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14 Abstract 

15 Trajectories of motile cells represent a rich source of data that provide insights into the 

16 mechanisms of cell migration via mathematical modeling and statistical analysis. However, mechanistic 

17 models require cell type dependent parameter estimation, which in case of computational simulation is 

18 technically challenging due to the nonlinear and inherently stochastic nature of the models. Here, we 

19 employ simulation-based inference (SBI) to estimate cell specific model parameters from cell trajectories 

20 based on Bayesian inference. Using automated time-lapse image acquisition and image recognition large 
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21 sets of 1D single cell trajectories are recorded from cells migrating on microfabricated lanes. A deep 

22 neural density estimator is trained via simulated trajectories generated from a previously published 

23 mechanical model of cell migration. The trained neural network in turn is used to infer the probability 

24 distribution of a limited number of model parameters  that correspond to the experimental trajectories. 

25 Our results demonstrate the efficacy of SBI in discerning properties specific to non-cancerous breast 

26 epithelial cell line MCF-10A and cancerous breast epithelial cell line MDA-MB-231. Moreover, SBI is 

27 capable of unveiling the impact of inhibitors Latrunculin A and Y-27632 on the relevant elements in the 

28 model without prior knowledge of the effect of inhibitors. The proposed approach of SBI based data 

29 analysis combined with a standardized migration platform opens new avenues for the installation of cell 

30 motility libraries, including cytoskeleton drug efficacies,and may play a role in the evaluation of refined 

31 models. 

32 Subject Areas: Biological Physics / Interdisciplinary Physics

33 Keywords: SBI, 1D migration, micropattern

34

35 Introduction

36 Cell migration on one-dimensional (1D) microlanes has become a well established cell motility assay, 

37 offering comparability, reproducibility and high-throughput automation (1–7). The reduction of cell 

38 movies to low-dimensional trajectories enables the characterization of cell populations in terms of 

39 statistical measures including cell-cell variability both within and between diverse populations. A 

40 remarkable feature in the analysis of cell dynamics is the fact that morphodynamics exhibit both cell-

41 specific as well as universal behaviors. In early work the mean velocity of cells migrating on flat 

42 substrates was frequently studied as a cell-specific property. The average cell speed is understood to be 

43 a quantity dependent on cell line, individual cell state as well as varying external conditions. In contrast,  

44 the dependence of the speed of cells migrating on substrates as a function of increasing adhesiveness 

45 exhibits a recurrent biphasic adhesion-velocity relation that holds for many cell types (8–12). Moreover, 
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46 the persistent random walk model proved to generally reproduce the diffusive nature of cell walks over 

47 large time scales. In the case of 1D migration on micropatterned microlanes, a persistent random walk 

48 analysis has led to the discovery of another universal relation, the so called universal coupling of cell 

49 speed and persistence  (UCSP) (2,13). A long history of cell migration models aimed to explain the 

50 underlying cause of universal features in cellular morphodynamics. In particular, detailed biomechanical 

51 models of migration in one dimension have been developed to elucidate the features observed in cell 

52 trajectories (4,12–17). These models exhibit a rich spectrum of behavior, including multiple cell states 

53 with distinct dynamic features, specifically states with oscillations of the rear end versus steady state 

54 motion. The characteristics of states as well as the noise driven transition statistics between states are 

55 cell type specific. In order to validate mechanistic models, comparison to experimental data is 

56 requested and requires an optimal choice of parameters in the theoretical models. The majority of 

57 models have been validated using a limited number of cell lines and parameter sets. The complexity of 

58 biomechanical models is demanding and the effect of parameter changes is not always intuitive. As a 

59 consequence parameter optimization is both mathematically and conceptually challenging and the 

60 high-dimensionality of the problem makes rigorous Bayesian inference computationally infeasible. 

61 Often, researchers are left to explore model parameters based on intuition or trial-and-error in a 

62 laborious and non-systematic way. A systematic and scalable approach to infer parameters from large 

63 cell motility datasets would allow for data-driven discovery and extraction of information about the 

64 underlying networks regulating cell motility.

65 In recent years, machine learning (ML) approaches have emerged as a powerful tool to analyze cell 

66 phenotype, including cell morphology and dynamics. Neural networks proved useful for automated 

67 image segmentation and retrieval of cell shape from phase contrast or fluorescence image raw data 

68 (18,19). Early cell shape analysis approaches used classic Fourier analysis for the classification of cell 

69 shape dynamics (20). In recent years deep learning methods led to robust cell type classification 

70 schemes and recognition of disease related morphometry (21–25). Furthermore, AI based approaches 

71 enable data-driven discovery from large biological data sets of cell shapes under defined conditions(26). 
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72 Using real-time assessment of cell shapes in standardized platforms a novel type of cytologic analysis 

73 emerged, an approach now commercialized under the name “morpholomics” (27–29). However, there 

74 are few AI-based approaches that include the dynamic features of cell shapes. In dynamic analysis the 

75 reduction of cell motion to one dimension helps to reduce the complexity of cell morphodynamics.

76 In the latter case mechanistic models of  dynamical behavior exist and deep learning approaches offer 

77 the unique opportunity that neural density estimators can be trained on simulated data. The trained 

78 network in turn is capable of estimating best model parameters to fit experimental data and hence 

79 offers new avenues for parameter optimization in complex models using Bayesian inference (30). The 

80 approach named simulation-based inference (SBI), has gained widespread acceptance as a systematic 

81 tool for parameter optimization in mechanistic models (31–34). A particularly inspiring example is the 

82 Hodgkin-Huxley model reproducing neural spikes, in which case SBI is used to estimate model 

83 parameters to capture specific experimental spike recordings (31). SBI combines elements of simulation 

84 modeling and statistical inference to analyze data and make inferences about underlying processes. In 

85 order to train SBI, parameter sets are sampled from the prior, i.e. a set of candidate values, to simulate 

86 data using the model. Next, a deep density estimation neural network is trained to infer the parameters 

87 underlying the simulated data. Finally, the trained density estimation network is applied to 

88 experimental data to infer its parameter distribution. SBI is particularly useful in situations where: the 

89 underlying system is complex, with intricate interactions and dependencies that are difficult to model 

90 analytically; traditional likelihood-based methods may not be feasible due to intractable likelihood 

91 functions or computational limitations; the data exhibit heterogeneity or non-standard patterns that 

92 cannot be adequately captured by standard statistical models; there exists prior knowledge or 

93 mechanistic understanding of the system, which can be incorporated into the simulation process. 

94 Despite its general applicability and statistical power, the application of SBI to derive migratory 

95 phenotypes with specific model parameters has been limited. In this context we recently presented a 

96 mechanistic model based on the concept of competing protrusions and noisy clutch. Within this model 

97 universal relations, such as the adhesion-velocity relation and the UCSP which is caused by 
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98 multistability, emerge as embedded features of the nonlinear dynamics (12,13). However, a model 

99 based characterization of migration dynamics across multiple cell lines, each distinguished by specific 

100 sets of parameters, has yet to be done. 

101 Here, for the first time, we employ SBI to infer parameter sets from 1D trajectories of migrating cells 

102 within the framework of an established mechanical migration model (13). We train a neural network 

103 using simulated trajectories and infer parameters from high-throughput datasets containing hundreds 

104 of experimentally obtained trajectories. Using an algorithm based on work by Papamakarios and 

105 Murray, Lueckmann et al., Greenberg et al. and Deistler et al. (35–38), we first validate our approach on 

106 simulated data before we systematically optimize the parameter set matching the migratory behavior 

107 of two human epithelial breast cell lines. Specifically, we obtain cell-line-specific posterior estimators 

108 for cell length, actin polymerization rate and the integrin related parametrization of the clutch, i.e. the 

109 on-rate, slip velocity and maximum friction coefficient. We demonstrate that the estimated parameters 

110 significantly vary for cell lines MDA-MB-231 and MCF-10A.  SBI is also found to unveil without prior 

111 knowledge that the cytoskeletal inhibitors Latrunculin A and Y-27632 both exclusively  affect actin 

112 polymerization. Our work showcases the potential of SBI to characterize migrating cells in a fully 

113 automated fashion and to explore the compliance of refined biophysical models.

114

115 Results

116 High-throughput imaging of 1D cell migration yields large amounts of data to quantitatively 

117 study migratory behavior 

118 We study epithelial cells on a micro-patterned substrate consisting of well-defined adhesive Fibronectin 

119 (FN) lanes separated by nonadhesive regions, see Fig 1(a). After the cells adhere to the FN lanes, we 

120 monitor cell migration via automated scanning time-lapse acquisition over 48h (see Methods). For 

121 statistical analysis a high number of cell trajectories of substantial length is required. From previous 
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122 work it is known that migratory behavior shows substantial heterogeneity even within the same cell 

123 population and under controlled conditions. Furthermore the analysis of rare events such as migratory 

124 state transitions, require a long total observation time (13). We met this requirement by building a data 

125 pipeline to automatically extract cell trajectories from time-lapse videos imaging a few thousand cells 

126 per experiment. The pipeline takes  a set of time-lapse images and automatically outputs a dataset with 

127 several thousand triple trajectories consisting of the front, back and nucleus position of single cells for 

128 each experiment. For our analysis we consider only single cell trajectories with a minimal length of 24h. 

129 A total of 47,000hours of tracks is automatically processed. We collected about 2,000 single cell 

130 trajectories of 24h length for both the breast epithelial cell lines MDA-MB-231 and MCF-10A. In Fig 1(b) 

131 we show typical trajectories for each cell line. The spectrum of migratory phenotypes is broad, with 

132 trajectories moving at a range of different speeds or not moving at all, as well as protrusions oscillating 

133 frequently in length or staying stationary. The data set was complemented by studies of cells  treated 

134 with inhibitors latrunculin A, which inhibits F-actin polymerisation, and with Y-27632, which inhibits 

135 Rho-associated protein kinase (ROCK) signaling (39,40). We chose the concentrations for the 

136 treatments to be high enough to affect the migratory behavior but low enough to not stall migration 

137 altogether (see Methods). For this study the large-scale acquisition of 1D trajectories provides the 

138 biological information about the migratory phenotype of cells. However, in order to retrieve an 

139 understanding of phenotypic characteristics a mechanistic model is essential.  

140 Fig 1 High-throughput time-lapse imaging of single cells migrating on 1D micropatterned lanes. (a) 

141 Migration dynamics of single cells on one-dimensional Fibronectin (FN) lanes is recorded by scanning time-lapse 

142 measurements. FN lanes are fluorescently labeled, depicted here in green. At each point in time a bright field (BF) 

143 image showing the cell contour, and a DAPI fluorescence image indicating the position of the nuclei are captured. 

144 The FN lanes are automatically detected, the nuclei tracked and the cells’ contours segmented. (b) Single cell 

145 trajectories, shown as position of cell front, back and nucleus plotted against time, reveal a broad spectrum of 

146 cell-type specific features . The first row depicts typical trajectories for MDA-MB-231 cells, the second row for 

147 MCF-10A cells. Horizontal scale bar represents 1h, vertical scale bar 100um.
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148 Biophysical model of mesenchymal cell motility

149 In previous work we introduced a biophysical model that reproduced all the observed universal 

150 migratory hallmarks, including multistability of migratory states, the universal correlation between 

151 speed and persistence (UCSP) and the biphasic adhesion-velocity relation (13). We use this model as a 

152 candidate model for SBI with the goal to characterize the cell-specific migration dynamics of MDA-MB-

153 231 and MCF-10A cells. The model describes a  cell that migrates along a lane by a one-dimensional 

154 mechanical equivalent model consisting of a nucleus flanked by a lamellipodium of length L on each 

155 side (Fig 2). Lamellipodia have the resting length L0 in the force-free state and are coupled to the 

156 nucleus by springs with an elastic modulus E. The elastic forces mediate competition between the 

157 protrusions. Protrusion forces Ff and Fb arise from the extension of the F-actin network at rate Ve which 

158 pushes against the cell’s front and back edges by polymerization of filament tips near the cell 

159 membrane. This polymerization force also drives retrograde flow vr against the friction force Ffric = �*vr. 

160 Friction force is caused by the binding and unbinding of the actin retrograde flow to structures adhered 

161 to the substrate which are stationary in the lab frame of reference with rates kon and koff(vr), 

162 respectively (41,42). The dissociation rate depends on the velocity of the retrograde actin flow vr in a 

163 non-linear fashion. The dynamics can be characterized by kon, koff, the maximum friction coefficient �max 

164 and the characteristic retrograde flow velocity vslip, see SI. Noise ε adds the stochastic behavior 

165 observed in experiments. The cell’s edges and nucleus experience a drag force that depends linearly on 

166 the cell’s velocity v with the drag coefficient �. In our previous work, the drag coefficient � was related 

167 to the fibronectin density B by Hill-type equations with the maximum �max, see SI. As the fibronectin 

168 density is constant in the present study we simplify the model and introduce a constant B. We keep the 

169 ratio b of the drag at the cell’s nucleus versus that of the edges constant, too. Lastly, we add an external 

170 noise term εexternal to the model to account for random motion on short time scales that might, among 

171 other things, be caused by limitations of the experimental determination of the cell’s location (see 

172 Methods). Computational simulations based on this model reproduce simulated trajectories that 
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173 resembled observed data as indicated in Fig 3. In order to determine the parameter sets that show best 

174 agreement with data, we employ simulation-based inference as explained in the next section.

175 Fig 2 Biophysical model of cell migration in one dimension. (a) Cartoon of the mechanical protrusion 

176 competition model. The cell is defined by three marks: back, nucleus and front. Front and back are coupled to the 

177 nucleus by an effective elastic spring and coupled to the ground by a non-linear molecular clutch. Redrawn from 

178 (13). (b) Cartoon of the molecular clutch. Actin polymerisation at the edge of the cell creates a retrograde flow vr. 

179 Talin-integrin mediated coupling between the actin network and the fibronectin substrate results in an effective 

180 friction force. Friction slows down the retrograde flow vr  and pushes the membrane outwards.

181 Simulation-based inference connects experimental trajectories to biophysical 

182 parameter distributions

183 We would like to establish the relation between cell trajectories as shown in Fig. 1b and the biophysical 

184 model (Fig 2). As shown in Fig 3, our goal is to present an unbiased approach to estimate those 

185 parameters that best match the data. We will show that SBI allows for inference of the set of 

186 cytoskeletal parameters θ which are most likely to generate a trajectory x(t) using Bayes’ theorem. 

187 Bayes’ theorem states that the desired probability distribution of parameters is  the posterior 

188 distribution p(θ|x)  given the prior parameter distribution p(θ) (see Table 1), the likelihood p(x|θ) and 

189 the evidence p(x):

190 p(θ| x) =
p(θ) ⋅ p(x|θ)

p(x)
(1)

191 Computing the posterior distribution p(θ|x) therefore implies computing both the likelihood p(x|θ) and 

192 the evidence p(x), which is computationally infeasible for a high-dimensional parameter space. We 

193 therefore use neural density estimation (NDE) to learn the posterior distribution p(θ|x) directly without 

194 computing the likelihood p(x|θ). The algorithm itself is based on work by Papamakarios and Murray, 

195 Lueckmann et al., Greenberg et al. and Deistler et al. (35–38). Specifically we deploy the toolkit “sbi”, a 
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196 PyTorch-based package developed by Tejero-Cantero et al. (43). The following procedure to implement 

197 SBI is based on the work by Goncalves et al. (31).

198 Fig 3 shows the 6-step workflow of simulation-based inference using NDE. First, the algorithm randomly 

199 samples a set of points from the prior parameter space {θ} to simulate a set of trajectories x using our 

200 biomechanical model. Simulated trajectories vary in their appearance even if they are simulated using 

201 the same parameter set because of the stochastic nature of the model. Each trajectory consists of 

202 3x721 = 2,163 data points, representing the position of the front, back and nucleus of a cell for 721 time 

203 points which signify a temporal resolution of 2min in 24h of simulated time. Second, an embedding in 

204 the form of a convolutional neural network (CNN) compresses each trajectory and extracts summary 

205 statistics, also called “features”. Third, these features are fed into a neural density estimator based on 

206 neural spline flows, a form of normalizing flows, to calculate the posterior directly. Fourth, both 

207 networks, i.e. CNN and NDE are trained on simulated trajectories with known parameters by adjusting 

208 their weights to maximize the log-likelihood of true parameters (see Methods). Fifth, the trained SBI 

209 can then be applied to empirical data from in vitro experiments. The experimental trajectories are 

210 treated the same way as the synthetic data, i.e. they are fed into the trained CNN and NDE, resulting in 

211 a posterior distribution. This posterior distribution assigns a likelihood to all parameter values 

212 depending on the data and the prior. Hence, SBI can estimate the optimal set of model parameters that 

213 characterizes an experimental trajectory.

214 Table 1 shows the 10 parameters and 2 noise amplitudes that enter our simulation as defined by the 

215 mechanical model. However, inferring the full set of parameters we encounter loss of identifiability  To 

216 demonstrate the problem we discuss the results of SBI with 10 free parameters, which exhibits 

217 correlations and lacks precise inference (see SI).  In order to proceed we reduce the complexity of the 

218 neural posterior estimation by  rescaling our model to five most influential parameters, (for details see 

219 SI). We find that our model’s dynamics is fully described by the reduced set of the following 5 

220 parameters: {resting protrusion length: L0, actin network extension rate: Ve
0, on-rate for dynamic 
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221 integrin signaling: kon, maximum friction coefficient for integrin signaling: �max, critical retrograde flow 

222 velocity:  vslip}. As shown in the next section, the reduced set of parameters is inferred reliably without 

223 loss of identifiability.

224 Fig 3 Simulation-based inference (SBI) of model parameters. A schematic representation of the SBI 

225 workflow. A neural network is trained with simulated data and subsequently experimental data are analyzed using 

226 the pretrained network. (1) A set of parameters {θ} is randomly sampled from the prior p(θ) and used to simulate 

227 trajectories x. (2) The trajectory is downsampled into a low-dimensional feature space by a convolutional neural 

228 network (CNN). (3) The downsampled trajectory is fed into the neural density estimator (NDE) which outputs the 

229 posterior density. The log-likelihood of the NDE at the true point (X) is used as a loss function to update the NDE. 

230 The trained NDE has a maximum likelihood at the true parameter point as marked by ‘X’.  The trained SBI is then 

231 used to estimate parameters from measured data. (5) The experimental trajectories are downsampled into a low-

232 dimensional feature space by the same CNN as in step (2) and then fed into the previously trained NDE. (6) The 

233 resulting posterior represents a cell-specific parameter estimation  describing  interpretable properties of the cell 

234 as defined by the biophysical model.

Parameter 

name

Description Lower 

bound

Upper 

bound

Status Units

L0 Resting protrusion length 1 40 Variable μm

Ve
0 Actin network extension rate 1e-3 8e-2 Variable μm s-1

kon On rate for dynamic integrin 

signaling

1e-5 1e-3 Variable s-1

vslip Critical retrograde flow velocity 5e-3 4e-2 Variable μm s-1

�max Maximum friction coefficient for 1 70 Variable nN s µm−2
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integrin signaling

�max Maximum drag coefficient 1.4 1.4 Fixed nN s µm−2

E Effective E-modulus 3e-3 3e-3 Fixed nN µm−2

koff Off rate for dynamic integrin 

signaling

0.5 0.5 Fixed s-1

b = �c/�f Contribution of the cell

body to the cell drag compared to 

the protrusions

3 3 Fixed

B Fibronectin density 30 30 Fixed ng cm-2

ε Noise in �-dynamics 1 1 Fixed

εexternal Noise in x position 0.5 2 Latent µm

235 Table 1. Prior p(θ). The 10 parameters and two noise amplitudes entering our biophysical model. 5 parameters 

236 are variable and the target of our inference procedure; one of the noise amplitudes is latent; all other parameters 

237 are kept constant.

238 Validation of SBI using simulated data

239 We start our analysis by training an NDE using 1,000,000 simulated trajectories with known parameters 

240 to infer the 5 parameters of choice. For details we refer to the methods section. Next, we show that our 

241 posterior is well calibrated, i.e. neither underconfident nor overconfident, by performing a simulation-

242 based calibration (SBC), see S2 Fig. The details of the procedure are described in the SI.  We then 

243 validate the performance of our NDE by testing its predictive power using simulated data and by 

244 making sure that it is unbiased. To this end we generate a test trajectory from randomly chosen but 

245 known parameters and subject the data to SBI. Fig 4 shows the simulated trajectory x(t) and the 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.06.611766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611766
http://creativecommons.org/licenses/by/4.0/


12

246 resulting posterior p(θ|x) as well as the true parameter θtrue set used to simulate the trajectory. The 

247 parameter set for the simulated trajectory is randomly sampled from a uniform prior distribution. The 

248 trajectory simulates a cell that migrates along a 1D FN lane for 24h without the influence of any 

249 external forces. The simulated trajectory exhibits several changes in the direction of the cell’s 

250 movement and an oscillating length of the cell. By visual inspection we see that the inferred posterior 

251 generally peaks at the values of the true parameters (marked by a vertical orange line) which indicates 

252 an accurate and unbiased inference. Plots of the pairwise distribution p(θij|x) in the right hand corner of 

253 Fig 4 provide insights into correlations between parameters. Tilted distributions indicate a positive or 

254 negative (depending on the sign of the slope) correlation, while horizontal distributions, such as for kon 

255 vs Ve
0, indicate the parameters to be orthogonal. Clearly, the sensitivity of the inference of parameters 

256 varies. Parameters that can be particularly accurately estimated, as can be seen by a sharp prior 

257 distribution, are the resting cell length L0 and the network extension rate Ve
0.  In summary, applying a 

258 simulated trajectory with known parameters to the trained NDE correctly infers posterior distributions 

259 for 5 free parameters that comprise the wanted parameters within the accuracy of the approach.  

260 Fig 4 Validation of SBI applied to a simulated trajectory.  A simulated trajectory x from parameter set θ and 

261 its corresponding posterior distribution. The posterior probability p(θ|x) was inferred by the trained NDE. On the 

262 right hand side the posterior distributions for each pair of parameters p(θij|x) are plotted (true parameters shown 

263 as white cross). The posterior distribution p(θi|x) for each individual parameter estimation is given by the blue 

264 graph on the diagonal with the true parameter value indicated by the vertical orange line. Horizontal gray lines in 

265 the plots on the diagonal represent a uniform posterior. The boundaries of the x-axis correspond to those of the 

266 prior p(θi) (see Table 1).

267 Inference of parameters from experimental trajectories

268 Next, we apply the trained NDE to experimental trajectories of MDA-MB-231 cells in two different 

269 states of motion as depicted in Fig 5. The insets of panel (a) and (b) show the trajectories, with 

270 trajectory (a) constantly moving albeit at different speeds and trajectory (b) being spread for most of 
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271 the time. While the lengths of the protrusions for trajectory (a) oscillate for the first couple of hours, 

272 they stay relatively constant after 12h. Trajectory (b) on the other hand represents a cell whose 

273 protrusions keep on oscillating in length for the entirety of the observed time. The diagonals in Figs 5(a) 

274 and 5(b) display the inferred posterior distributions for each individual parameter and the right hand 

275 corners display distributions for pairs of parameters. The posterior distribution of actin network 

276 extension rate Ve
0 is strongly peaked for both trajectories while the distribution for vslip is very broad 

277 and close to that of a uniform posterior distribution (horizontal gray line). The inferred distribution of L0 

278 is much broader  for trajectory (a), where the protrusion length and oscillatory behavior changes over 

279 time, compared to that of trajectory (b), which oscillates permanently. Insets in the right panel of Figs 

280 5(a) and 5(b) depict simulations that were sampled from the most likely parameter set of trajectory (a) 

281 and (b), respectively. The example demonstrates that SBI is capable of inferring probability distributions 

282 of parameters for individual cell trajectories. Next, we show that parameter sets inferred for 

283 populations of different cell types result in a  meaningful characterisation that discriminates distinct cell 

284 lines.

285 Fig 5 Validation of SBI on experimental data. Four different trajectories and posterior probabilities p(θ|x) as 

286 inferred by our trained NDE from experimental (left side) and simulated data (right side). The trajectories can be 

287 seen in the lower right corner. The posterior distribution for each individual parameter p(θi|x) are plotted on the 

288 diagonals and in the upper right corner the posterior distribution for each pair of parameters p(θij|x) are shown. 

289 Left side in (a) and (b): typical 24h trajectories of MDA-MB-231 cells and their estimated posterior distribution. 

290 Vertical scale bars represent 100um. Right side: the posterior distributions corresponding to each of the two 

291 experimental trajectories were used to sample parameters {θ}. The most likely parameter value from the 

292 experimental posterior distribution θtrue  was chosen to simulate a trajectory x, and the simulated trajectory x 

293 used to estimate the posterior distribution again to verify our approach. The vertical orange lines on the 

294 histograms and the crosses in the density plots show θtrue. 
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295 Inference of cell type specific properties 

296 We use the trained NDE to characterize datasets of two different cell lines MDA-MB-231 and MCF-10A. 

297 For each population, we filtered for trajectories with a duration of 24h. Shorter durations had 

298 previously resulted in broad posterior distributions with smeared out peaks. The posterior distributions 

299 of each trajectory were used to build a 5-dimensional probability distribution of parameter values. The 

300 distributions of trajectories belonging to each cell population were combined to construct an ensemble 

301 distribution of cytoskeletal parameters for the given population, see Fig 6. We find that the populations 

302 of MDA-MB-231 and MCF-10A differ mainly in the distribution of the two parameters L0 and Ve
0, with 

303 the actin network extension rate being significantly higher for MDA-MB-231. Both populations express 

304 a broad, almost uniform distribution for the parameters kon and vslip. The distribution of �max is similarly 

305 peaked for both cell lines, hinting towards a well conserved signaling pathway across cell lines. A 

306 comparison between 10 randomly chosen trajectories of each cell line visualizes the apparent 

307 differences in motile behavior, Fig 6(a,b). While both populations exhibit both motile and spread cells, 

308 the ratio of motile cells is higher for MDA-MB-231 cells. Additionally, MDA-MB-231 cells tend to 

309 oscillate in length significantly more often than MCF-10A cells. These observed differences are 

310 explained by differences in the force-free resting length L0 and the actin network extension rate  Ve
0. 

311 According to our biophysical model a shorter length and a higher actin network extension rate result in 

312 less persistent cells that are more likely to exhibit length oscillations. Hence, inference of 5 cell type 

313 specific model parameters allows for  an automated and unbiased characterization of cell properties.   

314 The most distinctive cell parameters appeared to be  the resting length L0 and the actin network 

315 extension rate Ve
0.

316 Fig 6 Comparative characterization of  migratory phenotype for two cell lines. (a, b) 10 randomly chosen 

317 trajectories for MDA-MB-231 and MCF-10 cells, respectively. (c) Ensemble posterior distribution of estimated 

318 model parameters using SBI. For each trajectory in a given population 1000 different points were sampled in 

319 parameter space. The plots show the ensemble average of all sampled points for all trajectories of a given 
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320 population (NMDA = 85, NMCF = 30). Cell length L0 and actin polymerization rate Ve
0 are the most distinctive 

321 parameters. 

322 Unbiased SBI analysis of  the effect of inhibitors 

323 To further test the capabilities of SBI, we subject both cell lines to cytoskeleton inhibitors. Latrunculin A 

324 inhibits the polymerisation of F-actin (39,44,45); the specific ROCK (Rho-associated protein kinase) 

325 inhibitor Y-27632 affects the Rho/ROCK pathway (46–48). We apply SBI, as described above, without 

326 implementation of prior knowledge of the inhibitor action, to the data sets. Upon treatment with 

327 Latrunculin A the inferred posterior distributions show an exclusive reduction in the rate of actin 

328 polymerization (Ve
0) compared to the untreated cohort both in MDA-MB-231 cells and in MCF-10A cells, 

329 Fig 7(a). The inhibitor Y-27632 shows similar reduction in the polymerization rate, but additionally shifts 

330 the probability distribution of the resting protrusion length L0 towards larger values, Fig 7(b).

331 The inferred changes in the parameter probability distribution are in good agreement with the known 

332 action of the inhibitors. For Latrunculin A we expect a decrease of the actin network extension rate Ve
0

 

333 as Latrunculin A specifically binds to the barbed sides of the actin filaments. In our model all other 

334 parameters are independent of actin polymerisation and should not be affected by Latrunculin A. The 

335 inferred distribution functions are in excellent agreement with expectation. The Rho/ROCK pathway is 

336 an essential regulatory control element in mesenchymal cell migration with more complex 

337 consequences (40,48). ROCK phosphorylates LIM kinases that in turn phosphorylate cofilin. Cofilin is a 

338 key regulator of actin turnover that depolymerizes f-actin. By phosphorylating cofilin, ROCK/LIMK 

339 effectively inhibits actin depolymerization. Additionally, ROCK increases myosin II activity and 

340 contractility by inhibiting the dephosphorylation of myosin light chain (MLC). Furthermore, Rho and 

341 ROCK are involved in the regulation of cell-substratum adhesion via the promotion of focal-adhesion 

342 assembly and turnover (48). Srinivasan et al. observed that Y-27632 induced inhibition of ROCK in 

343 healthy primary keratinocytes (HPKs) and epidermal carcinoma cell line (A-431 cells) resulted in loss of 

344 migration, contractility, focal adhesions, and stress fibers (50). Our SBI analysis shows that Y-27632 
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345 reduces the polymerisation rate and extends the resting length of cells, most likely due to loss of 

346 contractility, and hence is in good agreement with the general understanding of Rho/ROCK signaling. It 

347 is surprising that Y-27632 does not lead to interpretable changes of the focal adhesion parameters kon 

348 and κmax as would be expected from the reported action of the ROCK inhibitor. However, these 

349 parameter distributions seem to be too broad and insensitive to show an effect of the treatments. It 

350 should be noted that in the case of the characterization of the two cell lines, though, the focal adhesion 

351 parameters show significant differences, Fig 6. Importantly, the fact that both cell lines react to the 

352 same treatments in a consistent fashion hints towards an underlying mechanism shared by both cell 

353 lines. In conclusion, we show that SBI specifically retrieves the effect of the inhibitors Latrunculin A and 

354 Y-27632 in an interpretable parameter space.

355 Fig 7 Effect of inhibitors on model parameters as inferred by SBI. Ensemble posterior distribution of model 

356 parameters of experimental cell trajectories using SBI. (a) Latrunculin A significantly decreases the actin network 

357 extension rate Ve
0 for both MDA-MB-231 and MCF-10A cells while leaving all other parameters unchanged. (b) A 

358 similar effect can be observed for Y27632 treatment. Additionally, the resting protrusion length L0 is shifted 

359 towards larger values. For each trajectory in a given population we sampled 1000 different points in parameter 

360 space. Here, the ensemble of all sampled points for all trajectories of a given population is shown. MDA 

361 experiments, 5 replications,  NMDA_ctrl = 85, NMDA_LatA = 129, NMDA_Y27 = 96; MCF experiments, 4 replications, NMCF_ctrl 

362 = 301, NMCF_LatA = 465, NMCF_Y27 = 507

363

364 Discussion

365 In this paper we studied the application of simulation-based inference (SBI ) to estimate parameters of 

366 a mechanistic model for cell motility. We used an automated time-lapse imaging platform to collect a 

367 large number of trajectories of cells in 1D confinement for two different cell lines and different 

368 cytoskeletal inhibitors. The trajectories exhibit significant features showing defined migration states as 
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369 well as meaningful rates of locomotion and oscillatory behavior. All these features are reproduced in 

370 principle by a  previously published mechanistic biophysical model. The key question remaining, 

371 however, is which parameter set quantitatively captures the dynamics of observed cell trajectories in 

372 best agreement with the data. In this context we showed that SBI, once trained and calibrated, 

373 successfully infers best estimates of parameter sets of our mechanistic model. The approach is capable 

374 of characterizing migratory phenotypes in terms of parameter distributions and to assess effects of 

375 inhibitors.

376 We identified limitations of the approach in terms of the dimensionality of the parameter space and 

377 introduced a reduced free parameter space. In general, more parameters should be inferable, if the 

378 data set of trajectories contain sufficient information and less noise. As shown in this work, trajectories 

379 are noisy, comprising both extrinsic as well as intrinsic noise sources. Inhomogeneities in the FN lanes 

380 arguably are sources of external noise and hence cell motility on truly homogenous lanes is likely to 

381 exhibit improved parameter estimation. Moreover, we expect that expansion of the data basis by 

382 increasing both spatial and temporal resolution would further improve the SBI approach. However, in 

383 our experiments an optimal compromise of spatio-temporal resolution and number of cell trajectories 

384 was chosen. The most relevant experimental specification for data quality is the length of individual 

385 trajectories. If the trajectory is too short it does not provide the information content necessary to infer 

386 model parameters confidently. Yet, longer trajectories are limited by cell division cycle at the latest. A 

387 larger number of trajectories of the same length, however, does not necessarily improve SBI’s 

388 performance in characterizing population ensembles. In future work it will be essential to increase the 

389 dimensionality of trajectories by monitoring additional measures. Based on sensitivity analysis of the 

390 biophysical model, quantities such as the actin retrograde flow velocity or focal adhesion density would 

391 significantly increase the precision of SBI as we demonstrate with simulated data in the SI. A closer look 

392 into the summary statistics of the trajectories might elucidate which features are the most relevant for 

393 inference. 
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394 High-throughput motility assays are instrumental to extract cell specific properties. Standardized 

395 confinement, as for example in The First World Cell Race by Maiuri et al., has already been used for 

396 comparative characterization of speed and persistence for a large variety of cell lines  (2,3,50–52). In 

397 contrast to model free AI based classification, SBI builds on a mechanistic model  inferring interpretable 

398 features of  motile cell behavior.  Automated cell platforms using SBI with generally accepted 

399 mechanistic models might generate standardized parameter data bases potentially paving the way to 

400 new discoveries in cell mechanics, pharmaceutical and potentially clinical studies (55,56). Clearly the SBI 

401 approach presented here is applicable to other models related to cell motility. For example detailed 

402 models of cell protrusion dynamics exist that reproduce protrusion oscillations and traveling wave actin 

403 dynamics at shorter time scales than shown here (57,58). In principle, any complex dynamic 

404 phenomenon that can be measured with sufficient statistics and described with non-linear partial 

405 differential equations, qualifies for SBI.

406 Future SBI-based approaches might also  be used to assess the degree of agreement of competing cell 

407 models with data in terms of posterior distribution functions.  Biophysical models evolve over time, 

408 generally becoming more detailed. SBI would allow to challenge competing models and discuss more 

409 subtle additions of model components. The data driven SBI analysis of cell trajectories proposed here 

410 combines hypothesis based modeling with AI-supported analysis and hence is most appealing to the 

411 advancement of our understanding of locomotion.

412

413 Methods
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414 Experimental Methods

415 Cell culture

416 We cultured MDA-MB-231 cells that had been stably transduced with histone-2B mCherry (gift from 

417 Timo Betz, University of Göttingen, Germany) and MCF-10A cells (obtained from ATCC, Manassas, VA, 

418 USA) in Leibovitz’s CO2-buffered L-15 medium with 2 mM Glutamax (Thermo Fisher Scientific, Waltham, 

419 MA, USA) at 37°C. The growth medium for MDA-MB-231 cells was supplemented by 10% fetal bovine 

420 serum (Thermo Fisher) and the medium for MCF-10A cells by 5% horse serum (Merck, Darmstadt, 

421 Germany), human epidermal growth factor (Merck), hydrocortisone (Merck), cholera toxin (Merck) and 

422 Insulin (Merck). We passaged cells every 2–3 days using Accutase (Thermo Fisher). 

423 For experiments, we seeded about 5,000 cells per dish. After 2–3 h, cells adhered to the micropatterns 

424 and we exchanged the medium with medium containing 25nM Hoechst 33342 (invitrogen, Waltham, 

425 MA, USA) and treatment factors.  The treatment factors were 0.1μM Latrunculin A (EMD millipore, 

426 Burlington, MA, USA), 30μM Y-27632 (Sigma Aldrich) and 0.3% dimethyl sulfoxide (Life Technologies, 

427 Darmstadt, Germany) as control.

428 Micropatterning

429 We produced the micropatterns on a Primo system (Alvéole, France) as described by Melero et al. (9). 

430 In brief, we designed micropatterns consisting of 15μm wide Fibronectin lanes with a spacing of 73μm 

431 using the vector graphics software Inkscape (inkscape.org). We conjugated human Fibronectin (yo-

432 proteins, Sweden) with Alexa Fluor 647 NHS-ester (Thermo Fisher). We determined the concentration 

433 of the labeled protein with a NanoDrop spectrophotometer (Thermo Fisher) and confirmed the results 

434 with a Coomassie Bradford assay (Thermo Fisher). We passivated imaging dishes with polymer coverslip 

435 bottoms (ibidi, Germany) with PLL (Sigma Aldrich) and conjugated the PLL with PEG (Laysan Bio, Arab, 

436 AL, USA). Afterwards we added photoactive PLPP gel (Alvéole) and illuminated the shape of our 

437 micropatterns onto the cover slip using the UV-beam of the Primo device. Next, we washed the dishes 
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438 and incubated with the labeled Fibronectin solution. Lastly, the dishes were washed once more with 

439 PBS before we seeded cells onto the patterned cover slip bottom.

440 Microscopy

441 We performed time-lapse imaging on an inverted fluorescence microscope (Nikon Eclipse Ti, Nikon, 

442 Tokyo, Japan) equipped with an XY-motorized stage, Perfect Focus System (Nikon), and a heating 

443 chamber (Okolab, Pozzuoli, Italy) set to 37C. We set up an acquisition protocol to sequentially scan and 

444 image fields of view using the motorized stage, the Perfect Focus System, a 10 CFI Plan Fluor DL 

445 objective (Nikon), a CMOS camera (PCO edge 4.2, Excelitas PCO, Kelheim, Germany) and the acquisition 

446 software NIS Elements (Nikon). Before the start of the time-lapse measurement, we took 

447 epifluorescence images of the FN patterns. Phase-contrast images of the cells and epifluorescence 

448 images of their nuclei were then taken for 48 h at 10 min or 2min intervals as indicated. Intervals of 10 

449 min allowed scanning of 13x13=169 fields of view, while intervals of 10 min allowed 8x8=64 fields of 

450 view. A temporal resolution of 2min proved optimal to capture the full extent of the migration 

451 dynamics as described here while still allowing for a sufficient number of fields of view to achieve the 

452 required statistics.

453 Image analysis

454 We used an in-house built data pipeline to extract cell trajectories from raw time-lapse experimental 

455 images. The pipeline first detects the position of each fluorescent FN lane on each of the microscope’s 

456 fields of view. Next, it uses cellpose (19,58) to segment each individual cell and trackpy (61,62) to track 

457 the fluorescent nuclei. Each single nucleus trajectory is assigned a corresponding cell mask to obtain a 

458 time-lapse of the cell’s 2D shape. The information of the cell’s shape and position is combined with the 

459 position of the fibronectin lanes to calculate the rearmost and frontmost position of the cell along the 

460 corresponding FN lane. The output is a dataset with several thousand trajectories (front, back and 

461 nucleus position) of single cells for each experiment. Finally, the data are filtered to ensure a dataset 

462 that consists only of single cell trajectories of a length of 24h.
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463 Biophysical Modelling

464 The biomechanical model

465 We present a simplified version of the biophysical model published by Amiri et al. in (13), see Fig 2. The 

466 system is defined by the following force balance for the front (f), back (b) and center (c) of the cell:

467

468 We reduced the number of parameters compared to Amiri et al. by both simplifying the model and 

469 assuming that certain parameters are fixed, see SI. To incorporate the effect of noise in the cell’s 

470 position due to both measurement and cellular factors, we added an additional source of noise to our 

471 trajectories, see next section. After these simplifications, we are left with 10 parameters and two noise 

472 amplitudes. These 10 parameters characterize a simulated cell.

473 We then split the remaining parameters into three possible categories: Fixed parameters which we 

474 assume to be constant for all conditions, latent parameters which we assume to vary for different 

475 simulations, but which we do not try to infer, and finally variable parameters which we vary and whose 

476 posterior p(θ|x) we approximate with NDE, see Table 1.

477 External noise

478 The original version of our cytoskeletal model had a single source of noise. The adhesion-dynamics κ 

479 were modeled with a Langevin equation dκ/dt = f(k)+η(t). This source of noise leads to transitions in the 

480 cell’s dynamic states. However, the shape of the simulated cell’s position x(t) is much smoother than 

481 experimental trajectories. The rough shape of a cell’s position in experimental trajectories can be 

482 explained by various different reasons. First, the roughness can originate from the measurement 

483 imprecisions such as the microscope’s resolution or the segmentation of cell contours (see section 

484 Image Analysis). Second, the roughness of the experimental trajectories can originate from lower-level 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 8, 2024. ; https://doi.org/10.1101/2024.09.06.611766doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.06.611766
http://creativecommons.org/licenses/by/4.0/


22

485 processes that do not enter our cytoskeletal model. This dissimilarity between simulated trajectories 

486 and experimental trajectories leads to complications in simulation-based inference (SBI). The neural 

487 posterior estimator learns specific smooth features of the simulated trajectories, and performs very 

488 well in inferring simulation parameters. These smooth features are not present in simulated 

489 trajectories, so the posterior estimator cannot infer parameters of experimental trajectories. To 

490 overcome this issue, we added an additional noise source: external noise. We simply added Gaussian 

491 noise to the simulated trajectories:

492 xnoisy(t) = x(t) +ηexternal(t)

493 This ensured that the neural posterior estimator could not learn the smooth features in the simulated 

494 trajectories, leading to a better performance on experimental trajectories.

495 Simulations

496 The biomechanical model presented in Fig 2 is implemented using the Euler Method in Julia to enable 

497 fast simulations (ca. 10ms per 1 hour trajectory per CPU core) (63).  The source code is publicly 

498 available and includes a desktop application to simulate trajectories by tweaking the values of the 

499 model’s parameters and the variables’ initial values.

500 Neural Posterior Density Estimator (NDE)

501 We use the open source python package “sbi” developed by Tejero-Cantero et al. at the Macke lab (43) 

502 to infer the posterior distribution of model parameters of single cells given their 1D trajectories: p(θ|x). 

503 The algorithm implemented in the package is based on work by Greenbert et al. (35) to learn p(θ|x) 

504 directly without computing the likelihood p(x|θ). Here, the posterior is approximated by a 

505 parameterized family of functions qψ so that p(x|θ) ≈ qψ(θ). The distribution parameters ψ given a 

506 trajectory x are learned by a neural network with weights φ: F (x, φ) = ψ. The training of the neural 

507 network is schematically shown in Fig 3. We start by sampling a set of model parameters from the 

508 prior: {θj} ~ p(θ). We then simulate a trajectory for each sampled parameter set to build a dataset:  {(θj , 
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509 xj )}. The neural network F(x, φ) learns the posterior distribution by adapting its weights φ to maximize 

510 the log-likelihood of true parameters given their corresponding simulated trajectories:

511 L(φ) = ∑j=1
N log qF (xj ,φ)(θj). 

512 Our neural network for density estimation is composed of two main components. First, an embedding 

513 in the form of a convolutional neural network (CNN) reduces the dimensionality of our input vector, i.e. 

514 a cell trajectory, and extracts features. Then, the features obtained by the CNN are fed to a neural 

515 spline flow network (64). The input layer of the CNN was modified from being one-dimensional to being 

516 two-dimensional to better accommodate the interconnected nature of the three time serieses (front, 

517 back, nucleus) that constitute a single trajectory. This way, relations between the positions of the same 

518 cell are better preserved.
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684 Supporting information

685 S1 Supporting information. 

686 S1 Fig. Inference of 10 free parameters leads to loss of identifiability. The posterior probability p(θ|x) is 

687 inferred by a neural density estimator that was learnt to infer 10 free parameters. The plots on the diagonal show  

688 the posterior distribution for each individual parameter p(θi|x), while the plots in the right hand corner show the 

689 distribution for each pair of parameters p(θij|x). Vertical gray lines in the plots on the diagonal and white crosses 

690 in the plots on the off-diagonal represent the values that were used for the simulated trajectory. The posterior 

691 distributions are smeared out across the range of the prior distribution which means that the NDE can’t infer the 

692 true parameter set precisely. 

693 S2 Fig. Quality of the NDE Examples of the rank statistics for 1023 simulations (N=23). The rank statistics for 

694 the Nsim simulations should be uniformly distributed and fall within the gray area. The parameters Ve
0, kon, vslip and 

695 �max can be considered as being well calibrated while the posterior estimation for L0 is somewhat under-confident.

696 S3 Fig. New variables improve SBI performance. The posterior p(θ|x) was inferred by our trained NDPE. (a) 

697 We compare a posterior trained with the three cellular positions as input. (b) Here, the input variables contain not 

698 only the cellular positions but also the actin retrograde flows vr,f, vr,b. (c) This plot depicts a posterior trained on 

699 the cellular positions plus the adhesion dynamics κf and κb. (d) Finally, the posterior if the input contains the 

700 cellular positions, the actin retrograde flows and the adhesion dynamics. The sharpening of the posterior 

701 estimator with the addition of observed variables suggests that one could characterize migrating cells much more 

702 precisely by adding further readouts to the experimental tracking.
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