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SUMMARY
Neuroblastoma exhibits significant inter- and intra-tumor genetic heterogeneity and varying clinical out-
comes. Extrachromosomal DNAs (ecDNAs) may drive this heterogeneity by independently segregating
during cell division, leading to rapid oncogene amplification. While ecDNA-mediated oncogene amplifica-
tion is linked to poor prognosis in various cancers, the effects of ecDNA copy-number heterogeneity on
intermediate phenotypes are poorly understood. Here, we leverage DNA and RNA sequencing from the
same single cells in cell lines and neuroblastoma patients to investigate these effects. By analyzing
ecDNA amplicon structures, we reveal extensive intercellular ecDNA copy-number heterogeneity. We
also provide direct evidence of how this heterogeneity influences the expression of cargo genes,
including MYCN and its downstream targets, and the overall transcriptional state of neuroblastoma cells.
Our findings highlight the role of ecDNA copy number in promoting rapid adaptability of cellular states
within tumors, underscoring the need for ecDNA-specific treatment strategies to address tumor formation
and adaptation.
INTRODUCTION

Pediatric neuroblastoma is a genetically heterogeneous tumor

demonstrating a spectrum of clinical outcomes.1,2 It is charac-

terized by relatively few somatic nucleotide variants (SNVs) and

known driver events but considerable chromosomal instability

and somatic copy-number alterations (SCNAs).3,4 One key ge-

netic alteration is frequent amplification of the MYCN onco-

gene, associated with unfavorable outcome and aggressive

disease. MYCN amplification occurs either in the form of tan-

dem arrays in the linear genome leading to so-called homoge-

neously staining regions (HSRs) or in the form of additional
Cell Reports 43, 114711, Septem
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copies of one or more extrachromosomal circular DNA (ecDNA)

amplicons.5–7

ecDNAs were first described in cancer over 50 years ago.8

They can be a result of DNA damage, in particular double-strand

breaks,9 which may occur on their own or as part of larger cata-

strophic events such as chromothripsis.10 Lacking centromeres,

ecDNAs remain in circularized form in the nucleus, where they

replicate proportionally with the chromosomes during S phase

and subsequently segregate independently and randomly to

daughter cells upon cell division.11,12 When genes on ecDNA

confer a distinctive selective advantage to the cell, as in the

case of MYCN, these random segregation patterns can lead to
ber 24, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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a rapid increase in the number of gene copies in the cell popula-

tion. Recently, ecDNAs have further been demonstrated to form

hubs,13 and there is initial evidence of different coexisting ecDNA

species to be inherited together.14

The high prevalence of ecDNA among tumor types and the

crucial role it plays in oncogene amplification and overexpres-

sion was only recently revisited by us and others.6,15–24

These transcriptional effects possibly contribute to providing

the tumor with increased plastic potential to evade therapeutic

selection pressures and rapidly adapt to changing environmental

conditions. Recent studies using fluorescence in situ hybridiza-

tion (FISH) have visualized the genetic plasticity conferred by

ecDNA and have demonstrated substantial intra-tumor hetero-

geneity where the number of ecDNA copies varies substantially

between cell populations and clones of the same tumor.12,25

Despite these advances, the differences in copy-number hetero-

geneity between ecDNAs andHSRs, and the precise relationship

between this heterogeneity and oncogene transcription in indi-

vidual cells, remains unclear. Elucidating these relationships

will reveal to what extent ecDNA-driven copy-number heteroge-

neity affects cell states and influences cellular phenotypes within

individual patients.

We here use a combination of single-cell genome-and-tran-

scriptome sequencing (G&T-seq)26 and ecDNA-and-transcrip-

tome sequencing (scEC&T-seq)27 of neuroblastoma cell lines

and patients together with available single-cell transcriptome

data of neuroblastoma patients to answer these questions. We

reveal differences between ecDNA-driven and HSR-driven

copy-number heterogeneity, demonstrate the tight connection

between ecDNA-driven copy-number states and cellular tran-

scriptional programs, and illustrate the transcriptional effects of

this heterogeneity in neuroblastoma patients. We believe that

understanding the precise role that ecDNA plays in generating

intra-tumor heterogeneity will not only enhance our understand-

ing of cancer evolution as awhole but will further inform our treat-

ment strategies.

RESULTS

Increased intercellular copy-number heterogeneity in
ecDNAs compared to HSRs
We performed single-cell G&T-seq of one primary neuroblas-

toma (N = 78 cells) and four neuroblastoma cell lines:

CHP212 (N = 95 cells) and TR14 (N = 190 cells), which are

known to harbor ecDNA-linked MYCN amplifications, and Kelly

(N = 94 cells) and IMR5/75 (N = 96 cells), which harbor MYCN

amplification on HSRs. Additionally, we used scEC&T-seq

generated previously27 on the same patient sample (N = 84

cells) and the two ecDNA cell lines (CHP212 [N = 150 cells],

TR14 [N = 25 cells]), to confirm the presence of ecDNA and

to determine ecDNA-amplified regions in the genome [Fig-

ure 1A]. We hypothesized that ecDNA-amplified regions show

patient- or cell-line-specific amplification and expression pat-

terns and that—potentially in contrast to linear amplifica-

tions—ecDNA copy-number variation is the main contributor

to MYCN expression heterogeneity.

The CHP212 cell line contains one single circular amplicon of

size 1.7 Mb containing genes LPIN1, TRIB2, DDX1, andMYCN23
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(Table S1). In contrast, TR14 contains three different circular

amplicons harboring together over 29 genes, including the

known neuroblastoma oncogenes MYCN, CDK4, and MDM2

(Table S1). MYCN is contained in the amplicon TR14-MYCN

with a size of 710 kb and the amplicon TR14-CDK4, 475 kb in

size, which contains both MYCN and CDK4. The amplicon

TR14-MDM2 has a size of 1 Mb (Figure 1B).23 The ecDNA ampli-

con structure in the patient is 500 kbp long and only contains

MYCN (Figure S1A).27 The varying amplicon structures were

also clearly visible from the pseudo-bulk read coverage in DNA

sequencing (DNA-seq) (Figure 1B, track ‘‘DNA’’). TheHSR ampli-

con in Kelly is 1 Mb long and contains the oncogene MYCN and

the FAM49A gene. In IMR5/75, the HSR amplicon consists of

multiple smaller fragments of chromosome 2 and is in total 3

Mb long containing the oncogene MYCN, DDX1, NBAS, and

five other genes (Table S1).

We determined copy-number profiles for each single cell in

each cell line from G&T-seq using Ginkgo.28 To allow for an

increased accuracy in calling ecDNA copy numbers, we lever-

aged previously reconstructed precise ecDNA breakpoints

(STARMethods).23,27We observed extensive ecDNA copy-num-

ber heterogeneity across cells within a single cell line and patient

in all four ecDNA amplicons (Figure 2A). The MYCN locus

showed on average a copy number of 50 (range 3–353) and

183 (range 30–878) in CHP212 and TR14, respectively. The

copy number of MYCN in the patient sample was on average

191 (range 5–916) (Figure S1B). In contrast, in HSR cell lines

IMR5/75 and Kelly MYCN showed on average 100 and 180

copies respectively (range 21–141 and 129–204). Notably,

MYCN amplification on ecDNA in both cell lines and the patient

sample showed a significantly higher variance in copy number

compared to HSRs in all comparisons (Levene’s tests, Fig-

ure 2B), supporting increased genetic copy-number heterogene-

ity in ecDNA compared to linear amplifications. FISH experi-

ments staining centromeres and genomic regions containing

MYCN,CDK4, andMDM2 (Figure S1D) (STARMethods) in meta-

phase spreads confirmed the presence and copy-number esti-

mates of ecDNA in CHP212 and TR14 (Figure 2A).

Since, in TR14,MYCN is present on two distinct ecDNA ampli-

cons, we estimated the fraction of copies contributed per

amplicon by leveraging a combination of overlapping and non-

overlapping loci on the amplicon (STAR Methods). The TR14-

MYCN amplicon was substantially larger and contributed more

copies than TR14-CDK4. However, in two-thirds of the cells,

the largest amplicon TR14-MDM2 was present in lower copy

number than TR14-MYCN, suggesting that amplicon size alone

does not determine ecDNA copy number. Interestingly, we found

the copy number of all three TR14 amplicons to be correlated

across all cells, suggesting a mitotic co-segregation of distinct

ecDNA species, in line with recent observations using FISH14

(Figure S1E).

Intercellular ecDNA copy-number heterogeneity drives
transcriptional states in neuroblastoma cells
Copy-number variation is known to be a main driver of aberrant

gene expression in cancer,29 and ecDNApresence often leads to

exceptionally high copy-number levels.15,21 Moreover, a recent

study in bulk also identified a larger effect size when predicting
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Figure 1. ecDNA amplicon structures in neuroblastoma cell lines

(A) Schematic overview: two ecDNAMYCN-amplified neuroblastoma cell lines, TR14 and CHP212, and two HSRMYCN-amplified cell lines, IMR5/75 and Kelly,

were sequenced with G&T-seq and scEC&T-seq to determine copy number and expression levels as well as circularized regions and expression levels from the

same cells.

(B) Selected parts of chromosome 2 and 12: CHP212 and TR14 together harbor four ecDNA amplicons (track ‘‘ecDNA,’’ boundaries in red). The increased copy

number is clearly visible in the genomic coverage track from G&T-seq (track ‘‘DNA’’), and matched RNA from G&T-seq reveals upregulation of amplified genes

(track ‘‘RNA’’).
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transcription levels from ecDNA copy number compared to

linear amplifications.18 Whether this difference in effect size in

the relationship between gene dosage and transcriptional output

also holds true for intercellular ecDNA-driven copy-number dif-

ferences is not yet known. We thus set out to investigate this

relationship using our matched G&T data from G&T-seq and

scEC&T-seq.

We first investigated the transcriptional activity of all amplified

genes, by comparing their expression levels across all cell lines to

a bulk reference expression set for adrenal gland tissue from the

GTeX consortium.30 In CHP212, we observed overexpression in

four out of six genes (LPIN1, TRIB2, DDX1, andMYCN), with two

genes remaining at base level (GREB1 and NTSR2). In TR14, we
observed increased expression in 17 out of 25 genes (including

MYCN, CDK4, MDM2, MYT1L). Interestingly, CTDSP2 showed

a decrease in median expression compared to the GTeX refer-

ence. In contrast, genes not present on their respective ampli-

cons showed only baseline expression levels (see, e.g., MDM2

and CDK4 in CHP212; Figure 1B, track ‘‘RNA’’). In Kelly, only

MYCN showed increased expression levels, whereas FAM49A,

while part of the HSR amplicon, showed near-baseline levels. In

IMR5/75, genes ANTXR1, DDX1, MYCN, FAM84A, and NBAS

showed elevated expression levels compared to our reference

set. These results show that, in both HSRs and ecDNA, ampli-

consco-amplifymultiple genes, but not all additional gene copies

on these amplicons seem to be transcribed.
Cell Reports 43, 114711, September 24, 2024 3



Figure 2. ecDNA copy-number heterogeneity in neuroblastoma cell lines and one patient
(A) Distribution of ecDNA and HSR amplicon copy number adapted from Ginkgo copy-number profiles (500-kb bin size) from single-cell G&T-seq (gray) in

CHP212 (n = 95) and TR14 (n = 186) and distribution of foci counts from FISH (beige) forMYCN in CHP212 (n = 154),MYCN (n = 232), CDK4 (n = 284), andMDM2

(n = 18) in TR14.

(B) MYCN-amplicon copy-number comparison between ecDNA (CHP212 [n = 95], TR14 [n = 186], patient sample [n = 78]) and HSR (IMR5/75 [n = 96], Kelly [n =

94]) cells reveals greater heterogeneity in ecDNA (Levene’s test, adjusted for multiple comparisons).

(C) Correlation betweenMYCN gene expression and copy number in CHP212, TR14, IMR5/75, and Kelly; Pearson correlation coefficients and p values are given

as inset.

(D) Results (�log10 p value) of statistical tests for MYCN target gene set enrichment after cell stratification by copy number (top), expression (middle), and for

Pearson correlation between copy number and expression (bottom).
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We next correlated copy number with gene expression across

all genes on their respective amplicons (Figures 2C, S1C, and

S2). We found linear relationships between gene expression

and copy number for all genes marked as overexpressed in the

above analysis, including CTDSP2, with only a single exception:

RAP1B showed overexpression compared to GTeX but no

visible correlation with copy number. In the HSR cell lines,

several genes on the amplicons showed overexpression without

any visible correlation, likely due to the lack of copy-number vari-

ability between cells in these cell lines. For an overview of the

copy-number states, expression levels, and copy-number effect

on expression for all genes considered, please refer to Fig-

ure S3A; Tables S2, S3, and S4.

Within the overexpressed genes on ecDNA, copy number ex-

plained on average 61% (median, 69; range, 31–76) and 34%

(median; 33; range, 9–65) of expression variance in CHP212

and TR14, respectively. In HSR regions, however, copy number

explained on average only 9% of gene expression variance in

IMR5/75 (median, 10; range, 4–13) and, in Kelly, no correlation

was detectable at all. These results confirm that, while both

HSR- and ecDNA-based amplifications lead to overexpression

of genes, ecDNA-based amplifications show far greater genetic

heterogeneity than HSR-based amplifications, and this hetero-

geneity is reflected on the transcriptome level. Interestingly,

the previously observed correlation of copy number of different

ecDNA species, potentially owing to co-segregation,14 was not

or only weakly visible on the level of matching gene expression

(Figure S1E). This relatively weak correlation is expected to an

extent, due to the indirect nature of the correlation between tran-
4 Cell Reports 43, 114711, September 24, 2024
script levels mediated by copy number and the corresponding

accumulation of biological and technical noise in the down-

stream transcript levels.

We next set out to investigate whether the observed MYCN

expression heterogeneity is biologically functional. To this end,

we grouped cancer cells into discrete groups with high

(MYCN-high), intermediate (MYCN-med), and low (MYCN-low)

MYCN expression levels based on the top and bottom 30%

expression quantiles per cell line. Differential gene expression

analysis between MYCN-high and MYCN-low cells (5% false

discovery rate [FDR]) identified the co-amplified genes MYCN,

LPIN1, DDX1, and TRIB2 as differentially expressed in CHP212

(Figure 1B) together with 12 other genes not on the amplicon.

Interestingly, in TR14, only MYCN and 10 non-amplified genes

were identified, but not CDK4, likely due to the relative overabun-

dance of the MYCN-only amplicon compared to the two other

amplicons (Figure 1B; Table S5). Both HSR cell lines only identi-

fied MYCN to be differentially expressed between MYCN-high

and MYCN-low cells, likely due to a lack of copy-number vari-

ability in the HSR cell lines.

We also stratified the cells using the same cutoffs by their

MYCN-amplicon copy number instead and repeated the anal-

ysis. At an FDR cutoff of 5%, the copy-number-based stratifica-

tion revealed MYCN as the only differentially expressed gene

(DEG) in Kelly, whereas IMR5/75 had no DEGs. In contrast,

CHP212 had MYCN, LPIN1, DDX1, TRIB2, and two additional

non-amplified genes differentially expressed. TR14 did not find

significant differential expression of MYCN between the copy-

number-stratified cells, but identified MYT1L, which is part of
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the TR14-MYCN amplicon and four non-amplified genes. These

results again confirm relative copy-number stasis in both HSR

cell lines with little notable effect on expression variability and

stronger copy-number variability with stronger corresponding

transcriptional effects in ecDNA-containing cell lines.

To test formore subtle effects ofMYCN expression heterogene-

ity,wenext rankedall genesbasedon their expression foldchange

between theMYCN-highandMYCN-lowgroups, usingbothcopy-

number- and expression-based stratifications. We then tested

whether known MYCN target genes31 were enriched in this or-

dered list using gene set enrichment analysis (GSEA). We

observed elevated MYCN target gene expression in MYCN-high

cells in both ecDNA cell lines regardless of their form of stratifica-

tion (Figures 2D and S3B). In contrast, both HSR cell lines only

showed enrichment of MYCN target genes in MYCN-high cells if

stratified byMYCN expression, but not by copy number, suggest-

ing that, while some MYCN expression variability exists, it is

comparatively weak and likely not primarily copy-number driven

in HSR cell lines. In ecDNA cell lines, GSEA analysis of Gene

Ontology (GO) biological processes further revealed ‘‘ribosomal

biogenesis’’ and ‘‘mitotic sister chromatid segregation’’ in

MYCN-high cells and ‘‘angiogenesis’’ in MYCN-low cells, irre-

spective of whether cells were stratified by MYCN expression or

copy number. This finding is in line with the previously reported

MYCN-mediated upregulation of ribosome biogenesis32,33 and

downregulation of angiogenesis inhibitors.34 HSR cell lines, in

contrast, showed pathways largely associated with cell-cycle

regulation (Table S6), which might arise from the unequal distribu-

tion of MYCN groups across cell-cycle phases. To test this, we

determined cell-cycle phases for all cell lines using canonically ex-

pressed marker genes.35 In concordance with an expected lower

replication rate of HSR cell lines, Kelly had no cells in S phase and

IMR5/75 only had two cells in S phase (�2%), with the majority of

cells in G1 phase (61%). In contrast, CHP212 and TR14 had 19%

and 16% of cells in S phase, respectively. Repetition of our

pathway analysis using only cells inG1phase confirmed the previ-

ous results, suggesting that the MYCN-driven transcriptional re-

sponses are not mediated by the cell cycle (Table S5). To summa-

rize, we observe functionalMYCN expression heterogeneity in all

four cell lines, with stronger effects driven by copy number in the

ecDNA cell lines and more subtle effects potentially supported

by other regulatory mechanisms in the HSR cell lines. In addition,

MYCN-associated ribosome biogenesis activity seems to be spe-

cific to ecDNA-drivenMYCN amplification in neuroblastoma.

MYCN-amplified primary neuroblastomas express
heterogeneous transcriptional state activity
To assess the transcriptional intra-tumor heterogeneity in neuro-

blastoma patients, we analyzed gene expression data of 12

MYCN-amplified primary neuroblastoma samples using 103

single-nuclei RNA sequencing (RNA-seq) (Figure 3A). We com-

bined samples collected locally at the Charité university hospital

Berlin (N = 4) with two published cohorts from the University Hos-

pital of Cologne36 (N = 4) and St. Jude’s Hospital Memphis37

(N = 4) (Table S7). The latter included a pair of multi-region sam-

ples from the same patient (samples 11 and 12) and three sam-

ples were acquired after treatment (samples 9, 11, and 12). All

other samples across cohorts were treatment naive.
We annotated cell types by combining principal-component

analysis (PCA) with canonical marker gene expression (STAR

Methods)36 and quantified endothelial cells, immune cells,

mesenchymal cells, and tumor cells for all patients. Samples

across the cohort showed an overall high tumor cell content

(average 86%, ±21%), in line with previous findings.36,38 Most

samples harbored a substantial proportion of immune cells

(average 5%, ±9%), and varying degrees of endothelial (average

4%, ±3%) and mesenchymal cells (average 4%, ±4%)

(Table S8). Transcriptional profiles were visually inspected using

uniform manifold approximation and projection (UMAP) for each

patient, which confirmed the separation of cell types into distinct

clusters (Figure S4A), and all non-tumor cells were excluded for

downstream analyses.

To obtain an in-depth characterization of the transcriptional

landscape ofMYCN-amplified neuroblastomas and to investigate

its heterogeneity, we identified transcriptional programs (modules)

for each patient using non-negative matrix factorization (cNMF39;

STARMethods).We chose an optimal number ofmodules per pa-

tient based on a trade-off between module stability and recon-

struction error (STAR Methods) and identified 106 transcriptional

programs across the cohort (mean 9 (6–12)). To investigate com-

monalities between patients, we performed pairwise Pearson cor-

relation analysis of all modules followed by hierarchical clustering

(Figure 3C) and identified three meta modules, which were further

split into 10 submodules (STARMethods; Figure S4B). Thirty-one

modules without significant correlation to at least 50% of other

modules were considered uncommon and removed from down-

stream analyses. Average gene activity scores for each meta

and submodule followed by GSEA revealed high activity of genes

involved incell-cycleprogression andcell division formetamodule

1 (e.g., KIF18B, ASPM, KIF14), in line with recent findings in other

cancer entities.40 In particular, submodules of the cell-cycle meta

module showed enrichment of replication (S1) and cell division

(S8). Meta module 2 was strongly enriched for genes involved in

ribosome biogenesis and the third meta module contained genes

associated with cell-cell interactions (e.g., CNTN5, TENM2,

CTNNA2). The submodules of the ribosomemetamodule showed

enrichment of genes involved in translation (S2), post-transcrip-

tional regulation (S6), and cellular response to stress (S10). The

cell-cell interaction meta module was divided into submodules

associated with neuronal differentiation (S3), sensory perception

(S4), regulation of cell size (S5), axonogenesis (S7), and synaptic

signaling (S9) (Figure 3D; Table S9).

Interestingly, while Barkley et al. identified cell-cycle-related

modules inadult tumors, theydidnot findanyassociatedwith ribo-

some biogenesis or cell-cell interactions.40 We thus investigated

whether these modules are neuroblastoma specific by analyzing

single-cell RNA-seq data from 30 additional retinoblastoma

(n = 4), rhabdomyosarcoma (n = 11), andWilms tumor (n = 5) sam-

ples obtained from St. Jude’s Hospital37 and low-risk neuroblas-

toma (n = 4) and non-MYCN-amplified high-risk neuroblastoma

(n = 6) samples obtained from Jansky et al..36 Negative matrix

factorization (NMF) analysis of these samples revealed transcrip-

tional states associated with ribosome biogenesis in two out of

four retinoblastomas, eight out of 11 rhabdomyosarcomas, one

out of fiveWilms tumors, two out of four low-risk neuroblastomas,

and zerooutof six high-risk non-MYCN-amplifiedneuroblastomas
Cell Reports 43, 114711, September 24, 2024 5
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Figure 3. Cellular state heterogeneity in MYCN-amplified neuroblastomas

(A) Analysis overview: 12 MYCN-amplified neuroblastoma patients were single-nuclei RNA sequenced (10X Genomics) followed by detection of transcriptional

modules using NMF and GSEA.

(B) UMAP of 4,641 single nuclei of patient 1 shows MYCN expression-level gradient.

(C) Heatmap of Pearson correlation coefficients of transcripts per million (TPM) Z scores of patient-derived modules from non-NMF shows meta modules

‘‘ribosome biogenesis,’’ ‘‘cell cycle,’’ and ‘‘cell-cell interaction’’; columns are colored by patient of origin.

(D) Relationship between genes and meta modules depicted as heatmap of average TPM Z scores.

(E) UMAPs of patient 1 colored according to corresponding meta-module activity.

(F) Correlation ofMYCN expression andmeta-module activity shows strong positive relationship with ribosome biogenesis (n = 21) and to a lesser degree with cell

cycle (n = 11) and negative relationship with cell-cell interaction (n = 43); private modules (n = 31).

Article
ll

OPEN ACCESS
(including four with alternative lengthening of telomeres [ALT]

mechanisms/TERT rearrangements; Figure S5A). These results

show that, while ribosome biogenesis activity is found in several

pediatric tumor entities, it is a hallmark of MYCN-amplified high-

risk neuroblastomas (12 out of 12).
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Transcriptional modules are linked to MYCN expression
heterogeneity in neuroblastoma patients
We hypothesized that the modules we identified might be asso-

ciated with MYCN amplification and indicative of MYCN-medi-

ated upregulation of ribosome biogenesis and downregulation
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of neurogenesis.41 Visual inspection of the UMAPs overlaid with

meta-module activity supported this claim (Figures 3B–3E). To

assess this relationship quantitatively, we correlated MYCN

expression levels with module activity for all patients and

observed positive correlations with modules grouped into the ri-

bosomal biogenesis metamodule 2, weakly positive correlations

with cell cycle, and negative correlations with cell-cell interaction

(Figure 3F). Intriguingly, the meta module associated with cell-

cell interaction also includes cell adhesion molecules (CAMs),

which have been known to be inversely correlated with MYCN

expression in neuroblastoma, where they play a possible role

in metastasis formation.42,43 Repeating this analysis for all 30

additional pediatric tumors confirmed MYCN-mediated ribo-

somal biogenesis activity as a hallmark ofMYCN-amplified neu-

roblastomas (Figure S5B).

To investigate the role of other transcription factors (TFs),

some of which may be upstream of the meta modules, in a

more unbiased manner, we obtained a curated list of human

TFs for adrenal medullary cell populations and neuroblastoma

cells from Jansky et al.36 We then correlated the expression of

every TF with the meta-module activities. We found MYCN

together with ATF4 and JUND to be most frequently significantly

correlated with the ribosomal biogenesis meta module in seven

or eight out of 12 patients. ATF4 is known to interact with

MYCN in triggering apoptosis under certain metabolic condi-

tions,44 and both ATF4 and JUND are part of the AP-1 master

regulator complex, known to regulate cell proliferation.45 The

cell-cycle module was most frequently associated with E2F3, a

known regulator of the cell cycle,46 in nine out of 12 patients. Ul-

timately, cell-cell interaction was most often significantly associ-

ated with FOXN3, a TF downregulation of which is known to be

associated with invasiveness and metastasis in several cancer

entities,47,48 in 12 out of 12 patients.

When investigating cell-cycle states, we found cells with high

activity of the cell-cycle meta module 1 to be predominantly in

G2M and S phase (Figure S4D) in line with the role of MYCN in

cellular proliferation.49 Additionally, within the cell-cycle meta

module we found a replication and G1/S transition pathway sub-

module (S1) to be positively correlated with MYCN expression,

while the cell division submodule (S8) was negatively correlated

with MYCN (Figure S4C). MYCN expression was further signifi-

cantly associatedwithcell-cyclephase insevenout of12samples.

Theother five samples showedsignificantly lower readand feature

counts on average, suggesting technical rather than biological ef-

fects as a potential cause for the lack of association (Figure S4E).

Taken together, we observe substantial transcriptional hetero-

geneity and distinct transcriptional states of cells within individ-

ual patients directly associated with and potentially causally

linked to heterogeneous MYCN expression levels.

As previously in the cell lines, we next grouped cancer cells

into discrete groups with high (MYCN-high), intermediate

(MYCN-med), and low (MYCN-low) MYCN expression levels

based on the top and bottom 30% expression quantiles per pa-

tient. Differential gene expression analysis between MYCN-high

and MYCN-low cells showed an average MYCN log2 fold

change of 1.613 (1.138–2.132) and a median of 321 DEGs (2–

4,211) (Table S10). We ranked all genes according to their fold

change and first tested whether known MYCN target genes31
were enriched in the ordered list using GSEA, which was the

case in 11 out of 12 patients (for an example, see Figure 4B

inset). Additionally, the normalized enrichment score (NES) of

MYCN target genes was significantly correlated with the differ-

ence in gene expression between MYCN-high and MYCN-low

cells across all patients (Pearson correlation, p = 0.034). These

results indicate that the observed MYCN expression heteroge-

neity is functional and that the extent of MYCN expression vari-

ability is linked to downstream MYCN target activity (Figure 4B).

To identify additional differences between MYCN-high and

MYCN-low cells, we performed GSEA on GO biological pro-

cesses and identified a set of 38 pathways that were recurrently

enriched in every single patient and positively associated with

MYCN expression (Figure 4A). These 38 pathways include ribo-

some biogenesis, RNA catabolic processes, protein targeting,

peptide biosynthetic, and viral processes (Figures 4C and 4D;

Table S11). To investigate how these 38 recurrent pathways

relate to the transcriptional cell states identified above, we per-

formed a meta pathway enrichment analysis (STAR Methods)

(Figure 4E). Briefly, all GO terms were ranked according to their

averaged NES in each meta module and this ranked list was

tested for enrichment for each of the 38 original pathways. The

ribosome meta module 2 and its sub-modules showed a strong

positive association with all 38 pathways similar to MYCN-high

cells, whereas the cell-cell interaction module 3 and cell-cycle

module 1 showed a strong negative association.

Finally, we investigated whetherMYCN-high and -low cells ex-

pressed signatures of mesenchymal and adrenergic differentia-

tion states.50,51 Overall, all samples in the three cohorts primarily

expressed the adrenergic signature. We found cells with high

MYCN expression to show lower expression of adrenergic fea-

tures but also lower expression of mesenchymal features than

cells with low MYCN expression (Figure S1F). In conclusion,

we do not find any evidence for adrenergic to mesenchymal

state transition driven by MYCN expression within individual

patients.

In summary,we found the same transcriptional effects identified

in cell lines as a result of ecDNA-driven copy-number variability

also in MYCN-amplified patient samples, suggesting that indeed

ecDNA copy-number heterogeneity drives transcriptional re-

sponses in these patients and contributes tophenotypic plasticity.

DISCUSSION

The role of ecDNA in the development of malignant phenotypes

has been explored in recent studies that uncovered ecDNA-

associated poorer survival and treatment resistance.18,20,52 We

here use genomic and transcriptomic information from the

same single cells to compare MYCN amplifications on ecDNA

to those occurring in the linear genome and to link transcriptional

effects downstream of these amplifications to cell states. We

show that ecDNA-mediated intercellular heterogeneity of

MYCN expression within patients creates various coexisting

cellular subpopulations with differing transcriptional states and

demonstrates changes in key pathways including ribosome

biogenesis and cell-cell interaction, a potential substrate for

rapid adaptation to environmental changes including treatment

(Figure 4F).
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Figure 4. Functional MYCN expression heterogeneity in MYCN-amplified neuroblastoma

(A) Schematic of integrated GSEA analyses combining module activities and differential gene expression into meta pathway enrichment.

(B) Significant correlation of MYCN expression difference between MYCN-high and MYCN-low cells and NESs of MYCN target genes per patient; colors

represent �log10 enrichment p value. Inset: example GSEA in patient 1 shows increased activity of MYCN target genes in MYCN-high cells.

(C) Bar plot of the number of pathways recurrently positive (red) or negative (green) enriched in the respective number of patients.

(D) Network of 38 recurring pathways enriched in cells with high MYCN expression across all 12 patients. Edges depict high similarity of connected gene sets

(Kappa score), summary terms are highlighted in blue, and some labels omitted for better readability. For a full list see Table S11.

(E) Results of meta pathway enrichment of 38 GO terms in ranked average NES list of meta modules and submodules.

(F) Results summary depicting ecDNA-driven upregulation of MYCN target genes and ribosome biogenesis as a result of MYCN overexpression.
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Our characterization of transcriptional programs in MYCN-

amplified neuroblastoma revealed three recurring meta path-

ways across 12 patients, which are associated with cell cycle,

ribosome biogenesis, and cell-cell interaction. While ribosome

biogenesis was also found in other pediatric cancer entities,

its overwhelming prevalence in MYCN-amplified neuroblas-

tomas makes it a hallmark of this tumor type. We demon-

strated functional intra-patient MYCN expression heterogene-

ity across the cohort leading to upregulation of ribosome

biogenesis and deregulation of neurogenesis genes within in-

dividual patients, effects that were previously only described

in bulk between patients or cell lines with varying MYCN

expression.31–33,41

Surprisingly, not all individuals showed significant associa-

tions between MYCN expression levels and cell-cycle phase,

although it has been shown that MYCN amplification is associ-

ated with the cells ability to escape G1 phase.53,54 This might

be explained by the varying degrees of MYCN expression het-

erogeneity in our cohort, where, in some patients, phenotypic ef-

fects might be weaker and remain undetected.

To investigate the role of ecDNA in the observed transcrip-

tional heterogeneity, we inferred ecDNA amplicon-specific

copy number from single-cell DNA-seq data. While FISH fol-

lowed by semi-automated counting of fluorescent markers re-

mains the gold standard for ecDNA detection, the technique is

limited by the 2D nature of the images and can underestimate

ecDNA copy number due to stacking of cells. We observe

such an effect, for example, in the high MYCN copy numbers

in TR14 and, to a lesser degree, in CHP212. We show that sin-

gle-cell DNA-seq is sufficiently accurate to recapitulate amplicon

boundaries and that, depending on the amplicon architecture,

accurate ecDNA copy numbers can be derived from read counts

by combining general copy-number-calling methods28 with a

custom inference algorithm. However, naturally, such efforts

are dependent on the quality of the output of the copy-num-

ber-calling algorithm.

In conclusion, we were able to associate cell-state hetero-

geneity in MYCN-amplified neuroblastomas with ecDNA-

driven, but not HSR-driven, copy-number heterogeneity,

implying that the rapid evolutionary dynamics associated

with ecDNA12 have the potential to also enable rapid pheno-

typic adaptation potentially within a single cell-division cycle.

One important question is thereby whether the relationship be-

tween the number of ecDNA copies and the transcriptional ef-

fects and their function are linear, and if and where there is an

upper limit to the fitness advantage accrued through ecDNA

accumulation. Arguably, the replicative and metabolic burden

inferred by excessive ecDNA copy numbers will likely lead to

diminishing returns in terms of clonal fitness beyond a certain

level. However, in our study, we observed largely linear rela-

tionships between ecDNA copy number and transcriptomic

output within the observed copy-number range. Our results

on G&T-seq data are thereby in agreement with analyses on

scEC&T-seq conducted by us here and previously, and iden-

tified ecDNAs clearly as the source of the transcriptional het-

erogeneity.27,55 Additionally, we could show that increases in

MYCN target gene expression activity are linearly correlated

with MYCN expression fold-change increase, suggesting that
additional ecDNA copies continue to linearly affect oncogene

function within the range of copy numbers observed in real tu-

mors and cell lines. Additional experiments will need to inves-

tigate whether the linear increase directly translates to an in-

crease in biological function, for example by increasing cell

growth and proliferation through upregulation of ribosome

biogenesis.

Treatment strategies targeting downstream effects of ecDNA-

mediated pathways have been shown to lead to therapy resis-

tance or recurrence after the treatment ended,19, likely because

of rapid re-emergence of cells with high ecDNA copy number.

Investigating the ecDNA evolution and associated cellular states

during and after treatment could potentially uncover new treat-

ment strategies.
Limitations of the study
In this study, we combine newly generated and publicly available

data from neuroblastoma patients. For six out of 12 samples, we

could clearly demonstrate the presence of ecDNA using FISH

imaging of theMYCN locus. While for the remaining six samples,

the precise origin of the MYCN amplification is unknown, and

published estimates of ecDNA abundance show a prevalence

of as high as 90%of neuroblastomas.6 Together with the consis-

tent transcriptomic results across all samples, we expect all

samples to harbor ecDNA.

Additionally, the integration of different sequencing technolo-

gies in our cohort, in particular the combination of single-nuclei

sequencing in patients with single-cell sequencing in cell lines,

might contribute to overall noise levels. While both approaches

were found to be comparable with similar sensitivity,56–58 sin-

gle-nuclei sequencing can be prone to a higher gene-dropout

rate, which might affect the size of the discovered gene

sets. However, we here found a good overall agreement in the

transcriptomics analyses between the different sequencing

technologies.

While we clearly demonstrate the dosis effect of ecDNA copy

number on cargo gene expression, other factors might

contribute to the observed variability in gene expression be-

tween amplicons in different cell lines and patients. For example,

cis-regulatory elements might be co-located together with

ecDNA cargo genes on their respective amplicons, further diver-

sifying transcriptional responses. Additionally, ecDNA copies

might be affected by point mutations affecting the expression

of cargo genes. Ultimately, genes in the linear genome might

be co-regulated by ecDNA cargo genes, which might indirectly

influence overall transcriptional states. Further experiments

are required to elucidate these different potential regulatory

mechanisms.
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directed to and will be fulfilled by the lead contact, Kerstin Haase (kerstin.

haase@iccb-cologne.org).
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Data and code availability

d The 10X Genomics single-cell RNA-seq cohort for the Berlin patients,

and the G&T single-cell data for cell lines TR14, CHP212, IMR5/75,

and Kelly, are available on the European Genome Archive (EGA)

under accession number EGA:EGAS50000000509. The EC&T datasets

generated as part of Chamorro González et al.27 are available on EGA

under accession number EGA:EGAS00001007026. The other datasets

analyzed during this study are included in Janksy et al.36 and at Alex’s

Lemonade Stand Foundation Childhood Cancer Data Lab.37

d All code accompanying this manuscript is publicly available on Zenodo:

https://zenodo.org/doi/10.5281/zenodo.8228699.59 DOIs are listed in

the key resources table.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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Charité Medical Scientist Program provided support for A.S. This study was

supported by the German Research Foundation (DFG) within the Collaborative

Research Center ‘‘Decoding and Targeting Neuroblastoma Evolution’’

CRC1588 (to A.S., A.E., J.H.S., A.G.H., and R.F.S.). This project was sup-
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4. Schramm, A., Köster, J., Assenov, Y., Althoff, K., Peifer, M., Mahlow, E.,

Odersky, A., Beisser, D., Ernst, C., Henssen, A.G., et al. (2015). Mutational

dynamics between primary and relapse neuroblastomas. Nat. Genet. 47,

872–877. https://doi.org/10.1038/ng.3349.

5. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E., and Bishop, J.M.

(1984). Amplification of N-myc in untreated human neuroblastomas corre-

lates with advanced disease stage. Science 224, 1121–1124. https://doi.

org/10.1126/science.6719137.

6. Koche, R.P., Rodriguez-Fos, E., Helmsauer, K., Burkert, M., MacArthur,

I.C., Maag, J., Chamorro, R., Munoz-Perez, N., Puiggròs, M., Dorado Gar-
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Röefzaad, C., Bei, Y., Dorado Garcia, H., Rodriguez-Fos, E., Puiggròs, M.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

RPMI-1640 medium Thermo Fisher Scientific 21875–034

FBS- superior merck S0615-500ML

Trypan blue Thermo Fisher Scientific 15250–061

KaryoMAX Colcemid Gibco 15212012

Vysis LSI N-MYC SPectrumGreen/

CEP 2 SpectrumOrange Probes

Abott 07J72-001

ZytoLight SPEC CDK4/CEN12 Dual Color Probe ZytoVision Z-2103-200

ZytoLight SPEC MDM2/CEN12 Dual Clor Probe ZytoVision Z-2013-200

IGEPAL CA-630 Sigma-Aldrich Inc. I8896

Hoechst 33342 Thermo Fisher Scientific 62249

Nuclei EZ PREP buffer Sigma NUC101

Propidium Iodide Invitrogen P3566

DAPI Thermo Fisher Scientific 62247

RLT Plus buffer Qiagen 1053393

10% BSA Stock Solution in 1x PBS Pluri select 60-00020-10

Recombinant RNase Inhibitor Takara 2313B

SUPERase,InTM RNase Inhibitor (20 U/mL) Invitrogen AM2694

AMPure XP beads Beckman Coulter A63880

Critical commercial assays

Chromium Next GEM Single Cell 30 Kit v3.1, 4 rxn 10x Genomics 1000269

Tapestation High Sensitivity D5000 ScreenTape Agilent Technologies 5067–5592

Tapestation High Sensitivity D5000 Reagents Agilent Technologies 5067–5593

Tapestation High Sensitivity D1000 ScreenTape Agilent Technologies 5067–5582

Tapestation High Sensitivity D1000 Reagents Agilent Technologies 5067–5585

PicoPLEX Single Cell WGA kit v3 Takara R300722

NEBNext Ultra II FS kit New England Biolabs E7805S

Deposited data

G&T-seq of cell lines and a patient this publication EGA: EGAS50000000509

Single-nuclei transcriptomes of neuroblastomas this publication EGA: EGAS50000000509

scEC&T-seq of cell lines and a patient Chamorro González et al. EGA: EGAS00001007026

Single-cell transcriptomes of neuroblastomas Jansky et al. EGA: EGAD00001006624

Single-cell transcriptomes of pediatric cancers ScPCA Portal https://scpca.alexslemonade.org/

Experimental models: Cell lines

CHP212 ATCC RRID:CVCL_1125

TR14 Princess Máxima Center for Pediatric

Oncology, Utrecht, Netherlands

RRID:CVCL_B474

IMR5/75 German Cancer Research Center,

Heidelberg, Germany

RRID:CVCL_M473

Kelly DSMZ GmbH, Braunschweig, Germany RRID:CVCL_2092

Oligonucleotides

NEBNext� Multiplex Oligos for Illumina�
(96 Unique Dual Index Primer Pairs Set 3)

New England Biolabs E6444L

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Source code this publication https://zenodo.org/doi/10.5281/zenodo.8228699

10X Genomics Cell Ranger v.5.0.1 Zheng et al. https://www.10xgenomics.com/support/

software/cell-ranger/latest

Trim Galore v.0.6.4 Krueger et al. https://doi.org/10.5281/zenodo.5127899

bwa mem v.0.7.17 H.Li https://doi.org/10.48550/arXiv.1303.3997

Hisat2 v2.2.1 D.Kim et al. https://doi.org/10.1038/s41587-019-0201-4

rsem v.1.3.1 B.Li & Dewey https://doi.org/10.1186/1471-2105-12-323

Seurat v.4.1.0 Hao et al. https://doi.org/10.1016/j.cell.2021.04.048

DoubletFinder v.2.0.3 McGinnis et al. https://doi.org/10.1016/j.cels.2019.03.003

cNMF v.1.4 Kotliar et al. https://doi.org/10.7554/eLife.43803

fgsea v.1.18 Korotkevich et al. https://doi.org/10.1101/060012

clusterProfiler v.4.0.5 Wu et al. https://doi.org/10.1016/j.xinn.2021.100141

ClueGo v.2.5.9 Bindea et al. https://doi.org/10.1093/bioinformatics/btp101

Cytoscape v.3.9.1 Shannon et al. https://doi.org/10.1101/gr.1239303

g:profiler Raudvere et al. https://doi.org/10.1093/nar/gkz369

STRING Szklarczyk et al. https://doi.org/10.1093/nar/gky1131

Ginkgo Garvin et al. https://doi.org/10.1038/nmeth.3578
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
Human cancer cell line CHP212 was obtained from the American Type Culture Collection (ATCC; Manassas, VA, USA) and

cancer cell line TR14 was kindly provided by J. J. Molenaar (Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands).

IMR-5/75 cell line was a gift from F. Westermann (German Cancer Research Center, Heidelberg, Germany) and cancer cell line Kelly

was obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ GmbH, Braunschweig, Germany). Cells were

tested for Mycoplasma sp. contamination with a Lonza MycoAlert system (Lonza) and absence of contamination was confirmed

biweekly. STR genotyping (Genetica DNA Laboratories and IDEXX BioResearch) was performed to confirm the identity of both

cell lines. For cell culture, we used RPMI-1640 medium (Thermo Fisher Scientific) supplemented with 1% penicillin, streptomycin,

and 10% FCS. Cell viability was assessed with 0.02% trypan blue (Thermo Fisher Scientific) mixed in a 1:1 ratio, and counted

with a BioRad TC20 cell counter.

Patient samples and clinical data access
This study comprised the analyses of tumor and blood samples of patients diagnosed with neuroblastoma between 1991 and 2016.

Specimens and clinical data were archived and made available by Charité-Universitätsmedizin Berlin or the National Neuroblastoma

Biobank and Neuroblastoma Trial Registry (University Children’s Hospital Cologne) of the GPOH. The MYCN gene copy number

was determined as a routine diagnostic method using FISH. DNA and total RNA were isolated from tumor samples with at least

60% tumor cell content as evaluated by a pathologist. Age and sex of all patients are reported in Table S7.

Ethics approval and consent to participate
Patients were registered and treated according to the trial protocols of the German Society of Pediatric Oncology and Hematology

(GPOH). This study was conducted in accordancewith theWorldMedical Association Declaration of Helsinki (2013) and good clinical

practice; informed consent was obtained from all patients or their guardians. The collection and use of patient specimens was

approved by the institutional review boards of Charité-Universitätsmedizin Berlin and the Medical Faculty, University of Cologne.

METHOD DETAILS

Preparation of metaphase spreads and FISH
Cells were cultured in a 15 cm dish and grown to 80% confluency. Metaphase arrest was performed by adding KaryoMAX Colcemid

(10 mL/mL, Gibco) and incubating for 1–2 h. Afterward, we washed the cells with PBS, trypsinized and centrifuged at 200 g for 10min.

We slowly added a total of 10 mL of 0.075 M KCl preheated at 37�C, one mL at a time and vortexing at maximum speed in between.

Cells were then incubated for 20 min at 37�C. For cell fixation, we added 5 mL of ice-cold 3:1 MeOH/acetic acid (kept at�20�C), one
mL at a time and resuspending the cells by flicking the tube. We centrifuged the sample at 200 g for 5 min. We repeated this step of
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addition of the fixate followed by centrifugation four times. Finally, two drops of cells within 200 mL of MeOH/acetic acid were added

onto prewarmed slides from a height of 15cmand slideswere incubated overnight.We fixed the slides inMeOH/acetic acid for 10min

at �20�C and washed them in PBS for 5 min at room temperature (RT). We incubated the slides in pepsin solution (10 mL pepsin

(1 g/50 mL) in 0.001N HCl) at 37�C for 10 min and washed in 0.5x SSC buffer for 5 min. Dehydration of the slides was performed

by 3-min washes in 70%, 90% and 100% cold ethanol (stored at �20�C). After drying, we stained the slides with 10 mL of Vysis

LSI N-MYC SpectrumGreen/CEP 2 SpectrumOrange Probes (Abbott), ZytoLight Spec CDK4/CEN12 Dual Color Probe

(ZytoVision) or ZytoLight SPEC MDM2/CEN 12 Dual Color Probe (ZytoVision), covered with a coverslip and sealed with rubber

cement. The probes were denatured by incubation at 72�C for 5 min in a Thermobrite (Abbott) followed by overnight incubation at

37�C. We washed the slides for 5 min in 23 SSC/0.1% IGEPAL at RT followed by a 3-min wash at 60�C in 0.43 SSC/0.3%

IGEPAL (Sigma-Aldrich Inc.), and an additional 3-min wash in 23 SSC/0.1% IGEPAL at RT. After drying, we used 12 mL Hoechst

33342 (10 mM, Thermo Fisher Scientific) to stain the slides for 10 min, followed by a wash with PBS for 5 min. Once the slides

were completely dried, a coverslip was mounted and sealed with nail polish. Images were taken using a Leica SP5 Confocal

microscope.

Interphase FISH
TR14 cells for interphase FISH were grown in 8-chamber slides (Thermo Scientific Nunc Lab-Tek) to 80% confluence. Wells were

fixed in MeOH/acetic acid for 20 min at �20�C followed by a wash of the slide in PBS for 5 min at room temperature (RT). The wells

were removed and digestion of the slides was done in Pepsin solution (0.001 N HCl) with the addition of 10 mL pepsin (1 gr/50 mL) at

37�C for 10min. Slides were washed in 0.5x SSC for 5min and dehydrated bywashing in 70%, 90%and 100%cold ethanol stored at

�20�C (3min each). Dried slides were stained with either a 5 mL of Vysis LSI N-MYC SpectrumGreen/CEP 2 SpectrumOrange Probes

(Abbott), ZytoLight Spec CDK4/CEN12 Dual Color Probe (ZytoVision) or ZytoLight SPEC MDM2/CEN 12 Dual Color Probe (Zytovi-

sion), covered with a coverslip and sealed with rubber cement. Denaturing occurred in a Thermobrite (Abbott) for 5 min at 72�C fol-

lowed by 37�C overnight. The slides were washed for 5 min at RT within 23 SSC/0.1% IGEPAL, followed by 3 min at 60 in 0.43 SSC/

0.3% IGEPAL (Sigma-Aldrich Inc.) and further 3 min in 23 SSC/0.1% IGEPAL at RT. Dried slides were stained with 12 mL Hoechst

33342 (10 mM, Thermo Fisher) for 10 min and washed with PBS for 5 min. After drying, a coverslip was mounted on the slide and

sealed with nail polish. Images were taken using a Leica SP5 Confocal microscope and analyzed using the FIJI findmaxima function.

Nuclei isolation
For nuclei isolation, tissue samples were added in 1mL of ice-cold EZ PREP buffer (Sigma) and homogenised using a pre-cooled

glass dounce tissue homogenizer (Wheaton). We used ten strokes with the loose pestle followed by 5 strokes with the tight pestle

for adequate tissue homogenization. The sample was kept on ice at all times during homogenization to avoid heat generation caused

by friction. After homogenization, we filtered the sample using a BD Falcon tube with a 35mm cell strainer cap (Becton Dickinson). To

estimate the number of intact nuclei, we stained with 0.02% trypan Blue (Thermo Fisher Scientific) in a 1:1 ratio.

Fluorescence-activated cell sorting (FACS)
One to ten million neuroblastoma cells were stained with Propidium Iodide (PI, Thermo Fisher Scientific) in 13 PBS, and viable cells

selected based on the forward and side scattering properties as well as PI staining. Nuclei suspensions were stained with DAPI

(Thermo Fisher Scientific, final concentration 2 mM). For plate-based single-cell sequencing, viable cells were sorted using a

FACSAria Fusion flow cytometer (Biosciences) into 2.5 mL of RLT Plus buffer (Qiagen) in low binding 96-well plates (4titude) sealed

with foil (4titude) and stored at �80�C until processing. For droplet-based single-nuclei RNA-seq, DAPI-positive nuclei were sorted

using a FACSAria Fusion flow cytometer (Biosciences) into 20 mL of 4% (w/vol) Bovine Serum Albumin (BSA; Sigma) in 13 PBS, sup-

plemented with 2 mL of RNAse-In (40 U/mL; Life Technologies) and 2 mL of SUPERase-In (20 U/mL; Life Technologies).

Droplet-based snRNA-seq
Droplet-based single-nuclei RNA-seq was performed using the 10x Genomics Chromium Single Cell 30 Kit (v.3.1) following the man-

ufacturer’s protocol.60 For single nuclei gel bead-in-emulsions (GEMs) generation, we aimed for a target output of 10,000 nuclei for

each sample. The amplified cDNA and final libraries were evaluated on a 4200 Tapestation (Agilent Technologies) using the HS-

D5000 and HS-D1000 High Sensitivity DNA kits (Agilent Technologies), respectively. snRNA-seq libraries were sequenced on an Il-

lumina NovaSeq 6000.

G&T-seq and scEC&T-seq
For plate-based single-cell sequencing, physical separation of genomic DNA andmRNA, and cDNA generation was performed.26 For

G&T-seq, single-cell’s gDNAwas purified using 0.83 AMPure XP beads (Beckman Coulter) and genomic DNA amplification was car-

ried out using the PicoPLEX Single Cell WGA kit v3 (Takara) and following the manufacturer’s instructions. For scEC&T-seq, the pu-

rified gDNAwas subjected to exonuclease digestion and rolling-circle amplification.27 All single-cell libraries were prepared using the

NEBNext Ultra II FS kit (New England Biolabs) following the manufacturer’s instructions but using one-fourth volumes. Unique dual
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index primer pairs (New England Biolabs) were used to barcode single-cell libraries. Pooled libraries were sequenced on a HiSeq

4000 instrument (Illumina) or a NovaSeq 6000 instrument with 2 3 150bp paired-end reads for genomic DNA and circular DNA li-

braries and 2 3 75 bp paired-end reads for cDNA libraries.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-nuclei RNA-seq processing
10x Genomics Cell Ranger v.5.0.160 was used to quantify the sequencing reads against the human genome build 38 (hg38), distin-

guish cells from the background and generate count tables of unique molecular identifiers (UMIs) for each gene per cell. Intronic

counts were included.

Single-cell DNA-seq and RNA-seq processing
Reads sequenced from the genomic DNA libraries were trimmed using Trim Galore (version 0.6.4)61 and mapped to the human

genome build 19 (hg19). Alignment was performed with bwa mem (version 0.7.17).62

Hisat2 (version 2.2.1)63 was used to align the RNAseq data obtained from Smart-Seq264 against a transcriptome reference created

from hg19 and ENCODE annotation v19.65 Afterward genes and isoforms were quantified using rsem (version 1.3.1)66 with a single

cell prior.

Single-cell/nuclei RNA-seq analysis
The following data analyses on count matrices from single-cell/nuclei RNA-seq were performed using the R package Seurat v4.1.0.67

Quality control
For data generated using the 10X single-nuclei technology, nuclei with fewer than 1000 counts, 300 distinct features or more than

2.5% of reads mapping to mitochondrial genes were omitted. Sequencing libraries generated with Smart-seq226,27,64 from patients

were filtered by omitting nuclei with fewer than 2500 distinct features or more than 1.5% of reads mapping to mitochondrial genes.

Sequencing libraries generated with Smart-seq2 from cell lines were filtered by excluding cells with fewer than 5000 distinct features

or more than 15% of reads mapping to mitochondrial genes.

The R package DoubletFinder v2.0.368 was used to detect and filter doublets in 10X single-nuclei samples. Default settings were

used and 7.5% doublet rate was estimated based on the number of recovered cells.

Genes present in fewer than five cells were excluded and analysis was restricted to protein-coding genes.

Normalisation of RNA
10X single-nuclei data was normalised using the Seurat function ‘NormalizeData’ accounting for sequencing depth, scaling counts to

10,000 and adding a pseudocount of one before natural-log transformation. Geneswere scaled using the Seurat function ‘ScaleData’

with mean of 0 and standard deviation of 1 (default).

Smart-seq2 data was normalised using transcripts per million (TPM), accounting for gene length and total read count in each cell.

For downstream analyses a pseudocount of one was added and then natural-log transformed.

Feature selection and dimension reduction
The Seurat function ‘FindVariableGenes’ was used to find the top 2000 most variable genes in each patient and cell line individually.

Principal component analysis was performed on most variable genes and the first 20 components were used to generate the clus-

tering (‘FindClusters’) and the uniform manifold approximation and projection (UMAP) embeddings (resolution of 0.5).

Module scores
To determine the cell cycle phase for each cell, module scores for S-phase and G2M-phase were estimated from gene sets35 using

the Seurat function ‘CellCycleScoring’. Module scores for mesenchymal and adrenergic state were calculated from published gene

sets50,51 using the Seurat function ‘AddModuleScore’.

Cell type annotation
Cell types were annotated per cluster and sample by using marker genes and cell type annotation curated from.36 To strengthen the

cell type annotation, non-negative matrix factorisation using cNMF v1.439 was performed and transcriptional states expressing sig-

natures of normal cells and non-malignant cells were determined. Correlation of gene Z-scores identified similar transcriptional

states, which were used to refine cell type annotations for clusters with ambiguous expression of marker genes.

Gene set enrichment analysis
For cells sequenced using the 10X single-nuclei technology, tumor cells were identified and cells without measured MYCN expres-

sion were removed.
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Remaining nuclei in each sample were ranked by theirMYCN expression level and grouped by assigning the top 30 percent of cells

with highest expression levels the label ‘MYCN-high’ and bottom 30 percent of cells with lowest expression the label ‘MYCN-low’. All

other cells were annotated as ‘MYCN-med’ corresponding to intermediate expression levels. The cell line samples were stratified in

two ways, stratification byMYCN expression and MYCN-amplicon copy number. In both stratification forms the top and bottom 30

percent of cells were assigned to the ‘MYCN-high’ and ‘MYCN-low’ group respectively.

Differential expression analysis was performed between MYCN-high and MYCN-low cells in each sample and cell line individually

using the Seurat function ‘FindMarkers’ without logarithmic fold change threshold and a minimum of 5% presence of a feature in the

sample of only regarding protein-coding genes.

For GSEA, genes were ranked by their logarithmic fold change in decreasing order. The enrichment score of MYCN target genes31

were calculated using the R package fgsea v1.18.69 Unsupervised gene set enrichment of all biological processes in the gene

ontology terms was performed using the R package clusterProfiler v4.0.570 function ‘gseGO’ with a gene set size between 3 and

800 genes and pp-values were corrected using BH. The network of recurrent significant enriched pathways was built using the

Add-on ClueGO v.2.5.9 in Cytoscape v.3.9.171,72.

Cell state identification
Transcriptional profiles (modules) for each high-throughput patient sample were determined by non-negative matrix factorisation

(NMF) using cNMF v1.4.39 The input matrix was restricted to only contain tumor cells and protein-coding genes. The number of mod-

ules k for each sample was determined by running the ‘cnmf prepare’ command with variable k equals 5 through 15. The resulting

stability and error plots were used as guidance to choose the most stable number of modules. Each module activity matrix was nor-

malised, so that the sum for each cell equals 1.

Pairwise Pearson correlation ofmodule TPMgene score (further as gene score) was performed to determine similarmodules.Mod-

ules that showed less than 50% significant correlation (p < 0.05) with other modules were excluded. The remaining modules were

grouped using hierarchical clustering and the number of meta modules was determined by comparing the heights in the correspond-

ing dendrogram, by choosing the maximum height. The number of submodules was chosen such that each meta module is divided

into at least 2 groups and the height in the dendrogram is the largest under this assumption.

Functional association of meta modules and sub modules was determined using the top 10 genes with the highest gene score in

each module and ranking those genes by their frequency among the modules classified as the corresponding meta and sub module.

The top 50 genes were evaluated using g:profiler73 and STRING.74 In addition, GSEA of all GO-biological processes was performed in

each module and the most frequent pathways with a significant positive NES were evaluated.

For meta module representation in UMAP space, the module activity was determined by the sample specific module activity cor-

responding to the meta module, in case multiple sample modules refer to the same meta module, the sum of module activity is

displayed.

The meta pathway analysis is performed for each meta and sub module separately on the ranked list of pathways based on the

average NES across sample modules in the respective meta and sub module and uses the set of previously described recurrent sig-

nificant pathways as pathway test set.

Single-cell DNA-seq analysis
The copy-number profiles from cells sequencedwith G&T-seq were determined using Ginkgo28 on the DNA data with bin size 500 kB

for CHP212, TR14, IMR5/75 and Kelly cells and 250 kB for the patient sample. EcDNA amplicon specific copy number was estimated

from the rawGinkgo output (Normalised read counts) by leveraging the bins that overlap amplicon boundaries. Amplicon boundaries

were obtained from previous publications23,27 and recapitulated in the DNA data. For each cell a step function was determined based

on the raw Ginkgo output and the Ginkgo copy number. Then the step function was applied to the average read count in the over-

lapping bins.

For the TR14MYCN and CDK4 amplicon an additional step was included, because of their overlapping region. The percentage of

contributing normalised read count of each amplicon to the overlapping region was estimated by averaging only unique amplicon

bins and dividing the normalised read count of the unique MYCN-amplicon by the sum of the unique MYCN and CDK4 amplicon.

The normalised read count in the overlapping region was then split up with respect to the contributing percentage and was further

used to average over the raw data of the bins overlapping the amplicon regions.
18 Cell Reports 43, 114711, September 24, 2024



Cell Reports, Volume 43
Supplemental information
Intercellular extrachromosomal DNA copy-number

heterogeneity drives neuroblastoma

cell state diversity

Maja C. Stöber, Rocío Chamorro González, Lotte Brückner, Thomas Conrad, Nadine
Wittstruck, Annabell Szymansky, Angelika Eggert, Johannes H. Schulte, Richard P.
Koche, Anton G. Henssen, Roland F. Schwarz, and Kerstin Haase



 

Figure S1: ecDNA copy number heterogeneity in neuroblastoma cell lines and patients, 

Related to Figure 1 

a) Average genome coverage of selected region on chromosome 2 in ecDNA G&T-seq of patient, highlight 

ecDNA amplicon boundaries (red), DDX1 and MYCN gene location (green). b) Distribution of ecDNA 

amplicon copy number adapted from Ginkgo copy number profiles (500kb bin size) from single-cell whole 

genome sequencing for MYCN in patient. c) Correlation of gene expression and copy number of MYCN in 



patient, Pearson correlation coefficient and p-value are given as inset. d) FISH images of metaphase 

spreads (left) and interphase spreads (right) of CHP212 and TR14 stained for nucleus (blue), for 

centromere of chromosome 2 or 12 (red) and MYCN, CDK4, MDM2(green). e) Pairwise correlation of 

amplified oncogenes MYCN, CDK4 and MDM2 in TR14 cells based on gene expression in TPM (top) and 

ecDNA amplicon copy number (bottom), Pearson correlation coefficient and p-value are given as inset. 

 



 

Figure S2: Correlation of ecDNA copy number and gene expression, Related to Figure 2 

a) Correlation of gene expression and copy number of all genes on the MYCN-amplicon  in CHP212, 

Pearson correlation coefficient and p-value are given as inset. b) Correlation of gene expression and copy 



number of all genes on the MYCN-amplicon (purple), CDK4-amplicon (green), MDM2-amplicon (blue) in 

TR14, Pearson correlation coefficient and p-value are given as inset. c) Correlation of gene expression and 

copy number of all genes on the MYCN-amplicon  in Kelly (blue) and IMR5/75 (red), Pearson correlation 

coefficient and p-value are given as inset. 

 



 

Figure S3: Functionality of amplified genes, Related to Figure 2 



a) Boxplot of gene expression in TPM of amplicon genes in CHP212, TR14, IMR5/75 and Kelly cells 

compared to gene expression in normal adrenal gland cells. b) GSEA of MYCN target genes, genes 

decreasingly ordered by logarithmic fold change derived from differential gene expression analysis between 

MYCN-high and MYCN-low cells stratified by copy number (CN) or MYCN expression (EXPR) for CHP212, 

TR14, IMR5/75 and Kelly. 

 

 

Figure S4: Intercellular tumour heterogeneity of 12 MYCN-amplified neuroblastoma 

patients, Related to Figure 3 

a) Single-nuclei of 12 MYCN-amplified neuroblastoma patients were sequenced and grouped by cell type, 

including mesenchymal (brown), immune (orange), endothelial (blue) and tumour cells, which were grouped 

by low (green), intermediate (yellow) and high (red) MYCN expression. b) Barplot of heights in dendrogram 

from NMF correlation matrix. c) Boxplot of Pearson correlation coefficient between MYCN expression and 

submodule activity grouped by metamodule. d) UMAP of patient1 coloured by cell cycle phase. e) Stacked 

barplot of cells with high, intermediate and low MYCN expression, coloured by cell cycle phase, Chi-square 



p-value given as inset. f) Boxplot of mesenchymal and adrenergic score for each patient grouped by MYCN-

high (red) and MYCN-low (green) cells, asterisks represent significance level of Wilcoxon test with ns: p-

value (p) > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001. 

 

 

Figure S5: Ribosome biogenesis activity in paediatric cancer entities, Related to Figure 4 

a) Number of samples where ribosome biogenesis was identified using NMF in MYCN-amplified 

neuroblastoma (MNA), non-MYCN-amplified neuroblastoma (nMNA), Retinoblastoma (Rb), 

Rhabdomyosarcoma (RMS) and Wilms tumour. b) Correlation between MYCN expression and ribosomal 

module activity per sample. 
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