to transcriptomics, metabolomic changes were more promi‑
nent in males. Remarkably, high number of previously reported kidney disease genes showed intrinsic sexual dimor‑
phism and/or different response patterns towards mTOR inhibition.
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Conclusions  Our results highlight remarkable intrinsic sex-differences and sex-specific response patterns 
towards pharmacological challenged podocyte homeostasis which might fundamentally contribute to sex differ‑
ences in kidney disease susceptibilities and progression. This work provides rationale and an in-depth database 
for novel targets to be tested in specific kidney disease models to advance with sex-specific treatment strategies.

Highlights 

 

•	 First study to  describe sexually dimorphic molecular signature of  podocytes, “gate-keepers” of  the  kidney glo‑
merular filtration barrier.

•	 Large number of known kidney-disease related genes are newly identified for intrinsic sexual dimorphic expres‑
sion as well as after pharmacological intervention with rapamycin.

•	 Male podocytes appear more susceptible to transcriptomic changes.
•	 Metabolomics supports higher functional consequences of mTOR inhibition on protein synthesis and impaired 

energy balance in male kidneys.
•	 Study provides an in-depth database for further research in the field of highly sexually dimorphic kidney diseases.
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Plain Language Summary 

The global burden of chronic kidney diseases is rapidly increasing and is projected to become the fifth most com‑
mon cause of years of life lost worldwide by 2040. Sexual dimorphism in kidney diseases and transplantation is well 
known, yet sex-specific therapeutic strategies are still missing. One reason is the lack of knowledge due to the lack 
of inclusion of sex as a biological variable in study designs. This work aimed at identification of molecular signatures 
of male and female podocytes, gate-keepers of the glomerular filtration barrier. Like cardiomyocytes, podocytes are 
terminally differentiated cells which are highly susceptible towards pathological challenges. Podocytes are the deci‑
sive cell-type of the kidney to maintain the physiological blood-urine barrier, and disturbances of their homeostasis 
critically accelerate kidney function impairment. By help of a genomic mouse model, highly purified podocytes were 
obtained from male and female mice with and without pharmacological challenge of the mechanistic target of rapa‑
mycin (mTOR) signaling pathway which is known to be deregulated in major kidney diseases. Deep RNA sequencing, 
proteomics and metabolomics revealed strong intrinsic sex differences in the expression levels of mitochondrial, 
translation and structural transcripts, protein abundances and regulation of metabolic pathways which might funda‑
mentally contribute to sex differences in kidney disease susceptibilities and progression. Remarkably, high number 
of previously reported kidney disease genes showed so far unknown intrinsic sexual dimorphism and/or different 

response patterns towards mTOR inhibition. Our work pro‑
vides an in-depth database for novel targets to be tested 
in kidney disease models to advance with sex-specific 
treatment strategies.

Background
The maintenance of podocyte homeostasis critically 
determines kidney function during glomerular disease 
development and progression [1]. Podocytes are ter-
minally differentiated cells of the glomerulus and rep-
resent the essential cell-type to maintain the integrity 
of the glomerular filtration barrier. A large body of evi-
dence demonstrates sex differences in protein filtration 
and sex-different susceptibilities towards ischemic injury 

[2–5]. Male gender has been associated with more rapid 
progression and worse outcome in major chronic kid-
ney diseases [6–9]. Sex differences in podocyte biology 
might play a decisive role in these processes. The need 
for addressing sex differences in studies of health-related 
research has been requested for more than two decades 
[10, 11]. Now, discussing sexual aspects has become stat-
utory in large grant applications [12–15] and requirement 
in clinical studies [11]. Despite these regulatory efforts 
and the well-known sex differences in kidney physiol-
ogy and pathology, research addressing this issue on the 
molecular level of podocytes remains sparse [16]. There-
fore, this study was designed to achieve deeper insights 
into sexual dimorphism of the molecular signature of 
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podocytes under normal homeostatic conditions and in 
response to inhibition of the mechanistic target of rapa-
mycin (mTOR) signaling pathway with rapamycin.

The mTOR pathway is an important factor in the con-
trol of podocyte structure and function [17–19]. A well-
balanced activation of this signaling pathway is crucial 
for compensatory mechanisms in diabetic nephropathy 
and focal segmental glomerulosclerosis [20]. In addition, 
mTOR inhibitors are commonly used as immunosup-
pressants [21]. Yet, it is still unknown why some kidney 
transplant patients develop de novo proteinuria while 
the majority of recipients of other solid organs improve 
their kidney function when on this medication. Further-
more, growing evidence suggests that mTOR inhibition 
improves physiological parameters associated with aging 
and aging-related disorders, thereby favoring longevity, 
interestingly to a higher extent in females compared to 
males [22–28]. We have recently reported sexual dimor-
phism in mTOR signaling in cardiomyocytes, with loss 
of cardioprotective phenotype in response to rapamycin 
restricted to females [29]. Like cardiomyocytes or neu-
rons, podocytes have limited regenerative capacity. A 
deeper understanding of cell-type specific mechanisms 
and sex-specific responses to rapamycin might have 
important clinical consequences in the era of person-
alized medicine. Furthermore, disturbances in mTOR 
signaling occur in many kidney pathologies [17, 20, 30]. 
By using a pharmacological challenge targeting mTOR 
pathway with rapamycin we aimed to elucidate both, 
potential pathologically and physiologically relevant sex-
specific responses. Using unbiased omics approaches, 
we provide detailed genomic data by deep sequencing of 
male and female podocytes under homeostatic condition 
and in response to mTOR inhibition. These studies were 
complemented with podocyte proteomics and metabo-
lomics. The data reveal a so far unknown number of sex-
ually dimorphic podocyte genes reported to be involved 
in the pathogenesis of kidney diseases and novel aspects 
of sexually dimorphic genomic and metabolic responses 
towards mTOR inhibition. These comprehensive data 
provide novel targets and rationale for future specific dis-
ease model studies in the field of sexually dimorphic glo-
merular disease manifestation and progression.

Methods
Mice
Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J mice 
were purchased from The Jackson Laboratory (Bar Har-
bour, Massachusetts, USA) and crossed with Tg(NPHS2-
cre)295Lbh mice were bred and genotyped as previously 
reported [31]. Mice were housed in an SPF facility with 
free access to chow and water and a 12-h day/night cycle. 

All animal experiments were conducted according to 
standards and procedures approved by the local Animal 
Care and Use Committee (LaGeSo Berlin G0241/2015). 
Furthermore, the ARRIVE reporting guidelines were 
used [32].

Experimental model
A total of 76 ROSAmT/mG-NPHS2  Cre mice (38 male 
and 38 female) aged 12–18  weeks were treated with 
either rapamycin (LC Laboratories, Woburn, Massa-
chusetts; 1.5  mg rapamycin/kg BW administered intra-
peritoneally every third day) or vehicle over a period of 
3 weeks. Urine, serum and cortex kidney tissue were har-
vested at day 21 of the treatment period.

Podocytes were isolated from 40 mice (male and 
female, 9 of each sex treated with rapamycin and 11 of 
each sex with vehicle) according to Boerries et  al., [31] 
with slight modifications). Kidney cortex was digested 
and podocytes were isolated using fluorescence-activated 
cell sorting (FACS). For further details of the podocyte 
isolation procedure, see the Supplementary Methods.

The isolated podocytes from these 40 mice were allo-
cated to RNA sequencing (podocytes from 22 mice), 
qPCR for validation of RNA sequencing (podocytes 
from 12 mice) and proteomics (podocytes from 6 mice). 
Podocytes from different mice were not pooled for those 
methods so that each isolated podocyte sample from one 
individual mouse represented one biological replicate. 
Due to restricted amount of podocyte material from one 
mouse each biological replicate could therefore only be 
used for one of those methods. The other 36 mice (from 
the 76 ROSAmT/mG-NPHS2 Cre mice) were used as fol-
lows: 8 mice were allocated to electron microscopy. From 
the remaining 28 mice, kidney cortex from one kidney 
was directly snap frozen in liquid nitrogen and later used 
for metabolomics and protein extraction, the other kid-
ney was either perfused with paraformaldehyde and later 
used for immunohistochemistry or directly embedded 
for cryosections. Further details of mice sex and treat-
ment for the different experiments including numbers 
and reasons of excluded samples if applicable are speci-
fied in the respective methods´ sections of the main 
manuscript and/or in the Supplementary Methods. Fur-
thermore, numbers of biological replicates per analysis 
are indicated in the figure legends.

RNA sequencing and transcriptomics analysis
For details regarding sample preparation of native podo-
cytes for transcriptomics analysis, see the Supplemen-
tary Methods. Poly-A selected mRNA (NEB Next Ultra 
II Directional RNA Library Prep Kit) was used to gener-
ate cDNA libraries and deep RNA sequencing (2 × 75 bp, 
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paired-end) was carried out on an Illumina HiSeq4000 
system. 4–6 biological replicates of each experimental 
group were analyzed. Sequencing performance provided 
36–46 million paired-end reads per sample detecting 84% 
of all transcripts uniquely mapping sequences aligned to 
only one single gene within the genome.

For further details on differential expression computa-
tions and bioinformatic algorithms and packages, as well 
as validation experiments using qPCR, see Supplemen-
tary Methods and Supplementary Figure S3.

Proteomics analysis
For details regarding sample preparation of native podo-
cytes for proteomics analysis, see the Supplementary 
Methods. Proteomics data acquisition was performed 
on a quadrupole Orbitrap hybrid mass spectrometer 
(QExactive Plus, ThermoFischer) coupled to an easynLC 
exactly as previously described [33]. Quantitative analysis 
was performed using MaxQuant from individual podo-
cyte isolations of 3 male and 3 female vehicle mice. For 
further details regarding the bioinformatics analysis see 
the Supplementary Methods.

Validation of proteomics was performed by western 
blotting of podocyte-specific proteins. See Supplemen-
tary Figure S4.

Western blot and histological analyses, and electron 
microcopy
Kidney cortex tissue was used for examination of protein 
expression and phosphorylation using specific antibod-
ies and immunoblotting. In addition, studies on kidney 

morphology and ultrastructure were performed using 
standard tissue preparations or as reported previously 
[34]. For used antibodies and stains and further prepara-
tive details please see Supplementary Methods.

Metabolomics analysis
Metabolomics was performed in collaboration with 
Kirwan lab, BIH Metabolomics Platform, Berlin Insti-
tute of Health at Charité–Universitätsmedizin Berlin, as 
described previously [35]. For tissue extractions, flash 
frozen cortex-enriched kidney tissue from vehicle- and 
rapamycin-treated male and female mice were used (5–7 
biological replicates for each experimental group). For 
details regarding sample preparation, metabolomics and 
bioinformatic analyses, see the Supplementary Methods.

Statistics
For quantitative data, statistical tests (Wilcoxon ranked 
sum test, and univariate linear regression using R pack-
ages, R version 4.0.0) and Prism (v9.0, Graphpad) were 
performed as indicated. In general, P-value < 0.05 was 
considered significant. For large-scale data, correction 
for multiple testing was performed as described in the 
respective omics method sections. The number of bio-
logical replicates and statistical tests used for analysis are 
further indicated in the figure legends.

Results
Deep transcriptomic data of male and female podocytes
To characterize the sex-specific podocyte transcriptome 
under homeostatic conditions and in response to mTOR 
inhibition, male and female ROSAmT/mG-NPHS2 Cre 
mice were either treated with vehicle or rapamycin for 

(See figure on next page.)
Fig. 1  Experimental design, functional and histological model characterization. a Schematic representation of the experimental model. 76 
male and female ROSAmT/mG-NPHS2 Cre mice were injected with rapamycin into the peritoneal cavity at a concentration of 1.5 mg/kg/
BW or vehicle (DMSO) every third day during the experimental period. After three weeks, mice were sacrificed, and kidneys either flash frozen 
for histology and metabolomics (n = 28) or were perfused for electron microscopy (n = 8; 2 biological replicates per group) or used for podocyte 
isolation for qPCR and RNA sequencing (n = 34) and proteomics (n = 6). b Albumin/Creatinine ratio showed normal kidney function after three 
weeks of rapamycin in both, male and female mice (male vehicle n = 6; male rapamycin n = 11; female vehicle n = 6; female rapamycin n = 9). 
c Representative immunofluorescent images of cryo-sections of kidneys from ROSAmT/mG-NPHS2 Cre− and ROSAmT/mG-NPHS2 Cre+ 
mice. Membrane-targeted GFP genetically labels NPHS2-expressing cells (podocytes) green, while all the other kidney cells are labelled red 
with TomatoRed (tdTomato). Scale bars, 150 µm. d Representative immunofluorescent images of cryosections of kidneys from ROSAmT/mG-NPHS2 
Cre− and ROSAmT/mG-NPHS2 Cre+ mice with/without indirect immunofluorescent co-staining for Synaptopodin (red). Membrane-targeted GFP 
genetically labels NPHS2-expressing cells (podocytes) green in Cre+ mice. Nuclei were stained with DAPI. Scale bars, 150 µm.​e Representative 
Periodic Acid-Schiff stainings (upper panel) and Sirius red stainings (middle panel) showing normal histomorphology with no increase in fibrosis 
after three weeks of rapamycin treatment in both, male and female kidney cortex tissues. Electron microscopy graphs (lower panel) displayed 
normal podocyte structure, foot processes, cell body, glomerular basement membrane and slit diaphragm in both sexes irrespective of treatment. 
Scale bars, 50 µm. f Representative western blots using protein extracts of podocyte-enriched kidney cortex tissues showing efficient mTORC1 
inhibition in both, male and female kidneys after three weeks of rapamycin treatment as analyzed by mTORC1 downstream phosphorylation 
of p70S6K at Thr389 (pp70S6k) at Thr389 (n = 4–5 biological replicates per group). Bar graphs below display results of densitometric analysis 
with normalization of values to GAPDH and p70S6k. Mann–Whitney test was used to determine significant differences between vehicle 
and rapamycin treatment groups in each sex, * P-value < 0.05, ** P-value < 0.01
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three weeks and highly purified podocytes were obtained 
using fluorescence-activated cell sorting [31] (Fig.  1a, c, 
d). Trough concentrations of rapamycin were monitored 
and were within the range of clinically approved thera-
peutic levels [36] in all treated mice; 24.62 ± 3.45 and 
21.6 ± 1.9 ng/ml, in male and female, respectively. Struc-
tural and functional kidney parameters are reported in 
Supplementary Table  S1. Female mice displayed lower 
kidney and lower body weight compared to male mice. 
Rapamycin treatment induced slight non-significant 
body weight losses in both sexes. However, kidney/body 
weight ratio only significantly decreased in female rapa-
mycin mice compared to female vehicle mice. Albumin 
and creatinine clearance were within the normal range 
in all experimental groups at the end of the experimental 
period (Supplementary Table S1, Fig. 1b).

Efficient mTORC1 inhibition was confirmed in kidney 
cortex tissues in both sexes (Fig. 1f ). Interestingly, at the 
end of the treatment period none of the mice showed 
pathological alterations in kidney function, kidney cor-
tex structure and podocyte morphology or ultrastructure 
(Supplementary Table S1, Fig. 1e).

In contrast to the unchanged physiological and struc-
tural findings, RNA sequencing revealed a significant 
separation of male and female transcriptomes under 
vehicle homeostatic conditions and remarkable sex-spe-
cific response patterns towards rapamycin treatment. 
Transcriptional responses to mTOR inhibition surpris-
ingly abolished the clear separation by sex as demon-
strated in principal component 1 (PC1) of principal 
component analysis (PCA) (Fig. 2a).

Overall, 1,569 genes were intrinsically significantly 
differentially expressed (DE) in male and female podo-
cytes (adjusted P-value < 0.05) (Fig. 2b, c Supplementary 
Table S2), 886 genes were significantly higher expressed 
in female, 683 in male.

A heatmap of the top 100 of intrinsically sexually 
dimorphic genes (adjusted P-value < 0.01, expressed 
with Transcript per Million (TPM) > 1 in all biologi-
cal replicates, therefore without the four only in male 
expressed Y-chromosomal genes Kdm5d, Eif2s3y, Uty 
and Ddx3y) is shown in Fig. 2d. Genes presented in the 
heatmap are listed in Supplementary Table  S3, sheet 
Top100_DE_veh_p < 0.01_TPM > 1.

Concordant to visualization of loss of clear sex differ-
ences after rapamycin treatment in PCA (Fig.  2a), MA 
plot of distribution of sex-significantly DE genes in male 
and female rapamycin treated podocytes revealed only 
few sexually dimorphic genes, including mainly sex chro-
mosomal genes (Fig. 2e).

To exclude contaminations with different cell types of 
the glomeruli during the purification process as a cause 
for the strong intrinsic sexual dimorphism, we compared 
our podocyte transcriptome with available kidney single 
cell data [37] (Supplementary Figure S2b). Furthermore, 
we matched our sequencing results to different podo-
cyte specific RNAseq datasets [31, 38–40] and found 
high conformity between podocyte-specific transcripts 
further proving validity of the method (Supplementary 
Figure S2c). Additional experimental validation of tran-
scriptomic data was performed by qPCR using independ-
ent cell isolations (Supplementary Figure S3).

Sexual dimorphism has been reported to be largely 
determined by the sex chromosomes genotype of the 
organism or sex hormonal regulations [41–43]. However, 
we could not relate the strong sexually dimorphic genes 
to specific positions on the sex chromosomes (apart from 
four genes uniquely expressed on male Y-chromosome). 
Interesting sub-clustering was observed, probably due to 
the mitochondrial expression which approximately split 
vehicle from rapamycin samples of each sex (Supplemen-
tary Figure S2d).

Fig. 2  Characterization of the intrinsic sexually dimorphic podocyte transcriptome. a Principal component analysis of the top 500 most varying 
genes revealed sex-dependent separation of transcriptomes between vehicle mice (blue color indicates male podocytes, green color female 
podocytes; vehicle groups are represented by circles, rapamycin-treated by triangles), n = 4 male and female vehicle each; n = 5 male rapamycin 
treated and n = 6 female rapamycin treated). b Venn diagram demonstrating common and unique significantly sex-differently expressed genes 
between indicated comparisons (brown: male vs. female vehicle-treated group, grey: male vs. female rapamycin-treated group, green: female 
rapamycin vs. female vehicle, blue: male rapamycin vs. male vehicle). c Scatter plot showing distribution of gene copy numbers of podocytes 
from vehicle groups as base mean normalized expression over all samples versus log2FC male vehicle/female vehicle. Colors indicate significance 
levels (red: adjusted P-value < 0.01, orange: adjusted P-value between 0.01 and 0.05, dark grey: adjusted P-value between 0.05 and 0.1, medium/light 
grey: non-significantly differently expressed). d Heatmap of the top 100 of intrinsically sexually dimorphic genes in male versus female podocytes 
(adjusted P-value < 0.01 and expressed with TPM > 1 in all biological replicates) The four Y-chromosomal genes (Kdm5d, Eif2s3y, Uty and Ddx3y) are 
not shown in this heatmap. Blue indicates decreased expression level, white no regulation, red increased gene expression level. These genes are 
listed with respective Log2FC and TPMs in the Supplementary Table S3, sheet Top100_DE_p < 0.01_TPM > 1. e Scatter plot showing distribution 
of gene copy numbers of podocytes from rapamycin groups as normalized counts per transcript versus log2FC male/female. Colors indicate 
significance levels (red: adjusted P-value < 0.01, orange: adjusted P-value between 0.01 and 0.05, dark grey: adjusted P-value between 0.05 and 0.1, 
medium/light grey: non-significantly differently expressed)

(See figure on next page.)
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To address possible sex hormonal regulations, we 
analyzed our intrinsically sexually dimorphic genes for 
known estrogen target genes [44, 45]. We found that 
out of more than 500 annotated genes corresponding 
to estrogen target genes pathways, 54 were intrinsi-
cally sexually dimorphic (37 up in male/17 up in female 

vehicle podocytes) (Supplementary Table  S4), whereas 
the vast majority of these reported estrogen target 
genes were not significantly sex-differently expressed. 
Furthermore, only 6 estrogen target genes (Daam2, 
Egf, Sgk3, Ago1, Il1r1, Tgfa) were significantly differen-
tially regulated by rapamycin treatment in males and 
only one in females (Ankrd33b). This indicates that a 
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large part of our observed sex-differences and sexually 
dimorphic responses to rapamycin in podocytes could 
not be attributed to direct genomic estrogen effects. 
Possible mechanism for sex-biased gene expression 
might also occur through sex-biased transcription fac-
tors (TFs) [43, 46]. We could identify 83 intrinsically 
sexually dimorphic transcriptional regulators (Supple-
mentary Table S5) which are important candidates for 
regulation of sexual dimorphic gene expression.

Functional characterization of the intrinsically sexually 
dimorphic podocyte transcriptome
Panther Protein Class categorization revealed that the 
GOs “Transporters”, “cytoskeletal protein”, “protein 
modifying enzymes/binding activity and transcriptional 
regulator" were the main significantly sexual dimorphic 
GOs. Further functional annotation of the DE genes 
(P-value < 0.05, ≥ 4 genes detected by panther gene ontol-
ogy (GO) slim) revealed that distinct GOs were enriched 
in either female or male podocytes. Major gene sets over-
expressed in females were related to “oxidation phos-
phorylation”, “translation” and “ribosome”, whereas in 
males “gene expression”, “kinase activity”, “cytoskeleton”, 
“actin cytoskeleton organization” and “cell junction” were 
enriched (Fig. 3, Supplementary Table S6).

Sexually dimorphic genes related to kidney diseases
Structural and functional integrity of the podocyte 
is strongly dependent on proper organization of its 
cytoskeleton and fulfillment of metabolic requirements, 
GO terms which appeared to be enriched in our sex DE 
analyses. To investigate clinical impact of these sexually 
dimorphic genes, we extended our analyses of intrin-
sically DE genes in podocytes to genes reported to be 
involved in the pathogenesis of kidney diseases. We 
used published data to determine any gene overlaps 
[47–58]. Out of 191 genes with described roles in kid-
ney diseases, 161 were expressed with an abundance of 
at least 1 TPM in all vehicle podocytes, among them 47 
genes with intrinsic significant sexual dimorphic expres-
sion (adjusted P-value < 0.05) (Fig.  4, Supplementary 
Table S7). Interestingly, only six out of these 47 intrinsi-
cally sexually dimorphic reported disease genes could 
be identified as estrogen target genes (Supplementary 
Table  S4). A heatmap of the expression levels of these 
estrogen target genes (Akt2, Ctsd, Egf, Igf1r, Kank1 and 
Daam2), as well as for other functional groups of intrin-
sically sex DE disease genes related to kidney disease are 
shown in Supplementary Figure S5. Respective genes 
are separately presented for transcriptional regulators, 
cytoskeleton-related genes, metabolism & protein turno-
ver and signaling and kinases.

Sex‑specific transcriptional changes induced by mTOR 
inhibition
We first analyzed the effects of rapamycin treatment in 
each sex separately. Remarkably, male podocytes showed 
after exclusion of rhythmic genes DE of 119 genes (63 
up/56 down, P-value < 0.05) and females only 2 DE genes 
(Fig. 5a). These data suggest that female podocytes may 
maintain a more stable transcriptome under the chal-
lenge of mTOR inhibition with rapamycin in contrast to 
male podocytes which underwent much more drastic 
shifts in expression level changes. Furthermore inter-
estingly, 87% of genes significantly upregulated by rapa-
mycin in males belonged to the female-biased genes and 
66% of the significantly downregulated genes in males 
were male-biased genes (Fig.  5b). This suggests that 
interference with mTOR signaling affected intrinsically 
sex-biased gene expression to a greater extent than sex-
independent gene expression.

Separate male and female subgroup analysis was 
undertaken of the intrinsically sex DE genes after rapa-
mycin treatment. This revealed that the most prominent 
changes after treatment involved the intrinsically sig-
nificantly different genes such as the sex different stress 
responses in genes related to “mTOR signaling”, “protein 
anabolic and catabolic process”, “oxidative phosphoryla-
tion”, “organization and regulation of cytoskeleton”, “cell 
adhesion”, “exosome and exocytosis” and “transcription 
factors” (Fig. 5c).

Further Gene set enrichment analysis (GSEA) of the 
complete male and female transcriptomes revealed 
male-biased downregulation of gene sets related to many 
signaling pathways, inflammation and metabolism in 
response to rapamycin (Supplementary Table  S8). In 
contrast, gene sets related to amino acid transport and 
metabolism appeared downregulated in both male and 
female podocytes, yet to a greater extent in males. We 
extended our analyses of effects of mTOR inhibition 
to canonical pathways´ activations in male and female 
podocytes with the use of QIAGEN IPA (QIAGEN Inc., 
https://​digit​alins​ights.​qiagen.​com/​IPA) [59]. Interest-
ingly, many of the pathways showed significant changes 
in only one sex or in opposite directions, such as gene 
sets related to TCA cycle, Granzyme A, PDGF, Paxillin 
and RAAS and Sirtuin signaling pathways (Supplemen-
tary Table S9).

To get functional insight into these sex-different 
pathway and gene set activations induced by mTOR 
inhibition, further upstream regulator analyses were 
performed. With a Z-score of <|2| and P-value of over-
lap < 0.05, a total of 115 and 55 potential upstream regu-
lators were identified in male and female, respectively 
(Supplementary Table  S9). Among them were several 
genes known to be involved in kidney diseases, such 

https://digitalinsights.qiagen.com/IPA
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GO term enrichment analysis of significant sexually dimorphic genes

Fig. 3  Functional characterization of significant sexually dimorphic genes. GO-slim Panther term enrichment analysis of the significantly 
overexpressed gene ontology terms of the 1,569 sex-DE genes for biological Process (upper in male, lower in female). (BP), molecular function (MF) 
and cellular component (CC). The size of the circles indicates the number of the significantly differently expressed genes in each GO (adjusted 
P-value < 0.05, FDR < 0.1)
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as Kdm5a, Rb1, Tead1, Xbp1 and Ppargc1α with so far 
unknown role as sexual dimorphism regulators [60–69].

Interaction effect analysis considering sex and treat-
ment resulted in only 28 DE genes, most of them only 
significantly altered in males (Fig.  5d, Supplemen-
tary Table  S2). Remarkably, 86% have been previously 
reported in relation to kidney pathologies and many of 
them are involved in cytoskeleton remodeling or repre-
sent transcriptional regulators.

Considering the fact that mTOR has important effects 
on immunity [70–72], we additionally focused on 

inflammation and immune aspects of the podocytes. We 
did not induce any inflammatory condition or immune 
disease in our model, thereby we did neither expect 
nor found high gene expression levels of cytokines and 
immune-related receptors in both, control and rapamy-
cin -treated mice. Along this line, we could not detect any 
lymphocyte infiltration in kidney cortex tissue in histo-
logical stainings of any of the four experimental groups. 
Nevertheless, in order to focus further on aspects of the 
“immune podocyte”, we merged our gene expression lists 
with genes related to immunity in podocytes as reported 
in Bruno et  al. [73] (see sex- and treatment related DE 
sublists of these genes presented in Supplementary 
Table  S10). Under these genes, we only found comple-
ment 3 (C3)  to be significantly sexually dimorphic with 
higher expression in male podocytes compared to female 
podocytes and a trend towards significant downregula-
tion of C3 in male in response to rapamycin treatment. 
Further, GSEA analysis showed that several GOs related 
to inflammation and immune response were regulated by 
rapamycin in both sexes, especially many of them signifi-
cantly downregulated in male after rapamycin (see Sup-
plementary Table  8, sheet “GOs related inflammatory 
and immune response”).

Characterization of the sexually dimorphic intrinsic 
podocyte proteome
Interestingly, proteomics analysis of isolated vehicle-
treated male and female podocyte proteins confirmed sig-
nificant enrichment of mitochondrial proteins in female 
podocytes (Fig.  6a, Supplementary Table  S11). Proteins 
with sex-differential expression (FC > 2) were further ana-
lyzed using EnrichR. Concordant with the transcriptome, 
females had, in addition to enrichment in mitochondrial 
proteins, increased cytoskeletal and cytoskeleton-reg-
ulating proteins (Supplementary Fig.  4), whereas major 
hits in male podocytes were related to transcription and 
proteostasis (Fig. 6b). The higher number of cytoskeletal 
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Fig. 4  Kidney disease-related genes. Volcano plot displaying 
known kidney disease-related genes with gene names indicated 
for intrinsically sexually dimorphic genes (adjusted P-value < 0.05, 
TPM > 1 in all vehicle podocytes): the y-axis shows the statistical 
significance measured by –log10 adjusted P-value, and the x-axis 
shows the log2FC of male versus female vehicle podocytes (> 1 
reflects higher than 2 FC in male podocytes; -1 means twofold lower 
in male podocytes). Each red point represents an individual gene 
that is intrinsically significantly higher expressed in male podocytes; 
each blue circle represents a specific gene intrinsically significantly 
lower expressed in male podocytes. (male vehicle n = 4, female 
vehicle n = 4, male rapamycin n = 5, female rapamycin n = 6)

(See figure on next page.)
Fig. 5  Sex-specific transcriptional changes induced by mTOR inhibition. a Volcano plots displaying rapamycin treatment effects in each sex 
separately (left graph representing results in male podocytes, right graph in female podocytes): the y-axis shows the statistical significance 
measured by –log10 adjusted P-value, and the x-axis shows the log2FC of rapamycin versus vehicle treated male, respectively rapamycin 
versus vehicle treated female podocytes (> 1 reflects higher 2 FC in rapamycin treated podocytes; -1 means twofold lower in rapamycin-treated 
podocytes). Each red point represents an individual gene that is significantly higher expressed in rapamycin-treated podocytes (adjusted 
P-value < 0.05); each blue circle represents a specific gene significantly lower expressed in rapamycin-treated podocytes. (male vehicle n = 4, female 
vehicle n = 4, male rapamycin n = 5, female rapamycin n = 6). b Table of by sex-bias grouped gene numbers significantly changed by rapamycin 
in each sex. c Graphs of sex-specific treatment changes of intrinsically sexually dimorphic genes for selected enriched GO terms. n = number 
of genes within specific term, significance levels * P-value < 0.05, ** P-value < 0.01, *** P-value < 0.001 as determined by Wilcoxon ranked sum 
test. (male vehicle n = 4, female vehicle n = 4, male rapamycin n = 5, female rapamycin n = 6). d Heatmap of the expression level and log2FC 
of significantly differently regulated genes by sex and treatment (interaction effect). Blue indicates decreased expression level, white no regulation, 
red increased gene expression level. (Each 4 biological replicates per group)
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Fig. 5  (See legend on previous page.)
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Fig. 6  Characterization of the sexually dimorphic intrinsic podocyte proteome. a Podocyte-specific proteomics. Female podocytes showed 
significantly higher expression of total mitochondrial proteins compared to male podocytes (n = 3 biological replicates per each vehicle group). 
b EnrichR analysis of proteins with sex-differential expression (FC > 2) showed major hits in terms related to transcription and protein translation/
turnover in male podocytes, whereas females had concordantly to the female transcriptome enrichment in mitochondrial proteins and increased 
cytoskeletal and cytoskeleton-regulating proteins. Left panel shows enriched terms for cellular component (CC), biological process (BP) and KEGG 
pathway (KEGG) in male podocytes, right panel respective enriched terms in female podocytes, adjusted P-value < 0.05, N = number of proteins 
within specific term. c Heatmap of the top 40 of intrinsically sexually dimorphic proteins in male versus female podocytes (adjusted P-value < 0.05) 
showed that a higher number of genes were enriched in female podocytes. Blue indicates decreased expression level, white no regulation, red 
increased gene expression level (n = 3 biological replicates per vehicle group)
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and cytoskeleton-regulating proteins in female compared 
to male podocytes suggest a higher biophysical resilience 
to adapt to mechanical forces in their environment and 
therefore better maintenance of glomerular function in 
females under stress conditions [49, 74, 75].

Concordant with transcriptomics, GO terms “oxida-
tive phosphorylation”, “Glycolysis”, “proteasome” and 
“mitochondria” were overrepresented in the dataset from 
female podocytes. Yet, as expected for comparisons of 
complex samples [76], the complete proteomes of male 
and female podocytes did not correlate strongly with 
their respective transcriptomes (Spearman rank coeffi-
cient in females: 0.43, in males: 0.39, p-values < 2.2e−16). 
Interestingly, the subsets of sexually dimorphic genes 
related to mitochondria/oxidative phosphorylation, cor-
related moderately with protein expressions in both, 
male and female podocytes (Spearman rank coefficient in 
females: 0.52, in males: 0.51, p-values < 2.1e−08). A heat-
map of the top 40 significant sex-differently expressed 
proteins is presented in Fig. 6c.

Sex differences in energy metabolism
GSEA of rapamycin effects on the whole male and 
female transcriptome had revealed that TCA cycle, car-
bohydrate derivative biosynthesis process and oxida-
tion phosphorylation as well as several other metabolic 
processes decreased in females whereas males mostly 

responded conversely (Supplementary Table  S8) sug-
gesting sex-different stress responses. This, together with 
the high number of sexually dimorphic mitochondrial 
and translational genes and proteins prompted us to fur-
ther study metabolic consequences of mTOR inhibition 
in male and female mice. Metabolomics was performed 
directly from podocyte enriched snap frozen kidney cor-
tex tissue to ensure valid results of the in  vivo changes 
induced by rapamycin. Data were analyzed to confirm 
correct metabolite annotation and for outliers (Sup-
plementary Methods). Sixteen statistically significant 
(p < 0.05) outliers were removed. As expected, concord-
ant with the well-known negative effect of mTOR inhibi-
tion on protein synthesis[77], significant accumulation of 
most amino acids occurred in both sexes, yet to a higher 
extent in males (P-value < 0.05) (Fig.  7a). In addition, 
metabolomics pointed to intrinsically increased glyco-
lytic metabolites in female compared to male. Rapamy-
cin reduced glycolysis and TCA cycle in both male and 
female. However, this reduction in response to rapamy-
cin was only significant in females (Fig. 7b, Supplemen-
tary Figure S6). Phosphorylation of AMPK as indicator 
for the general energy status revealed a tendency towards 
higher levels in female compared to male, yet due to 
high interindividual variability especially in the female 
group this difference did not reach statistical significance 
(p-value = 0.07, Supplementary Figure S7). Both sexes 

b
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a Effect of rapamycin on amino acid turnover
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Intrinsic sex-differences and sex-specific effects of rapamycin on metabolites of 
glycolysis and TCA cycle 
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Fig. 7  Sex differences in energy metabolism. a Heatmap of log2FC of the mean of the normalized peak areas of amino acids in male and female 
kidney cortex tissue in response to rapamycin in each sex separately and male and female combined (rapamycin/vehicle). Blue indicates 
decreased levels, white no regulation, red increased accumulation of metabolites (n = 6 male vehicle; n = 6 male rapamycin treated; n = 7 female 
vehicle and n = 5 female rapamycin treated n = 6), * P-value < 0.05. Dashed line represents significance for amino acids after univariate scaling. 
b Heatmap of log2FC of the mean of the normalized peak areas of glycolysis metabolites, TCA cycle, pentose phosphate pathways and others 
in male and female kidney cortex tissue in male and female vehicle, response to rapamycin in each sex separately and male and female combined 
(rapamycin/vehicle). Blue indicates decreased levels, white no regulation, red increased accumulation of metabolites. n = 6 biological replicates 
in each group, * P-value < 0.05. Dashed line represents significance for the group of glycolysis and TCA after univariate scaling
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maintained pAMPK levels in response to rapamycin, yet 
male showed a tendence towards higher AMPK phos-
phorylation after rapamycin treatment. Total AMPK did 
not show intrinsic sex-differences and did not change by 
rapamycin treatment in both, male and female. (Supple-
mentary Figure S7).

Discussion
Podocytes are an essential part of the filtration barrier 
and any pathological alteration likely leads to proteinuria 
and serious pathologies [1, 74, 78]. Despite of high sexual 
dimorphism in many glomerular kidney disease preva-
lence and progression [2–4, 6], sex-specific molecular 
identity of podocytes remained so far unknown. A recent 
paper in Nature Methods called attention to that frequent 
limitation of molecular omics studies and requested sex 
annotation for fully accounting for the biology of sex dif-
ferences [11]. Our study aimed at closing this knowledge 
gap in podocyte biology. We addressed intrinsic gene 
transcription and protein expression in murine male 
and female podocytes and determined sex-differences 
in podocyte responses towards pharmacologic interven-
tion with rapamycin. Remarkably, many genes previously 
reported in podocytopathies showed so far unknown 
sexual dimorphic expression and transcriptional changes 
after rapamycin which might account for sexual dimor-
phic disease susceptibilities.

Our data suggest that female podocytes may have a 
more stable transcriptome considering the challenge of 
mTOR inhibition whereas males induce earlier molecu-
lar and metabolic changes. The mitochondrial energy 
providing machinery, endocytosis and exocytosis, and 
cytoskeletal integrity were major targets of transcrip-
tional changes that were more strikingly affected in male 
podocytes. Interestingly, mTOR inhibition largely abro-
gated the clear separation of intrinsically sexually dimor-
phic genes in podocytes, mainly by changes in the male 
transcriptome.

Our stress model did not induce structural or kidney 
functional changes suggesting that the observed dif-
ferences in podocytes might reflect early endogenous 
sex-specific compensatory mechanisms prior to disease 
development. The lack of functional changes contrasts 
with other reports where rapamycin induces proteinuria 
[20, 79]. This difference might be explained by the dif-
ferent mouse strains used in these studies. Other stud-
ies using C57BL/6 mice report lack of development of 
proteinuria by mTORC1 inhibition similar to our work 
[80]. Furthermore, a recent report shows that rapamycin 
might also delay development of proteinuria in specific 
disease models [81] suggesting that rapamycin effect on 
kidney functional changes is highly complex, mouse-
strain- and context-dependent.

Female mice displayed lower kidney and lower body 
weight compared to male mice, which is considered 
physiological in these strains and moreover applies also 
to human [82–85]. Furthermore, rapamycin has already 
been shown to induce significant reductions in kidney/
body weight ratio in several disease models [86–88] inter-
estingly in some studies, similar to our study, to a higher 
degree in female compared to male mice [83]. Weight loss 
in response to rapamycin treatment has been attributed 
to central effects on mTORC1 inhibition in the hypo-
thalamus which leads to decreased food intake [89, 90]. 
In addition, rapamycin regulates energy homeostasis by 
leading to enhanced insulin sensitivity [91]which causes 
less blood sugar increases, thereby reducing hunger and 
craving for food. Another reason for reduced food intake 
and subsequent weight loss under rapamycin treatment 
may be the regulation of gastric ghrelin production [92]. 
Unfortunately, we did not control for food intake in our 
mice that we were unable to report differences due to 
calorie input as possible cause for the reduction in body 
weight under rapamycin treatment. However, the weight 
losses were within the range of those reported previ-
ously in various mouse models and we did not observe 
any rapid weight losses that we do not consider that as 
a sign of rapamycin toxicity or over-inhibition of mTOR. 
The cause for the unproportional greater kidney weight 
loss compared to body weight loss in rapamycin-treated 
females remains elusive. One might speculate an impact 
of sex hormones [93, 94]. mTOR inhibition affected 
estrogen receptors and androgen receptor gene expres-
sion to different extents in our study which might have 
contributed directly or indirectly to these sex-differences 
in kidney weight loss.

Although major sex differences in gene expression have 
been generally attributed to sex chromosomes and sex-
hormonal effects [42] most of the intrinsic sex differences 
in podocytes observed in this study could not be associ-
ated with their position on sex chromosomes or direct 
estrogen target effects. Previously, it has been reported in 
other species that autosomes house the majority of genes 
with sex-biased expression [95]. Furthermore, the male-
predominant idiopathic nephrotic syndrome in children 
of 0–18 years of age supports the fact that factors other 
than hormonal effects contribute to at least some sexual 
dimorphic podocytopathies [50].

Recently, it has been reported that beyond chro-
mosomes and sex-hormonal effects, several TF show 
directional agreement of the target genes between the 
activating or repressive effect of the TF, the sex bias of the 
TF, and the sex bias of the target gene and may account 
for about 27% of lineage-specific sex bias [42, 96, 97]. In 
our study, we could identify 83 transcriptional regulators 
of intrinsically sexually dimorphic genes in podocytes, 
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among them Stat5a, which has been recently demon-
strated to regulate 23% of female-predominant genes in 
mouse liver [96]. Thus, regulation by sex-biased tran-
scription factors most likely contributed essentially to 
our observed sex differences in podocytes.

Our differential expression analysis taking sex and 
treatment differences into account revealed further TF of 
interest, such as Mrtfb, Cnbp and Stat6, which appeared 
upregulated in males and downregulated in female podo-
cytes in response to rapamycin. Stat6 has previously been 
reported as regulator of cyst growth in polycystic kidney 
disease [98] and implicated in kidney fibrosis in a model 
of unilateral ureteral obstruction [99], yet further data on 
sex differences and functional role in podocytes are still 
lacking.

Other transcription factor candidates for sexual dimor-
phic gene expression patterns in our study identified by 
IPA were e.g. Xbp1, and KDM5a. Kdm5a mediates kid-
ney failure in lipopolysaccharide-induced sepsis of mice 
[100], induces stem-like cancer cells and promotes renal 
cell carcinoma [62, 101]. Via activating or repressing 
transcription in demethylase-dependent or independent 
manners [101], it acts in both, homeostasis and disease 
[60, 61]. Kdm5a inhibitors are already tested in clini-
cal trials [102]. Thereby, some of our observed intrinsic 
sex differences might have been mediated by epigenetic 
events [16, 41, 103] and might be an interesting future 
therapeutic target.

Recent evidence points to sex differences in circa-
dian endocrine rhythms and oscillation of clock genes 
[104–106], which might be relevant for sexual dimorphic 
features of podocytopathies. E.g. Arntl has been shown 
to be critical for genes involved in podocyte integrity, 
metabolism and adhesion [107] and the transcription 
factor Creb3l1 has recently been demonstrated in male 
podocyte injury and degeneration [108]. However, our 
study was not specifically designed to investigate such 
differences. Taking into consideration that sex differences 
do not only appear in expression levels at specific time 
points during the day but also might significantly peak 
earlier in one sex [106], future studies require investigat-
ing multiple different day times in addition to well-con-
trolled times for sacrifice of mice.

Remarkably, many of the intrinsically sexually dimor-
phic and significantly deregulated genes after rapamy-
cin treatment in this study were kidney disease-related. 
Yet, to our knowledge, none of the genes that were sig-
nificantly differentially regulated considering sex and 
treatment have been investigated for sexual dimor-
phism in kidney cells so far. Interestingly, some of them 
were reported to be sexually dimorphic in other tis-
sues, such as in microglia and skeletal muscle [76, 109]. 
Among them, Daam2, Pdlim2, Asap1, and Sphk2 all 

of which have a known relationship to kidney diseases 
[110–114]. Daam2, a gene involved in actin remodeling 
with certain variants causing nephrotic syndrome [111], 
as well as Cd151, important for podocyte-basement 
membrane attachment [115–117] were intrinsically sig-
nificantly higher expressed in female podocytes and 
significantly increased only in male podocytes after rapa-
mycin treatment. Interestingly, Daam2 and Cd151 have 
recently  been reported to be upregulated in a dataset 
of human focal glomerulosclerosis [118]. Beyond other 
genes in our study, sexually dimorphic response patterns 
were observed for PGC-1α, a master regulator of mito-
chondrial biogenesis and transcriptional factor relevant 
for podocyte homeostasis [119] and a known role in kid-
ney diseases [65], and Ctsl, encoding a cysteine protease 
which promotes Cd2ap and synaptopodin proteolysis [57, 
120]. It has been reported that podocyte pH modulation 
by glutamine supplementation reduces cytosolic cathep-
sin L protease activity and can reduce foot process efface-
ment and proteinuria [121]. We did not measure pH in 
our isolated podocytes and were not able to determine 
cathepsin L levels in our podocyte-specific proteom-
ics of vehicle groups. Furthermore, due to the possibil-
ity of conversion of glutamate during the autosampler 
and derivatization during LC–MS/MS measurements 
[122], trustable glutamine and glutamic acid levels could 
not be reported in our metabolomics study and we were 
therefore unable to make any statement about glutamine 
level in male and female vehicle and rapamycin groups. 
To approach this important question for functional rele-
vance of rapamycin effects on cathepsin L further, future 
studies are warranted including pH and enzyme activity 
measurements into their study protocols.

Another important protein involved in actin-regula-
tion of podocyte foot processes is Pdlim2 [113]. It has 
been recently validated as a podocyte-specific protein in 
stainings from the Human Protein Atlas [118]. By corre-
lation of a set of podocyte-specific genes with GFR in a 
patient cohort with glomerular diseases the potential of 
these genes to be used as candidate markers for disease 
progression has been demonstrated [118]. A further gene 
of interest among the top 100 intrinsically sex-differently 
expressed podocyte genes that showed sex-different 
responses to rapamycin is Sphk2. Sphk2 has been shown 
to be involved in kidney fibrosis and diabetes-induced 
podocytopathy and has recently been suggested as phar-
maceutical target to treat proteinuric kidney disease [123, 
124].

Considering the sexual dimorphic expression of many 
of the genes identified in our study strengthens the need 
that further candidate marker studies should include sex 
as a biological variable in their design.
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The significant transcriptional changes in male podo-
cytes suggest a stronger dependence on intact mTOR 
signaling in males to maintain podocyte homeostasis. 
This was also observed at the metabolomic level, where 
genes involved in amino acid metabolism and transport 
were more suppressed in males. Furthermore, higher 
amino acid accumulation in male metabolomics pointed 
to higher reduction in protein synthesis in males com-
pared to females. Sexual dimorphic responses to mTOR 
inhibition by rapamycin have also been reported on 
organismal level. Female mice, even when treated late in 
life, had a longer lifespan compared to male mice [125]. 
For this reason, our finding of sexual dimorphism in 
alpha-ketoglutarate levels is of interest. Alpha-ketogluta-
rate has been recently attributed a crucial role in delayed 
aging and improved longevity [126, 127].

Despite the fact that most studies about the effects on 
longevity haven´t been investigated in human, many peo-
ple take rapamycin off-label [28]. Recently, Kaeberlein 
et al. performed an observational study comparing rapa-
mycin users to non-rapamycin users for perceived health 
benefits and adverse events [128]. Mouth ulceration 
was the only self-reported significantly different adverse 
event in rapamycin users. In contrast, rapamycin users 
reported less abdominal cramps and pain, depression, 
muscle tightness, anxiety and eye pain. However, these 
domains except for mouth ulceration lost their signifi-
cant difference when only female survey responders were 
included in the analysis. Although the study design was 
not double-blinded, placebo-controlled and no clinical 
laboratory results were evaluated it remains intriguing 
with regard to our findings to hypothesize that rapamy-
cin effects display sexual dimorphic aspects in healthy 
and diseased people. Along this line, the results from an 
ongoing cross-sectional trial with rapamycin users versus 
non-users including clinical laboratory results, as well 
as molecular and metabolic signatures [28, 129] will be 
of specific interest for the translational value of our data. 
Yet, studies focusing on rapamycin effects in human kid-
neys are still scarce [25].

Concerning the treatment duration with mTOR inhibi-
tors required to elicit functional effects, recent studies 
have shown rapamycin effects on longevity/aging already 
after a brief exposure to rapamycin of three months 
which was as effective as long-term treatment, despite 
the return of TORC1 levels to normal within 2  days of 
stopping rapamycin [27, 130]. These studies suggest that 
changes on downstream signaling  induced by inhibition 
of mTORC1 such as induction of autophagy contribute to 
long lasting organismal changes and do not require per-
sistent mTORC1 inhibition. Maintenance of autophagy 
or respective induction in kidney disease models with 
decreased activity has been shown to be cytoprotective 

for podocytes [131]. Therefore, time-restricted mTORC1 
inhibition regimen might finally be clinically more ben-
eficial compared to longtime treatments with mTORC1 
inhibitors which still have high systemic and substan-
tial side effects. Yet so far, we are not aware of any brief 
time-restricted intervention studies with rapamycin in 
the context of kidney diseases. Therefore translating 
our results to possible effects in kidney diseases we can 
only speculate that for the induction of a „rapamycin 
memory “ 2 weeks of rapamycin treatment might be too 
short [132], whereas any time between the 3 month treat-
ment period for the induction of longevity effects and 
the 25  weeks of treatment with relevant functional and 
structural effects [133] might be considered for concep-
tion of such proof of concept studies for the effectiveness 
of time-restricted administration of rapamycin in kid-
ney disease models. Of note, dual mTORC1/2 inhibitors, 
such as AZD2014, do not maintain immunoregulatory 
effects after drug withdrawal and thus differ from the 
longer lasting effects of rapamycin [134]. For the induc-
tion of changes by rapamycin on protein translation, 
already 2 weeks of treatment appear to be enough [132].

Another approach to reduce negative clinical side 
effects of rapamycin treatment beyond changes in treat-
ment time is the development of more specific mTORC1 
inhibitors [28]. Rapamycin has tissue-dependent effects 
on mTORC2 and at least part of its negative effects e.g. 
on glucose and lipid metabolism have been attributed to 
inhibition of mTORC2 [135]. Therefore, more specific 
mTORC1 inhibitors might have the potential to reduce 
signaling network disturbances and compensatory up-/
downregulation of mTORC2 in various tissues, thereby 
reducing negative side effects of rapamycin. Recently, 
other approaches to more specifically inhibit mTORC1 
compared to rapamycin have been suggested as novel 
therapeutic option in podocyte diseases, such as indirect 
modulation of mTORC1 by ketone bodies [136]. Remark-
ably, part of the renoprotective effect of SGLT2 inhibi-
tors might also rely on their effect to increase circulating 
ketone body concentration [137]. Reduction of mTORC1 
activity can also be achieved by reducing the content 
of dietary protein or specific dietary amino acids [138]. 
Altogether, the development of specific mTORC1 inhibi-
tors appears promising for health maintenance and treat-
ment of a variety of diseases with mTOR-pathway-related 
pathologies.

In addition to variations in treatment times and spe-
cificities of mTOR inhibitors, sex differences in treatment 
results with different dosages have to be considered. 
Recently, Bitto et al. [130] reported that high-dose rapa-
mycin treatment induced aggressive hematopoietic can-
cer development in female but not in male mice whereas 
lower dosage comparably increased lifespan in both 
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sexes. We induced mTORC1 inhibition in kidney cortex 
tissues of male and female mice applying the same dosage 
of rapamycin and treatment time and achieved compara-
ble rapamycin trough levels. Nevertheless, molecular sig-
natures in podocytes were sexually dimorphic.

We cannot rule out differential sex-specific mTORC1 
inhibition in podocyte and non-podocyte kidney cor-
tex cells by rapamycin. However, bioinformatic analysis 
of downstream target changes by rapamycin in each sex 
in of our RNASeq data pointed to significant mTORC1 
inhibition in podocytes of both sexes. Beside direct 
effects of rapamycin on podocytes, indirect effects of 
rapamycin-induced changes in surrounding cells or more 
distal known effects of rapamycin, such as reported in gut 
bacteria [139], metabolism [140] and the immune system 
[141, 142] might have additionally shaped the sex-specific 
molecular signature of podocytes in response to systemic 
rapamycin treatment [28].

mTOR inhibitors have well-known effects on immu-
nity [70–72]. Furthermore, immunity displays important 
sexual dimorphism [143–146]. Accumulating evidence 
suggests that podocytes are not only targets of immune 
responses but also play an active role in innate and adap-
tive immunity [1, 73]. They may aggravate immune and 
nonimmune glomerular injury through expression of 
receptors linked to pathways that induce proinflamma-
tory molecules [147, 148]. Interestingly, we found com-
plement 3 to be significantly sexually dimorphic with 
higher gene expression in male podocytes compared to 
female podocytes and a trend towards significant down-
regulation of C3 in male in response to rapamycin treat-
ment. In human studies, C4 and its effector C3 were 
present at higher levels in cerebrospinal fluid and plasma 
in men compared to women. It was suggested that this 
sexual dimorphism contributed to women´s greater 
risk of systemic lupus erythematodes [149, 150]. Sexual 
dimorphism of genes involved in the complement system 
has been also reported in different immune cell types, 
such as macrophages [151].

Interestingly, mTOR inhibition affected estrogen recep-
tors (ESR1, ESR2) and androgen receptor (AR) gene 
expression levels in male and female podocytes to dif-
ferent extents, which might constitute a further regu-
latory level for sex-biased gene expression. ERα, ERβ 
and AR are expressed in podocytes [152]. Downregula-
tion of ERβ by rapamycin has previously  been reported 
in other postmitotic cells, such as cardiomyocytes with 
sex-specific functional consequences [29]. Furthermore, 
it has recently been shown that female estrogen recep-
tor knock-out mice developed glomerulosclerosis due to 
excessive ovarian testosterone production and secretion 
and extracellular signal-regulated kinase (ERK) pathway 
[152]. Therefore, balanced hormone receptor expression 

together with adequate sex hormone levels participate 
through genomic and non-genomic sex hormone effects, 
which needs to be considered when further investigating 
specific disease models.

Even if our metabolomics study and signal transduc-
tion investigations were performed only in kidney cortex 
tissue and we did not control for food intake and mito-
chondrial oxidative phosphorylation-related ATP pro-
duction, our results on sex differences in metabolism 
are interesting especially in relation to recent studies 
performed in mice and human [9, 153, 154]. AMPK has 
been named the “guardian of metabolism and mitochon-
drial homeostasis” [155]. Under conditions of low energy, 
AMPK phosphorylates specific enzymes and growth con-
trol nodes to increase ATP generation and decrease ATP 
consumption [155].

In the kidney, AMPK activation may be protective 
against fibrosis, inflammation and mitochondrial dys-
function [156]. Furthermore, there is a close interaction 
between mTORC1 and AMPK signaling [157]. Concord-
ant to our intrinsic sex difference in pAMPK levels, Lee 
et  al. reported in a high-fat diet (HFD) mouse model 
decreased AMPK activity (indicated by increased phos-
phorylation) in male mice which were susceptible to kid-
ney injury, whereas female mice did not display AMPK 
inactivation and were resistant to that obesity-induced 
HFD-induced kidney injury [158]. Considering the ten-
dency of rapamycin-induced higher phosphorylation of 
AMPK in male in our study and their results in that dis-
ease model we may speculate that rapamycin might exert 
therapeutic effects in male mice.

Glycolysis and mitochondrial metabolism both con-
tribute to podocyte energy supply. Cell environmental 
context and differentiation status impact on switches 
from fatty acid oxidation to glycolysis and vice versa 
[159–164].

On intrinsic transcriptional levels, we found overrep-
resentation of GO terms “oxidative phosphorylation”, 
glycolysis” “proteasome” and “mitochondria” in func-
tional GSEA analyses in the dataset of female podocytes. 
This is concordant to many studies reporting higher gene 
expression of these groups in various female cells [165, 
166]. We are not able to directly relate our gene expres-
sion results from podocytes to our data on metabolomics 
without additional data as already mentioned above. 
Yet, metabolomics of kidney cortex comparing male and 
female vehicle pointed to significantly increased glyco-
lysis in females (Fig.  7b). Increased pyruvate concentra-
tion in female proximal tubular epithelial cells has been 
suggested to be protective against diabetic kidney dis-
ease, whereas in male enhanced TCA metabolism could 
be deleterious [9]. Furthermore, in adults with chronic 
kidney disease, increased plasma levels of TCA cycle 



Page 18 of 24Al‑Diab et al. Biology of Sex Differences           (2024) 15:72 

metabolites positively associated with male sex, diabetes 
and all-cause mortality and negatively associated with 
estimated glomerular filtration rate (eGFR) [9]. In our 
model, rapamycin led to decreased glycolysis and TCA 
cycle in both, male and female kidney cortex, to a higher 
extent in females. The functional relevance of this finding 
requires further investigation in disease models.

Limitations of the study
In this paper, we aimed to investigate the molecular sig-
nature of male and female podocytes and used a systemic 
pharmacological challenge with the mTOR inhibitor 
rapamycin to identify sex-specific response patterns in 
addition to podocyte cell intrinsically sex differences. 
Undoubtedly, there are also limitations associated with 
this approach. On one side, systemic drug administra-
tion reflects the frequent clinical situation where drugs 
affect not only the respective target cells but additionally 
other cell-types. However, by that, the molecular changes 
observed in podocytes might not be a direct drug effect, 
but also depend on the surrounding tissue or circulating 
factors which might themselves be sex-specific and there-
fore might have indirectly changed the male and female 
podocyte transcriptomes. Another limitation of our 
study is the cross-sectional design. Our work focuses on 
characterization of sex-differences on different molecular 
levels within one mouse strain at one age group with one 
specific rapamycin concentration for a fixed treatment 
time. Taking into account the fact that targeting mTOR 
signaling has different effects at various age groups [167–
169], different age groups should be included in future 
studies when addressing therapeutic effects of mTOR 
inhibition.

In addition, isolation of primary podocytes from 
mouse tissues requires several preparative steps. This 
results in immediate early gene activation which might 
have further impacted on the molecular changes of the 
podocytes even if this stressor appeared to be compa-
rable between all groups (Supplementary Table  S12). 
This also prevented us from performing immunoblot-
ting from isolated podocytes to assess phosphorylation 
of specific proteins in addition to the fact that isolated 
podocytes from one mouse do not yield enough mate-
rial to apply such method. For that it is quite common 
in podocyte studies, that kidney cortex material is used 
instead [170–173]. Also, for metabolomics, it is impor-
tant to directly harvest material after animal sacrifice. 
We therefore had to accept the limitation not to use the 
isolated podocytes, but instead kidney cortex tissue. On 
one side, this allowed us to obtain high quality material 
for metabolomics, but on the other side we had to accept 
that we thereby could not evaluate sexual dimorphism at 
the molecular level of the podocytes but only podocytes 

together with podocyte-adjacent cells in kidney cor-
tex material. Moreover, to overcome at least partly this 
restriction, our studies were complemented with func-
tional analyses of podocyte transcriptomes to indirectly 
assess podocyte-specific mTORC1 inhibitory effects and 
metabolic consequences of mTOR inhibition.

Furthermore, the fact that podocytes, even if crucially 
important for kidney function, belong to the low repre-
sented cells of the kidney make it difficult to compare 
our results with previous single cell studies in the kid-
ney [37]. The correlation of our sexual dimorphic genes 
to a recently published single cell dataset from male and 
female mouse kidneys [174] only showed poor correla-
tion (data not shown). Yet, podocytes were underrep-
resented in their study, underlining the fact that sexual 
dimorphism occurs cell-type specifically [118]. Inter-
estingly, some of the intrinsically sexually dimorphic 
podocyte genes have been recently reported to be sex-
differently expressed in cells of the renin lineage [175]. 
Univariate linear regression analysis revealed high corre-
lation of the reported log2 fold change (FC) in renin line-
age cells with our data (Supplementary Figure S1a).

Perspectives and significance
Overall, this work provides a deep insight into sexual 
dimorphism of podocytes. Our study revealed that 
female podocytes show a more resistant profile to the 
effects of mTOR inhibition than male podocytes. Fur-
thermore, important novel sex-biased transcription fac-
tors were identified in response to mTOR inhibition. This 
might contribute significantly to sex-different susceptibil-
ities and clinical courses of a variety of sexual dimorphic 
glomerular kidney diseases.

More specific studies are urgently required, which is 
additionally supported by the fact that mTOR signal-
ing varies not only with age and tissue, but also by sex, 
between mouse strains, and between different species 
[176]. A recent systematic review, targeting aging with 
rapamycin and its derivatives in humans summarized 
that positive effects of rapamycin had been shown on the 
immunological, cardiovascular, and integumentary sys-
tems, yet respiratory, digestive, renal and reproductive 
systems were still underassessed [25].

We do speculate that novel, more specific mTORC1 
inhibitors which are already in the pharmaceutical pipe-
line might elicit beneficial effects in the treatment of 
chronic kidney diseases especially in male. Furthermore, 
sex-specific targeting of factors influencing immune 
functions of the podocyte may contribute to treat 
immune podocytopathies in the future.

Another interesting aspect is the well-known role of 
mTOR in aging. Concerning the sex-specific responses 
towards mTOR inhibition in our study, structural and 
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functional differences in the kidneys under stress might 
be expected between male and female patients and war-
rant further clinical investigation.

Future studies will be needed to specifically address 
pathological disease states or different induction mecha-
nisms and investigate the effect of mTOR inhibition and 
targeting transcriptional factors to determine the patho-
physiological impact of key molecular sex differences elu-
cidated in this study and to move a critical step forward 
in the era of personalized medicine.

Conclusions
Our results highlight remarkable intrinsic sex-differ-
ences and sex-specific response patterns towards phar-
macological challenged podocytes. A large number of 
known kidney-disease related genes are newly identified 
to be sexually dimorphic and beyond classical sex hor-
monal effects further transcription factors were identi-
fied in sexually dimorphic response to mTOR inhibition 
with rapamycin. The female advantage in many kidney 
diseases` prevalence and disease progression might be 
strongly influenced by these genomic sex differences. 
This work can be used as a resource for specific genes to 
consider when trying to better understand sex differences 
in kidney health and disease.
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