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Abstract  
 
Transcriptional enhancers are non-coding DNA elements that regulate gene 

transcription in a temporal and tissue-specific manner. Despite advances in 

computational and experimental methods, identifying enhancers and their target genes 

essential for specific biological processes remains challenging. Determining target 

genes for enhancers is also complex and often relies on indirect, low-resolution, and/or 

assumptive methodologies. To identify and functionally perturb enhancers at their 

endogenous sites without altering their sequence, we performed a pooled tiling CRISPR 

activation (CRISPRa) screen surrounding PHOX2B, a master regulator of neuronal cell 

fate and a key player in neuroblastoma development. This screen allowed the de novo 

identification of CRISPRa responsive elements (CaREs) that alter cellular growth within 

the 2 Mb genomic region. To determine CaRE target genes, we developed TESLA-seq 

(TargEted SingLe cell Activation), which combines CRISPRa screening with targeted 

single-cell RNA-sequencing and enables the parallel readout of the effect of hundreds 

of enhancers on all genes in the locus. While most TESLA-revealed CaRE-gene 

relationships involved neuroblastoma-related regulatory elements already active in the 

system, we found many CaREs and target connections normally active only in other 

tissue types or with no previous evidence and induced out of context by CRISPRa. This 

highlights the power of TESLA-seq to reveal gene regulatory networks, including edges 

active outside of a given experimental system. 
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Highlights 
○ Systematically perturbed regulatory landscape in a 2 Mb genomic 

region surrounding PHOX2B to identify hundreds of CRISPRa-

responsive elements that affect cellular growth  
○ Developed TESLA-seq as a principled molecular approach to find 

gene targets of dozens of candidate regulatory elements 

○ Validated interactions between identified regulatory elements and 

target genes and characterized their genomic features  

○ Integrated a compendium of epigenomic datasets to identify 

regulatory relationships induced out of context or with no previous 

evidence 

Introduction  
 

One of the critical questions in molecular biology is how gene expression is 

regulated in a temporal and tissue-specific manner in both health and disease. The 

genome-wide mapping of open chromatin and histone modifications indicative of 

transcriptional regulatory mechanisms and their states have provided large compendia 

of cis-regulatory regions (CREs). However, identifying the target genes of regulatory 

elements is challenging: CREs do not necessarily regulate their closest gene, may 

regulate several genes, and may only show a functional effect in combination with other 

CREs. Approaches to determining CRE-target relationships include measurements of 

3D proximity between CREs and candidate targets, CRE-gene co-activity correlations 

across many cell types or states, and CRE perturbation with transcriptional activity 
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readouts (Shlyueva et al., 2014, Kim and Shiekhattar, 2015, Field and Adelman, 2020, 

Preissl et al., 2023, Kim and Wysocka, 2023). The first two have the potential 

advantage of being high throughput and the disadvantage of being purely correlative 

without direct functional evidence, whereas traditional perturbation approaches provide 

such direct evidence but are comparatively low throughput. Despite numerous 

computational and experimental methods for predicting genetic cis-regulatory elements 

(CREs) based on sequence and chromatin features, identifying functional CREs and 

their targets has therefore remained challenging (Kim and Shiekhattar, 2015, Field and 

Adelman, 2020, Panigrahi and O'Malley, 2021, Preissl et al., 2023, Kim and Wysocka, 

2023).  

For a long time, functional characterization of CREs, such as enhancers, has 

been performed outside their genomic context using reporter assays (Shlyueva et al., 

2014, Kim and Shiekhattar, 2015, Fulco et al., 2019, Field and Adelman, 2020, Preissl 

et al., 2023, Kim and Wysocka, 2023). The development of CRISPR/Cas9 technologies 

now allows the examination of CREs at their native locus. Specifically, engineered 

fusion proteins can endogenously activate (CRISPRa) or inhibit (CRISPRi) CREs, and 

we can perform large-scale assays to study thousands of CREs in a single experiment 

using pooled CRISPR/Cas9 screens (Bock et al., 2022, Schraivogel et al., 2023).  

Transcriptome-wide measurements of RNA in up to hundreds of thousands of 

single-cells in a single study have revolutionized cell-type quantification from 

heterogeneous samples. Single-cell CRISPR screening approaches hold great promise 

for overcoming the low-throughput disadvantage of CRE perturbation experiments 

(Adamson et al., 2016, Dixit et al., 2016, Xie et al., 2017, Datlinger et al., 2017, 
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Gasperini et al., 2019, Alda-Catalinas et al., 2020, Replogle et al., 2020, Schraivogel et 

al., 2020, Morris et al., 2023), yet there are some limitations to these approaches. First, 

scRNA-seq screens have so far largely employed wild-type Cas9 and the dCas9-KRAB 

transcriptional repressor construct to perturb enhancers (Adamson et al., 2016, Dixit et 

al., 2016, Xie et al., 2017, Datlinger et al., 2017, Gasperini et al., 2019, Alda-Catalinas 

et al., 2020, Replogle et al., 2020, Schraivogel et al., 2020, Morris et al., 2023). 

Although they can provide valuable insight in enhancer biology,  these Cas9 constructs 

are less effective at perturbing distal CREs than they are for proximal CREs  (Yeo et al., 

2018, Alerasool et al., 2020, Nuñez et al., 2021). Second, selecting CREs based on pre-

existing features such as chromatin accessibility and the presence of histone marks 

(Gasperini et al., 2019) introduces potential biases from the quality and completeness of 

such annotations and our interpretation of them. Third, scRNA-seq approaches are 

costly and extremely sparse, leading to unreliable assessment of differential gene 

expression, especially for lowly expressed genes (Adamson et al., 2016, Dixit et al., 

2016, Xie et al., 2017, Datlinger et al., 2017, Gasperini et al., 2019, Morris et al., 2023). 

Single-cell perturbations of CREs do not require full transcriptome quantification due to 

known spatial restrictions between CREs and their targets and, therefore, benefit greatly 

from targeted sequencing via the substantial reduction of drop-out rates for genes of 

interest (Adamson et al., 2016, Dixit et al., 2016, Xie et al., 2017, Datlinger et al., 2017, 

Gasperini et al., 2019, Alda-Catalinas et al., 2020, Replogle et al., 2020, Schraivogel et 

al., 2020). 

To overcome current limitations, we propose a two-step strategy for identifying 

REs. In the first step, we assay tens of thousands of potential REs in a tiling CRISPR(a) 
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screen for their effect on the cellular phenotype. In the second step, we examine 

hundreds of elements that affect the phenotype upon activation on the dozens of genes 

in the vicinity with targeted scRNA-seq. With this two-step strategy, we combine the 

scalability and unbiased nature of tiling CRISPR screens with the high-resolution 

targeted scRNA-seq readout.  

To showcase this approach, we use it to comprehensively dissect the 

transcriptional regulation of an entire genomic locus, the 2 Mb regulatory landscape of 

PHOX2B, a master regulator of autonomous nervous system development and a key 

player in the development of a variety of disorders such as the childhood cancer 

neuroblastoma (Bachetti and Ceccherini, 2020). Through an unbiased tiling screen 

using a robustly activating CRISPRa construct, we identified 619 CRISPRa responsive 

elements (CaREs) that influence cellular survival. To identify the targets of CaREs and 

study the molecular effect of their activation on genes across a larger genomic context, 

we developed a TargEted SingLe cell Activation screen (TESLA-seq). TESLA-seq 

combines CRISPRa screening with targeted single-cell RNA sequencing (scRNA-seq), 

enabling the detection of affected genes for thousands of perturbations in a single 

experiment. We applied TESLA-seq on the hits from the phenotypic screen to quantify 

their impact on the expression of transcripts within a 6 Mb space surrounding PHOX2B.   

Many TESLA-seq-identified CaRE-gene interactions exhibit characteristics in 

agreement with current understanding of CREs, but previous evidence from 

neuroblastoma cell lines alone cannot fully explain the revealed functional regulatory 

relationships. We combined the TESLA-seq results with available epigenomic maps 

from 800 tissues to assign systems in which they are likely active and to define CaRE-
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gene pairs for which there was no previous regulatory evidence. We validate that 

functional transactivation can originate from elements irrespective of whether they 

exhibit typical regulatory traits prior to activation. 

Results  
 

CRISPR activation screening reveals candidate elements in the PHOX2B 

regulatory landscape 

PHOX2B is a master regulator of neurogenesis and a key player in the 

development of neuroblastoma, whose expression level is tightly associated with the 

growth rates of neuroblastoma cell lines (Ke et al., 2015, Naftali et al., 2016, Ponzoni et 

al., 2022, Windels et al., 2024). It has been suggested to be under the control of a large 

cluster of enhancers (super-enhancer) (Boeva et al., 2017), and it is located in the 

vicinity of other genes that play roles in a variety of disorders (Bachetti and Ceccherini, 

2020), increasing the challenge of enhancer-target prediction. Therefore, we sought to 

perform an exhaustive search for regulatory elements affecting growth or viability in the 

2 Mb genomic space surrounding PHOX2B using CRISPR activation (Figure 1A), 

without requiring any previous annotations or characteristics of CREs.  

We tested several CRISPRa constructs for robust activation of known enhancers 

(Chavez et al., 2016) (Figure S1A) and selected dCas9-VPR for further experiments. 

We next tested whether we could successfully activate and repress PHOX2B 

expression and detected robust activation by targeting dCas9-VPR and repression by 

dCas9-KRAB at its promoter in the neuroblastoma-derived cell line SHSY-5Y (Figure 
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S1B). Both actions reduced cellular viability, aligning with the literature (Ke et al., 2015, 

Naftali et al., 2016) (Figure 1B, FigureS 1C).  

We conducted a dense tiling viability screen in the PHOX2B locus, designing 2-3 

gRNAs per 100 bp genomic bin within the 2 Mb space (46,722 gRNAs total). These 

were delivered via lentivirus to SH-SY5Y-VPR cells and collected at multiple time points 

in two replicates. Deep sequencing identified gRNAs that were depleted or enriched, 

indicating regions influencing cellular growth/viability upon activation (Figure 1A). This 

approach identified 758 (1.7%) depleted and 27 (0.1%) enriched gRNAs that 

respectively repress or promote cellular growth/viability upon dCas9-VPR activation 

(FDR <0.05) (Figure 1C, Table S3). Positive control gRNAs targeting the PHOX2B 

promoter were depleted, confirming that overexpression reduces viability (Figure S1D). 

To define regulatory elements from individual hits, we applied a sliding window 

approach to identify neighboring significant gRNAs, which were required to have the 

same effect on the cellular phenotype to be merged into individual functional regions. In 

this way, we de novo identified CRISPR activation responsive elements (CaREs; Figure 

1D) across the whole locus, with 536 CaREs showing gRNA depletion (genomic regions 

whose activation leads to a reduction of cellular viability) and 83 CaREs showing gRNA 

enrichment (genomic regions whose activation leads to an increase in cellular 

growth/proliferation; FDR <0.05; Figure 1E; Table S3). The average width of a CaRE is 

447bp (Figure 1F), and most CaREs are promoter distal (Figure 1G). Although the hits 

are equally distributed across the whole 2 Mb space, the highest scoring CaREs are in 

the proximity of the PHOX2B promoter. They overlap a super-enhancer predicted to 

regulate PHOX2B expression in neuroblastoma ((Boeva et al., 2017); Figure 1H). 
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Besides PHOX2B, the promoters of several other genes coincide with CaREs that led to 

a reduction or activation of cellular growth and survival: NSUN7, APBB2, UCHL1, 

TMEM33, DCAF4L1, SLC30A9, BEND4, RP11-63A11.1, SHISA3, RP11-109E24.2, 

RP11-109E24.1. Some of them are known to affect cellular growth/proliferation: SHISA3 

is a known tumor suppressor (Chen et al., 2014, Shahzad et al., 2020, Zhang et al., 

2024); APBB2 plays a role in Alzheimer's disease (Li et al., 2005, Golanska et al., 2013) 

and cell cycle (Bruni et al., 2002, Zhou et al., 2021); UCHL1 promotes cellular 

proliferation in cancer (Kwan et al., 2020, Mondal et al., 2022). Therefore, CaREs are 

not limited to effects on PHOX2B; our tiling screen identified CaREs targeting any of 

these genes surrounding PHOX2B and, potentially, genes outside of the 2 Mb 

screening window.  

 Next, we sought to characterize the features of the CaREs we identified. Since 

CREs tend to reside in open chromatin regions flanked with post-translational modified 

histones and bound by transcription factors (Shlyueva et al., 2014, Kim and Shiekhattar, 

2015, Kim and Wysocka, 2023), we generated ATAC-seq libraries and compiled 

available ChIP-seq-data of neuroblastoma transcriptional core regulators in a variety of 

cell lines (Henrich et al., 2016, Durbin et al., 2018, Wang et al., 2019, Boeva et al., 

2017, Zhang et al., 2020). 28% of CaREs intersect with these typical enhancer features, 

and generalized linear models (see methods) could predict significant CaREs based on 

accessible chromatin, histone modifications H3K27ac and H3K4me1 (Figure 1I), as well 

as binding of key neuronal transcription factors MYCN, HAND2, ISL1, ASCL1, GATA3 

and GATA2 (Figure 1J).  
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In summary, using CRISPRa screening in a neuroblastoma cell line in the 2 Mb 

genomic space on chromosome 4 surrounding the PHOX2B gene, we have identified 

619 CaREs that play a role in cellular growth or survival. Some CaREs display typical 

enhancer features such as accessibility and H3K27ac modification, but a substantial 

fraction do not, highlighting the importance of unbiased tiling screens to understand the 

regulation of gene expression in greater depth. We performed an equivalent CRISPRi 

screen with the same 46 722 gRNAs, but here, we focus on the CRSIPRa screen and 

provide additional data in the Supplement (Figure S1E,F; Table S4). 
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Figure 1
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Figure 1. Bulk phenotypic CRISPR activation screen reveals genetic regulatory 
elements in the PHOX2B genomic landscape. A) Overview of the CRISPRa screen. 
B) MTT viability assay with control or gRNAs targeting the promoter of PHOX2B in an 
SH-SY5Y-VPR (CRISPRa) cell line. C) Volcano plot showing the log-fold change of 
gRNA representation between the first and last time-point of the experiment. 
Significantly enriched/depleted gRNAs (FDR<0.05) are shown in red and blue, 
respectively. P-values shown are adjusted for multiple testing (FDR). D) Graphical 
representation of grouping strategy for analysis. Asterisks denote significance. E) The 
volcano plot shows the results of CaRE analysis, each dot corresponds to a CaRE. The 
x-axis shows the slope calculated by our MLM. Significantly enriched/depleted CaREs 
(FDR<0.05) are shown in red and blue, respectively. F) Bar plot representing the 
number of CaREs with indicated CaRE width on a log10 scale. G) Number of significant 
intragenic, intergenic, and promoter-proximal CaREs. H) CaREs signal around the 
PHOX2B locus (+/- 1 MB). From bottom to top: annotation for PHOX2B and its location 
within the genome, ChIP-seq signal for HAND2, PHOX2B, H3K27ac, and ATAC-seq 
signal in SH-SY5Y cell line. At the top is the score and direction (blue for depletion, red 
for enrichment) of CaREs. P-values shown are adjusted for multiple testing (FDR). I) 
Coefficient estimates from generalized linear regression, predicting significant CaREs 
by ATAC-seq and histone modification ChiP-seq signal in neuroblastoma cell line SH-
SY5Y. J) Coefficient estimates from individual generalized linear regressions, predicting 
significant CaREs by neuroblastoma core regulatory circuit transcription factor ChIP-seq 
signals. Whiskers in (I,J) indicate 95% confidence interval of estimate, FDR in (I,J) 
derived from p-values of Z-statistic; FDR: false discovery rate; NS: Not significant. See 
also Figure S1, Table S3 and Table S4.  
 

 

TESLA-seq sensitively and reproducibly detects functional regulatory 

relationships 

 

To determine the precise regulatory targets of the CaREs identified in the 

phenotypic screen, we developed a targeted single-cell activation screen followed by 

sequencing (TESLA-seq). TESLA-seq allows the detection of differential expression of 

selected transcripts for thousands of perturbations in a single experiment by combining 

CRISPRa screening with a targeted scRNA-seq readout. To perform TESLA-seq, we 
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selected 1046 gRNA corresponding to the top 222 CaREs from our phenotypic CRISPR 

viability screen and 52 gRNA controls (Figure 1; see methods). We synthesized and 

cloned them into a CROP-seq vector (Figure 2A) that enables a direct readout of the 

gRNA from a polyadenylated transcript in scRNA-seq experiments (Datlinger et al., 

2017). Next, we infected SHSY-5Y-VPR cells at a low MOI to ensure that each cell 

would only receive one gRNA. Four days post-transduction, we assayed 20,000 cells in 

each of two experiments on the BD RhapsodyTM Express Single-Cell Analysis system. 

In this microwell-based system, the polyadenylated transcriptome of each cell is 

captured using barcoded magnetic beads and subsequently amplified by two sets of 

primers (universal and gene-specific) for each transcript in semi-nested multiplex PCRs. 

This is followed by sequencing upon the addition of Illumina indices (Figure 2A; (Mair et 

al., 2020)). Upon retrieval of barcoded complementary DNA, we enriched for the gRNA 

transcripts and transcripts of interest, in our case, 151 transcript isoforms annotated for 

all 78 annotated genes in an expanded 6 Mb space surrounding PHOX2B to detect 

possible effects on genes outside of the tiled screening window (see methods). In our 

experiments, 93% of the reads are mapped to the enriched targets.  

We applied stringent quality filtering, after which 16,535 cells were retained from 

two BD Rhapsody runs (see Methods, Figure S2A). The scRNA-seq readouts of the two 

TESLA-seq experiments are highly correlated (Pearson correlation R2= 0.886; Figure 

2B), indicating excellent reproducibility. We capture gRNA in 90% of cells with a 

minimum of 2 molecules/cell, and 59 out of 78 genes within the 6 Mb space surrounding 

PHOX2B are captured. Non-captured genes are expressed at relatively low levels in a 

bulk chromatin RNA-seq assay (Figure 2C). Each cell has an average of 650 gene 
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molecules and 158 gRNA counts, as well as a median of 1 unique gRNA as aimed for 

by the experimental design (Figure S2B). On average, each gRNA or CaRE is assayed 

in 17 or 68 cells, respectively (see Methods) (Figure 2D). These results demonstrate 

that TESLA-seq efficiently captures both the gRNA transcripts and the transcripts of 

interest with high sensitivity and reproducibility.  

We utilize the targeted single-cell transcriptome replicates upon activation of 

each CaRE for differential gene expression analysis by comparing the expression of 

transcripts in the cells carrying the gRNA of interest to all other cells containing either 

control or distal gRNAs (at least 4 Kb from the examined gRNA). As proof of principle, 

we focus on the expression of PHOX2B, BEND4 and SHISA3. We observe that cells in 

which the gRNAs fall within their promoter exhibit higher expression than the cells 

carrying control gRNAs (Figure 2E, Figure S2C), demonstrating that TESLA-seq can be 

used to sensitively detect differential gene expression.  

Next, we examined the effect of all CaREs and identified 60 CaREs that cause a 

significant expression change of 33 of the captured transcripts, for a total of 92 CaRE-

gene pairs (adjusted p-value <  0.05) (Figure 2F-H; Table S5). On average, each CaRE 

causes a differential expression of 1.5 genes, with 22 of them affecting more than one 

gene (Figure 2I). In turn, each examined gene is significantly affected by an average of 

2.8 assayed CaREs (Figure 2H, Figure S2D). Of note, we only examined a subset of 

CaREs in the 2 Mb screening window, and their effects on genes located within a 6 Mb 

window. This leaves the possibility of additional CaREs regulating assayed genes within 

this window and beyond. Notably, most of the TESLA-assayed CaRE target genes 

whose promoters were hits in the bulk growth screen are targets in the TESLA-seq, and 
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these interactions are especially strong and significant (Figure 2H - highlighted genes, 

Figure 2J). This is expected since the TESLA-seq guides were chosen based on their 

phenotypic effect in the tiling bulk screen (Figure 1), and these results can, therefore be 

considered as validation for CaREs affecting growth/viability. Overall, we observe 

comparable results when we perform similar analyses at the gRNA rather than the 

CaRE level (Figure S2E-G; Table S6). Some of the CaREs coinciding with promoters 

also alter the expression of other genes, potentially indicating that these promoters can 

also act as enhancers (Diao et al., 2017, Fulco et al., 2016, Panigrahi and O'Malley, 

2021). In summary, our findings demonstrate that TESLA-seq can sensitively detect 

potential transcriptional regulatory elements and their targets.  
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Figure 2. TESLA-seq captures gene expression change sensitively, and reproducibly. A) 
Schematic representation of the TESLA-seq. B) Pseudobulk expression profiles of two 
TESLA-seq experiments. C) Expression of genes detected by bulk chromatin RNA-seq 
that were captured by TESLA-seq (yes) versus the ones not captured by TESLA-seq 
(no). D) Number of cells assayed in TESLA-seq per gRNA and CaRE. E) TESLA-seq 
normalized gene expression level, comparing cells having gRNA targeting SHISA3 
promoter versus all other cells. F) Adjusted p-values (-log10) relative to fold change 
(log2) of each CaRE-gene regulatory pair. G) Genome browser snapshot representing 
genomic distance and regulatory relationship between a CaRE and a gene determined 
by TESLA-seq. Each link represents an effect of a CaRE on the gene. Color reflects the 
target gene. H) Number of significant CaREs that cause a differential gene expression 
of an indicated number of genes. Highlighted genes are the ones whose promoters 
were significant hits in the bulk screen. Genes are displayed in the order that matches 
their order in the genome in decreasing genomic coordinates. The line indicates the 
screening window of the phenotypic CRSIPRa screen from Figure 1. I) Histogram 
showing a number of genes differentially expressed by a perturbation of an indicated 
number of CaREs. J) Boxplots of adjusted p-values (-log10) - left and fold change (log2) 
- right of CaRE-gene regulation pairs. Grouped by whether the CaRE belongs to bulk 
screen promoter hit or not. See also Figure S2 and Table S5-6. 

 

 

TESLA-seq CaRE-target interactions exhibit properties consistent with current 

models of CREs 

 
 

To gain further insight into the identified CaREs and their targets, we explored 

the distance between them in both linear and 3D genomic space. Significant CaRE-

gene relationships are closer in the linear genome (median distance of 284kb; Figure 

3A, Figure S3A) than non-significant CaRE-gene relationships. In 71% (65) of 

significant cases, there is at least one gene between a CaRE and its target (Figure 3B), 

with an average of 7.7 skipped genes. Of these, the strongest hits tend to be closer to 

their CaREs with up to 5 skipped genes (Figure S3B). However, the expression of these 

skipped genes is unaffected by the CaREs (Figure 3C), demonstrating the precise 
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targeting of the CRISPRa construct and the ability of TESLA-seq to characterize distal 

regulatory relationships. 

To assess the proximity of CaREs to their target genes in 3D space prior to 

CRISPR perturbation, we captured all 3D promoter interactions in the 6Mb PHOX2B 

genomic space in the SH-SY5Y cell line using Nuclear Capture C (nuCaptureC; 

(Downes et al., 2022); Figure 3D, PHOX2B promoter interaction example in Figure 

S3C). NuCaptureC interaction scores for significant CaRE-gene pairs are higher than 

for non-significant CaRE-gene pairs (Figure 3E). Significant CaRE-gene pairs displaying 

prior 3D interaction result in greater changes in expression levels compared to 

significant CaRE-gene pairs that are not in prior 3D proximity (Figure 3D; Figure 3F, 

right panel). Furthermore, TESLA-seq contains data for over 1000 CaRE-gene 

relationships that show prior interaction according to nuCaptureC data but do not affect 

the interacting gene’s expression when targeted by CRISPRa (Figure 3F, right panel). 

These observations suggest that prior 3D proximity allows for stronger transactivation 

but is neither required nor sufficient.  

Our observations are further supported by published databases of regulatory 

associations determined either via correlations of histone modifications across cell types 

(Boix et al., 2021); Figure S3D,F) or from Hi-C catalogs (Nasser et al., 2021); Figure 

S3E,F). Of note, only a minority of identified CaRE-gene pairs have reliable evidence in 

these 3C- or correlation-based regulatory associations, highlighting a potential 

advantage of our functional relationships over other indirect approaches. 

CaRE-gene pairs for which the target gene promoters displayed high signals for 

ATAC and H3K4me3 showed greater changes in target gene expression upon CaRE 
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activation, compared to pairs with low levels of these chromatin features at the target 

promoter (Figure 3F, Figure S3G). We trained a simple yet highly predictive random 

forest model for significant CaRE-gene pairs based on the genomic features mentioned 

above. We find that linear distance, the presence of active histone marks (H3K4me1 

and H3K27ac), and accessibility are the most predictive features for regulatory 

relationships, with perfect separation between the top and bottom 50 CaRE-gene pairs 

(see methods, Figure 3G). 

In summary, many TESLA-seq identified CaRE-target interactions exhibit 

characteristics consistent with current models of CREs, but as expected for the gain-of-

function approach, evidence from SH-SY5Y prior to CRISPR activation cannot fully 

explain the revealed functional regulatory relationships. 
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Figure 3. Properties of CaREs and their targets identified by TESLA-seq. 
A) Linear distance between CaREs and their targets (bases in a log10 scale) stratified 
by their significance in the TESLA- screen (p-adjusted value < 0.05 is yes). B) 
Histogram showing the number of genes located between a CaRE and a gene in the 
genome (jumped genes) for each CaRE-gene regulatory pair. C) Comparison of the fold 
change (log2) of targeted genes and jumped genes between significant and non-
significant TESLA-seq CaRE-gene regulation pairs. D) Genome browser snapshot of 
CaREs affecting PHOX2B expression determined by TESLA-seq (top) and PHOX2B 3D 
interactions determined by nuCaptureC (bottom). E) Comparison of nuCaptureC score 
between significant and non-significant TESLA-seq CaRE-gene regulation pairs. F) 
Comparison of the CaRE target gene expression (average fold change at log 2 scale) 
between TESLA-seq significant and non-significant CaRE-gene regulation pairs that 
have a low or high: ATAC signal at the promoter of the target gene (left), H3K4me3 
signal at the promoter of the target gene (middle) and nuCapC score (right). G) 
Features that contribute the most to the predictability of a random forest model. The 
model predicts whether a CaRE-gene regulation pair is in top 50 or bottom 50. Panel on 
the right: hierarchical clustering of features based on correlation. See also Figure S3 
and Table S5-6. 
 
 
TESLA-seq identifies regulatory network edges normally active inside and 

outside of the experimental system 

 
Utilizing CRISPRa allows for the discovery of not only  CREs active in the 

assayed cell line but, in principle, also for the discovery of genetic regulatory elements 

that may be active in any biological context (Wu et al., 2023). Therefore, we examined 

EpiMap data, in which a compendium comprising 10,000 epigenomic maps across 800 

samples is used to define chromatin states, accessible regions, promoters, enhancers, 

and target genes (Boix et al., 2021).  

Out of 60 CaREs participating in significant TESLA-seq interactions, 52 are 

defined by EpiMap as either enhancers (30), promoters (7) or accessible regions (15) 

(Figure 4A, Figure S4A). For all of these, we provide the target gene as identified by 

TESLA-seq as well as the tissue in which the genetic regulatory element is annotated 
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as endogenously active in EpiMap (Table S5). In 31 cases, the EpiMap annotated 

target gene is in agreement with the TESLA-seq, validating both the TESLA-seq 

experiment and the EpiMap computational prediction. 

 We classified all CaREs having a significant effect on at least one gene into three 

groups according to regulatory evidence in published chromatin accessibility or ChIP-

seq data: 31 CaREs (involved in 51 interactions) have regulatory evidence in examined 

neuroblastoma (nb) cell line data, 21 CaREs (involved in 29 interactions) have evidence 

in EpiMAP data only (other), and 8 CaREs have no previous evidence (12 interactions; 

noEF) (Figure 4A,B, Figure S4A). We then compared these three classes of CaREs to 

determine if there are any striking differences. Laying out the results per gene (Figure 

4A), we observed that: 1) some genes have no regulators despite being surrounded by 

genes with altered expression in response to CRISPRa (as described in Figure 3B-C), 

2) many interactions in the “nb” group are closer in linear or 3D space (quantified in 

Figure 4E-F, Figure S4B,D-F), and 3) most of the genes targeted by CaREs in the 

“other” or “noEF” classes are also targeted by CaREs in the “nb” class (quantified in 

Figure S4C). Of note, the “noEF” and “other” class can not be explained purely based 

on prior 3D proximity, as there are a number of functional interactions despite a lack of 

prior 3D interaction. Considering the most significant target per CaRE, we find 

differences between the groups for their TESLA-seq significance (adj. p-val) and 

distance to target gene, but no difference between the groups for their effect size (log-

fold-change) on their target genes (Figure 4C-E, Figure S4B), arguing against 

borderline false positives due purely to the chosen statistical cutoff (adj. P-val < 0.05;).  
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Together, these results suggest that TESLA-seq can activate and identify targets for 

regulatory elements active both within and outside of the assayed cellular context and 

that specific and functional transactivation can occur from elements with or without 

evidence of known regulatory characteristics, with or without prior 3D proximity. 

Furthermore, combining epigenomic databases with TESLA-seq results can associate 

CaRE-gene relationships with the tissues in which they are endogenously active. 
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Figure 4. Integration of TESLA-seq results with epigenomic data. 
A) For each gene target (displayed in the order that matches their order in the genome 
in decreasing genomic coordinates) linear distance to their CaRE determined by 
TESLA-seq is shown. The line indicates the screening window in the bulk screen from 
which CaREs were selected for TESLA-seq. The data is further stratified by: nuCapture-
C signal displayed via circle fill (yes - 3D interaction is detected or no - no interaction 
detected); class defined by EpiMap indicated via circle colour; and fold changed 
determined via TESLA-seq depicted by circle size. CaREs are classified into three 
groups according to regulatory evidence in published ATAC or ChIP-seq data: left - 
CaREs with evidence in neuroblastoma (nb n=31 involved in 51 interactions), middle - 
evidence in tissue other than neuroblastoma (other n=21 involved in 29 interactions) 
and right - CaREs for which no evidence was found (noEF n= 12). B) Number of CaREs 
in each category, nb, other, noEF grouped by the EpiMap classification indicated with 
colours. C-E) Comparison between different CaRE evidence categories (nb, other, 
noEF) in CaRE-gene pair adj. P-value (-log10 scale) (C), fold change (log2 scale) (D) 
and linear distance (E). F) Number of CaREs in each category (nb, other, noEF) 
grouped by NuCaptureC detected interaction (yes - 3D interaction is detected or no - no 
interaction detected). See also Figure S4 and Table S5-6. 
 
 

TESLA-seq identified regulators of APBB2 and SHISA3  

 
In addition to PHOX2B, our initial focus for identifying CREs in the CRISPRa 

screen, TESLA-seq has identified CREs of several other genes that play important roles 

in both health and disease. We examined two examples in more detail. 

APBB2 plays a role in Alzheimer's disease (Golanska et al., 2013, Li et al., 2005) 

and cell cycle (Bruni et al., 2002, Zhou et al., 2021).  TESLA-seq identified 3 CaREs for 

this gene (Figure 5A). CaRE_233 is the promoter of APBB2 gene (highlighted). For 

CaRE_52 there is prior evidence in neuroblastoma epigenomics data (nb), and we 

validated it in SH-SY5Y cells using individual gRNAs (Figure 5A middle). For CaRE_174 

we found no evidence in neuroblastoma data, but there is evidence that it acts as a 

regulatory element in cardiac tissue (Boix et al., 2021). 
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By promoting the degradation of β-catenin, SHISA3 contributes to the 

suppression of tumorigenesis, invasion and metastasis (Chen et al., 2014, Shahzad et 

al., 2020, Zhang et al., 2024). The silencing of this gene has been observed in a variety 

of different cancer types, such as colorectal cancer (Tsai et al., 2015, Tang et al., 2021),  

nasopharyngeal carcinoma (Zhang et al., 2019), lung adenocarcinoma (Si et al., 2019), 

and breast cancer (Shahzad et al., 2020). TESLA-seq identified 15 CaREs that regulate 

SHISA3 expression (Figure 5B). For 2 of them, we do not find any evidence in either 

neuroblastoma or in other tissues (Table S5). We validated 5 of them, including one 

without other evidence (Fig 5Bf); two with evidence in other contexts (Fig 5Bk,n); as well 

as two annotated neuroblastoma CREs with high (Fig 5Bm) and low fold change in the 

TESLA-seq (Fig 5Bb).  Of note, the fold change effects detected via TESLA-seq 

resemble the fold changes detected via RT- qPCR, highlighting the sensitivity of the 

TESLA-seq. 

Two of the CaREs identified to regulate SHISA3 by TESLA-seq (SHISA3 

promoter CaRE_790 – Fig 5Bh and CaRE_816 – Fig5Bk) intersect with the somatic risk 

variants found in cancer (Hoadley et al., 2018). In EpiMAP, CaRE_816 is annotated to 

be active in renal tissue and cancer. This is another example of linking disease-relevant 

CREs to their target genes in tissues other than the one used for the screen.  

In addition to regulating SHISA3, the promoter CaRE of SHISA3 (CaRE_790) is also 

identified to regulate the UGDH and TLR6 genes. This could be an example of a 

promoter acting as an enhancer, but we cannot rule out a secondary effect of 

modulating SHISA3 expression. 
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Figure 5. Selected examples of CaRE - gene pairs. A) Top left and right: TESLA-seq 
normalized gene expression level of APBP2 gene, comparing cells having gRNA 
targeting individual indicated CaREs versus all other cells. Top middle: APBP2 
expression change upon activation with dCas9-VPR with control or gRNA targeting 
CaRE_52 in SH-SY5Y cell line. Relative expression of target genes is determined by 
RT-qPCR and normalized to GAPDH. Shown are two replicates and actin as a control 
gene. Bottom: Browser shot of the APBP2 genomic region, from top to bottom, the 
following tracks are displayed: TESLA-seq identified CaREs affecting APBP2 
expression, ATAC-seq andH3K27ac ChIP-seq from SH-SY5Y cell line, and gene track. 
B) Top: TESLA-seq normalized gene expression level of SHISA3 gene, comparing cells 
having gRNA targeting individual indicated CaREs versus all other cells. Middle: 
Browser shot of the SHISA3 genomic region. From top to bottom the following tracks 
are displayed: TESLA-seq identified CaREs affecting SHISA3 expression, ATAC-seq 
and H3K27ac ChIP-seq from SH-SY5Y cell line, and gene track. Bottom: SHISA3 
expression change upon activation with dCas9-VPR with control or gRNA targeting 
indicated CaRE in SH-SY5Y cell line. The following gRNAs were used: X886 for 
CaRE_730, X327 for CaRE_780, X341 for CaRE_816, X351 for CaRE_829, X355 for 
CaRE_831. Relative expression of target genes was determined by RT- qPCR and 
normalized to GAPDH. Shown are two replicates and actin as a control gene.  
 

 

Discussion 
 

A wide variety of resources have cataloged CREs and their potential involvement 

in disease based on their biochemical features (Boix et al., 2021, Hoadley et al., 2018, 

Zhang et al., 2020). CRE validation, functional characterization, and identification of 

their target genes represent a major challenge in the field. Here we developed a 

strategy that allows the identification of CREs and their targets at a large scale and at 

high sensitivity, by combining an unbiased tiled phenotypic screen with TESLA-seq - a 

CRISPRa screen with a targeted scRNA-seq readout of guides and their effects.  
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In our application on dissecting the regulatory landscape of the PHOX2B locus, 

we set up a tiling CRISPRa screen in a 2 Mb window and identified 619 CaREs that 

affect cellular growth/proliferation. For a subset of 222 CaREs, we examined the effect 

on the expression of genes within an extended 6 Mb window via TESLA-seq, resulting 

in 92 functional CaRE-target gene pairs. Since we selected CaREs based on a 

phenotypic effect in the tiled screen window, there are likely many functional CaREs in 

this window that we did not assay, affecting genes within or outside of this window.  Due 

to the novelty of the approach, we employed very stringent and conservative filtering 

criteria at every step of the TESLA-seq analysis. Additional data from further TESLA-

seqs will allow us to improve on computational tools for the analysis of this type of data. 

On average, there are 7.7 genes skipped between a CaRE and its target, 

meaning that the commonly used strategy of associating an enhancer to its closest 

active gene is likely suboptimal (Gasperini et al., 2020, Kim and Wysocka, 2023), 

although this will strongly depend on the specific locus. These observations underline 

the difficult task of computationally predicting enhancers and their targets and the need 

for scaling up the functional characterization of CREs. Since the expression of skipped 

genes is not affected, these results also demonstrate the sensitivity of TESLA-seq to 

characterize distal regulatory relationships. However, due to the time period elapsing 

between transduction and single-cell readout, we cannot rule out additional 

secondary/indirect regulatory effects. While further studies are needed to confidently 

distinguish between the two, the observed evidence for prior 3D interaction between 

significant CaRE-gene pairs as well as the overlap with known regulatory elements and 

targets suggest that we are primarily identifying direct effects.  
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Given current understanding about CREs (Gasperini et al., 2020, Kim and 

Wysocka, 2023), we find that the majority of significant enhancer-gene pairs interact in 

3D genomic space before CRISPRa. Prior 3D proximity allows for stronger 

transactivation, however it is neither sufficient nor required. This observation further 

exemplifies that, although 3D proximity can be an indicator of a functional relationship 

between a CRE and a gene, functional characterization is necessary to reliably assign a 

regulatory effect of a CRE on its target.  

A major advantage of an activation screen is that it includes CREs that are not 

necessarily active in the assayed cell line. By combining the TESLA-seq results with 

available epigenomic maps from 800 tissues, we were able to assign the likely relevant 

tissue for 29 CaRE-gene relationships. Using a CRISPR activator to assay possible 

CREs regardless of their endogenous activity is especially important for studying CREs 

that are only active in rare cell types and cell types that we cannot easily culture and 

study.  

Finally, the epigenetic landscape at the time of the experiment will influence the 

efficiency of CRISPR perturbation. In general, CRISPRi/a tends to be more efficient in 

open chromatin regions (Horlbeck et al., 2016), and although gene activation by dCas9-

VPR is successful in most genomic contexts, including bivalent chromatin, constitutive 

heterochromatin is less responsive (Wu et al., 2023). Our findings are in line with this: 

the most responsive CaREs are the ones that are in a permissive chromatin state in the 

assayed cell line. These results may reflect a combination of dCas9 requiring physical 

accessibility to its DNA target and/or dCas9-VPR requiring other CRE features, such as 

well positioned nucleosomes and divergently-oriented core promoter sequences (Duttke 
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et al., 2015, Lacadie et al., 2016, Ibrahim et al., 2018).To bypass these limitations, 

future studies will benefit from the use of other activators and repressors as well as 

screening in a handful of different cell types (Kearns et al., 2015, Gasperini et al., 2020, 

Bock et al., 2022). 

TESLA-seq enables detailed, sensitive investigation of gene expression 

regulation. Its high-throughput approach offers the potential to uncover transcriptional 

regulatory logic in its natural environment at a competitive scale, and it provides a 

significant step forward for uncovering the effects of non-coding sequence variation on 

disease. 
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Methods  

Resource availability 

 

o   Lead contact: Further information and requests for resources and 

reagents should be directed to and will be fulfilled by the lead contact, 

Uwe Ohler (Uwe.Ohler@mdc-berlin.de). 

o   Technical contact: Technical questions on executing this protocol 

should be directed to and will be answered by the technical contact, 

Dubravka Vučićević (vucicevic.dubravka@gmail.com). 

o   Materials availability: Correspondence and requests for materials 

should be addressed to the technical contact. The unique identifiers of 

all biological materials are listed in the methods. The newly generated 

plasmids can be obtained from the technical contact.  

o   Data and code availability:  Data generated for this study are 

accessible at GEO under accession numbers: GSE274254 for ATAC-

seq, GSE274255 for bulk CRISPR screen, GSE274256 for TESLA-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 12, 2024. ; https://doi.org/10.1101/2024.09.12.612198doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274254
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274255
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE274256
https://doi.org/10.1101/2024.09.12.612198
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

seq, GSE274257 for nuCapture-C and GSE274258 for chromatin 

RNA-seq. All codes for data analysis and visualization have been 

deposited at https://github.com/ohlerlab/Vucicevic_et_al and are 

publicly available. Any additional information necessary to re-analyze 

the data reported in this paper is available from the technical contact 

upon request. 

Cell culture  

SHSY-5Y cells (DSMZ #ACC 209) were cultured in DMEM/F12 (Thermo Fisher 

Scientific #31330038) supplemented with 20% FBS (Thermo Fisher Scientific 

#16000044) and 1% penicillin/streptomycin (Thermo Fisher Scientific #15070063) at 

37°C with 5% CO2. When 90% confluent, cells were washed with PBS (Thermo Fisher 

Scientific #10010015), trypsinized using 0.05% Trypsin-EDTA (Thermo Fisher Scientific 

#25300096) for 2 min, spun down in complete growth medium at 400g for 3 min and 

split 1:6 into clean TC dishes. 

Comparison of CRISPR activators  

We targeted MyoD enhancers: distal regulatory region (DRR) and core enhancer (CE) 

as well as the MyoD promoter through co-transfection of gRNAs targeting each region 

and either dCas9-p300 (Hilton et al., 2015), dCas9-SunTag10 (Tanenbaum et al., 

2014), dCas9-SunTag24 (Tanenbaum et al., 2014) or dCas9-VPR (Chavez et al., 

2015). 2x105 HEK293 cells were co-transfected with 20ng of either equimolar pool of 

gRNAs or 20ng of undivudual gRNAs  and 50ng of either one of the dCas9 fusion 

constructs with lipofectamine2000 (Chavez et al., 2015). Cells were collected 48h or 
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96h later in the case of dCas9-p300. Relative expression was determined by qRT-PCR 

and normalized to gapdh, actin is shown as a control gene.  

Cloning and transduction of individual gRNAs  

Ordered oligonucleotides contained sticky-end overhangs matching the Esp3I 

overhangs of the CROPseq-Puro digested with Esp3I (Thermo Fisher Scientific 

#FD0454). Sense and antisense oligonucleotides were annealed and ligated into the 

digested backbone using T4 DNA ligase (NEB). They were transformed in Stbl3 

bacteria and the clones were validated with Sanger sequencing. Lentiviral production 

was done as described in (Datlinger et al., 2017). The lentiviral prep was concentrated 

using Lenti-X Concentrator (Takara Bio #631232). Cells were transduced at a low 

multiplicity of infection (<0.3 MOI), selected 48h post-transduction using 2ug/ml of 

puromycin (Sigma Aldrich #P9620) and treated as indicated in different assays.   

Cloning of dCas9 constructs 

dCas9-VPR and KRAB-dCas9-P2A-mCherry constructs were designed to be flanked by NheI 

and NotI restriction sites and synthesized into the pEX-A2 backbone (Eurofins). To generate 

dCas9 piggybac transposons, pEX-A2 plasmids containing the dCas9 constructs were digested 

with NheI and NotI and cloned into the backbone of pPB-CAG-3xFLAG-empty-pgk-hph 

(addgene #48754) between XbaI and NotI sites, rendering the XbaI site destroyed. These 

constructs will be deposited to addgene.  

Generation of stable cell lines  

Stable SH-SY5Y-dCas9VPR and SH-SY5Y-dCas9KRAB cell lines were generated 

using the PiggyBacTM Transposon Vector System. According to the manufacturer's 
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instructions, 0.5x106 SHSY-5Y cells (passage number p10) per well of a 6-well plate 

were transfected using Lipofectamine 2000 (Thermo Fisher Scientific #11668019)  in a 

1:5 ratio of PiggyBac transposase (BioCat #PB210PA-1-SBI) to PiggyBac transposon 

carrying either dCas9-VPR or KRAB-dCas9-P2A-mCherry constructs, respectively. The 

following day, cells were selected for successful integration using 300 ug/ul of 

hygromycin (Invivogen #ant-hm-1) until the control cells were dead (4 days). They were 

re-selected before each experiment to ensure the expression of the constructs. 

Viability assays  

The viability of SH-SY5Y-dCas9VPR and SH-SY5Y-dCas9KRAB cells treated with 

either control, six gRNAs targeting the promoter of PHOX2B, or any other indicated 

treatment was measured using the RealTime-Glo MT Cell Viability Assay (Promega 

#G9711) according to the manufacturer’s instructions. Luminescence was measured 24, 

48, and 72 hours after the cells were selected for gRNA expression. 

qPCR measurement of CRISPRa/i effects  

Total RNA was extracted from cells following the manufacturer's instructions with Trizol 

(Thermo Fisher Scientific #15596018). Reverse transcription was carried out using the 

High Capacity RNA-to-cDNA Kit (Thermo Fisher Scientific #4387406), and RTqPCR 

was performed using Fast SYBR Green Master Mix (Thermo Fisher Scientific 

#4385616) according to the manufacturer's instructions on a Real-Time PCR System 

(Roche lightcycler 480 II). The relative expression was calculated by normalizing to 

GAPDH expression levels as a control housekeeping gene. Primers used for RT-qPCR 

can be found in Table S1.  
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Design and selection of gRNAs for the bulk screen  

100bp bins of the 2MB region surrounding PHOX2B were used as input for guidescan  

software (Perez et al., 2017) with parameters: guidescan_guidequery (--target within -o . 

--output_format csv --select score -n 3) to select the top 3 guides for each bin from a 

pre-computed Cas9 guide database for hg38. We included 100 control gRNAs from the 

GeCO V2 library (Sanjana et al., 2014). Suitable overhangs for the Gibson assembly 

were added (Joung et al., 2017).  

CRISPRa/i viability screen  

Oligo pools containing 46,722 oligos (Table S3) ordered from Twist Bioscience were 

cloned into the CROPseq-Guide-Puro plasmid (Addgene #86708) digested with Esp3I 

(Thermo Fisher Scientific #FD0454) according to (Joung et al., 2017). The library was 

amplified using primers and according to the protocol from (Datlinger et al., 2017) and 

sequenced on a NextSeq 500/550 machine according to the Illumina user manual. 

Lentiviral production was done as described in (Datlinger et al., 2017). The lentiviral 

prep was concentrated using Lenti-X Concentrator (Takara Bio #631232) and the viral 

titer was determined using a Crystal violet viability assay (Vučićević et al., 2016). The 

screen was performed as described in (Datlinger et al., 2017). For each gRNA at least 

1000 cells per gRNA were seeded and they were transduced at a low multiplicity of 

infection (<0.3 MOI) in either SH-SY5Y-dCas9VPR and SH-SY5Y-dCas9KRAB cell line. 

The cells were selected 48h post-transduction for the ones that received the gRNA 

using 2ug/ml of puromycin (Sigma Aldrich #P9620) for three days. They were kept 

under constant antibiotic selection with 1ug/ml of puromycin and  100ug/ml of 

hygromycin and collected at several time points (day 5, day 20, day 29 and day 33). 
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DNA was extracted using the Quick-DNA Midiprep Plus kit (Zymo Research #D4075). 

The library preparation was done as described in (Datlinger et al., 2017) and sequenced 

on a NextSeq 500/550 according to the Illumina protocol.  

Bulk CRISPRa/i data analysis  

Sequencing reads were assigned to sgRNA using a modified version of a script in 

(Sanjana, 2016). Mean guide-counts were obtained at each time-point and all time-

points were combined in a single table. Normalized counts cj were obtained using the 

following equation: cj = (qj/(q)k ) x 106 (where qj is reads mapped to a specific guide and 

(q)k is total number of reads mapped to all guides). We employed a sliding window 

strategy to score each bin based on the information from the sgRNAs targeting it and 

the adjacent bins upstream and downstream. Each bin was analyzed using guides 

targeting a 300bp window centered on it. To assess guide enrichment or depletion 

within these windows, we utilized a mixed linear model (MLM) with random intercepts: 

Countsi		=	j[i]+	[1](Time),	for bin i 

~	N(j	,2j),	for sgRNA j	=	1,	...	,	J 

Where Countsi represents the log counts of bini; j[i]	is the intercept for guide j of bin i; 

[1] is the overall estimate for Time.  

The model was fitted using the ‘lme4’(v. 1.1.28) R package (REML = FALSE) (Bates et 

al., 2015). 

Hypothesis testing was done by comparing our full model to a reduced version that 

does not account for time using a maximum likelihood ratio via ANOVA (Kaufmann and 

Schering, 2014) as follows: 

Countsi		=	j[i],	for bin i 
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~	N(j	,2j),	for sgRNA j	=	1,	...	,	J	

Adjustment of the p-value for correction of multiple tests was performed using the 

Benjamini-Hochberg method (Benjamini and Hochberg, 1995). After identifying 

significant windows, bedtools (v 2.30.0) (Quinlan and Hall, 2010) was used to merge 

significant bins within 500bp of each other into CaREs. If a significant bin was not within 

500 bp of another significant bin, it was classified as a distinct CaRE. CaREs were 

scored by MLM using information from all guides targeting the genomic area defined by 

the merged CaRE. Scores were calculated as: -log10 (adjusted p-value). 

ATAC-seq 

ATAC-seq experiments were performed in the SH-SY5Y, CLB-Ga, IMR-5, Kelly, NGP 

and SK-N-SH neuroblastoma cell lines using 100,000 cells according to the protocol 

(Buenrostro et al., 2015) with the following modifications: transposition time was 

increased from 30 min to 1 h and the cell pellets were taken directly to the transposition 

reaction omitting the lysis step as described in (Karabacak Calviello et al., 2019). For all 

samples, 12 PCR cycles were performed, and the libraries were sequenced (2x75nt) on 

a NextSeq 500/550 using a HighOutput v2 Kit for 150 cycles (Illumina #FC-404-2002, 

discontinued). 

ATAC-seq processing 

ATAC-seq reads were trimmed for adapter content using flexbar (-f i1.8 -u 10 -ae 

RIGHT -at 1.0; (Dodt et al., 2012)), mapped to hg19 using bowtie2 (-X 1500 --no-

discordant; reads eventually lifted over to hg38; see below; (Langmead and Salzberg, 

2012), filtered for unique mapping reads (grep -v "XS:i:"), and collapsed for PCR 
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duplicates using Picard Tools MarkDuplicates (http://broadinstitute.github.io/picard). 

Finally, the 5’ends of reads were selected and extended to account for the estimated 

footprint size of Tn5 on the DNA using bedtools slop (-l 15 -r 22 -s; (Quinlan and Hall, 

2010, Adey et al., 2010); 11(12): R119). Peaks were called using JAMM (-e auto -b 100; 

(Ibrahim et al., 2015)) on fragment extended reads. 

Chromatin RNA-seq 

Cellular fractionation was performed in SH-SY5Y cell line according to (Conrad and 

Ørom, 2017). Chromatin RNA were extracted using Trizol and Direct-zol RNA MiniPrep 

Kit (Zymo Research #R2052) according to the manufacturer’s instructions. The library 

was prepared using NEXTflex Rapid Directional qRNA-Seq Kit (BiooScientific #NOVA-

5130-01D) according to the manufacturer’s instructions and paired-end sequencing 

(2x75nt) was performed on a NextSeq 500/550 using a HighOutput v2 Kit for 150 

cycles. 

RNA-seq processing and analysis 

Unique molecular identifiers (UMIs) were extracted from .fastq files using UMI-tools 

(Smith et al., 2017), and reads were trimmed using fastx_trimmer from the FASTX-

toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Reads were then filtered for ERCC 

spike-in reads and rRNA by mapping to a custom index with Bowtie 1 (Langmead et al., 

2009). Trimmed and filtered reads were then mapped using STAR (Dobin et al., 2013). 

Mapped .bam files were subjected to PCR deduplication using UMI-tools (Smith et al., 

2017), followed by conversion to .fastq and remapping with STAR to generate final 

mapped files and normalized coverage tracks. 
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Analysis of Ca/iRE features in neuroblastoma data  

Raw sequencing data from ChIP-seq analyses of histone modifications and transcription 

factors in neuroblastoma cell lines (Henrich et al., 2016, Durbin et al., 2018, Wang et al., 

2019, Boeva et al., 2017, Zhang et al., 2020) was downloaded from the Sequence Read 

Archive (https://www.ncbi.nlm.nih.gov/sra) under accessions SRR3363255, 

SRR3363256, SRR3363257, SRR3363258, SRR3363259, SRR5249434, 

SRR5249436, SRR5249437, SRR5249438, SRR5249439, SRR5249440, 

SRR5249442, SRR5249443, SRR5249446, SRR5249447, SRR5249451, 

SRR5675976, SRR5675978, SRR5676027, SRR5676028, SRR5676029, 

SRR6451360, SRR6451361, SRR6451362, SRR7101491, SRR7101492, 

SRR7865946, SRR7865947 and SRR8169718 and from the ENCODE database 

(https://www.encodeproject.org/) under accessions ENCFF000ZPW, ENCFF000ZPZ, 

ENCFF000ZQF, ENCFF000ZQI, ENCFF000ZQL, ENCFF000ZQX, ENCFF072EIX, 

ENCFF443LZC, ENCFF458ASE, ENCFF557DAH and ENCFF615LEB. Reads were 

mapped to the hg38 reference genome using bowtie2 (version 2.3.4.3). Fragment 

lengths were estimated for each sample (and input/background) alignment by macs2 

(version 2.1.1.20160309) using parameter -g 1.6e+9. From the list of estimated 

fragment lengths per sample, the length closest to 200 bp was selected and read 

mapping coordinates of that sample were extended to the respective fragment length. 

Read coverage of processed ChIP-seq and ATAC read coordinates were summarized 

in bins and regions of the CRISPRa phenotypic screen analysis respectively, using the 

function summarizeOverlaps from the R/Bioconductor package GenomicAlignments 

(version 1.22.1) with parameters mode="Union" and inter.feature=FALSE. To capture 
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signals of histones adjacent to CaREs the respective summary features of histone 

ChIP-seq samples were resized to a minimum of 1000 bp centering on the CaRE. 

ATAC-seq read coordinates were translated to hg38 using the function liftOver from the 

R/Bioconductor package rtracklayer (version 1.46.0). Read coverage per region was 

normalized to reads per kilobase (RPK). Peaks were called using JAMM (-e auto -b 

100; (Ibrahim et al., 2015)) on fragment extended reads, and peaks for transcription 

factors were further filtered to have a peak score > 515. 

Significant CaREs were defined as regions with FDR < 0.05 from the respective 

CRISPR screen analysis. ChIP-seq and ATAC-seq read coverages were normalized to 

z-scores for downstream analysis. A unified generalized linear model (binomial link 

function) was applied to predict significant CaREs by ChIP-seq z-scores of H3K27ac, 

H3K4me1, H3K4me3 and H3K27me3 and ATAC-seq z-scores in neuroblastoma cell 

line SH-SY5Y. Additionally, significant CaREs were predicted by individual generalized 

linear models (binomial link function) from transcription factor ChIP-seq experiments in 

neuroblastoma cell lines, where each model was controlled for signal z-scores of the 

more general epigenetic features H3K27ac, H3K4me1 and H3K4me3 from ChIP-seq 

and ATAC-seq in cell line SH-SY5Y. 

TESLA-seq  

We selected 222 top-scoring significant CaREs from the bulk phenotypic screen. For 

each of them, we selected gRNAs with the highest fold change. These gRNAs, together 

with 52 control gRNAs (total of 1098 in Table S5), were ordered as oligos from Twist 

Bioscience, cloned, and sequenced as described for the phenotypic screen. The 

lentiviral production was done as in the viability screen. SHSY-5Y-VPR line was infected 
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at <0.3 MOI and the selection with 2ug/ul of puromycin started 24h post transduction. 

As soon as the antibiotic control non-infected cells were dead,on day 4 after 

transduction, the cells were collected. The viability of the cells was > 85% in both 

experiments as determined by the BD Rhapsody scanner after staining with Calcein AM 

(Thermo Fisher Scientific #C1430) and Draq7 (Thermo Fisher Scientific #564904) 

according to the manufacturer's protocol. Single-cell capture and cDNA synthesis were 

performed using the BD RhapsodyTM Single-Cell Analysis System according to the 

manufacturer's instructions. Capture probes for 146 transcripts corresponding to 78 

genes in the 6MB genomic space (+/- 3MB from the PHOX2B TSS) on chr4 were 

designed by BD. The targets were enriched and the library was prepared according to 

the BD mRNA Targeted Library Preparation protocol. Paired-end sequencing (2x75nt) 

was performed on a NextSeq 500/550 using a HighOutput v2 Kit for 150 cycles with a 

20% PhiX spike-in.  

Computational analysis of TESLA-seq data  

The raw sequencing output files were preprocessed using BD’s Rhapsody™ Targeted 

Analysis pipeline (https://scomix.bd.com/hc/en-us/articles/360019763251-

Bioinformatics-Guides) on the Seven Bridges Platform 

(https://www.sevenbridges.com/bdgenomics/), which generated a cell-by-gene count 

matrix corrected for base-calling errors in cell barcodes, followed by quality-filtering on 

cells. Processed count matrices of two sample runs contain 12,597 (run1) and 19,406 

(run2) cells, respectively, with features consisting of 1,046 guide RNAs (gRNA) 

targeting the 2Mb region around the PHOX2B gene, 52 control gRNAs, and 78 genes 

within the 6Mb region around the PHOX2B gene. The count matrices were loaded into 
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the R environment for further preprocessing with Seurat v4 (Stuart et al., 2019). 

Logarithm base 10 was applied to both the gene count matrices and gRNA count 

matrices. The gRNA count values display a clear bimodal pattern, suggesting that the 

peak of lower values could be noise. After setting the lower values in gRNA matrices to 

zero, gRNAs with no count values across cells and genes with no expression were 

removed. Cells with either low gRNA values or low gene expression were filtered. After 

filtering, run1 has 6,196 cells with 1,090 gRNAs and 62 genes, while run2 has 10,363 

cells with 1,097 gRNAs and 64 genes. 

The quality-filtered matrices of two runs were normalized using SCTransform 

(Hafemeister and Satija, 2019) and integrated with batch correction done by linear 

regression between runs (SCTransform argument ‘var.to.regress’). Cells  that had less  

than two normalized and batch-corrected guide counts were removed and genes that 

have no expression following the cell removal were filtered. gRNA capture efficiency 

was computed using a generative model that takes into account the multiplicity of 

infection (Dixit et al., 2016, Hill et al., 2018). 

To test the effect of each gRNA and avoid potential confounding caused by nearby 

gRNAs, differential expression analysis of each targeted gene was performed between 

cells that contain the considered gRNA and all other cells that contain other gRNAs 

targeting at least 400 kb away from the considered gRNA. MAST.cov test was chosen 

to perform differential expression analysis as recommended for targeted single-cell data 

(Schraivogel et al., 2020). A significance level of 0.05 adjusted p-value was used to 

identify regulation pairs of gRNA/CaRE and gene. Plots were generated using R 

packages ggplot2 v3.3.2 (Wickham, 2016) and Sushi v1.7.1 (Phanstiel et al., 2014).   
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Nuclear Capture C 

nuCapture C was performed according to (Downes et al., 2022) in SH-SY5Y cell line. 

Single-stranded DNA probes for genes in the 6MB space surrounding PHOX2B were 

obtained from IDT as an xGen Lockdown Pool and are listed in table S2.  Paired-end 

sequencing (2x150nt) was performed on a NextSeq 500/550 using a HighOutput v2 Kit 

for 300 cycles (Illumina #FC-420-1004, discontinued). 

Nuclear Capture C data processing 

Nuclear Capture C reads were initially processed using the HiCUP pipeline (Wingett et 

al., 2015) with Bowtie2 mapping to hg38. Mapped reads were then converted to .chinput 

format using chicagoTools and used as input to chicagoPipeline (Cairns et al., 2016) 

along with DpnII genomic fragment regions targeted for capture during library 

preparation.  

Hi-C data processing 

Raw reads from published IMR5/75 cells Hi-C experiments (Helmsauer et al., 2020) 

were downloaded from SRA (PRJNA622577). Processing steps were implemented 

within the Snakemake framework (Mölder et al., 2021). Hi-C reads were initially 

processed using the Juicer pipeline (Durand et al., 2016). TADs were called using the 

insulation method (Crane et al., 2015) with default settings (–is500000–nt0–ids250000–

ss0–immean) after dumping valid interactions at 25 kb binned resolution using juicer-

tools and converting formats using HiTC (Servant et al., 2012). For scoring Hi-C 

interactions, valid interactions were dumped by juicer-tools at fragment resolution, 

filtered to remove interactions less than 20 kb apart, format converted using custom 
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scripts, and then subjected to shuffling and scoring using the SHAMAN method (Cohen 

et al., 2017). 

Random forest model for predicting significant CaRE-gene pairs from genomic 

features 

Random forest models were trained with scikit-learn tools v1.2.1 (Varoquaux et al., 

2015) in Python. The model was trained to learn how well genomic features, linear 

distance between a perturbed region and gene, CaptureC score, ATAC signal, and 

epigenetic markers can predict the regulatory relationships between CaREs and genes. 

The top 50 and bottom 50 regulatory pairs, ranked by adjusted p-values, were selected 

as the target of prediction (1 for top 50, 0 for bottom 50), and the genomic features were 

treated as the explanatory features. 

TESLA-seq multimodal integration analysis 

Nuclear capture-c scores were assigned to CaRE-gene pairs by intersecting 25kb 

regions surrounding CaRE midpoints and gene TSSs with fragment-target pair 

coordinates and scores as output by the Chicago pipeline using bedtools pairtopair (-

slop 12500; (Quinlan and Hall, 2010)) and taking the maximum Chicago score per pair 

within this 25kb interaction square. Pairs were classified as interacting if this maximum 

Chicago score was greater than 3. 

Hi-C scores were assigned to CaRE-gene pairs by taking the highest Shaman 

score within a 25kb square centered on the CaRE midpoint and gene TSS using 

Shaman scripts. A CaRE-gene pair was classified as Hi-C interacting if the highest 

Shaman score in this 25kb square was greater than or equal to 25. 
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Epimap (Boix et al., 2021) link coordinates and scores were downloaded by 

tissue group and concatenated. Epimap region coordinates were shifted to midpoints 

and gene TSS coordinates were assigned via Ensembl gene ID. These pair coordinates 

were intersected with CaRE-midpoint-TSS pairs using bedtools pairtopair (-slop 2500) 

and the maximum score within this 5kb square was assigned to CaRE-gene pairs. 

Abc file AllPredictions.AvgHiC.ABC0.015.minus150.ForABCPaperV3.txt was 

downloaded, converted to bed format with region coordinates, gene name, and 

ABC.score, lifted over to hg38, target gene TSS coordinates retrieved via gene name, 

and the maximum ABC.score across tissues was taken for each region-geneTSS pair. 

Regions coordinates were then shifted to midpoints and these pairs were intersected 

with CaRE-midpoint-geneTSS coordinates using bedtools pairtopair (-slop 2500) and 

the maximum ABC.score in this 5kb square was assigned to each CaRE-gene pair. 

Histone modification ChIP-seq and ATAC-seq signal was assigned to CaREs 

and gene TSSs using 1kb windows centered on CaRE midpoints or gene TSSs and 

summarizing the signal as described above in section “Analysis of Ca/iRE features in 

neuroblastoma data”.  

Chromatin RNA-seq signal was assigned to genes as the mean counts between 

two replicates as output by STAR. 

In order to classify CaREs by previous evidence, we used our own ATAC-seq 

and published ChIP-seq from neuroblastoma cells (except for H3K27me3), called peaks 

as described above, and concatenated and merged all resulting regions as 

neuroblastoma regulatory evidence. Epimap DHS, dyad, promoter, and enhancer 

regions for hg38 were downloaded from /www.meuleman.org/ and 
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personal.broadinstitute.org/cboix/epimap/mark_matrices/ and DHS coordinates were 

matched to Epimap annotations using identifiers. The resulting file and the merged 

nueroblastoma regulatory evidence were each separately used to find the closest 

element to each CaRE using bedtools closest (-d -t "first"; (Quinlan and Hall, 2010)) and 

a true assignment was made if the distance of the closest element was less than or 

equal to 250bp. Dyads were considered promoters. If a CaRE was within 250bp of a 

neuroplastoma reulatory evidence element, it was classified as “neuroblastoma” (“nb”), 

otherwise if it was close to an Epimap element, it was classified as “other”, otherwise it 

was classified as “no evidence found” (“noEF”). 

 

Supplemental information  

Document S1: 

Figures S1–S4, supplementary figure legends, Table S1- primers and individual 
gRNA oligos used in the study and Table S2 - oligos used for nuCaptureC 
experiment.  

 

Table S3. File containing the results of the bulk CRISPRa screen, related to Figure 
1.   

Table S4. File containing the results of the bulk CRISPRi screen, related to Figure 
1.   

Table S5.  File containing the results of the TESLA-seq for CaREs, related to 
Figures 2-5.  

Table S6. File containing the results of the TESLA-seq for individual gRNAs, 
related to Figures 2-5.  
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Supplementary Figure legends: 

Figure S1. Details of the bulk CRISPR activation screen related to Figure 1. A) 
Upregulation of MyoD in HEK293 cells via different indicated CRISPRa constructs at 
three different non-coding loci via pools of four gRNAs (left) or individual gRNAs (right). 
Relative expression of target genes is determined by RT- qPCR and normalized to 
GAPDH. Shown are fold changes relative to the control at a log2 scale. B) PHOX2B 
expression changes upon repression with dCas9-KRAB (left) or activation with dCas9-
VPR (right) with control or gRNAs targeting the promoter of Phox2B in SH-SY5Y cell 
line. Relative expression of target genes is determined by RT- qPCR and normalised to 
GAPDH. Shown are fold changes relative to the control. Expression of actin is shown as 
a control. C) MTT viability assay with control or gRNAs targeting the promoter of 
Phox2B in a SH-SY5Y-KRAB (CRISPRi) cell line. D) CaREs signal at the PHOX2B 
promoter. Significantly enriched/depleted CaREs (FDR<0.05) are shown in red and blue 
respectively. E) Volcano plot showing the log-fold change of gRNA representation 
between the first and last time-point of the CRISPRi experiment. Significantly 
enriched/depleted gRNAs (FDR<0.05) are shown in red and blue respectively. F) 
Volcano plot showing the results for our CRISPRi screen, each dot corresponds to a 
CaRE defined by the CRISPRa screen. The x axis shows the slope calculated by MLM. 
Significantly enriched/depleted CaREs  (FDR<0.05) are shown in red and blue 
respectively.  
  
Figure S2. Details of the TESLA-seq related to Figure 2. A) Number of gRNA 
detected per cell in each TESLA-seq run and both together (integrated). B) Cell density 
plot. The red line represents thresholds used for cell filtering. Cells having either gene 
UMI count per cell or gRNA UMI counts per cell below thresholds are filtered. C) 
TESLA-seq normalized gene expression level, comparing cells having gRNA targeting 
PHOX2B and BEND4 promoter versus all other cells. D) Histogram showing the number 
of CaRE that induce differential expression of an indicated number ofgene. E) Number 
of gRNA that significantly cause differential gene expression of an indicated gene. F). 
Genome browser snapshot representing genomic distance and regulatory relationship 
between a gRNA and a gene determined by TESLA-seq. Each link represents an effect 
of a gRNA on the gene. Color reflects the target gene. G) Histogram showing the 
number of genes that are differentially expressed due to perturbation of an indicated 
number of gRNA. 
  
Figure S3. Additional details of properties of CaREs and their targets identified by 
TESLA-seq related to Figure 3. A) Relationship between adjusted p-values (-log10) of 
each CaRE-gene regulatory pair and genomic distance between the CaRE and the 
gene’s transcriptional start site (in bases at log10 scale). B) Relationship between 
adjusted p-values (-log10) of each CaRE-gene regulatory pair and number of genes 
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located between the CaRE and the gene (jumped genes). Color depicts the average 
fold change. C) Number of contacts detected for PHOX2B by nuCaptureC centered on 
the PHOX2B TSS (red: highly significant interactions (pLevel = 5, blue: significant 
interactions, pLevel = 3, black: background interactions). D) Comparison of EpiMap link 
score between TESLA-seq significant and non-significant CaRE-gene regulatory pairs. 
E) Comparison of Abc score between significant and TESLA-seq non-significant CaRE-
gene regulation pairs. F) Genome browser snapshot of PHOX2B regulatory regions 
determined by EpiMap (top) and Abc (bottom). G) Comparison of the CaRE target gene 
expression (average fold change at log 2 scale) between TESLA-seq significant and 
non-significant CaRE-gene regulation pairs that have a low or high: H3K27 signal at the 
promoter of the target gene (left) and chromatin RNA signal (right) (non-significant). 
 
Figure S4. Additional details of the integration of TESLA-seq results with epigenomic 
data related to Figure 4. A) Number of CaREs defined by EpiMap in each indicated 
tissue. The color indicates the EpiMap chromatin state. B) Comparison between CaRE 
evidence categories (nb, other, noEF) relationship between TESLA-seq adjusted p-
value (-log10 scale) and fold change (log2 scale). The data is further stratified by: 
nuCapture-C interaction displayed via circle fill and class defined by EpiMap indicated 
via circle colour. C) Venn diagram displaying an overlap between genes targeted by 
CaREs in nb, other or noEF classes. D) CaRE-gene nuCapture-C score stratified by 
CaRE evidence class. E) Number of CaREs in each evidence categories (nb, other, 
noEF) grouped by Hi-C detected interaction (yes - 3D interaction is detected or no - no 
interaction detected). F) Comparison between different CaRE evidence categories (nb, 
other, noEF) in Hi-C score. 
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Supplementary Figure legends:  

Figure S1. Details of the bulk CRISPR activation screen related to Figure 1. A) 
Upregulation of MyoD in HEK293 cells via different indicated CRISPRa constructs at 
three different non-coding loci via pools of four gRNAs (left) or individual gRNAs 
(right). Relative expression of target genes is determined by RT- qPCR and 
normalized to GAPDH. Shown are fold changes relative to the control at a log2 
scale. B) PHOX2B expression changes upon repression with dCas9-KRAB (left) or 
activation with dCas9-VPR (right) with control or gRNAs targeting the promoter of 
Phox2B in SH-SY5Y cell line. Relative expression of target genes is determined by 
RT- qPCR and normalised to GAPDH. Shown are fold changes relative to the 
control. Expression of actin is shown as a control. C) MTT viability assay with control 
or gRNAs targeting the promoter of Phox2B in a SH-SY5Y-KRAB (CRISPRi) cell 
line. D) CaREs signal at the PHOX2B promoter. Significantly enriched/depleted 
CaREs (FDR<0.05) are shown in red and blue respectively. E) Volcano plot showing 
the log-fold change of gRNA representation between the first and last time-point of 
the CRISPRi experiment. Significantly enriched/depleted gRNAs (FDR<0.05) are 
shown in red and blue respectively. F) Volcano plot showing the results for our 
CRISPRi screen, each dot corresponds to a CaRE defined by the CRISPRa screen. 
The x axis shows the slope calculated by MLM. Significantly enriched/depleted 
CaREs  (FDR<0.05) are shown in red and blue respectively.  
 
Figure S2. Details of the TESLA-seq related to Figure 2. A) Number of gRNA 
detected per cell in each TESLA-seq run and both together (integrated). B) Cell 
density plot. The red line represents thresholds used for cell filtering. Cells having 
either gene UMI count per cell or gRNA UMI counts per cell below thresholds are 
filtered. C) TESLA-seq normalized gene expression level, comparing cells having 
gRNA targeting PHOX2B and BEND4 promoter versus all other cells. D) Histogram 
showing the number of CaRE that induce differential expression of an indicated 
number ofgene. E) Number of gRNA that significantly cause differential gene 
expression of an indicated gene. F). Genome browser snapshot representing 
genomic distance and regulatory relationship between a gRNA and a gene 
determined by TESLA-seq. Each link represents an effect of a gRNA on the gene. 
Color reflects the target gene. G) Histogram showing the number of genes that are 
differentially expressed due to perturbation of an indicated number of gRNA. 
 
Figure S3. Additional details of properties of CaREs and their targets identified 
by TESLA-seq related to Figure 3. A) Relationship between adjusted p-values (-
log10) of each CaRE-gene regulatory pair and genomic distance between the CaRE 
and the gene’s transcriptional start site (in bases at log10 scale). B) Relationship 
between adjusted p-values (-log10) of each CaRE-gene regulatory pair and number 
of genes located between the CaRE and the gene (jumped genes). Color depicts the 
average fold change. C) Number of contacts detected for PHOX2B by nuCaptureC 
centered on the PHOX2B TSS (red: highly significant interactions (pLevel = 5, blue: 
significant interactions, pLevel = 3, black: background interactions). D) Comparison 
of EpiMap link score between TESLA-seq significant and non-significant CaRE-gene 
regulatory pairs. E) Comparison of Abc score between significant and TESLA-seq 
non-significant CaRE-gene regulation pairs. F) Genome browser snapshot of 
PHOX2B regulatory regions determined by EpiMap (top) and Abc (bottom). G) 
Comparison of the CaRE target gene expression (average fold change at log 2 
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scale) between TESLA-seq significant and non-significant CaRE-gene regulation 
pairs that have a low or high: H3K27 signal at the promoter of the target gene (left) 
and chromatin RNA signal (right) (non-significant). 
 
Figure S4. Additional details of the integration of TESLA-seq results with 
epigenomic data related to Figure 4. A) Number of CaREs defined by EpiMap in 
each indicated tissue. The color indicates the EpiMap chromatin state. B) 
Comparison between CaRE evidence categories (nb, other, noEF) relationship 
between TESLA-seq adjusted p-value (-log10 scale) and fold change (log2 scale). 
The data is further stratified by: nuCapture-C interaction displayed via circle fill and 
class defined by EpiMap indicated via circle colour. C) Venn diagram displaying an 
overlap between genes targeted by CaREs in nb, other or noEF classes. D) CaRE-
gene nuCapture-C score stratified by CaRE evidence class. E) Number of CaREs in 
each evidence categories (nb, other, noEF) grouped by Hi-C detected interaction 
(yes - 3D interaction is detected or no - no interaction detected). F) Comparison 
between different CaRE evidence categories (nb, other, noEF) in Hi-C score. 
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name  sequence 

phox2b_qPCR_FW GGAGACTCACTACCCCGACA 

phox2b_qPCR_RV CTCCTGCTTGCGAAACTTG 

myoD_qFW AGCACTACAGCGGCGACT 

myoD_qRV GCGCCTTCGTAGCAGTTC 
APBB2_qFW TGCTGGTAACGTGTCTGAGG 

APBB2_qRV GGAGGTGGTCGAACTTTCTG 

SHISA3_qFW GAGCACCCAGGCATCACT 

SHISA3_qRV AACAGGTGCAACAATAAATAGCC 

actin_FW CGACAGGATGCAGAAGGAG 

actin_RV GTACTTGCGCTCAGGAGGAG 

gapdh_FW GCTCTCTGCTCCTCCTGTTC 

gapdh_RV ACGACCAAATCCGTTGACTC 

phox2b_prom1REVgRNA 
aaactgccctttaattcaatcacaC 

phox2b_prom1FWDgRNA 
CACCGtgtgattgaattaaagggca 

phox2b_prom2REVgRNA 
aaaccccttctaaccagctccctgC 

phox2b_prom2FWDgRNA 
CACCGcagggagctggttagaaggg 

phox2b_prom3REVgRNA 
aaacctgatcctcccttctaaccaC 

phox2b_prom3FWDgRNA 
CACCGtggttagaagggaggatcag 

phox2b_prom4REVgRNA 
aaacCCCTATCATTGATTCCTGCAC 

phox2b_prom4FWDgRNA 
CACCGTGCAGGAATCAATGATAGGG 

phox2b_prom5FWDgRNA 
CACCGGAATCAATGATAGGGAGGT 

phox2b_prom5REVgRNA 
aaacACCTCCCTATCATTGATTCC 

phox2b_prom6FWDgRNA 
CACCGCGTCTATTGGGCTGGCACTG 

phox2b_prom6REVgRNA 
aaacCAGTGCCAGCCCAATAGACGC 

Neg_ctrl_gRNA_FWgRNA 
caccGTATTACTGATATTGGTGGG 

Neg_ctrl_gRNA_RVgRNA 
aaacCCCACCAATATCAGTAATAC 

 

Table 1. Primers and individual gRNAs oligoes.  
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name sequence 

HIC_chr4_91471 GATCAATAGCCCCAAGGTCACTAATCATTAATCTAGACAAAATAGTAAATACTAAAAATCTAAATAACCC 

HIC_chr4_91683 GATCTCTTTTTCAGAAGAAGAGAAAATAACTTGTAAATGAACGGAAATACAATTGAAAATGCTTGACAAA 

HIC_chr4_91683 TACTGGTTGATACATATTTATGACTACATATTTAGCCATATGTACGAGCAATCATACCCACATTCTGATC 

HIC_chr4_91712 
GATCTGGCGAACCCCGAGACCCACCCGCCCTGGGCTGGAGAGGCGGCGCGCTCTGGCTTTCCGCGCTGG
C 

HIC_chr4_91712 ACACCCACACGCCCACACTCAGGGTCTGCCCCCTCGGCCTGCGTGAACCTCCGCGGAGCCTGCCTGGATC 

HIC_chr4_92179 GGTGAATGTCAGTCATGTCTAGGTTGCATGCACATGACTCATTCATTTACTTATTAAATGATTGTCGATC 

HIC_chr4_92220 GATCATAATTTCGATGCCACAAACCCACCACCTAGAGCACACTAATTATCAGATTATTGCAAGGGGAATG 

HIC_chr4_92220 TTCCCGAGACCCGGCGTGCCTGGTGAAACTTTTGCATTTAGGCATTTATTTCAGTGCATGCTCTGGGATC 

HIC_chr4_92630 GATCCAAACTCTAAAGGAAAACTATTGGAGCTCATTTTTCCTGCCCACGTTAGCTAGCACATTTTGTTGA 

HIC_chr4_92630 
GACTGCAGACGCCGTAGAAGCGGTGCAGAAAGTGGGAACCCCTCCCTGGCCGAAATGAGCGGACTGGAT
C 

HIC_chr4_93108 GATCCATTCGCGCCAACAACTTCTCCCGCGAAGTGCAAGAAGGCGAAGACAGTGGCGCGCGGTGATGACG 

HIC_chr4_93108 GACATCGAGAGGAACCACGGTGCTTTGGTGTGAGCTCGGTTTTTGGCGGGGGCGCTAAAGTAGGGGGATC 

HIC_chr4_93406 GATCATGTTCTGTACATGACTACAAATAGTCCGAACGGTAGCCAGTTCCTTTCTGTTACCCCACCATTTG 

HIC_chr4_93406 AGCAGCTTGGCTGCTTGTCATAAATGGAGCGACGTAATTTCGACCTGTCCTTTCCCGGGAGTTAGCGATC 

HIC_chr4_93611 
GATCTGCGGGTCGGTCTCGGCGGGCGGATTACTCCTCGCCCACAACCTCGAGGCCCCGGGGTCAACCGC
G 

HIC_chr4_93611 AAGAAAGTGATTAGTAATTTATAAAGGCACATTAAAATACCATATAAATTACGGTTTTCTTGATAGGATC 

HIC_chr4_93953 
GATCTGCCGGCTCCCGCGGGCGGCGGCGCAACAGATTGCAGCGCCTGGAGACTCCAGCTGCCCCGCCTG
C 

HIC_chr4_94155 GATCCGGGAGAGCGTTTTCCTGCGCTAGACACGGCGTTCAGCCTCCGGGTTCCGGGTCTAGCTGAGTCAG 

HIC_chr4_94155 
GAGGGAGCAGGCCGAGCCTGAGAAAACCCGGGAAGTGGGTTGGGGGAAGGGGAAAGGTGGTAACTGGAT
C 

HIC_chr4_94380 GTAGCTCTGGGATAGAGAAAACTTCCCAAGGGATGCTGATGCTGCTGGTTGGATGAACAACACTGAGATC 

HIC_chr4_95059 GATCAATTTTAAACAGCAGGAACACCAATGGCACTGTTAACTGCTTTCTGGGTAGCCTCTTTAGCTTGGT 

HIC_chr4_95073 
GATCGAACCCCGCCGGCCCCGCCAACCCGGCCCTGCCAGCCCCAGGCTCACGGGGCTCCTCCGCACCAG
C 

HIC_chr4_95073 AGACGAAACTGGTTGGGAGGTAGTTAATTGCTCGGTGAAAATGAACTGATTTCCTCCTCAGGGAGAGATC 

HIC_chr4_95258 CTACGGCGCTCGGCCAGTCAGCAGCTCTGCCAGCATCTATGCAGGTGCCGGGGGCTCTGGTTCCTGGATC 

HIC_chr4_95387 
GATCCACCTGGGCGACGTGGCAGCCATTGCCGGCGCCTCGAGACCCCTCCCCACCCGGCCGCCCACCCG
C 

HIC_chr4_95387 
AGCGGCGGGCGGCGCGGCGAATGAACCCCCAAGCCCTGAATGTGGGGCCCGGCGCGGGCCGCCTCCGA
TC 

HIC_chr4_96122 GATCATTGTGACATTATAATGGTGAAAAATTAGAAATAACCTAAACATCTAGCATTTAGAGAATGATTAA 

HIC_chr4_96122 GCTTTGCCACCCAGTTTTGGTCATGGGGACTTGAGTTACTGTGACCTCAGAGGCCCCTAGGGGCCTGATC 

HIC_chr4_96184 GATCTCGGTCCTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGTGGGCTCCTTG 

HIC_chr4_96184 CTGCATGCAATGCAAGCCTGAGCTCTCCCGCCATAAGGCTGCAGCGGTGTGGGCTCCTTGTGCCCAGATC 
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HIC_chr4_97125 
GATCTCTGCGACCCCCGCGTGCCCGGGGAGAGCTCCCGGGGCGAGCTCCCGGGGCGTCCTTACCTGGG
GC 

HIC_chr4_97125 TAATCCCTTTCCATTAGTGAGGCCCTTTCTACTTTATGGAGCACTTTCACCCTTCTTACTTTATGTGATC 

HIC_chr4_97617 GATCAGTTACCAGGAGAAGTTCTAAAGCAAGAAGAGAAAAGCATTTCAATTTGGGACATTTATTTGCACC 

HIC_chr4_97617 TTTGCAGCCTACCTGTGCAATCATAGGAGATGGCCTAAAGGAAGGACTTGAGAAACTACATGATATGATC 

HIC_chr4_98797 
GATCCCCGGAACCCGGCCTGGCCACCCCGCTCTCTCTCGGGGGTCCGGGGTAGGTGAGCGGAGCCTGCC
C 

HIC_chr4_98797 ACGGCCACCAAGCGTTGCGCAGCTGCAGGAGGAAATTCCCTTAATTATGAATTTACAGAGGGGACTGATC 

HIC_chr4_98914 GATCTGTTTTCTCAAGTCTCCAATCGCCTGCCTTCTTTGTGTCTTGTATTACCCTCACATCCCCCAGCTT 

HIC_chr4_98914 TGTTTTTCGTCTTCCCTAGGCTATTTCTGCCGGGCGCTCCGCGAAGATGCAGCTCAAGCCGATGGAGATC 

HIC_chr4_99200 GATCGTCACTTGGGCTGTAGTGCAAAACAGAAGGCATGCTCAAGTGGGAGTGGCCAAGGAGAGTTTAAAG 

HIC_chr4_99200 AGAAGGCATGCTCAAGTGGGAGTGGCCAAGGAGAGTTTAAAGGAAGGGTTAGAAAGAAGTGAGCCGGATC 

HIC_chr4_99266 ATCTCATATCCTGGTTCCTCTGACACCAGCTGCCTCTCCCATACCACCTAAGTTTGACCCCAGTGAGATC 
HIC_chr4_10016
0 

GATCCCGGCGTGAGGGAAGGGCAGCCGGACGTGGCCCCAAAAGTGGTCCTTATCGGGTTATACTGGAAG
C 

HIC_chr4_10016
0 TCCCTATCATTGATTCCTGCATCTCTAATTAGAATTTAATACCACACCATTACGCACCGAGCCCCTGATC 
HIC_chr4_10047
5 

GATCCGTTTTCAAACGGCGCGGGGACGGCAGTGCCGGAGGCCGCGTCTCCTTAGTAATCGCGCGGGCAG
G 

HIC_chr4_10047
5 CGGATAGGCCGGGCTGCCGCCAAACAAAGAGATAATAAAAAATTAACTATTTTAACATATATTACAGATC 
HIC_chr4_10061
7 GATCATTTGTGAGCTGTATTTAATGCAAAAGTTGCTCCCCCATCCTGATTTCTTAGCTCACTGGGCCAAT 
HIC_chr4_10061
7 GTTGGCTCTTTAGGGCTTCACCCCGAAGCTCCACCTTCGCTCCCGTCTTTCTGGAAACACCGCTTTGATC 
HIC_chr4_10072
0 TCCCGTTTAGCCAACGAGCTGCGTGTGAGCTGCATGGAGCGGAAAAAGGTCCAAATTCGGAGCTTGGATC 
HIC_chr4_10074
7 GATCAGGCTTGCCTAAAACGAGTTGAAACCAAAGCCATTTTAAGAATCCAAAATATGAGATTAGTTTTGT 
HIC_chr4_10074
7 TTTTCTTACTCTCCCAACTTATTTTCTTAAATTTTCTAAAAGGAAGGAGGGGTGCTACTCACTACGGATC 
HIC_chr4_10084
9 GATCCGCAGTGGCAGTGGTGTGTCCTGTCTGCGGAGAGCCAGGCCAGAGACAATGAGCAACACCTCAGAG 
HIC_chr4_10084
9 GAAGAAATTCTTCTGGAACTCAGAGAAGAAGGAGTTTTTAGGCAGGACTGGTGGCAGTTGGTTTAAGATC 
HIC_chr4_10119
2 

GATCTTGGCCCGGGTGGTCGCGCGGTGTTTACGGGGCTTTGGGGTCCTGCTTTCCCCGAGCATCGCGGC
C 

HIC_chr4_10119
2 ACTGCAACTGGCGCCATCCGGCGAGGGTCTGGAGGGTGCCCAATTTCAGTAGCCGTTTGAATGAGAGATC 
HIC_chr4_10190
4 

GATCGCCACAGGTTGGGACTCTGTGCGGCGCTGGAGTTGGCAGCCCCGGGCGCTATGGCTCCCTTGAGG
A 

HIC_chr4_10190
4 

GGTCTGTGCGCCAGGGGGACGCGGCCGGGTGGGGGAATCAAGGGATGAGTGGGTGGTCGCGTTTCAGAT
C 

HIC_chr4_10206
1 GATCTTACTTGAATCCTTCTGAACTAAAATTTGGCAGGTTCATTTATAAAATTTCACATTGAGAAAAAAT 
HIC_chr4_10206
1 AAAAGCCATACAAAAAATAAGCAAAAACATCCTAGGAGCTGTATATGACACAATTCTTGAGGACTTGATC 
HIC_chr4_10249
2 

GATCTCCGACACGGTCCTCCGCATGGTGGGCATCGCGGCGGCGGCTGCAGGTGGGTCCTCAGCCCGGAC
T 

HIC_chr4_10249
2 

GAGCCAGGGGGAGCCTCCTTCGCCCCGCCCCGCCCCGCTTCGGACCGTATCACGACTCAAAGGGGGGAT
C 
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Table 2. Oligoes used for nuCaptureC.  
 

HIC_chr4_10524
4 GATCTTAAATGTTATATAATAGAAATATTATATATTTCTAAGGGCCTCAGAATCGTGCAGGCGCAATTGT 
HIC_chr4_10524
4 CGGGTGCAAGCCGAGCGGTTGGCCATAAGAGCCCGGCTGAAACGAGAGTACCTGCTTCAGTACAATGATC 
HIC_chr4_10549
5 GATCTGAAAAAATTCCTGTTGCTTAGTGATGTCTTAATGACCCTGTGTAGGCCCAGGCTAACAAGTGTGT 
HIC_chr4_10549
5 ACTCAAAACCTGCAAATTGCTCAGAATTCAAGAAGTCAGATATTTCTGGAAATAGGAGAGATGGTGGATC 
HIC_chr4_10694
6 GATCCTAAGAAATCCTCCAAATGAAGAAACTTTCAAAGGCTCTGGAAACAATACGAATGATTCTGTCTTC 
HIC_chr4_10694
6 

TGATGTCACGACAGCGTGCGGCGTGCAGACGTCGGCAAGCTGCGCCGCCGCTTCGGGTTGCTTCCGGAT
C 

HIC_chr4_10694
9 GATCCTACGGGGGGTACCTTCGAAAAAAAACGGGCTATGCTGCTGTTGCGTGTGGGTACCCTCTCCTGAC 
HIC_chr4_10694
9 AATTCAAGGTGACTGCCCCCTGGAATCTGATTTAGCCAAGTTTTCAAACGTTGGAGTGCCCCATGCGATC 
HIC_chr4_10705
0 GATCCAAACTATTGTCGCCTTATGCAATTCTCTGGCATCACAAGACAGCATCAAAAAACAACAGAGCACC 
HIC_chr4_10705
0 

GCCTGAGGTGAGACGCGAGGAGTTCGGTCCGAGTGCGGTGCGGCTGGGCGCTCTTCTTGCCTGGAAGAT
C 
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