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Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. 12 
5
Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician 13 

Scientist Program, Charitéplatz 1, 10117 Berlin, Germany 14 
6Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK15 
7Translational Immunogenomics Lab, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 16 
8
Department of Haematology, University College London Hospitals, London, UK. 17 

9
Memorial Sloan Kettering Cancer Center, New York City, NY. 18 

10
Berlin Institute of Health at Charité Universitätsmedizin Berlin, Berlin, Germany. 19 

11
Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, 20 

Germany. 21 
12

Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA. 22 

*contributed equally23 
#senior authors24 
$corresponding author25 

26 

Running title: mtDNA-based single-cell leukemia and chimerism tracking 27 

28 

Word count (text): 7,456 29 

Word count (abstract): 148 words 30 

Figures: 7 main figures, 20 supplementary figures, 10 supplementary tables 31 

32 

Corresponding author: 33 

Catherine J. Wu, MD 34 

Professor, Dana-Farber Cancer Institute and Harvard Medical School 35 

Chief, Division of Stem Cell Transplantation and Cellular Therapies 36 

Institute Member, Broad Institute of Harvard and MIT 37 

Telephone: 617-632-5943 38 

Email: cwu@partners.org 39 

40 

Mailing address: 41 

450 Brookline Avenue 42 
Boston, MA 02215 43 

44 
Presented in part as poster at 63

rd
 Annual Meeting of the American Society of Hematology (ASH) in Atlanta, GA from 45 

December 11-14, 2021 46 
Presented in part as poster at 65

th
 Annual Meeting of the American Society of Hematology (ASH) in San Diego, CA 47 

from December 9-12, 2023 48 

mailto:cwu@partners.org


Penter et al. 

2 

Competing interests 49 
C.A.L. and L.S.L. are named inventors on a patent related to mitochondrial lineage tracing50 
(PCT/US2019/036583).51 
C.A.L. and L.S.L. are consultants to Cartography Biosciences.52 
C.J.W. is an equity holder of BioNtech, Inc, receives research funding from Pharmacyclics, and is a SAB53 
member of Repertoire, Aethon Therapeutics, and Adventris.54 
G.O is consultant for Bicycle Therapeutics.55 
J.R. receives research funding from Kite/Gilead, Oncternal, and Novartis, serves on a Data Safety56 
Monitoring Committee for AvroBio and on the Scientific Advisory Boards for Akron Biotech, Clade57 
Therapeutics, Garuda Therapeutics, LifeVault Bio, Novartis, Smart Immune, Talaris Therapeutics, and58 
TScan Therapeutics.59 
J.S.G. reports serving on steering committee and receiving personal fees from AbbVie, Astellas, and60 
Takeda and institutional research funds from AbbVie, Genentech, Prelude, and AstraZeneca.61 
K.J.L. reports equity in Standard BioTools Inc. and serves on the scientific advisory board for MBQ62 
Pharma Inc.63 
R.J.S. serves on the Board of Directors for Be the Match/National Marrow Donor Program and DSMB for64 
Juno Therapeutics, Celgene USA, and BMS; reports personal fees from Vor Biopharma, Smart Immune,65 
Daiichi Sankyo Inc, Neovii, Bluesphere Bio, Cugene, and Jasper.66 
All other authors do not have any relevant conflict of interest.67 

68 



Penter et al. 

3 

Summary 69 

70 

Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key 71 

cellular populations associated with response following therapy, including after allogeneic hematopoietic 72 

stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations co-evolve 73 

with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor 74 

these cellular populations. Further, detection of mtDNA mutations via single-cell ATAC with select antigen 75 

profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells, but 76 

also their phenotype, at frequencies of 0.1-1%. Finally, integration of mtDNA mutations, surface markers, 77 

and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from 78 

normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-79 

term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we 80 

envision future development of single-cell sequencing-based post-transplant monitoring as a powerful 81 

approach for guiding clinical decision making.  82 

83 

Keywords: mitochondrial DNA mutations, measurable residual disease, allogeneic hematopoietic stem 84 

cell transplantation, microchimerism, clonal evolution, single cell proteogenomics 85 
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Statement of significance 87 

Mitochondrial DNA mutations enable single-cell tracking of leukemic clonal evolution and donor-recipient 88 

origin following allogeneic hematopoietic stem cell transplantation. This provides unprecedented insight 89 

into chimeric cellular phenotypes of early immune reconstitution, incipient relapse, and quality of donor 90 

engraftment with immediate translational potential for future clinical post-transplant monitoring and 91 

decision making. 92 

93 
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94 
Introduction 95 

96 

For the clinical challenges presented by treatment of aggressive blood malignancies, allogeneic 97 

hematopoietic stem cell transplantation (HSCT) is an established immunotherapy that can improve long-98 

term outcomes through graft-versus-leukemia (GvL) effects.(1–4) However, post-HSCT relapse is 99 

frequent, and immunotherapeutic salvage strategies aimed to reinstate disease control such as rapid 100 

immunosuppression tapering (IST), hypomethylating agents, donor lymphocyte infusions (DLI) or, more 101 

recently, immune checkpoint blockade (ICB) have mostly limited efficacy with exceptions in specific 102 

settings (5–10). This can necessitate a second HSCT, for example from a haploidentical donor, which is 103 

increasingly performed (11). A qualitative understanding of disease recurrence through assessment of 104 

relapsed leukemia phenotypes, clonal evolution, and potential for recovery of donor engraftment at the 105 

time of, or even prior to, molecular relapse would aid in improved selection of appropriate therapeutic 106 

salvage strategies. However, while sensitive relapse detection is feasible using flow cytometric or bulk 107 

sequencing approaches, the identification of relapse-associated leukemia phenotypes has so far been 108 

technically not possible before overt relapse when most salvage therapies become less effective. 109 

110 

Recent advances in single-cell sequencing technologies and analysis enable detection of natural genetic 111 

barcodes such as single nucleotide polymorphisms (SNPs) or mutations in mitochondrial DNA (mtDNA) 112 

and somatic nuclear DNA. These barcodes, in combination with determination of cell states, could 113 

provide a basis for integrated genetic and phenotypic immune cell and leukemia monitoring. In particular, 114 

the analysis of SNPs and mtDNA mutations provides an approach for genetic deconvolution of donor and 115 

recipient-derived cell populations in post-HSCT samples.(12) The high mtDNA content per cell and the 116 

small size of the mitochondrial genome along with its exquisitely polymorphic nature, especially in the 117 

control region(13), suggests this approach would be very robust for monitoring reconstituting cell 118 

populations following HSCT from non-sibling donors. Further, in contrast to germline SNPs, analysis of 119 

mtDNA can resolve clonal evolution of leukemic cell populations, thereby providing information about 120 

longitudinal changes in disease state (14–17). However, while evolution of mtDNA mutations after 121 

therapeutic bottlenecks has been described(15,17), the relationship of changes in mtDNA and somatic 122 
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nuclear DNA mutations following therapeutic bottlenecks remains unknown. Moreover, there are also 123 

questions about the ability of such an approach to provide information on leukemia phenotypes during 124 

early relapse and the sensitivity for single-cell mtDNA-based detection of rare donor or recipient-derived 125 

populations.  126 

127 

Here, we demonstrate that mtDNA mutations co-segregate with somatic nuclear DNA mutations during 128 

clonal evolution enabling sensitive identification of rare cell populations and aiding in the resolution of 129 

their phenotypes in the context of relapse following HSCT. Together, our analyses suggest that single-130 

cell-based immune and leukemia monitoring have the potential to provide both quantitative and qualitative 131 

information for therapeutic decision making in the post-HSCT setting.  132 

133 
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Results 134 

135 

Co-evolution of mitochondrial and somatic nuclear DNA mutations 136 

The extent to which mtDNA mutations track with somatic nuclear DNA mutations following therapeutic 137 

bottlenecks is largely unknown. We hypothesized that existing bulk datasets of serial chronic lymphocytic 138 

leukemia (CLL) samples would provide opportunities to address this question through combined analysis 139 

of both classes of mutations. Although whole-exome sequencing (WES) is a standard tool for tracking 140 

somatic nuclear DNA mutations, it does not sufficiently cover the mitochondrial genome to detect mtDNA 141 

mutations. In contrast, bulk RNA-seq data has high coverage of mitochondrial transcripts beyond 10,000x 142 

(Suppl. Fig. 1A). We were therefore motivated to extract mtDNA mutations from bulk transcriptomes 143 

generated from 110 samples collected longitudinally from 26 CLLs for whom concomitant WES data was 144 

available (Methods; Suppl. Table 1).(18) The median interval between the first and last sample of each 145 

CLL was 2,184 days (range 280-4,402). By WES, we categorized CLLs as genetically stable (n=8) or 146 

evolving, either in absence of therapy (n=7) or following fludarabine-based immunochemotherapy (n=11) 147 

(Fig. 1A-B). To exclude artifacts, we focused on mtDNA mutations with a bulk heteroplasmy >0.5% in at 148 

least one sample (Suppl. Fig. 1B). Although we identified fewer mitochondrial (median 11, range 2–26) 149 

than somatic nuclear (median 63, range 18–168) DNA mutations per CLL (Suppl. Fig. 1C), we found that 150 

their longitudinal dynamics were consistent with the somatic mutation-defined growth kinetic categories. 151 

In particular, similar to somatic nuclear DNA mutations, their frequency increased with follow-up time from 152 

the first to the last sample, even as the number of dynamic mtDNA mutations was lower in genetically 153 

stable compared to post-therapy evolving CLL cases (median 2 vs. 5 per CLL; p < 0.001; Student t-test) 154 

(Fig. 1C-D, Suppl. Fig. 1D). Likewise, heteroplasmy changes were smaller in stable compared to 155 

evolving CLL (coefficient of variance 31 vs 57; p < 0.001; Student t-test) (Fig. 1E). Finally, when matching 156 

longitudinal dynamics of mtDNA mutations and cancer cell fractions (CCF, which is a measure of 157 

involvement by somatic nuclear mutations), we observed high correlation (r = 0.84, p < 0.001; Pearson’s 158 

correlation) (Suppl. Fig. 1E, Suppl. Fig. 2-5).  159 

160 
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Given the deep coverage of mitochondrial transcripts in bulk RNA-seq data, we wondered whether 161 

mtDNA mutations would enable sensitive tracking of dynamic CLL clones. We defined the limit of 162 

detection (LOD) for each mtDNA mutation as the average heteroplasmy across the study cohort and 163 

observed a median LOD of 0.3% (range 0.008%-73%), which was mostly determined by genomic 164 

localization (Suppl. Fig. 6A-C). With this approach, we tracked expansion of individual mtDNA mutations 165 

such as 2115T>C and 7300T>C (CLL1) or 7929G>A and 8040T>C (CLL19) from low initial 166 

heteroplasmies (between 0.02% and 0.13%) to values between 0.7 % and 6.1%. At the same time, some 167 

mtDNA mutations such as 2002G>A (CLL1) or 13358T>C (CLL19) collapsed from a heteroplasmy of 168 

8.8% and 1.3% to 0.5% and 0.05% (Fig. 1F, Suppl. Fig. 6D). Altogether, these data reveal mtDNA 169 

mutations to have similar longitudinal dynamics as somatic nuclear DNA mutations and the potential to 170 

sensitively track emerging CLL clones.  171 

172 

Tracking resistance to graft-versus-leukemia responses 173 

Having observed the pronounced dynamics of mtDNA mutations in CLL cases over long follow-up, we 174 

asked how these natural barcodes could be also applied to the setting of allogeneic stem cell 175 

transplantation. We extracted mtDNA mutations from bulk RNA-seq data generated from 8 CLL cases for 176 

which paired peripheral blood mononuclear cell (PBMC) specimens were collected before and after 177 

immunochemotherapy (FCR [fludarabine, cyclophosphamide, rituximab]) followed by reduced-intensity 178 

conditioning (RIC)-HSCT (follow-up time ranged from 83-1,979 days [median 931 days]) (Fig. 2A). Again, 179 

we observed an association of follow-up time between samples and the magnitude of change in mtDNA 180 

mutations, such that early relapse remained genetically stable while late recurrence displayed clonal 181 

evolution (310 vs. 1,082 days, p = 0.034; Wilcoxon signed-rank test) (Fig. 2B-C), consistent with previous 182 

genetic characterization by WES(19). Further, we could sensitively track mtDNA mutations. For example, 183 

in CLL5328, we observed clonal replacement evidenced by disappearance of 16247A>G from an initial 184 

heteroplasmy of 27% below LOD at relapse, as opposed to expansion of 6426G>A from 0.2% to 54.4% 185 

(Fig. 2D).  186 

187 
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Given the high agreement of parallel analyses of somatic nuclear and mitochondrial DNA mutations, we 188 

decided to analyze mtDNA and somatic nuclear DNA mutations within the same cell. We thus performed 189 

targeted single-cell DNA sequencing with surface marker capture (scDNA-seq; Tapestri platform) using 190 

assays for detection of patient-specific somatic nuclear and mitochondrial mutational profiles. Assay 191 

designs were based on information provided by prior genetic characterization from WES (generated pre-192 

FCR and post-HSCT) and single-cell ATAC sequencing (mtscATAC-seq) (15,19). We focused on 3 CLL 193 

cases (5328, 5327 and 5335) and generated a primer panel for the detection of 98 mutations across 69 194 

genes, encompassing 67 nuclear and 21 mtDNA amplicons (Fig. 2E, Suppl. Table 2). As expected per 195 

the assay designs, the coverage of mtDNA was limited to targeted regions and enabled high sequencing 196 

depth to optimize detection of even variants with low heteroplasmy (Suppl. Fig. 7A). To discriminate 197 

among immune cell subtypes, we concurrently captured surface marker staining (Total-seq D) (Fig. 2F, 198 

Suppl. Fig. 7B).  199 

200 

In total, we obtained 33,796 high-quality scDNA-seq profiles from the 3 PBMC sample pairs. Eight of 8 201 

previously reported mtDNA mutations that defined major CLL subclones and a median of 14 (8-19) of 20 202 

(16-26) somatic mutations from these cases were detected. CLL-specificity of mtDNA and somatic 203 

mutations was confirmed by their absence in donor and recipient immune cell populations. For all 3 CLL 204 

cases, somatic founder mutations could be identified that were present before and after post-HSCT 205 

relapse (Fig. 2G, Suppl. Fig. 8A-B). This was also the case for the mtDNA mutation 3538G>A in 206 

CLL5328 which persisted throughout therapy. A subset of mtDNA mutations which co-segregated with 207 

somatic mutations subdivided the CLL populations further, such as 16247A>G (CLL5328), 5979G>A and 208 

2332C>T with ASL
Y321C

 and MME
K525N

 (CLL5335) or 3830T>C and 3526G>A with PKDREJ
V245F

 and209 

TP53
V272M

 (CLL5327). Clonal shifts in CLL, as defined by somatic mutations that were only discernable210 

before or after FCR/HSCT, tracked with analogous changes in mtDNA mutations. These shifts in clonal 211 

architecture ranged from clonal replacement (evident through emergence of 6426G>A and 16290C>T in 212 

CLL5328); to selection of a resistant subclone (marked by loss of 2332C>T and 5979G>A in CLL5335); to 213 

skewing of the ratio within CLL clones at relapse post-HSCT (in CLL 5327) (Fig. 2G, Suppl. Fig. 8C-E). 214 

In CLL5328, we identified donor-derived mtDNA mutations based on their absence in recipient cells that 215 
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were associated with CD8
+
 T cells (1918G>A, 5650G>A) or lymphocytes in general (786G>A) highlighting216 

the fact that mtDNA mutations also mark clonal ancestries in non-malignant cell populations (Fig. 2G, 217 

Suppl. Fig. 8F). Finally, consistent with the detection of 6426G>A at very low heteroplasmy in bulk RNA-218 

seq data pre-HSCT, we could identify 3 of 2,416 (0.12%) leukemic cells from CLL5328 which harbored 219 

this mutation alongside DPCD
D41E

 and ZNF215
H42P 

prior to transplantation, providing direct evidence of220 

the existence of a resistant population identifiable by mitochondrial and somatic nuclear DNA mutations 221 

(Fig. 2H). In sum, mtDNA mutations are shaped by GvL-mediated selection and directly track with 222 

evolving somatic nuclear DNA mutations.  223 

224 

Mitochondrial DNA mutations as markers of donor-recipient pairs 225 

Mixed chimeric states are frequently detected following allogeneic HSCT. Examples include replacement 226 

of recipient hematopoiesis with donor cells during the initial post-transplant phase, regrowth of recipient-227 

derived cells at incipient disease recurrence (i.e. measurable residual disease – MRD) or displacement of 228 

donor-derived cells at time of overt relapse (i.e. waning residual physiologic hematopoiesis).  229 

230 

To define the potential utility of genetic mtDNA variation for sensitively distinguishing among admixed 231 

cells originating from unrelated individuals, a common scenario in >50% of transplants (12,20,21), we 232 

compared the performance of donor-recipient deconvolution via maternal mtDNA variants with that from 233 

nuclear single nucleotide polymorphism (SNP)-based deconvolution. We thus performed scDNA-seq on 234 

two bone marrow samples collected from a relapsed AML after matched unrelated donor HSCT. We 235 

reutilized the previously designed CLL mtDNA panel which provided coverage of the control region that 236 

spans the first and last 700 bp of the circular mitochondrial genome (chrM:16,024-576, where most 237 

mtDNA mutations are located(22)) with a commercial 279-amplicon panel targeting 37 recurrently 238 

mutated genes in AML/MDS(23). In this manner, we identified germline SNPs and the known NRAS
G13R239 

and SF3B1
R775Q

 mutations of this case. When we compared donor-recipient deconvolution using 4240 

maternal mtDNA variants and 10 nuclear germline SNPs, we observed highly consistent annotations in 241 

7,541 of 7,618 (99%) cells (Suppl. Fig. 9A-B). AML cells clustered into recipient-derived hematopoietic 242 

stem cell (HSC)-like, granulocyte macrophage progenitor (GMP)-like, monocyte-like and erythrocyte-like 243 
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cells (Suppl. Fig. 9C-D). This highly accurate donor-recipient deconvolution was further supported by the 244 

absence of NRAS
G13R

 and SF3B1
R775Q

 in donor-derived cells in the HSC, GMP, monocyte and erythroid 245 

compartments, while they were detectable in 80-98% (SF3B1
R775Q

) and 50-70% (NRAS
G13R

) of recipient-246 

derived cells (coverage >10x) (Suppl. Fig. 9E-F). Furthermore, the mtDNA mutation 11736T>C co-247 

segregated with SF3B1
R775Q 

and NRAS
G13R

, providing an example of a leukemia-specific mtDNA mutation248 

(Suppl. Fig. 9G). Finally, we analyzed T/NK cell donor chimerism, which was highest in NK and lowest in 249 

CD4
+
 T cells (Suppl. Fig. 9H). Altogether, combined detection of mtDNA and somatic nuclear DNA250 

mutations demonstrated highly consistent results for donor-recipient deconvolution whether with mtDNA 251 

or SNPs. 252 

253 

Our detection of co-segregating somatic nuclear and mtDNA mutations along with the high accuracy of 254 

mtDNA-based donor-recipient deconvolution prompted us next to systematically evaluate the sensitivity of 255 

this approach for resolving mixed chimeric states. To define what percentage of unrelated transplant pairs 256 

could be distinguished using maternal mtDNA variants (excluding tumor-specific mtDNA mutations), we 257 

simulated the deconvolution of donor-recipient pairings using two external bulk mtDNA-seq datasets 258 

comprising 81 individuals without cancer (Supplementary Data) (24). We identified a median of 30 259 

homoplasmic mtDNA mutations (detected heteroplasmy >98%) per individual (range 7–78) and a total of 260 

624 mtDNA mutations, of which 141 (22.6%) were found within the most variable region of chrM (15.9 kB 261 

to 700bp) (Suppl. Fig. 10A-C). Among all 6,480 simulated pairings, the median number of diverging 262 

homoplasmic mtDNA mutations was 35 (range 2–94), with at least 5 diverging mtDNA mutations in 99.8% 263 

of pairs (Fig. 3A). Simulations yielding fewer than 8 diverging mtDNA mutations originated exclusively 264 

from pairs within the same mtDNA haplotype (Suppl. Fig. 10D). These analyses indicate that donor and 265 

recipient cells in unrelated transplants can be effectively distinguished using homoplasmic mtDNA 266 

mutations. 267 

268 

Because not all mtDNA mutations localize to expressed regions of the mitochondrial genome, we focused 269 

on expressed mtDNA mutations, identified from 108 non-malignant bulk RNA-seq profiles, to assess the 270 

feasibility of this approach for single-cell transcriptomic assays(25). We identified 393 expressed 271 
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homoplasmic mtDNA mutations, a median of 21 per individual (range 0–61), which provided at least 5 272 

diverging mtDNA mutations in 95.8% of pairings (Suppl. Fig. 10E-G), thus supporting the ability to 273 

distinguish most donor-recipient pairs using transcriptome data. The number of distinguishing mtDNA 274 

variants was highly similar across datasets, although sequencing coverage was more uniform when using 275 

DNA- rather than RNA-sequencing (Suppl. Fig. 10H-J), consistent with observations from single-cell 276 

RNA sequencing (scRNA-seq) analyses (14,26,27). From all 189 individuals, a total of 924 homoplasmic 277 

mtDNA mutations were identified. By downsampling the number of analyzed individuals, this number 278 

represents only a fraction of homoplasmic mtDNA mutations in the entire human population, consistent 279 

with the >19,000 mtDNA mutations documented in MITOMAP (Fig. 3B).(28) 280 

281 

Benchmarking of donor-recipient deconvolution in-silico and in-vitro 282 

To assess the potential sensitivity of single-cell donor-recipient deconvolution using mtDNA mutations, we 283 

performed an in-silico spike-in experiment using previously reported circulating blood mtscATAC-seq 284 

profiles of two CLL cases (CLL4, CLL5).(15) We mixed between 1 to 1,000 profiles of CLL4 (randomly 285 

sampled from 3,369 profiles) into all available 7,579 mtscATAC-seq profiles of CLL5. CLL4 and CLL5 286 

harbored a total of 45 maternally inherited mtDNA variants (variance-to-mean ratio (VMR) < 0.01; strand 287 

concordance > 0.65). Cells from CLL4 and CLL5 could be distinguished by 29 and 8 maternal mtDNA 288 

variants, respectively (Suppl. Fig. 11A). We calculated a mean heteroplasmy for the distinct maternal 289 

mtDNA variants of CLL4 and CLL5 per cell and observed clear separation between the two cell 290 

populations (Suppl. Fig. 11B). This permitted recovery of between 98.3% and 100% of CLL4 from the in-291 

silico mixture, resulting in a theoretical sensitivity of 1:7,580 (0.13%) (Fig. 3C-top). In total, we found only 292 

123 cells (1%) across monocytes, T and CLL cells whose origin could not be annotated due to insufficient 293 

mtDNA coverage in the combined dataset of CLL4 and CLL5 (11,797 cells) (Suppl. Fig. 11C-E). We 294 

repeated the analysis with two AML datasets (AML1011, AML1012), and likewise found a theoretical 295 

sensitivity of 1:6,586 (0.15%), with only 102 of 12,319 (0.8%) unannotated cells (Suppl. Fig. 11F).  296 

297 

To compare the sensitivity of mtDNA- versus SNP-based deconvolution, we mixed scRNA-seq profiles of 298 

the same samples, at ratios of 1 to 1,000 CLL4 cells spiked into 10,000 CLL5 cells. We tested SNP-299 

D
ow

nloaded 
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based deconvolution of scRNA-seq data using the tools souporcell (29) and vireo (30). When performing 300 

germline reference-free deconvolution, we found that deconvolution was reliable only when spike-in was 301 

above 3% and 1% for vireo and souporcell, respectively (Fig. 3C-bottom left, Suppl. Fig. 11G). At lower 302 

percentages, both methods left 22–80% of cells unannotated and souporcell identified hundreds of false-303 

positive doublets (Suppl. Fig. 11H). Performance improved markedly for vireo when a germline reference 304 

for both individuals was provided, which allowed detection down to 1 in 10,000 cells, yet left up to 3% of 305 

cells unannotated (Fig. 3C-bottom right, Suppl. Fig. 11I). In contrast, mtDNA deconvolution does not 306 

require germline samples, as maternal mtDNA variants that distinguish donor and recipient can be 307 

extracted directly from chimeric data due to their mutual exclusivity even at low frequencies (for example, 308 

using k-means clustering [shown for 10 CLL4 cells (0.13%) spiked into 7,579 CLL5 cells in Suppl. Fig. 309 

12A]). 310 

311 

The high rate of unannotated cells was also apparent when applying vireo with WES donor/recipient 312 

germlines and souporcell without germline references on real-world scRNA-seq generated from 18 AML 313 

post-HSCT samples.(31) We observed concordance of donor-recipient annotations between both tools, 314 

including with X- and Y-chromosomal gene expression in AML1010 (transplanted from a sex-mismatched 315 

donor) (Suppl. Fig. 12B-E). However, the rate of unassigned cells using vireo was much higher than with 316 

souporcell (5.5–57.1% vs. 1.2–19%) (Suppl. Fig. 12F), demonstrating that differences in genome 317 

coverage and drop-out are inherent issues with SNP-based genetic deconvolution of single-cell data, a 318 

shortcoming much less encountered when using mtDNA mutations with single-cell data that provide high 319 

uniform coverage of mtDNA, such as ATAC with select antigen profiling by sequencing (ASAP-seq).  320 

321 

We likewise assessed the ability to distinguish phenotypically distinct immune cell populations derived 322 

from different individuals using mtDNA mutations in non-synthetic data. We modeled the detection of 323 

antigen-specific T cells through a mixing experiment in which expanded healthy donor T cells (from ‘donor 324 

1’) transduced with a murinized MART1-specific TCR were spiked into unmanipulated PBMCs of a 325 

second healthy donor (‘donor 2’) at ratios from 1:3 to 1:300. We applied ASAP-seq to the mixtures to gain 326 

information on chromatin accessibility, donor-recipient and cell type annotations (Fig. 3D-E-top).(32) In 327 
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addition to detecting lineage-defining surface markers (via staining cells with a custom panel of 22 Total-328 

seq B (TSB) oligo-tagged antibodies including an antibody specific for the murinized TCR (mTcrβ)), we 329 

utilized MART1-specific tetramers conjugated with 2 distinct Total-seq A (TSA) streptavidin (SAV) 330 

oligotags to identify MART1-specific T cells (Suppl. Table 3-4). Utilizing this experimental design, we 331 

deconvolved 15,116 cells from both donors, which resulted in ratios of donor1 to donor2 that were highly 332 

concordant with the mixing ratios of the experiment. In total, we detected 1,449 of 5,345 (27%) donor1 333 

cells at the mixing ratio of 1:3, and 150 in 4,262 (3.5%) and 14 in 4,381 (0.3%) at the ratios of 1:30 and 334 

1:300 (Fig. 3F-H).  335 

336 

In addition to the sensitive detection of spiked-in expanded T cells, we could track their phenotype. First, 337 

analysis of chromatin accessibility profiles demonstrated profound chromatin remodeling after 338 

CD3
+
/CD28

+
-bead activation and IL7/IL15-induced expansion with increased accessibility of RUNX1/2339 

and reduced accessibility of the SPIB binding motif (Fig. 3I, Suppl. Fig. 12G). Secondly, detection of the 340 

transduced MART1 TCR sequence (donor1) from chromatin accessibility data delineated 83 cells with 341 

integration of the expression vector, none of which belonged to donor2 (Fig. 3E-bottom). Finally, we 342 

directly identified 185 MART1-specific T cells based on co-expression of SAV oligotags and mTcrβ 343 

(Suppl. Fig. 12H-I), ranging from 168 (3%) to 5 cells (0.1%), of which 183 (98.9%) were derived from 344 

donor1 and 2 (1.1%) from donor2 at frequencies that reflected the donor ratios in the experiment (Fig. 345 

3J). Our in-silico and in-vitro mixing experiments thus demonstrated that mtDNA mutations sensitively 346 

resolve donor- and recipient-derived cell populations alongside their specific phenotypes at frequencies 347 

well below 1%.  348 

349 

Tracking incipient AML relapse in responders to immunosuppression tapering 350 

To demonstrate how donor-recipient identification can be used to track AML phenotypes even at low 351 

frequencies, we applied this strategy to samples from 4 AML patients (IST1-4) after RIC-HSCT (Suppl. 352 

Table 5), in which an incipient relapse was detected on the basis of worsening bulk chimerism (87–185 353 

days after graft infusion) and was solely treated with rapid taper of immunosuppression (IST)(5). 354 

Clinically, responses were associated with abrupt improvements in blood cell counts and circulating 355 
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monocytes, resulting in complete clearance of AML within 105–184 days after IST without any further 356 

disease relapse (Fig. 4A, Suppl. Fig. 13A-D).  357 

358 

From these four responders, we obtained 13,360 bone marrow and 5,783 peripheral blood ASAP-seq 359 

profiles before and after IST and identified major immune cell, erythropoietic, and AML/progenitor 360 

populations (Fig. 4B, Suppl. Fig. 14A). Consistent with the clinical white blood cell counts, our analysis 361 

showed a strong increase in circulating monocytes in 3 of 4 patients relative to T cells following IST, likely 362 

representing recovering physiologic hematopoiesis after resolution of the incipient relapse (Fig. 4C, 363 

Suppl. Fig. 14B). We extracted mtDNA mutations from the ASAP-seq data for chimerism analyses and 364 

leukemic tracking. In line with clinical chimerism measurements (XY FISH or short-tandem repeat 365 

analysis), all 4 patients had incomplete donor chimerism at time of relapse and prior to IST across 366 

progenitor (0-0.5%), erythropoietic (64%) or monocytic cells (0-100%). All cell types converted to full 367 

donor chimerism following IST (Fig. 4D, Suppl. Fig. 14C).  368 

369 

We assumed that non-lymphocytic recipient-derived cells post-HSCT most likely represent AML, and we 370 

used the mixed chimeric cell populations to track leukemic clones across their differentiation states 371 

(33,34) to delineate differences between physiologic hematopoiesis and its malignant counterparts. In 372 

IST1 and IST2, AML cells were detectable within progenitor-like, erythroid-like and monocyte-like 373 

populations, and were marked by several non-homoplasmic mtDNA mutations (3919T>C, 5458T>C, 374 

7457G>A, 10776T>C [IST1] and 6701A>G, 10290G>C [IST2]) (Fig. 4E, Suppl. Fig. 14D-E, 15A-B). 375 

Notably, while circulating monocytes in IST1 were 100% donor, the bone marrow monocyte chimerism 376 

was lower (64%), indicating non-circulating AML relapse. Compared to donor-derived monocytes, 377 

recipient-derived monocyte-like cells in IST1 had lower surface expression of CD11c and CD14 and lower 378 

chromatin accessibility of the IL1B gene, which plays a role in AML pathogenesis (35) (Fig. 4F-G). We did 379 

not detect differences in surface marker expression between recipient- and donor-derived erythropoietic 380 

cells in IST1, but observed differences in chromatin accessibility, for example reduced open chromatin of 381 

CD36 in recipient-derived cells (Suppl. Fig. 15B-C). In IST3, recipient-derived monocyte-like cells also 382 

displayed differences in surface marker expression compared to donor-derived monocytes, including 383 
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higher CD33 and lower CD16, as well as differential chromatin accessibility of genes such as chemokine 384 

ligands or homeobox protein genes (Suppl. Fig. 15D-F). 385 

386 

Among lymphocytes, donor chimerism tended to be higher with incomplete donor chimerism detected 387 

only in NK cells of IST4 (0%) and T cells of IST3 and IST4 (41% and 24%), which remained incomplete 388 

even after IST (90% and 70%) (Fig. 4D). When comparing surface marker expression and chromatin 389 

accessibility of T cells in IST3 and IST4, we observed that 94% of recipient-derived T cells were CD4
+
 T390 

cells, while 61.5% of CD8
+
 T cells were donor-derived (p<0.001; Fisher’s exact test), consistent with their391 

generally different immune reconstitution dynamics following HSCT (Fig. 4H)(36). Other differences 392 

between donor- and recipient-derived T cells such as expression of PD-1 were mainly driven by 393 

differences in CD4:CD8 T cell ratio (Fig. 4I-J, Suppl. Fig. 15G). Our results clearly demonstrate that, 394 

donor-recipient deconvolution of ASAP-seq profiles can identify AML cells at low frequencies and resolve 395 

differences in the phenotypes of chimeric leukemia and immune cell populations.  396 

397 

Residual donor engraftment and leukemia clonal evolution in overt AML relapse 398 

While incipient relapse is characterized by a mainly donor-derived hematopoietic system that retains the 399 

potential to intensify ongoing GvL effects through IST, overt AML relapse constitutes high circulating 400 

disease burden and minimal (or no) residual donor hematopoiesis. The question to what extent residual 401 

donor engraftment persists is highly relevant for the success of strategies aimed at reinstating GvL but is 402 

not routinely assessed due to lack of sufficiently granular testing modalities.  403 

404 

To this end, we performed ASAP-seq on longitudinal bone marrow samples from post-transplant 405 

participants of the ETCTN/CTEP 10026 study (Suppl. Fig. 16A-F). In this study, participants received a 406 

priming cycle of decitabine followed by combination of decitabine and ipilimumab with the aim to 407 

reinvigorate dormant GvL responses.(10,37,38) We assessed residual donor engraftment in three 408 

patients (AML1010, AML1011 and AML1026) with unrelated donors. We further evaluated one patient 409 

(AML1012) with a related donor who harbored a del(5q) to test whether copy number variations (CNV) 410 

could also be used to detect AML cells using ASAP-seq (Fig. 5A). Chromatin accessibility profiles from all 411 
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4 AML cases demonstrated left-shifted, expanded myelo-/erythropoiesis which were annotated as 412 

hematopoietic stem cell (HSC)-like, granulocyte macrophage progenitor (GMP)-like, monocytic (Mono), 413 

dendritic (DC) and erythroid (Ery) clusters based on surface marker expression (Suppl. Fig. 16G). 414 

Unexpectedly, donor-recipient deconvolution revealed that donor-derived hematopoiesis was exceedingly 415 

rare, with 10–19 (0.1% - 0.6%) cells identified as donor-derived, most of which were of erythroid lineage. 416 

In AML1012, we identified AML cells by detection of del(5q) or amp(22q), which similarly indicated that 417 

only 83 of 5,763 (1.4%) myelo-/erythropoietic cells did not harbor CNV changes and thus likely 418 

represented remaining donor-derived hematopoiesis (Fig. 5B-C, Suppl. Fig. 16H-J). We also calculated 419 

mtDNA-based T cell chimerism, which was stable throughout CTLA-4 blockade and correlated well with 420 

clinical chimerism measurements (r = 0.97, Fig. 5D, Suppl. Fig. 17A). Altogether, AML clones occupied 421 

the entire phenotypic range from HSC-like cells to monocytes and erythroid cells within the same patient, 422 

consistent with previous reports(16,27,33). Further, mtDNA-based donor-recipient deconvolution can 423 

identify rare donor-derived hematopoietic events during overt AML relapse and enables estimation of the 424 

potential for a recovery of physiologic hematopoiesis following salvage therapy.  425 

426 

Given the coevolution of mitochondrial with somatic nuclear DNA mutations in CLL, we wondered 427 

whether mtDNA mutations could also resolve clonal evolution induced by GvL in AML. Since patients 428 

continued on-study for up to 10 months with circulating blast counts (Suppl. Table 6), we hypothesized 429 

that decitabine/ipilimumab treatment led to shifts in AML subclones despite absence of objective 430 

responses and therefore analyzed serial samples of each patient before study entry, after decitabine 431 

priming, and during combined treatment. As a comparator, we analyzed samples from a responding 432 

patient (AML1007). Further, we contrasted the impact of ipilimumab on AML subclones defined by mtDNA 433 

mutations with changes induced by HSCT through analysis of specimens prior to and following HSCT in 3 434 

patients (AML1007, AML1011, AML1012). 435 

436 

By mtDNA mutation analysis (Supplementary Data), we identified a median of 7 AML subclones per 437 

case (range 5–12) and found longitudinal dynamics unrelated to the changes in cell type proportions. In 438 

AML1010, we observed a decrease in complexity of AML subclones throughout treatment, while 439 
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AML1026 and AML1012 revealed an increase in clonal complexity (Fig. 5E-F-left, Suppl. Fig. 17B-E, 440 

18), demonstrating that despite an apparent clinical absence of response, treatment with 441 

decitabine/ipilimumab exerted a selective pressure that led to changes among AML subclones. The only 442 

exception was AML1011, who lacked evidence of such an effect (Fig. 5F-right). However, in the 443 

responding AML1007, we again found clear clonal selection during ipilimumab-based treatment as 444 

evidenced by two collapsing subclones (Fig. 5G).  445 

446 

When tracking longitudinal changes following RIC-HSCT (AML1011, AML1012) and haploidentical HSCT 447 

(AML1007), the subclonal structure of AML1011 and AML1012 remained practically unchanged 448 

throughout transplantation, while AML1007 showed profound clonal evolution with outgrowth of cells 449 

marked by 5668G>C, consistent with acquisition of two novel somatic mutations on clinical amplicon-450 

based sequencing (39) (RUNX1
R201Q

 and KRAS
L19F

) (Fig. 5G). This could reflect the more pronounced451 

immune pressure exerted by GvL in the setting of haploidentical transplantation compared to RIC-HSCT 452 

from a matched unrelated donor, an interpretation which would naturally need further validation. These 453 

studies demonstrate that mtDNA mutations can identify subclones that shift in response to immune-based 454 

therapy, thereby illustrating the utility of this lineage-tracing approach for dissecting therapeutic effects on 455 

leukemia populations.  456 

457 

Co-evolution of mitochondrial and somatic nuclear DNA mutations in AML 458 

Having observed longitudinal shifts in AML subclones defined by mtDNA mutations, we sought to directly 459 

evaluate their co-segregation and co-evolution with somatic nuclear DNA mutations using single-cell DNA 460 

sequencing. For AML1010, 1012 and 1026, we generated a customized 127-primer panel targeting 137 461 

somatic nuclear DNA mutations identified using WES (Suppl. Table 7-9). Further, we obtained a second 462 

pan-mtDNA panel with 67 amplicons covering the entire mitochondrial chromosome (Fig. 6A, Suppl. Fig. 463 

19A-B, 20A). For each AML, we obtained scDNA-seq data at screening and following therapy with 464 

decitabine/ipilimumab. In all three cases, we observed a high degree of co-segregation between 465 

mitochondrial and somatic nuclear DNA mutations. Consistent with the prior characterization by ASAP-466 

D
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seq, the amount of subclonal heterogeneity ranged from reduced structure in AML1012 to a complex 467 

pattern of main and subclones in AML1010 and AML1026. 468 

469 

AML1010 subdivided into two subclones defined by mutually exclusive homozygous mutations in TCF12 470 

alongside 14 additional somatic nuclear DNA mutations. While most cells in subclone 1 expressed CD34, 471 

more than 50% of cells in subclone 2 displayed a monocytic phenotype, consistent with differential 472 

lineage commitment (Suppl. Fig. 20B). Across both subclones, we found a total of seven smaller 473 

subclones, which were defined by 37 mtDNA mutations (Fig. 6B). Throughout treatment with 474 

decitabine/ipilimumab, the proportion of these subclones shifted, with two subclones mitochondrial DNA 475 

mutations expanding (Fig. 6C). While most leukemic cells in AML1010 were NRAS-mutated, one of 476 

seven subclones harbored exclusively NRAS
wt

 cells. Multiple mtDNA mutations such as 9820G>C co-477 

segregated with this subcluster, providing additional support for this notable subpopulation (Suppl. Fig. 478 

20C). 479 

480 

In AML1026, all cells harbored five somatic nuclear DNA mutations including SRSF2
P95H

, SF3B1
R775Q

,481 

NRAS
G13R

 and two mtDNA mutations (3308T>C and 10685G>A). We identified two large subclones that482 

could be further subdivided into five smaller subclones, based on 11 additional somatic nuclear and 37 483 

mitochondrial DNA mutations (Fig. 6D). Treatment shifted these subclones markedly, including expansion 484 

of cells marked by COL9A1
A218S

 and 9 mtDNA mutations (Fig. 6E).485 

486 

Finally, in AML1012, we found a uniform detection of 12 somatic nuclear DNA mutations across all cells. 487 

Nevertheless, mtDNA mutations provided further subdivision into 7 subclones (Fig. 7A). One subclone 488 

was marked by the 14739G>C mutation and expanded following therapy with ipilimumab/decitabine (Fig. 489 

7B-C). We also observed an increase in cells harboring the FBXW7
R465C

 hotspot mutation(40) across six490 

of the subclones. Together with the overall uniform appearance of AML1012 at the level of somatic 491 

nuclear DNA mutations, this likely indicates a close genetic and phenotypic relationship amongst the 492 

identified subclones and illustrates the ability of mtDNA mutations to identify subtle differences within 493 

tumor populations characterized as monoclonal by somatic nuclear DNA mutations. Given the more 494 
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dynamic nature of mitochondrial compared to somatic nuclear DNA mutations, future studies are required 495 

to definitively assess the relevance of these subpopulations with regard to clonal fitness. 496 

497 

498 
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499 

Discussion 500 

501 

Single-cell donor-recipient deconvolution is of great interest for many questions in basic and translational 502 

transplant research but has been technically challenging. Here, we report that single-cell mtDNA 503 

sequencing can resolve chimeric populations with high sensitivity. By systematically assessing mtDNA-504 

based donor-recipient deconvolution using in-silico and in-vitro mixing experiments, we show that, 505 

compared to donor-recipient deconvolution with nuclear germline SNPs, this approach works even for 506 

very skewed ratios of donor- and recipient-derived cells. SNP-based identification often fails because the 507 

coverage of relevant single nucleotide variants becomes insufficient. For mtDNA variant analysis, the high 508 

copy number of mtDNA drastically reduces failures due to allelic drop-out or insufficient coverage. Also, 509 

mtDNA variants do not require sequencing of pure donor or recipient populations (i.e., germline controls) 510 

because the relevant maternal DNA variants can be deduced from mixed populations.  511 

512 

By analyzing mtDNA mutations in different settings of post-transplant relapse, we gained fresh biological 513 

insights. First, we demonstrate co-segregation of mtDNA and somatic nuclear mutations in AML and CLL 514 

patients who relapsed years after chemoimmunotherapy followed by stem cell transplantation and confirm 515 

the utility of mtDNA variants as long-term markers of clonal ancestries. Further, we show that mtDNA 516 

mutations can resolve clonal dynamics in AML during anti-leukemic therapy even over short periods of 517 

several months that could likely not be detected with somatic nuclear mutations. These observations 518 

underscore the potential of mtDNA mutations as natural genetic barcodes for longitudinal studies of 519 

leukemia evolution and point towards complementary utility with other genetic barcodes. While the 520 

recurrent, stable nature and low copy number range of many somatic nuclear mutations and 521 

chromosomal aberrations permit predictable and automated identification, they are often unable to 522 

resolve short-term selective pressures. Tracking of mtDNA mutations, on the other hand, is more dynamic 523 

owing to their larger heteroplasmic range and stochastic propagation during mitosis (Research Square 524 

2023, 3083262). With this higher dynamic nature, they can be potentially utilized to identify changes in 525 

subclonal structure where somatic nuclear mutations do not have sufficient resolution. Thus, the 526 
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combined study of somatic nuclear and mtDNA mutations may enable the discernment of a more precise 527 

picture of shorter- and longer-term clonal evolution. Our reanalysis of CLL bulk RNA-seq profiles is an 528 

example how analysis of mtDNA mutations in existing datasets is an opportunity to further data mining.  529 

530 

Second, we compare chromatin accessibility profiles of physiologic and malignant hematopoiesis and 531 

define leukemia phenotypes in the context of incipient or overt AML post-transplant relapse. We observed 532 

that AML recapitulates normal erythro-myeloid hematopoietic differentiation from hematopoietic stem cell-533 

like to maturing monocytic-like and erythroid-like cells, consistent with observations made with single-cell 534 

RNA expression profiles.(16,27,33) Using mtDNA mutations, we identified subtle differences between 535 

physiologic and malignant hematopoiesis at the level of chromatin accessibility and lineage marker 536 

expression, even for small cell populations. In the future, this approach may be used to overcome a 537 

diagnostic blind spot by providing an assay capable of supplying qualitative or phenotypic information of 538 

disease relapse at time of MRD. In turn, these results may inform better selection of appropriate salvage 539 

therapies based on the leukemia phenotypes driving relapse and degree of remaining donor-derived 540 

hematopoiesis potential. 541 

542 

Even with these advances, we acknowledge limitations of our approach. Although clinical experience 543 

shows that recurrence of recipient-derived cells usually equates with leukemia relapse, donor-recipient 544 

deconvolution using mtDNA mutations is unable to differentiate AML relapse from reversal to a precursor 545 

state of clonal hematopoiesis. For such analyses, it would be useful to combine donor-recipient 546 

deconvolution with analysis of copy number changes if available or to consider additional approaches like 547 

GoT-ChA-seq(41) that enable read-out of somatic nuclear mutations alongside mtDNA mutations. 548 

Further, while our study provides proof-of-principle, truly sensitive identification of rare donor- or recipient-549 

derived cell populations will require sequencing of 100,000 cells or more per sample, which is 550 

economically infeasible with commercial single-cell assays. As throughput of single-cell assays increases, 551 

we expect this limitation to become increasingly less relevant. At that point, it will also be crucial to 552 

benchmark single-cell-based detection of MRD with current clinical gold standard assays to understand 553 

whether clinical decision-making could indeed be guided by single-cell genomics approaches(42). 554 

555 
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Methods 556 

557 

Extraction and analysis of mitochondrial DNA mutations from CLL bulk RNA-seq data 558 

559 

Variant calling 560 

Raw reads were aligned against chrM (GRCh38) using bowtie2(43), sorted with samtools(44) and 561 

deduplicated using GATK4 MarkDuplicates(45). Mitochondrial DNA mutations were called using 562 

mgatk(14) (>10 reads supporting each mtDNA mutation, strand coordination >0.5, >100 total reads for the 563 

position) followed by filtering for high confidence variants. Filtering was based on exclusion of frequent 564 

false-positive variants (2617A>G, 2617A>T, 13710A>G, 13710A>T, 5746G>A) and a heteroplasmy 565 

<0.5% (18) or <1% (19). For mtDNA mutations that passed filtering, variant calls were performed across 566 

all samples from the individual in which a particular mtDNA mutation was identified. Further down-stream 567 

analyses were performed using custom scripts.  568 

569 

Definition of CLL cohorts 570 

Genetically stable CLL was defined by cancer cell fraction (CCF) changes of <20%, while evolving cases 571 

had CCF changes >20%. Naturally progressing CLL was defined as those cases sampled prior to 572 

initiation of an initial first line of disease-specific therapy.  573 

574 

Matching of mtDNA mutations to CLL subclones defined by whole-exome sequencing  575 

To match mtDNA mutations to CLL subclones defined by whole-exome sequencing, the relative 576 

longitudinal changes from first to last sample were calculated for each mtDNA mutation based on 577 

heteroplasmy and each CLL subclone based on cancer cell fractions (CCF). Matching was performed 578 

based on the smallest difference between the relative change of the heteroplasmy of a mtDNA and the 579 

relative changes of CCF values.  580 

581 

Limit of detection for individual mtDNA mutations 582 
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A limit of detection (LOD) was defined for each mtDNA mutation and for each CLL case by calculating the 583 

mean heteroplasmy for the mtDNA mutation across the entire analyzed cohort excluding samples from 584 

the particular CLL case.  585 

586 

In-silico mixing experiment 587 

Cell barcodes were randomly sampled from two published single cell libraries (CLL4_1 and CLL5_1) (15). 588 

Reads associated with the cell barcodes were extracted from the genome-aligned bam file using sinto 589 

(https://github.com/timoast/sinto) and merged with samtools. Deconvolution of mixed scRNA-seq data 590 

was performed using souporcell(29) or cellsnp-lite(46) and vireo(30). Deconvolution of mixed scATAC-591 

seq data was performed by calling mtDNA mutations using mgatk, identification of maternal mtDNA 592 

variants for each individual and deconvolution based on average heteroplasmy for each cell (cut-off >80% 593 

for variants from individual1 and <20% from individual2). 594 

595 

Extraction of mitochondrial DNA mutations from published bulk datasets 596 

Datasets were downloaded using SRA Toolkit 597 

(https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software) developed by the SRA Toolkit 598 

Development Team. Raw reads were aligned against chrM (GRCh38) using bowtie2(43), sorted with 599 

samtools(44) and deduplicated using GATK4 MarkDuplicates(45). Mitochondrial DNA mutations were 600 

discovered using mgatk(14) and custom scripts adopted from Caleb Lareau’s github repository 601 

(https://github.com/caleblareau). 602 

603 

Sample accrual of peripheral blood and bone marrow mononuclear cells 604 

EDTA-anticoagulated peripheral blood and bone marrow samples (PBMC, BMMC) were obtained from 605 

patients treated at Dana-Farber Cancer Institute in Boston who participated in observational immune 606 

correlative studies or from patients who participated in the ETCTN/CTEP 10026 study (Suppl. Table 10) 607 

(10,31). Anonymous healthy donor PBMCs were obtained from flushed apheresis leukoreduction collars 608 

following platelet donation at Brigham and Women’s Hospital in Boston. Written informed consent was 609 

obtained from study participants before study enrollment, and all procedures involving human participants 610 

https://github.com/timoast/sinto
https://github.com/caleblareau
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were carried out in accordance with the Declaration of Helsinki. PBMC and BMMC were subjected to 611 

Ficoll density gradient centrifugation (GE Healthcare) followed by cryopreservation with 10% DMSO in 612 

FBS (Sigma-Aldrich) and storage in vapor-phase liquid nitrogen until the time of analysis. 613 

614 

Thawing of cryopreserved cells 615 

Prior to sequencing, cryovials were slowly melted in the steam of a cell culture water bath. Following 616 

drop-wise addition of PBS (Corning, Cat. no. MT21040CV) with 10% bovine DNase I, grade II (Sigma-617 

Aldrich, Cat. no. 10104159001) and 10% FBS (ThermoFisher Scientific, Cat. no. 10437028), cells were 618 

pelleted in a centrifuge (300 g for 5 min) and resuspended in RPMI supplemented with 10% FBS and 619 

10% DNase I, grade I (ThermoFisher Scientific, Cat. no. NC9007308) as previously described.(31) 620 

621 

ATAC with select antigen profiling by sequencing (ASAP-seq) 622 

ASAP-seq was performed as previously described.(47) Briefly, after thawing 1-2 million cells were 623 

resuspended in 50 µl PBS with 0.04% ultrapure BSA (ThermoFisher Scientific, Cat. no. AM2618). After 624 

addition of 5 µl Human TruStain FcX (BioLegend, Cat. no. 422302) for 10 minutes at 4 ºC, Total-seq A/B 625 

antibodies (Suppl. Tables 3 and 4) were added (0.5 µl per antibody) and cells were incubated for 30 626 

minutes at 4 ºC. Fixation and cell permeabilization was performed using the mtscATAC-seq protocol(48): 627 

following 3 washing cycles with PBS with 0.04% ultrapure BSA, cells were resuspended in 450 µl PBS. 628 

Fixation was performed by adding 30 µl 16% formalin (ThermoFisher Scientific, Cat. no. 28906) and 629 

incubation for 10 minutes at room temperature. After addition of 26.8 µl of 2.36 M glycine (ThermoFisher 630 

Scientific, Cat. no. 15527013) for a final concentration of 0.125 M glycine in a total volume of 506.8 µl, 631 

700 µl ice-cold PBS were added and cells washed with PBS for one more time. Lysis was performed by 632 

resuspension in 100 µl lysis buffer for 3 minutes at 4 ºC. After washing with washing buffer, fixated and 633 

permeabilized cells were resuspended at approximately 4,500/µl.  634 

635 

Loading of cell suspensions onto a Chromium Chip H (10x Genomics, Cat. no. PN-1000161) (targeted 636 

recovery of 7,000 cells) was followed by library preparation using the Chromium Single-cell ATAC Library 637 

& Gel Bead Kit (Cat. no. PN-1000175) according to manufacturer instructions. For capture of Total-seq 638 
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A/B oligotags 1 µM bridge oligos were added during the barcoding reaction followed by library preparation 639 

as described in the original description of ASAP-seq.(32) Following quality control of libraries with a 640 

Bioanalyzer High Sensitivity DNA Kit (Agilent). Pooled libraries were sequenced on a NovaSeq S2 641 

platform (Illumina) with 50 bp paired-end reads, 8 bp for index 1 and 16 bp for index 2.  642 

643 

Lysis buffer 644 

645 

1 ml stock 646 

 10 µl 1 M Tris-HCl (pH 7.4) (Sigma, Cat. no. T2194)647 

 2 µl 5 M NaCl (Santa Cruz, Cat. no. SC-295833)648 

 3 µl 1 M MgCl2 (ThermoFisher Scientific, Cat. no. AM9530G)649 

 10 µl 10 % Nonidet P40 Substitute (Sigma, Cat. no. 74385)650 

 100 µl BSA 10 % (Sigma, Cat. no. A3059)651 

 875 µl Nuclease-free H2O (Promega, Cat. no. P1193)652 

653 

Washing buffer 654 

655 

10 ml stock 656 

 100 µl 1 M Tris-HCl (pH 7.4) (Sigma, Cat. no. T2194)657 

 20 µl 5 M NaCl (Santa Cruz, Cat. no. SC-295833)658 

 30 µl 1 M MgCl2 (ThermoFisher Scientific, Cat. no. AM9530G)659 

 1 ml BSA 10 % (Sigma, Cat. no. A3059)660 

 8.85 ml nuclease-free H2O (Promega, Cat. no. P1193)661 

662 

Preparation of TotalSeq-A MART-1-specific tetramers 663 

HLA-A*02:01 easYmers (Immunaware) were first folded with the ELAGIGLTV peptide (MART-126-35, 664 

GenScript) and then tetramerized with 2 distinct TotalSeq-A PE-conjugated streptavidins (Biolegend), 665 

following manufacturer instructions. Correct assembly and binding of the tetramers was confirmed by flow 666 
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cytometric evaluation of T cells transduced with a MART-1-specific TCR, as previously reported(49). As 667 

the TCR construct used was murinized, binding of a monoclonal antibody against the murine TCRβ (PE, 668 

clone H57-597, eBioscience) served as internal control for specific tetramer binding. Data were acquired 669 

on a Fortessa cytometer (BD Biosciences) and analyzed using Flowjo v10.8 software (BD Biosciences). 670 

671 

Use of hashing with ASAP-seq 672 

Prior to sequencing of samples from AML1010, AML1012 and AML1026 (ETCTN/CTEP 10026), they 673 

were stained with 2 Total-seq A hashtags per sample and pooled. Deconvolution was performed based 674 

on average expression of hashtags and a sample-specific cut-off (Suppl. Fig. 16A-F). 675 

676 

Analysis of ASAP-seq profiles 677 

Raw reads containing fragments of single cell chromatin profiles were aligned and quantified using 678 

cellranger-atac (https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-679 

ranger-atac) with a custom GRCh38 reference hard masked for nuclear DNA of mitochondrial origin 680 

(nuMTs) to improve mapping of mitochondrial reads against chrM. Downstream analyses were performed 681 

using custom scripts in ArchR following best practices described in the ArchR manual.(50) Reads from 682 

Total-seq A and B libraries were processed as previously described.(47) In brief, raw reads were 683 

converted from a format with 3 to 2 fastq files compatible with kallisto | bustools (51) using “ASAP to kite” 684 

(https://github.com/caleblareau/asap_to_kite). After generation of feature count matrices with bustools, 685 

they were imported into R and further processed using the Seurat package (52) and custom scripts. 686 

687 

Annotation of donor and recipient origin 688 

Donor and recipient annotation was based on mean heteroplasmy of maternal variants (cut-offs >80% for 689 

variants specific for individual and <20% for variants not found in individual, otherwise cells were 690 

considered unassigned or doublets) specific for each individual, which were identified by clustering 691 

homoplasmic mtDNA variants and manual review of their distribution across myeloid and T/NK cell 692 

populations, taking into consideration known T cell chimerisms from routine clinical diagnostics.  693 

694 

https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-ranger-atac
https://github.com/caleblareau/asap_to_kite
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Copy-number changes 695 

Copy number changes where identified using a sliding window approach as previously described 696 

(https://github.com/caleblareau/mtscATACpaper_reproducibility) using T cell chromatin profiles as normal 697 

control.(14,15,17) 698 

699 

Clustering of mtDNA mutations 700 

Analysis of AML subclusters was performed by clustering mtDNA mutations of leukemic cell populations 701 

across all samples from one individual using the Seurat package.(52)  702 

703 

Detection of lentiviral expression vector sequence from single cell chromatin profiles 704 

Vector copies encoding the MART1-specific T cell receptor were identified by mapping DNA fragments to 705 

the sequences of the CMV promoter, the Woodchuck Hepatitis Virus (WHV) Posttranscriptional 706 

Regulatory Element (WPRE) or the murinized alpha and beta T cell receptor sequences using 707 

chromap.(53) 708 

709 

Single-cell DNA sequencing (Tapestri) 710 

711 

Total-seq D staining 712 

Cells were stained with the TotalSeq™-D Human Heme Oncology Cocktail, V1.0 (BioLegend, Cat. no. 713 

399906) according to manufacturer instructions. These included resuspension in 40 µl cell staining buffer 714 

(BioLegend, Cat. no. 420201) supplemented with 5 µl Blocking Buffer (Mission Bio) and 5 µl Human 715 

TruStain FcX (BioLegend, Cat. no. 422302) and incubation for 15 min at 4 ºC followed by addition of 50 µl 716 

reconstituted antibody cocktail and incubation for 15 min at 4 ºC. After 3 washing steps with cell staining 717 

buffer, cells were resuspended at a concentration of 4,500/µl.  718 

719 

Library preparation and sequencing  720 

After loading of cells onto a Tapestri cartridge, library preparation was performed according to 721 

manufacturer instructions. The genomic and mtDNA panels were mixed at a ratio of 10:1. Following 722 

https://github.com/caleblareau/mtscATACpaper_reproducibility
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quality control with a Bioanalyzer High Sensitivity DNA Kit (Agilent), amplicon and Total-seq D libraries 723 

were pooled and sequenced on a NextSeq 500 or NovaSeq SP (Illumina) with 150 bp for paired-end 724 

reads, 8 bp for index 1 and 8 bp for index 2.  725 

726 

Analysis 727 

Raw reads were processed using a local installation of the Tapestri Pipeline version 2.0.2 using 728 

GRCh19/38 for somatic nuclear DNA and GRCh38 for mtDNA reads. Variant calls and surface marker 729 

expression were exported for each cell barcode into a csv file from the Tapestri Insight software version 730 

3.0.2 and imported into R where the data was further processed and visualized using custom scripts and 731 

standard packages including Seurat and ComplexHeatmap (52,54).  732 

733 
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in-silico mixing data were accessed from NCBI Geo (GSE165087 for scRNA-seq and GSE163579 for 739 
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Figure legends 969 
970 

Figure 1. Co-evolution of mitochondrial and somatic nuclear DNA mutations in CLL inferred from 971 
WES and RNA-seq data. 972 
A Overview of study design and cohort. Bulk RNA sequencing (RNA-seq) and whole-exome sequencing 973 
(WES) data were obtained from 110 serially collected samples of circulating CLL cells from 26 cases (18). 974 
Based on WES analysis and calculation of cancer cell fraction (CCF) values, the CLL cases were 975 
characterized as genetically stable (n=8; green), evolving during natural disease progression (n=7; light 976 
purple) or evolving during fludarabine-based therapy (n=11; dark purple). RNA-seq data was used for 977 
identification of mitochondrial DNA (mtDNA) mutations. By matching of mtDNA mutations to CLL 978 
subclones identified using WES, co-evolution was assessed.  979 
B Examples of genetically stable (CLL18, left) and evolving CLL (CLL37, right). Changes in CCF and 980 
mtDNA heteroplasmy are shown together. Lines indicate longitudinal tracking of CLL subclones (CCF 981 
values) or individual mtDNA mutations.  982 
C Number of dynamic somatic nuclear DNA mutations (left) and dynamic mtDNA mutations (right) across 983 
genetically stable and evolving CLL cases as defined by changes in CCF values.  984 
D Number of dynamic mtDNA mutations (left) and dynamic somatic nuclear DNA mutations (right) as a 985 
function of days between first and last CLL sample.  986 
E Distribution of changes in CCF values (left) and mtDNA heteroplasmy (right) across genetically stable 987 
and evolving CLL cases. 988 
F Longitudinal tracking of individual mtDNA mutations above their respective detection limit as indicated 989 
by the horizontal lines. 990 

991 
Statistical testing using Student t-test (C, E) or Pearson’s correlation coefficient (D). 992 

993 
Figure 2. Co-evolution of mitochondrial and somatic nuclear DNA mutations in CLL at single cell 994 
resolution. 995 
A  Overview of experimental strategy. Swimmer plot of CLL cases used for analysis. Peripheral blood 996 
samples for bulk RNA-seq were obtained before and after therapy with fludarabine, cyclophosphamide 997 
and rituximab (FCR) followed by reduced intensity conditioning (RIC) hematopoietic stem cell 998 
transplantation (HSCT). Cases indicated by asterisks (*) were also analyzed using single-cell (sc) DNA 999 
sequencing (Tapestri platform MissionBio) (E-H). 1000 
B Association of the mean increase in heteroplasmy of mitochondrial DNA (mtDNA) mutations and the 1001 
time from pre-FCR to post-HSCT sample.  1002 
C Days from pre-FCR to post-HSCT sample in genetically stable and evolving CLL as characterized by 1003 
changes in mtDNA mutations. 1004 
D Tracking of individual mtDNA mutations in CLL5328. 1005 
E Overview of experimental strategy (E-H). To track co-evolution of somatic nuclear and mtDNA 1006 
mutations, scDNA-seq was performed on 6 peripheral blood samples from 3 patients. Based on 1007 
previously identified mtDNA mutations from mtscATAC-seq (15) and whole-exome sequencing (19) in 1008 
these patients, we designed 98 targeted panels for scDNA-seq to track their co-evolution. 1009 
F UMAP projections of surface marker expression data (n=5,596) obtained from CLL5328 with 45 Total-1010 
seq D antibodies annotated by cell types (left) or identification of CLL-specific mtDNA mutations 1011 
(3538G>A – common founder mutation, 16247A>G – pre-FCR and 16290C>T – post-HSCT) (top right) 1012 
and donor immune cell-specific mtDNA mutations (1918G>A and 5650G>A – CD8

+
 T cells or 786G>A –1013 

pan immune cells) (bottom right). 1014 
G Single-cell variant allele frequencies (VAFs) and heteroplasmy of mtDNA mutations in CLL5328 pre-1015 
FCR and post-HSCT, in recipient-derived (rec.) and donor-derived (donor) immune cells. Fish plot 1016 
summarizing results (bottom), showing clonal replacement of CLL5328 before and after therapy, marked 1017 
by 16247A>G (pre-FCR) or 16290T>C and 6426G>A (post-HSCT) alongside 7 (pre-FCR) or 9 (post-1018 
HSCT) somatic nuclear DNA mutations.  1019 
H Identification of 3 resistant CLL single cells (circled) pre-FCR based on 16290T>C, 6426G>A (both 1020 
mtDNA), DPCD

D41E
 and ZNF215

H42P
 (both somatic nuclear) mutations.1021 

1022 
Statistical testing with Pearson’s correlation coefficient (B) and Wilcoxon signed-rank test (C). 1023 
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Figure 3. Applicability and sensitivity of donor-recipient deconvolution using mitochondrial DNA 1024 
mutations. 1025 
A Simulation of donor-recipient pairing using 81 published (24) bulk mitochondrial DNA (mtDNA)-seq 1026 
profiles. A median of 35 (range 2 – 94) homoplasmic mtDNA mutations distinguished simulated donor-1027 
recipient pairings.  1028 
B Identification of a total of 924 homoplasmic mtDNA mutations across 189 individuals from 3 published 1029 
datasets (24,25). Shown is the number of total mtDNA mutations as a function of the number of 1030 
individuals analyzed.  1031 
C In-silico mixing experiment using published (15) mitochondrial single-cell chromatin accessibility 1032 
(mtscATAC-seq) and single-cell RNA sequencing (scRNA-seq) profiles of peripheral blood obtained from 1033 
pre-transplant CLL patients (CLL4 and CLL5) to benchmark mitochondrial DNA (mtDNA)-based 1034 
deconvolution with single nucleotide polymorphisms (SNPs).  1035 
Top: Correctly annotated CLL4 cells after deconvolution of mixed data for conditions from 1 to 1,000 1036 
CLL4 cells spiked into 7,579 CLL5 cells.  1037 
Bottom: Germline-free deconvolution of mixed scRNA-seq data with souporcell. For fewer than 100 1038 
(souporcell) CLL4 cells spiked into 10,000 CLL5 cells annotations are randomly assigned (left). 1039 
Deconvolution using vireo and scRNA-seq germlines (right).  1040 
D In-vitro mixing experiment. CD28/CD3-bead stimulated and IL7/IL15-expanded T cells transduced with 1041 
a lentiviral expression vector encoding a MART1-specific murinized T cell receptor (TCR) from donor1 1042 
were mixed with unmanipulated peripheral blood mononuclear cells (PBMCs) from donor2 at ratios of 1:3, 1043 
1:30 and 1:300. Total-seq B (TSB) oligotags were used for detection of surface marker expression with 1044 
ASAP-seq. Flow cytometry plot shows the percentage of MART1-specific T cells in donor1 after T cell 1045 
expansion and transduction with lentiviral expression vector.  1046 
E UMAP projection of 13,988 single-cell chromatin accessibility profiles annotated by cell types (top left), 1047 
donor1 (orange) or donor2 (purple) (top right) and detected fragments of the lentiviral expression vector 1048 
(red) (bottom left).  1049 
F-G Identification of donor1- or donor2-derived cells, doublets and unannotated cells with maternal1050 
mtDNA variants.1051 
H Correlation of identified cells from donor1 with experimental mixing conditions.1052 
I Effect of T cell expansion protocol on chromatin profiles of CD8

+
 T cells demonstrated by differential1053 

chromatin accessibility of transcription factor binding motifs.1054 
J Absolute number of MART1-specific T cells detected across donor1 and donor2 across the 3 dilution1055 
steps.1056 

1057 
1058 
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Figure 4. Tracking of AML in post-HSCT AML relapse responsive to immunosuppression tapering 1059 
(IST). 1060 
A Overview of experimental strategy. Bone marrow and peripheral blood samples of 4 patients with AML 1061 
(IST1-4) who had an incipient relapse post-HSCT treated with rapid IST (left) were analyzed by ASAP-1062 
seq to capture chromatin accessibility, surface protein expression and mitochondrial DNA (mtDNA) 1063 
profiles. Surface protein expression was detected using Total-seq B (TSB) antibodies (right).  1064 
B UMAP representation of 19,143 single-cell chromatin accessibility profiles annotated by cell types 1065 
derived from manual annotation (left) and donor-recipient annotation (right).  1066 
C Longitudinal dynamics of cell types before (pre, light blue) and after (post, light green) IST in bone 1067 
marrow (BM, black) or peripheral blood (PB, grey).  1068 
D Donor chimerism across various cell types pre and post-IST. 1069 
E Surface protein expression (TSB), gene scores, transcription factor motif activity (both inferred from 1070 
chromatin accessbility) and mtDNA mutations in recipient- and donor-derived monocytes in IST1. The 1071 
specificity of mtDNA mutations for AML (top), donor-derived immune cells (middle) and donor-recipient 1072 
deconvolution (bottom) is indicated.  1073 
F Surface protein levels of CD11c and CD14 in recipient- and donor-derived monocytes in IST1.   1074 
G Chromatin accessibility of IL1B in recipient- and donor-derived monocytes in IST1.  1075 
H CD4 and CD8 surface protein levels of donor-or recipient-derived T cells in IST3 and IST4.  1076 
I Level of surface PD1 in donor- or recipient-derived T cells in IST3.  1077 
J Surface protein expression (TSB), gene scores and activity of EOMES transcription factor motif (both 1078 
inferred from chromatin accessibility) in recipient- and donor-derived T cells in IST3.  1079 

1080 
Figure 5. Identification of residual donor-derived hematopoiesis and tracking of AML subclones. 1081 
A Overview of experimental strategy. ASAP-seq was performed on serial bone marrow samples from 5 1082 
participants of the ETCTN/CTEP 10026 study (decitabine and ipilimumab for post-transplant AML 1083 
relapse).  1084 
Study time points (black) included screening, after one cycle of decitabine, following 1085 
ipilimumab/decitabine combination (C1, C2, C4, C10) and end of treatment. Additional samples for select 1086 
patients are indicated and include complete remission (CR) and relapse prior to first or following second 1087 
stem cell transplantation (HSCT1, HSCT2).  1088 
Total-seq A (TSA) was used for hashing of samples while Total-seq B (TSB) was used for detection of 1089 
surface protein expression.  1090 
B UMAP projection of single-cell chromatin accessibility profiles annotated into cell types using ASAP-seq 1091 
(top) and annotated by identified donor-derived non-T cells (black) that represent residual donor-derived 1092 
hematopoiesis within disease relapse (grey) (bottom). For AML1012, residual hematopoiesis was 1093 
detected based on absence of copy number variations (CNV).  1094 
C Percentage of residual donor-derived hematopoiesis across cell subsets in AML1010, AML1011 and 1095 
AML1026. 1096 
D Correlation of clinical T cell bulk chimerism from short-tandem repeat analysis with mtDNA-based 1097 
single-cell T cell chimerism.  1098 
E Identification of subclones in AML1010 using 71 mtDNA mutations (left) and longitudinal tracking 1099 
throughout the ETCTN/CTEP 10026 study across cellular compartments (right). 1100 
F Longitudinal tracking of mtDNA-derived subclones in AML1012 (left) and AML1011 (right) at indicated 1101 
timepoints. 1102 
G Longitudinal tracking of mtDNA-derived subclones in AML1007 throughout ETCTN/CTEP 10026 and at 1103 
relapse after a second haploidentical allogeneic hematopoietic stem cell transplantation (left). UMAP 1104 
representations showing cell types in AML1007 (top left UMAP) and heteroplasmy of 5668G>C at the 1105 
indicated timepoints (right). 1106 

1107 
Statistical testing with Pearson’s correlation coefficient (D). 1108 

1109 



Penter et al. 

39 

Figure 6. Co-evolution of somatic nuclear and mitochondrial DNA (mtDNA) mutations in AML. 1110 
A Overview of experimental strategy. Three AML cases were previously genetically characterized using 1111 
whole-exome sequencing (31). 1112 
Through design of an amplicon panel with 127 targets in combination with a pan-mtDNA panel, single-cell 1113 
DNA sequencing (scDNA-seq) on the Tapestri platform (MissionBio) was used to enable read-out of 1114 
somatic nuclear and mitochondrial DNA mutations in the same cells. This permitted combined analysis of 1115 
co-segregation and co-evolution of these two classes of mutations. 1116 
B Heatmap of AML1010. Protein expression with Total-seq D (top), somatic nuclear DNA mutations 1117 
(middle) and mtDNA mutations (bottom) are shown.  1118 
C Fish plot of subclonal structure in AML1010 taking into account somatic nuclear and mitochondrial DNA 1119 
mutations (left). Two mutually exclusive mutations in TCF define the main clones of AML1010, while 1120 
additional mtDNA mutations further refine the identification of subclones. One subclone (brown) is further 1121 
notable for the absence of NRAS

G12D
.1122 

Changes in subclones of AML1010 across phenotypic compartments during decitabine/ipilimumab 1123 
treatment on ETCTN/CTEP 10026 (right). 1124 
D Heatmap of AML1026. Protein expression with Total-seq D (top), somatic nuclear DNA mutations 1125 
(middle) and mtDNA mutations (bottom) are shown.  1126 
E Fish plot of subclonal structure in AML1026 taking into account somatic nuclear and mitochondrial DNA 1127 
mutations (left).  1128 
While all AML cells harbor mutations in SRSF2

P95H
, SF3B1

R775Q
 and NRAS

G13R
, two main subclones are1129 

identified that are driven by POLR3B
N101K

 or CCDC88B
A456P

 and PLBC2
F681=

, respectively.1130 
Changes in subclones of AML1026 during decitabine/ipilimumab treatment on ETCTN/CTEP 10026 1131 
(right). 1132 

1133 
Figure 7. Co-evolution of somatic nuclear and mitochondrial DNA (mtDNA) mutations in AML1012. 1134 
A Heatmap of single cell proteogenomic data of AML1012 prior to (Screening) and following four cycles 1135 
(C4) of decitabine and ipilimumab treatment. Protein expression with Total-seq D (top), identification of 1136 
somatic nuclear DNA mutations (middle) and mtDNA mutations (bottom) are shown.  1137 
B Fish plot of subclonal structure in AML1012 taking into account somatic nuclear and mitochondrial DNA 1138 
mutations (left). Changes in subclones of AML1012 across phenotypic compartments during 1139 
decitabine/ipilimumab treatment on ETCTN/CTEP 10026 (right). 1140 
C Expansion of FBXW7

R465C
, 13708G>C and 14739G>C in AML1012 after 4 cycles of therapy with1141 

decitabine/ipilimumab compared to the screening timepoint. 14739G>C is uniquely detectable in the 1142 
expanding cluster 4 (orange) (right). 1143 

1144 
1145 
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