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Summary

Combined tracking of clonal evolution and chimeric cell phenotypes could enable detection of the key
cellular populations associated with response following therapy, including after allogeneic hematopoietic
stem cell transplantation (HSCT). We demonstrate that mitochondrial DNA (mtDNA) mutations co-evolve
with somatic nuclear DNA mutations at relapse post-HSCT and provide a sensitive means to monitor
these cellular populations. Further, detection of mtDNA mutations via single-cell ATAC with select antigen
profiling by sequencing (ASAP-seq) simultaneously determines not only donor and recipient cells, but
also their phenotype, at frequencies of 0.1-1%. Finally, integration of mtDNA mutations, surface markers,
and chromatin accessibility profiles enables the phenotypic resolution of leukemic populations from
normal immune cells, thereby providing fresh insights into residual donor-derived engraftment and short-
term clonal evolution following therapy for post-transplant leukemia relapse. As throughput evolves, we
envision future development of single-cell sequencing-based post-transplant monitoring as a powerful

approach for guiding clinical decision making.

Keywords: mitochondrial DNA mutations, measurable residual disease, allogeneic hematopoietic stem

cell transplantation, microchimerism, clonal evolution, single cell proteogenomics
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Statement of significance
Mitochondrial DNA mutations enable single-cell tracking of leukemic clonal evolution and donor-recipient
origin following allogeneic hematopoietic stem cell transplantation. This provides unprecedented insight
into chimeric cellular phenotypes of early immune reconstitution, incipient relapse, and quality of donor
engraftment with immediate translational potential for future clinical post-transplant monitoring and

decision making.
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Introduction

For the clinical challenges presented by treatment of aggressive blood malignancies, allogeneic
hematopoietic stem cell transplantation (HSCT) is an established immunotherapy that can improve long-
term outcomes through graft-versus-leukemia (GvL) effects.(1-4) However, post-HSCT relapse is
frequent, and immunotherapeutic salvage strategies aimed to reinstate disease control such as rapid
immunosuppression tapering (IST), hypomethylating agents, donor lymphocyte infusions (DLI) or, more
recently, immune checkpoint blockade (ICB) have mostly limited efficacy with exceptions in specific
settings (5-10). This can necessitate a second HSCT, for example from a haploidentical donor, which is
increasingly performed (11). A qualitative understanding of disease recurrence through assessment of
relapsed leukemia phenotypes, clonal evolution, and potential for recovery of donor engraftment at the
time of, or even prior to, molecular relapse would aid in improved selection of appropriate therapeutic
salvage strategies. However, while sensitive relapse detection is feasible using flow cytometric or bulk
sequencing approaches, the identification of relapse-associated leukemia phenotypes has so far been

technically not possible before overt relapse when most salvage therapies become less effective.

Recent advances in single-cell sequencing technologies and analysis enable detection of natural genetic
barcodes such as single nucleotide polymorphisms (SNPs) or mutations in mitochondrial DNA (mtDNA)
and somatic nuclear DNA. These barcodes, in combination with determination of cell states, could
provide a basis for integrated genetic and phenotypic immune cell and leukemia monitoring. In particular,
the analysis of SNPs and mtDNA mutations provides an approach for genetic deconvolution of donor and
recipient-derived cell populations in post-HSCT samples.(12) The high mtDNA content per cell and the
small size of the mitochondrial genome along with its exquisitely polymorphic nature, especially in the
control region(13), suggests this approach would be very robust for monitoring reconstituting cell
populations following HSCT from non-sibling donors. Further, in contrast to germline SNPs, analysis of
MtDNA can resolve clonal evolution of leukemic cell populations, thereby providing information about
longitudinal changes in disease state (14-17). However, while evolution of mtDNA mutations after

therapeutic bottlenecks has been described(15,17), the relationship of changes in mtDNA and somatic
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nuclear DNA mutations following therapeutic bottlenecks remains unknown. Moreover, there are also
guestions about the ability of such an approach to provide information on leukemia phenotypes during
early relapse and the sensitivity for single-cell mtDNA-based detection of rare donor or recipient-derived

populations.

Here, we demonstrate that mtDNA mutations co-segregate with somatic nuclear DNA mutations during
clonal evolution enabling sensitive identification of rare cell populations and aiding in the resolution of
their phenotypes in the context of relapse following HSCT. Together, our analyses suggest that single-
cell-based immune and leukemia monitoring have the potential to provide both quantitative and qualitative

information for therapeutic decision making in the post-HSCT setting.
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Results

Co-evolution of mitochondrial and somatic nuclear DNA mutations

The extent to which mtDNA mutations track with somatic nuclear DNA mutations following therapeutic
bottlenecks is largely unknown. We hypothesized that existing bulk datasets of serial chronic lymphocytic
leukemia (CLL) samples would provide opportunities to address this question through combined analysis
of both classes of mutations. Although whole-exome sequencing (WES) is a standard tool for tracking
somatic nuclear DNA mutations, it does not sufficiently cover the mitochondrial genome to detect mtDNA
mutations. In contrast, bulk RNA-seq data has high coverage of mitochondrial transcripts beyond 10,000x
(Suppl. Fig. 1A). We were therefore motivated to extract mtDNA mutations from bulk transcriptomes
generated from 110 samples collected longitudinally from 26 CLLs for whom concomitant WES data was
available (Methods; Suppl. Table 1).(18) The median interval between the first and last sample of each
CLL was 2,184 days (range 280-4,402). By WES, we categorized CLLs as genetically stable (n=8) or
evolving, either in absence of therapy (n=7) or following fludarabine-based immunochemotherapy (h=11)
(Fig. 1A-B). To exclude artifacts, we focused on mtDNA mutations with a bulk heteroplasmy >0.5% in at
least one sample (Suppl. Fig. 1B). Although we identified fewer mitochondrial (median 11, range 2—26)
than somatic nuclear (median 63, range 18-168) DNA mutations per CLL (Suppl. Fig. 1C), we found that
their longitudinal dynamics were consistent with the somatic mutation-defined growth kinetic categories.
In particular, similar to somatic nuclear DNA mutations, their frequency increased with follow-up time from
the first to the last sample, even as the number of dynamic mtDNA mutations was lower in genetically
stable compared to post-therapy evolving CLL cases (median 2 vs. 5 per CLL; p < 0.001; Student t-test)
(Fig. 1C-D, Suppl. Fig. 1D). Likewise, heteroplasmy changes were smaller in stable compared to
evolving CLL (coefficient of variance 31 vs 57; p < 0.001; Student t-test) (Fig. 1E). Finally, when matching
longitudinal dynamics of mtDNA mutations and cancer cell fractions (CCF, which is a measure of
involvement by somatic nuclear mutations), we observed high correlation (r = 0.84, p < 0.001; Pearson’s

correlation) (Suppl. Fig. 1E, Suppl. Fig. 2-5).



161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Penter et al.

Given the deep coverage of mitochondrial transcripts in bulk RNA-seq data, we wondered whether
MtDNA mutations would enable sensitive tracking of dynamic CLL clones. We defined the limit of
detection (LOD) for each mtDNA mutation as the average heteroplasmy across the study cohort and
observed a median LOD of 0.3% (range 0.008%-73%), which was mostly determined by genomic
localization (Suppl. Fig. 6A-C). With this approach, we tracked expansion of individual mtDNA mutations
such as 2115T>C and 7300T>C (CLL1l) or 7929G>A and 8040T>C (CLL19) from low initial
heteroplasmies (between 0.02% and 0.13%) to values between 0.7 % and 6.1%. At the same time, some
MtDNA mutations such as 2002G>A (CLL1) or 13358T>C (CLL19) collapsed from a heteroplasmy of
8.8% and 1.3% to 0.5% and 0.05% (Fig. 1F, Suppl. Fig. 6D). Altogether, these data reveal mtDNA
mutations to have similar longitudinal dynamics as somatic nuclear DNA mutations and the potential to

sensitively track emerging CLL clones.

Tracking resistance to graft-versus-leukemia responses

Having observed the pronounced dynamics of mtDNA mutations in CLL cases over long follow-up, we
asked how these natural barcodes could be also applied to the setting of allogeneic stem cell
transplantation. We extracted mtDNA mutations from bulk RNA-seq data generated from 8 CLL cases for
which paired peripheral blood mononuclear cell (PBMC) specimens were collected before and after
immunochemotherapy (FCR [fludarabine, cyclophosphamide, rituximab]) followed by reduced-intensity
conditioning (RIC)-HSCT (follow-up time ranged from 83-1,979 days [median 931 days]) (Fig. 2A). Again,
we observed an association of follow-up time between samples and the magnitude of change in mtDNA
mutations, such that early relapse remained genetically stable while late recurrence displayed clonal
evolution (310 vs. 1,082 days, p = 0.034; Wilcoxon signed-rank test) (Fig. 2B-C), consistent with previous
genetic characterization by WES(19). Further, we could sensitively track mtDNA mutations. For example,
in CLL5328, we observed clonal replacement evidenced by disappearance of 16247A>G from an initial
heteroplasmy of 27% below LOD at relapse, as opposed to expansion of 6426G>A from 0.2% to 54.4%

(Fig. 2D).



188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Penter et al.

Given the high agreement of parallel analyses of somatic nuclear and mitochondrial DNA mutations, we
decided to analyze mtDNA and somatic nuclear DNA mutations within the same cell. We thus performed
targeted single-cell DNA sequencing with surface marker capture (sScDNA-seq; Tapestri platform) using
assays for detection of patient-specific somatic nuclear and mitochondrial mutational profiles. Assay
designs were based on information provided by prior genetic characterization from WES (generated pre-
FCR and post-HSCT) and single-cell ATAC sequencing (mtscATAC-seq) (15,19). We focused on 3 CLL
cases (5328, 5327 and 5335) and generated a primer panel for the detection of 98 mutations across 69
genes, encompassing 67 nuclear and 21 mtDNA amplicons (Fig. 2E, Suppl. Table 2). As expected per
the assay designs, the coverage of mtDNA was limited to targeted regions and enabled high sequencing
depth to optimize detection of even variants with low heteroplasmy (Suppl. Fig. 7A). To discriminate
among immune cell subtypes, we concurrently captured surface marker staining (Total-seq D) (Fig. 2F,

Suppl. Fig. 7B).

In total, we obtained 33,796 high-quality scDNA-seq profiles from the 3 PBMC sample pairs. Eight of 8
previously reported mtDNA mutations that defined major CLL subclones and a median of 14 (8-19) of 20
(16-26) somatic mutations from these cases were detected. CLL-specificity of mtDNA and somatic
mutations was confirmed by their absence in donor and recipient immune cell populations. For all 3 CLL
cases, somatic founder mutations could be identified that were present before and after post-HSCT
relapse (Fig. 2G, Suppl. Fig. 8A-B). This was also the case for the mtDNA mutation 3538G>A in
CLL5328 which persisted throughout therapy. A subset of mtDNA mutations which co-segregated with
somatic mutations subdivided the CLL populations further, such as 16247A>G (CLL5328), 5979G>A and
2332C>T with ASL"**¢ and MME"**" (CLL5335) or 3830T>C and 3526G>A with PKDREJ'***F and
TP53"2" (CLL5327). Clonal shifts in CLL, as defined by somatic mutations that were only discernable
before or after FCR/HSCT, tracked with analogous changes in mtDNA mutations. These shifts in clonal
architecture ranged from clonal replacement (evident through emergence of 6426G>A and 16290C>T in
CLL5328); to selection of a resistant subclone (marked by loss of 2332C>T and 5979G>A in CLL5335); to
skewing of the ratio within CLL clones at relapse post-HSCT (in CLL 5327) (Fig. 2G, Suppl. Fig. 8C-E).

In CLL5328, we identified donor-derived mtDNA mutations based on their absence in recipient cells that
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were associated with CD8" T cells (1918G>A, 5650G>A) or lymphocytes in general (786G>A) highlighting
the fact that mtDNA mutations also mark clonal ancestries in non-malignant cell populations (Fig. 2G,
Suppl. Fig. 8F). Finally, consistent with the detection of 6426G>A at very low heteroplasmy in bulk RNA-
seq data pre-HSCT, we could identify 3 of 2,416 (0.12%) leukemic cells from CLL5328 which harbored
this mutation alongside DPCD°*'® and ZNF215"% prior to transplantation, providing direct evidence of
the existence of a resistant population identifiable by mitochondrial and somatic nuclear DNA mutations
(Fig. 2H). In sum, mtDNA mutations are shaped by GvL-mediated selection and directly track with

evolving somatic nuclear DNA mutations.

Mitochondrial DNA mutations as markers of donor-recipient pairs

Mixed chimeric states are frequently detected following allogeneic HSCT. Examples include replacement
of recipient hematopoiesis with donor cells during the initial post-transplant phase, regrowth of recipient-
derived cells at incipient disease recurrence (i.e. measurable residual disease — MRD) or displacement of

donor-derived cells at time of overt relapse (i.e. waning residual physiologic hematopoiesis).

To define the potential utility of genetic mtDNA variation for sensitively distinguishing among admixed
cells originating from unrelated individuals, a common scenario in >50% of transplants (12,20,21), we
compared the performance of donor-recipient deconvolution via maternal mtDNA variants with that from
nuclear single nucleotide polymorphism (SNP)-based deconvolution. We thus performed scDNA-seq on
two bone marrow samples collected from a relapsed AML after matched unrelated donor HSCT. We
reutilized the previously designed CLL mtDNA panel which provided coverage of the control region that
spans the first and last 700 bp of the circular mitochondrial genome (chrM:16,024-576, where most
mtDNA mutations are located(22)) with a commercial 279-amplicon panel targeting 37 recurrently
mutated genes in AML/MDS(23). In this manner, we identified germline SNPs and the known NRAS®®
and SF3B1%'"°? mutations of this case. When we compared donor-recipient deconvolution using 4
maternal mtDNA variants and 10 nuclear germline SNPs, we observed highly consistent annotations in

7,541 of 7,618 (99%) cells (Suppl. Fig. 9A-B). AML cells clustered into recipient-derived hematopoietic

stem cell (HSC)-like, granulocyte macrophage progenitor (GMP)-like, monocyte-like and erythrocyte-like

10
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cells (Suppl. Fig. 9C-D). This highly accurate donor-recipient deconvolution was further supported by the
absence of NRAS®"F and SF3B1%""*? in donor-derived cells in the HSC, GMP, monocyte and erythroid
compartments, while they were detectable in 80-98% (SF3B17""°?) and 50-70% (NRAS®**®) of recipient-
derived cells (coverage >10x) (Suppl. Fig. 9E-F). Furthermore, the mtDNA mutation 11736T>C co-
segregated with SF3B17"*? and NRAS®™R, providing an example of a leukemia-specific mtDNA mutation
(Suppl. Fig. 9G). Finally, we analyzed T/NK cell donor chimerism, which was highest in NK and lowest in
CD4" T cells (Suppl. Fig. 9H). Altogether, combined detection of mtDNA and somatic nuclear DNA
mutations demonstrated highly consistent results for donor-recipient deconvolution whether with mtDNA

or SNPs.

Our detection of co-segregating somatic nuclear and mtDNA mutations along with the high accuracy of
mtDNA-based donor-recipient deconvolution prompted us next to systematically evaluate the sensitivity of
this approach for resolving mixed chimeric states. To define what percentage of unrelated transplant pairs
could be distinguished using maternal mtDNA variants (excluding tumor-specific mtDNA mutations), we
simulated the deconvolution of donor-recipient pairings using two external bulk mtDNA-seq datasets
comprising 81 individuals without cancer (Supplementary Data) (24). We identified a median of 30
homoplasmic mtDNA mutations (detected heteroplasmy >98%) per individual (range 7—78) and a total of
624 mtDNA mutations, of which 141 (22.6%) were found within the most variable region of chrM (15.9 kB
to 700bp) (Suppl. Fig. 10A-C). Among all 6,480 simulated pairings, the median number of diverging
homoplasmic mtDNA mutations was 35 (range 2—-94), with at least 5 diverging mtDNA mutations in 99.8%
of pairs (Fig. 3A). Simulations yielding fewer than 8 diverging mtDNA mutations originated exclusively
from pairs within the same mtDNA haplotype (Suppl. Fig. 10D). These analyses indicate that donor and
recipient cells in unrelated transplants can be effectively distinguished using homoplasmic mtDNA

mutations.
Because not all mtDNA mutations localize to expressed regions of the mitochondrial genome, we focused

on expressed mtDNA mutations, identified from 108 non-malignant bulk RNA-seq profiles, to assess the

feasibility of this approach for single-cell transcriptomic assays(25). We identified 393 expressed

11
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homoplasmic mtDNA mutations, a median of 21 per individual (range 0-61), which provided at least 5
diverging mtDNA mutations in 95.8% of pairings (Suppl. Fig. 10E-G), thus supporting the ability to
distinguish most donor-recipient pairs using transcriptome data. The number of distinguishing mtDNA
variants was highly similar across datasets, although sequencing coverage was more uniform when using
DNA- rather than RNA-sequencing (Suppl. Fig. 10H-J), consistent with observations from single-cell
RNA sequencing (scRNA-seq) analyses (14,26,27). From all 189 individuals, a total of 924 homoplasmic
MtDNA mutations were identified. By downsampling the number of analyzed individuals, this humber
represents only a fraction of homoplasmic mtDNA mutations in the entire human population, consistent

with the >19,000 mtDNA mutations documented in MITOMAP (Fig. 3B).(28)

Benchmarking of donor-recipient deconvolution in-silico and in-vitro

To assess the potential sensitivity of single-cell donor-recipient deconvolution using mtDNA mutations, we
performed an in-silico spike-in experiment using previously reported circulating blood mtscATAC-seq
profiles of two CLL cases (CLL4, CLL5).(15) We mixed between 1 to 1,000 profiles of CLL4 (randomly
sampled from 3,369 profiles) into all available 7,579 mtscATAC-seq profiles of CLL5. CLL4 and CLL5
harbored a total of 45 maternally inherited mtDNA variants (variance-to-mean ratio (VMR) < 0.01; strand
concordance > 0.65). Cells from CLL4 and CLL5 could be distinguished by 29 and 8 maternal mtDNA
variants, respectively (Suppl. Fig. 11A). We calculated a mean heteroplasmy for the distinct maternal
MtDNA variants of CLL4 and CLL5 per cell and observed clear separation between the two cell
populations (Suppl. Fig. 11B). This permitted recovery of between 98.3% and 100% of CLL4 from the in-
silico mixture, resulting in a theoretical sensitivity of 1:7,580 (0.13%) (Fig. 3C-top). In total, we found only
123 cells (1%) across monocytes, T and CLL cells whose origin could not be annotated due to insufficient
MtDNA coverage in the combined dataset of CLL4 and CLL5 (11,797 cells) (Suppl. Fig. 11C-E). We
repeated the analysis with two AML datasets (AML1011, AML1012), and likewise found a theoretical

sensitivity of 1:6,586 (0.15%), with only 102 of 12,319 (0.8%) unannotated cells (Suppl. Fig. 11F).

To compare the sensitivity of mtDNA- versus SNP-based deconvolution, we mixed scRNA-seq profiles of

the same samples, at ratios of 1 to 1,000 CLL4 cells spiked into 10,000 CLL5 cells. We tested SNP-

12
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based deconvolution of scRNA-seq data using the tools souporcell (29) and vireo (30). When performing
germline reference-free deconvolution, we found that deconvolution was reliable only when spike-in was
above 3% and 1% for vireo and souporcell, respectively (Fig. 3C-bottom left, Suppl. Fig. 11G). At lower
percentages, both methods left 22—80% of cells unannotated and souporcell identified hundreds of false-
positive doublets (Suppl. Fig. 11H). Performance improved markedly for vireo when a germline reference
for both individuals was provided, which allowed detection down to 1 in 10,000 cells, yet left up to 3% of
cells unannotated (Fig. 3C-bottom right, Suppl. Fig. 11l). In contrast, mtDNA deconvolution does not
require germline samples, as maternal mtDNA variants that distinguish donor and recipient can be
extracted directly from chimeric data due to their mutual exclusivity even at low frequencies (for example,
using k-means clustering [shown for 10 CLL4 cells (0.13%) spiked into 7,579 CLL5 cells in Suppl. Fig.

12A])).

The high rate of unannotated cells was also apparent when applying vireo with WES donor/recipient
germlines and souporcell without germline references on real-world scRNA-seq generated from 18 AML
post-HSCT samples.(31) We observed concordance of donor-recipient annotations between both tools,
including with X- and Y-chromosomal gene expression in AML1010 (transplanted from a sex-mismatched
donor) (Suppl. Fig. 12B-E). However, the rate of unassigned cells using vireo was much higher than with
souporcell (5.5-57.1% vs. 1.2-19%) (Suppl. Fig. 12F), demonstrating that differences in genome
coverage and drop-out are inherent issues with SNP-based genetic deconvolution of single-cell data, a
shortcoming much less encountered when using mtDNA mutations with single-cell data that provide high

uniform coverage of mtDNA, such as ATAC with select antigen profiling by sequencing (ASAP-seq).

We likewise assessed the ability to distinguish phenotypically distinct immune cell populations derived
from different individuals using mtDNA mutations in non-synthetic data. We modeled the detection of
antigen-specific T cells through a mixing experiment in which expanded healthy donor T cells (from ‘donor
1’) transduced with a murinized MART1-specific TCR were spiked into unmanipulated PBMCs of a
second healthy donor (‘donor 2’) at ratios from 1:3 to 1:300. We applied ASAP-seq to the mixtures to gain

information on chromatin accessibility, donor-recipient and cell type annotations (Fig. 3D-E-top).(32) In

13
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addition to detecting lineage-defining surface markers (via staining cells with a custom panel of 22 Total-
seq B (TSB) oligo-tagged antibodies including an antibody specific for the murinized TCR (mTcrf)), we
utilized MART1-specific tetramers conjugated with 2 distinct Total-seq A (TSA) streptavidin (SAV)
oligotags to identify MART1-specific T cells (Suppl. Table 3-4). Utilizing this experimental design, we
deconvolved 15,116 cells from both donors, which resulted in ratios of donorl to donor2 that were highly
concordant with the mixing ratios of the experiment. In total, we detected 1,449 of 5,345 (27%) donorl
cells at the mixing ratio of 1:3, and 150 in 4,262 (3.5%) and 14 in 4,381 (0.3%) at the ratios of 1:30 and

1:300 (Fig. 3F-H).

In addition to the sensitive detection of spiked-in expanded T cells, we could track their phenotype. First,
analysis of chromatin accessibility profiles demonstrated profound chromatin remodeling after
CD3'/CD28"-bead activation and IL7/IL15-induced expansion with increased accessibility of RUNX1/2
and reduced accessibility of the SPIB binding motif (Fig. 3I, Suppl. Fig. 12G). Secondly, detection of the
transduced MART1 TCR sequence (donorl) from chromatin accessibility data delineated 83 cells with
integration of the expression vector, none of which belonged to donor2 (Fig. 3E-bottom). Finally, we
directly identified 185 MART1-specific T cells based on co-expression of SAV oligotags and mTcrf3
(Suppl. Fig. 12H-I), ranging from 168 (3%) to 5 cells (0.1%), of which 183 (98.9%) were derived from
donorl and 2 (1.1%) from donor2 at frequencies that reflected the donor ratios in the experiment (Fig.
3J). Our in-silico and in-vitro mixing experiments thus demonstrated that mtDNA mutations sensitively
resolve donor- and recipient-derived cell populations alongside their specific phenotypes at frequencies

well below 1%.

Tracking incipient AML relapse in responders to immunosuppression tapering

To demonstrate how donor-recipient identification can be used to track AML phenotypes even at low
frequencies, we applied this strategy to samples from 4 AML patients (IST1-4) after RIC-HSCT (Suppl.
Table 5), in which an incipient relapse was detected on the basis of worsening bulk chimerism (87-185
days after graft infusion) and was solely treated with rapid taper of immunosuppression (IST)(5).

Clinically, responses were associated with abrupt improvements in blood cell counts and circulating

14



356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

Penter et al.

monocytes, resulting in complete clearance of AML within 105-184 days after IST without any further

disease relapse (Fig. 4A, Suppl. Fig. 13A-D).

From these four responders, we obtained 13,360 bone marrow and 5,783 peripheral blood ASAP-seq
profiles before and after IST and identified major immune cell, erythropoietic, and AML/progenitor
populations (Fig. 4B, Suppl. Fig. 14A). Consistent with the clinical white blood cell counts, our analysis
showed a strong increase in circulating monocytes in 3 of 4 patients relative to T cells following IST, likely
representing recovering physiologic hematopoiesis after resolution of the incipient relapse (Fig. 4C,
Suppl. Fig. 14B). We extracted mtDNA mutations from the ASAP-seq data for chimerism analyses and
leukemic tracking. In line with clinical chimerism measurements (XY FISH or short-tandem repeat
analysis), all 4 patients had incomplete donor chimerism at time of relapse and prior to IST across
progenitor (0-0.5%), erythropoietic (64%) or monocytic cells (0-100%). All cell types converted to full

donor chimerism following IST (Fig. 4D, Suppl. Fig. 14C).

We assumed that non-lymphocytic recipient-derived cells post-HSCT most likely represent AML, and we
used the mixed chimeric cell populations to track leukemic clones across their differentiation states
(33,34) to delineate differences between physiologic hematopoiesis and its malignant counterparts. In
IST1 and IST2, AML cells were detectable within progenitor-like, erythroid-like and monocyte-like
populations, and were marked by several non-homoplasmic mtDNA mutations (3919T>C, 5458T>C,
7457G>A, 10776T>C [IST1] and 6701A>G, 10290G>C [IST2]) (Fig. 4E, Suppl. Fig. 14D-E, 15A-B).
Notably, while circulating monocytes in IST1 were 100% donor, the bone marrow monocyte chimerism
was lower (64%), indicating non-circulating AML relapse. Compared to donor-derived monocytes,
recipient-derived monocyte-like cells in IST1 had lower surface expression of CD11c and CD14 and lower
chromatin accessibility of the IL1B gene, which plays a role in AML pathogenesis (35) (Fig. 4F-G). We did
not detect differences in surface marker expression between recipient- and donor-derived erythropoietic
cells in IST1, but observed differences in chromatin accessibility, for example reduced open chromatin of
CD36 in recipient-derived cells (Suppl. Fig. 15B-C). In IST3, recipient-derived monocyte-like cells also

displayed differences in surface marker expression compared to donor-derived monocytes, including
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higher CD33 and lower CD16, as well as differential chromatin accessibility of genes such as chemokine

ligands or homeobox protein genes (Suppl. Fig. 15D-F).

Among lymphocytes, donor chimerism tended to be higher with incomplete donor chimerism detected
only in NK cells of IST4 (0%) and T cells of IST3 and IST4 (41% and 24%), which remained incomplete
even after IST (90% and 70%) (Fig. 4D). When comparing surface marker expression and chromatin
accessibility of T cells in IST3 and I1ST4, we observed that 94% of recipient-derived T cells were CD4" T
cells, while 61.5% of CD8" T cells were donor-derived (p<0.001; Fisher’'s exact test), consistent with their
generally different immune reconstitution dynamics following HSCT (Fig. 4H)(36). Other differences
between donor- and recipient-derived T cells such as expression of PD-1 were mainly driven by
differences in CD4:CD8 T cell ratio (Fig. 41-J, Suppl. Fig. 15G). Our results clearly demonstrate that,
donor-recipient deconvolution of ASAP-seq profiles can identify AML cells at low frequencies and resolve

differences in the phenotypes of chimeric leukemia and immune cell populations.

Residual donor engraftment and leukemia clonal evolution in overt AML relapse

While incipient relapse is characterized by a mainly donor-derived hematopoietic system that retains the
potential to intensify ongoing GvL effects through IST, overt AML relapse constitutes high circulating
disease burden and minimal (or no) residual donor hematopoiesis. The question to what extent residual
donor engraftment persists is highly relevant for the success of strategies aimed at reinstating GvL but is

not routinely assessed due to lack of sufficiently granular testing modalities.

To this end, we performed ASAP-seq on longitudinal bone marrow samples from post-transplant
participants of the ETCTN/CTEP 10026 study (Suppl. Fig. 16A-F). In this study, participants received a
priming cycle of decitabine followed by combination of decitabine and ipilimumab with the aim to
reinvigorate dormant GvL responses.(10,37,38) We assessed residual donor engraftment in three
patients (AML1010, AML1011 and AML1026) with unrelated donors. We further evaluated one patient
(AML1012) with a related donor who harbored a del(5q) to test whether copy number variations (CNV)

could also be used to detect AML cells using ASAP-seq (Fig. 5A). Chromatin accessibility profiles from all
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4 AML cases demonstrated left-shifted, expanded myelo-/erythropoiesis which were annotated as
hematopoietic stem cell (HSC)-like, granulocyte macrophage progenitor (GMP)-like, monocytic (Mono),
dendritic (DC) and erythroid (Ery) clusters based on surface marker expression (Suppl. Fig. 16G).
Unexpectedly, donor-recipient deconvolution revealed that donor-derived hematopoiesis was exceedingly
rare, with 10-19 (0.1% - 0.6%) cells identified as donor-derived, most of which were of erythroid lineage.
In AML1012, we identified AML cells by detection of del(5q) or amp(22q), which similarly indicated that
only 83 of 5,763 (1.4%) myelo-/erythropoietic cells did not harbor CNV changes and thus likely
represented remaining donor-derived hematopoiesis (Fig. 5B-C, Suppl. Fig. 16H-J). We also calculated
mtDNA-based T cell chimerism, which was stable throughout CTLA-4 blockade and correlated well with
clinical chimerism measurements (r = 0.97, Fig. 5D, Suppl. Fig. 17A). Altogether, AML clones occupied
the entire phenotypic range from HSC-like cells to monocytes and erythroid cells within the same patient,
consistent with previous reports(16,27,33). Further, mtDNA-based donor-recipient deconvolution can
identify rare donor-derived hematopoietic events during overt AML relapse and enables estimation of the

potential for a recovery of physiologic hematopoiesis following salvage therapy.

Given the coevolution of mitochondrial with somatic nuclear DNA mutations in CLL, we wondered
whether mtDNA mutations could also resolve clonal evolution induced by GvL in AML. Since patients
continued on-study for up to 10 months with circulating blast counts (Suppl. Table 6), we hypothesized
that decitabine/ipilimumab treatment led to shifts in AML subclones despite absence of objective
responses and therefore analyzed serial samples of each patient before study entry, after decitabine
priming, and during combined treatment. As a comparator, we analyzed samples from a responding
patient (AML1007). Further, we contrasted the impact of ipilimumab on AML subclones defined by mtDNA
mutations with changes induced by HSCT through analysis of specimens prior to and following HSCT in 3

patients (AML1007, AML1011, AML1012).

By mtDNA mutation analysis (Supplementary Data), we identified a median of 7 AML subclones per

case (range 5-12) and found longitudinal dynamics unrelated to the changes in cell type proportions. In

AML1010, we observed a decrease in complexity of AML subclones throughout treatment, while
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AML1026 and AML1012 revealed an increase in clonal complexity (Fig. 5E-F-left, Suppl. Fig. 17B-E,
18), demonstrating that despite an apparent clinical absence of response, treatment with
decitabine/ipilimumab exerted a selective pressure that led to changes among AML subclones. The only
exception was AML1011, who lacked evidence of such an effect (Fig. 5F-right). However, in the
responding AML1007, we again found clear clonal selection during ipilimumab-based treatment as

evidenced by two collapsing subclones (Fig. 5G).

When tracking longitudinal changes following RIC-HSCT (AML1011, AML1012) and haploidentical HSCT
(AML1007), the subclonal structure of AML1011 and AML1012 remained practically unchanged
throughout transplantation, while AML1007 showed profound clonal evolution with outgrowth of cells
marked by 5668G>C, consistent with acquisition of two novel somatic mutations on clinical amplicon-
based sequencing (39) (RUNX1™?*? and KRAS"™*") (Fig. 5G). This could reflect the more pronounced
immune pressure exerted by GvL in the setting of haploidentical transplantation compared to RIC-HSCT
from a matched unrelated donor, an interpretation which would naturally need further validation. These
studies demonstrate that mtDNA mutations can identify subclones that shift in response to immune-based
therapy, thereby illustrating the utility of this lineage-tracing approach for dissecting therapeutic effects on

leukemia populations.

Co-evolution of mitochondrial and somatic nuclear DNA mutations in AML

Having observed longitudinal shifts in AML subclones defined by mtDNA mutations, we sought to directly
evaluate their co-segregation and co-evolution with somatic nuclear DNA mutations using single-cell DNA
sequencing. For AML1010, 1012 and 1026, we generated a customized 127-primer panel targeting 137
somatic nuclear DNA mutations identified using WES (Suppl. Table 7-9). Further, we obtained a second
pan-mtDNA panel with 67 amplicons covering the entire mitochondrial chromosome (Fig. 6A, Suppl. Fig.
19A-B, 20A). For each AML, we obtained scDNA-seq data at screening and following therapy with
decitabine/ipilimumab. In all three cases, we observed a high degree of co-segregation between

mitochondrial and somatic nuclear DNA mutations. Consistent with the prior characterization by ASAP-
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seq, the amount of subclonal heterogeneity ranged from reduced structure in AML1012 to a complex

pattern of main and subclones in AML1010 and AML1026.

AML1010 subdivided into two subclones defined by mutually exclusive homozygous mutations in TCF12
alongside 14 additional somatic nuclear DNA mutations. While most cells in subclone 1 expressed CD34,
more than 50% of cells in subclone 2 displayed a monocytic phenotype, consistent with differential
lineage commitment (Suppl. Fig. 20B). Across both subclones, we found a total of seven smaller
subclones, which were defined by 37 mtDNA mutations (Fig. 6B). Throughout treatment with
decitabine/ipilimumab, the proportion of these subclones shifted, with two subclones mitochondrial DNA
mutations expanding (Fig. 6C). While most leukemic cells in AML1010 were NRAS-mutated, one of
seven subclones harbored exclusively NRAS"™ cells. Multiple mtDNA mutations such as 9820G>C co-
segregated with this subcluster, providing additional support for this notable subpopulation (Suppl. Fig.

20C).

In AML1026, all cells harbored five somatic nuclear DNA mutations including SRSF2”*", sF3B1~""*?,
NRASC®®R and two mtDNA mutations (3308T>C and 10685G>A). We identified two large subclones that
could be further subdivided into five smaller subclones, based on 11 additional somatic nuclear and 37
mitochondrial DNA mutations (Fig. 6D). Treatment shifted these subclones markedly, including expansion

of cells marked by COL9A1**'®® and 9 mtDNA mutations (Fig. 6E).

Finally, in AML1012, we found a uniform detection of 12 somatic nuclear DNA mutations across all cells.
Nevertheless, mtDNA mutations provided further subdivision into 7 subclones (Fig. 7A). One subclone
was marked by the 14739G>C mutation and expanded following therapy with ipilimumab/decitabine (Fig.
7B-C). We also observed an increase in cells harboring the FBXW77**C hotspot mutation(40) across six
of the subclones. Together with the overall uniform appearance of AML1012 at the level of somatic
nuclear DNA mutations, this likely indicates a close genetic and phenotypic relationship amongst the
identified subclones and illustrates the ability of mtDNA mutations to identify subtle differences within

tumor populations characterized as monoclonal by somatic nuclear DNA mutations. Given the more
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dynamic nature of mitochondrial compared to somatic nuclear DNA mutations, future studies are required

to definitively assess the relevance of these subpopulations with regard to clonal fitness.
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Discussion

Single-cell donor-recipient deconvolution is of great interest for many questions in basic and translational
transplant research but has been technically challenging. Here, we report that single-cell mtDNA
sequencing can resolve chimeric populations with high sensitivity. By systematically assessing mtDNA-
based donor-recipient deconvolution using in-silico and in-vitro mixing experiments, we show that,
compared to donor-recipient deconvolution with nuclear germline SNPs, this approach works even for
very skewed ratios of donor- and recipient-derived cells. SNP-based identification often fails because the
coverage of relevant single nucleotide variants becomes insufficient. For mtDNA variant analysis, the high
copy number of mtDNA drastically reduces failures due to allelic drop-out or insufficient coverage. Also,
MtDNA variants do not require sequencing of pure donor or recipient populations (i.e., germline controls)

because the relevant maternal DNA variants can be deduced from mixed populations.

By analyzing mtDNA mutations in different settings of post-transplant relapse, we gained fresh biological
insights. First, we demonstrate co-segregation of mtDNA and somatic nuclear mutations in AML and CLL
patients who relapsed years after chemoimmunotherapy followed by stem cell transplantation and confirm
the utility of mtDNA variants as long-term markers of clonal ancestries. Further, we show that mtDNA
mutations can resolve clonal dynamics in AML during anti-leukemic therapy even over short periods of
several months that could likely not be detected with somatic nuclear mutations. These observations
underscore the potential of mtDNA mutations as natural genetic barcodes for longitudinal studies of
leukemia evolution and point towards complementary utility with other genetic barcodes. While the
recurrent, stable nature and low copy number range of many somatic nuclear mutations and
chromosomal aberrations permit predictable and automated identification, they are often unable to
resolve short-term selective pressures. Tracking of mtDNA mutations, on the other hand, is more dynamic
owing to their larger heteroplasmic range and stochastic propagation during mitosis (Research Square
2023, 3083262). With this higher dynamic nature, they can be potentially utilized to identify changes in

subclonal structure where somatic nuclear mutations do not have sufficient resolution. Thus, the
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combined study of somatic nuclear and mtDNA mutations may enable the discernment of a more precise
picture of shorter- and longer-term clonal evolution. Our reanalysis of CLL bulk RNA-seq profiles is an

example how analysis of mtDNA mutations in existing datasets is an opportunity to further data mining.

Second, we compare chromatin accessibility profiles of physiologic and malignant hematopoiesis and
define leukemia phenotypes in the context of incipient or overt AML post-transplant relapse. We observed
that AML recapitulates normal erythro-myeloid hematopoietic differentiation from hematopoietic stem cell-
like to maturing monocytic-like and erythroid-like cells, consistent with observations made with single-cell
RNA expression profiles.(16,27,33) Using mtDNA mutations, we identified subtle differences between
physiologic and malignant hematopoiesis at the level of chromatin accessibility and lineage marker
expression, even for small cell populations. In the future, this approach may be used to overcome a
diagnostic blind spot by providing an assay capable of supplying qualitative or phenotypic information of
disease relapse at time of MRD. In turn, these results may inform better selection of appropriate salvage
therapies based on the leukemia phenotypes driving relapse and degree of remaining donor-derived

hematopoiesis potential.

Even with these advances, we acknowledge limitations of our approach. Although clinical experience
shows that recurrence of recipient-derived cells usually equates with leukemia relapse, donor-recipient
deconvolution using mtDNA mutations is unable to differentiate AML relapse from reversal to a precursor
state of clonal hematopoiesis. For such analyses, it would be useful to combine donor-recipient
deconvolution with analysis of copy number changes if available or to consider additional approaches like
GoT-ChA-seq(41) that enable read-out of somatic nuclear mutations alongside mtDNA mutations.
Further, while our study provides proof-of-principle, truly sensitive identification of rare donor- or recipient-
derived cell populations will require sequencing of 100,000 cells or more per sample, which is
economically infeasible with commercial single-cell assays. As throughput of single-cell assays increases,
we expect this limitation to become increasingly less relevant. At that point, it will also be crucial to
benchmark single-cell-based detection of MRD with current clinical gold standard assays to understand

whether clinical decision-making could indeed be guided by single-cell genomics approaches(42).
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Methods

Extraction and analysis of mitochondrial DNA mutations from CLL bulk RNA-seq data

Variant calling

Raw reads were aligned against chrM (GRCh38) using bowtie2(43), sorted with samtools(44) and
deduplicated using GATK4 MarkDuplicates(45). Mitochondrial DNA mutations were called using
mgatk(14) (>10 reads supporting each mtDNA mutation, strand coordination >0.5, >100 total reads for the
position) followed by filtering for high confidence variants. Filtering was based on exclusion of frequent
false-positive variants (2617A>G, 2617A>T, 13710A>G, 13710A>T, 5746G>A) and a heteroplasmy
<0.5% (18) or <1% (19). For mtDNA mutations that passed filtering, variant calls were performed across
all samples from the individual in which a particular mtDNA mutation was identified. Further down-stream

analyses were performed using custom scripts.

Definition of CLL cohorts
Genetically stable CLL was defined by cancer cell fraction (CCF) changes of <20%, while evolving cases
had CCF changes >20%. Naturally progressing CLL was defined as those cases sampled prior to

initiation of an initial first line of disease-specific therapy.

Matching of mtDNA mutations to CLL subclones defined by whole-exome sequencing

To match mtDNA mutations to CLL subclones defined by whole-exome sequencing, the relative
longitudinal changes from first to last sample were calculated for each mtDNA mutation based on
heteroplasmy and each CLL subclone based on cancer cell fractions (CCF). Matching was performed
based on the smallest difference between the relative change of the heteroplasmy of a mtDNA and the

relative changes of CCF values.

Limit of detection for individual mtDNA mutations
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A limit of detection (LOD) was defined for each mtDNA mutation and for each CLL case by calculating the
mean heteroplasmy for the mtDNA mutation across the entire analyzed cohort excluding samples from

the particular CLL case.

In-silico mixing experiment

Cell barcodes were randomly sampled from two published single cell libraries (CLL4_1 and CLL5_1) (15).
Reads associated with the cell barcodes were extracted from the genome-aligned bam file using sinto

(https://github.com/timoast/sinto) and merged with samtools. Deconvolution of mixed scRNA-seq data

was performed using souporcell(29) or cellsnp-lite(46) and vireo(30). Deconvolution of mixed scATAC-
seq data was performed by calling mtDNA mutations using mgatk, identification of maternal mtDNA
variants for each individual and deconvolution based on average heteroplasmy for each cell (cut-off >80%

for variants from individuall and <20% from individual2).

Extraction of mitochondrial DNA mutations from published bulk datasets

Datasets were downloaded using SRA Toolkit
(https://itrace.ncbi.nim.nih.gov/Traces/sra/sra.cgi?view=software) developed by the SRA Toolkit
Development Team. Raw reads were aligned against chrM (GRCh38) using bowtie2(43), sorted with
samtools(44) and deduplicated using GATK4 MarkDuplicates(45). Mitochondrial DNA mutations were
discovered using mgatk(14) and custom scripts adopted from Caleb Lareau’s github repository

(https://github.com/caleblareau).

Sample accrual of peripheral blood and bone marrow mononuclear cells

EDTA-anticoagulated peripheral blood and bone marrow samples (PBMC, BMMC) were obtained from
patients treated at Dana-Farber Cancer Institute in Boston who participated in observational immune
correlative studies or from patients who participated in the ETCTN/CTEP 10026 study (Suppl. Table 10)
(10,31). Anonymous healthy donor PBMCs were obtained from flushed apheresis leukoreduction collars
following platelet donation at Brigham and Women’s Hospital in Boston. Written informed consent was

obtained from study participants before study enrollment, and all procedures involving human participants
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were carried out in accordance with the Declaration of Helsinki. PBMC and BMMC were subjected to
Ficoll density gradient centrifugation (GE Healthcare) followed by cryopreservation with 10% DMSO in

FBS (Sigma-Aldrich) and storage in vapor-phase liquid nitrogen until the time of analysis.

Thawing of cryopreserved cells

Prior to sequencing, cryovials were slowly melted in the steam of a cell culture water bath. Following
drop-wise addition of PBS (Corning, Cat. no. MT21040CV) with 10% bovine DNase I, grade Il (Sigma-
Aldrich, Cat. no. 10104159001) and 10% FBS (ThermoFisher Scientific, Cat. no. 10437028), cells were
pelleted in a centrifuge (300 g for 5 min) and resuspended in RPMI supplemented with 10% FBS and

10% DNase I, grade | (ThermoFisher Scientific, Cat. no. NC9007308) as previously described.(31)

ATAC with select antigen profiling by sequencing (ASAP-seq)

ASAP-seq was performed as previously described.(47) Briefly, after thawing 1-2 million cells were
resuspended in 50 pl PBS with 0.04% ultrapure BSA (ThermoFisher Scientific, Cat. no. AM2618). After
addition of 5 pl Human TruStain FcX (BioLegend, Cat. no. 422302) for 10 minutes at 4 °C, Total-seq A/B
antibodies (Suppl. Tables 3 and 4) were added (0.5 pl per antibody) and cells were incubated for 30
minutes at 4 °C. Fixation and cell permeabilization was performed using the mtscATAC-seq protocol(48):
following 3 washing cycles with PBS with 0.04% ultrapure BSA, cells were resuspended in 450 ul PBS.
Fixation was performed by adding 30 pl 16% formalin (ThermoFisher Scientific, Cat. no. 28906) and
incubation for 10 minutes at room temperature. After addition of 26.8 ul of 2.36 M glycine (ThermoFisher
Scientific, Cat. no. 15527013) for a final concentration of 0.125 M glycine in a total volume of 506.8 pl,
700 pl ice-cold PBS were added and cells washed with PBS for one more time. Lysis was performed by
resuspension in 100 pl lysis buffer for 3 minutes at 4 °C. After washing with washing buffer, fixated and

permeabilized cells were resuspended at approximately 4,500/ul.

Loading of cell suspensions onto a Chromium Chip H (10x Genomics, Cat. no. PN-1000161) (targeted

recovery of 7,000 cells) was followed by library preparation using the Chromium Single-cell ATAC Library

& Gel Bead Kit (Cat. no. PN-1000175) according to manufacturer instructions. For capture of Total-seq
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A/B oligotags 1 uM bridge oligos were added during the barcoding reaction followed by library preparation
as described in the original description of ASAP-seq.(32) Following quality control of libraries with a
Bioanalyzer High Sensitivity DNA Kit (Agilent). Pooled libraries were sequenced on a NovaSeq S2

platform (lllumina) with 50 bp paired-end reads, 8 bp for index 1 and 16 bp for index 2.

Lysis buffer

1 ml stock
e 10 pl1 M Tris-HCI (pH 7.4) (Sigma, Cat. no. T2194)
e 2 ul5 M NaCl (Santa Cruz, Cat. no. SC-295833)
e 3 ul 1M MgCl, (ThermoFisher Scientific, Cat. no. AM9530G)
e 10 pl 10 % Nonidet P40 Substitute (Sigma, Cat. no. 74385)
e 100 pl BSA 10 % (Sigma, Cat. no. A3059)

e 875 pl Nuclease-free H,O (Promega, Cat. no. P1193)

Washing buffer

10 ml stock
e 100 pl 1 M Tris-HCI (pH 7.4) (Sigma, Cat. no. T2194)
e 20 ul 5 M NacCl (Santa Cruz, Cat. no. SC-295833)
e 30 ul 1 M MgCl, (ThermoFisher Scientific, Cat. no. AM9530G)
e 1 mlBSA 10 % (Sigma, Cat. no. A3059)

e 8.85 ml nuclease-free H,O (Promega, Cat. no. P1193)

Preparation of TotalSeq-A MART-1-specific tetramers
HLA-A*02:01 easYmers (Immunaware) were first folded with the ELAGIGLTV peptide (MART-1.3s,
GenScript) and then tetramerized with 2 distinct TotalSeq-A PE-conjugated streptavidins (Biolegend),

following manufacturer instructions. Correct assembly and binding of the tetramers was confirmed by flow
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cytometric evaluation of T cells transduced with a MART-1-specific TCR, as previously reported(49). As
the TCR construct used was murinized, binding of a monoclonal antibody against the murine TCR (PE,
clone H57-597, eBioscience) served as internal control for specific tetramer binding. Data were acquired

on a Fortessa cytometer (BD Biosciences) and analyzed using Flowjo v10.8 software (BD Biosciences).

Use of hashing with ASAP-seq
Prior to sequencing of samples from AML1010, AML1012 and AML1026 (ETCTN/CTEP 10026), they
were stained with 2 Total-seq A hashtags per sample and pooled. Deconvolution was performed based

on average expression of hashtags and a sample-specific cut-off (Suppl. Fig. 16A-F).

Analysis of ASAP-seq profiles
Raw reads containing fragments of single cell chromatin profiles were aligned and quantified using

cellranger-atac  (https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-

ranger-atac) with a custom GRCh38 reference hard masked for nuclear DNA of mitochondrial origin
(nuMTSs) to improve mapping of mitochondrial reads against chrM. Downstream analyses were performed
using custom scripts in ArchR following best practices described in the ArchR manual.(50) Reads from
Total-seq A and B libraries were processed as previously described.(47) In brief, raw reads were
converted from a format with 3 to 2 fastq files compatible with kallisto | bustools (51) using “ASAP to kite”

(https://github.com/caleblareau/asap_to_kite). After generation of feature count matrices with bustools,

they were imported into R and further processed using the Seurat package (52) and custom scripts.

Annotation of donor and recipient origin

Donor and recipient annotation was based on mean heteroplasmy of maternal variants (cut-offs >80% for
variants specific for individual and <20% for variants not found in individual, otherwise cells were
considered unassigned or doublets) specific for each individual, which were identified by clustering
homoplasmic mtDNA variants and manual review of their distribution across myeloid and T/NK cell

populations, taking into consideration known T cell chimerisms from routine clinical diagnostics.
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Copy-number changes
Copy number changes where identified using a sliding window approach as previously described

(https://github.com/caleblareau/mtscATACpaper_reproducibility) using T cell chromatin profiles as normal

control.(14,15,17)

Clustering of mtDNA mutations
Analysis of AML subclusters was performed by clustering mtDNA mutations of leukemic cell populations

across all samples from one individual using the Seurat package.(52)

Detection of lentiviral expression vector sequence from single cell chromatin profiles

Vector copies encoding the MART1-specific T cell receptor were identified by mapping DNA fragments to
the sequences of the CMV promoter, the Woodchuck Hepatitis Virus (WHYV) Posttranscriptional
Regulatory Element (WPRE) or the murinized alpha and beta T cell receptor sequences using

chromap.(53)

Single-cell DNA sequencing (Tapestri)

Total-seq D staining

Cells were stained with the TotalSeq™-D Human Heme Oncology Cocktail, V1.0 (BioLegend, Cat. no.
399906) according to manufacturer instructions. These included resuspension in 40 pl cell staining buffer
(BioLegend, Cat. no. 420201) supplemented with 5 pl Blocking Buffer (Mission Bio) and 5 pl Human
TruStain FcX (BioLegend, Cat. no. 422302) and incubation for 15 min at 4 °C followed by addition of 50 pl
reconstituted antibody cocktail and incubation for 15 min at 4 °C. After 3 washing steps with cell staining

buffer, cells were resuspended at a concentration of 4,500/pl.

Library preparation and sequencing

After loading of cells onto a Tapestri cartridge, library preparation was performed according to

manufacturer instructions. The genomic and mtDNA panels were mixed at a ratio of 10:1. Following
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quality control with a Bioanalyzer High Sensitivity DNA Kit (Agilent), amplicon and Total-seq D libraries
were pooled and sequenced on a NextSeq 500 or NovaSeq SP (lllumina) with 150 bp for paired-end

reads, 8 bp for index 1 and 8 bp for index 2.

Analysis

Raw reads were processed using a local installation of the Tapestri Pipeline version 2.0.2 using
GRCh19/38 for somatic nuclear DNA and GRCh38 for mtDNA reads. Variant calls and surface marker
expression were exported for each cell barcode into a csv file from the Tapestri Insight software version
3.0.2 and imported into R where the data was further processed and visualized using custom scripts and

standard packages including Seurat and ComplexHeatmap (52,54).

Data availability statement

CLL bulk RNA-seq and WES data were previously deposited on dbGap (phs001431.v1.p). CLL scDNA-
seq data have been deposited on NCBI Geo (accession number GSE234558). Published datasets for
analysis of maternal mitochondrial DNA variants were accessed from NCBI Geo (BioProjects
PRJINA486215 (24) and PRINA563929 for bulk mtDNA data; PRINA741686 (25) for bulk RNA-seq). CLL
in-silico mixing data were accessed from NCBI Geo (GSE165087 for scRNA-seq and GSE163579 for
SCATAC-seq). ASAP-seq data for the in-vivo mixing experiment and the immunosuppression tapering
cohort have been deposited on NCBI Geo (GSE234558). Processed ASAP-seq, sScDNA-seq and scRNA-
seq data for samples from participants on ETCTN/CTEP 10026 are deposited on NCBI Geo

(GSE234558, GSE223844), while the raw data has been deposited on dbGap (phs003015.v2).

Code availability statement
Code of analyses performed for this work are available under

https://github.com/liviuspenter/mtDNA _donor_recipient coevolution
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Figure legends

Figure 1. Co-evolution of mitochondrial and somatic nuclear DNA mutations in CLL inferred from
WES and RNA-seq data.

A Overview of study design and cohort. Bulk RNA sequencing (RNA-seq) and whole-exome sequencing
(WES) data were obtained from 110 serially collected samples of circulating CLL cells from 26 cases (18).
Based on WES analysis and calculation of cancer cell fraction (CCF) values, the CLL cases were
characterized as genetically stable (n=8; green), evolving during natural disease progression (n=7; light
purple) or evolving during fludarabine-based therapy (n=11; dark purple). RNA-seq data was used for
identification of mitochondrial DNA (mtDNA) mutations. By matching of mtDNA mutations to CLL
subclones identified using WES, co-evolution was assessed.

B Examples of genetically stable (CLL18, left) and evolving CLL (CLL37, right). Changes in CCF and
MtDNA heteroplasmy are shown together. Lines indicate longitudinal tracking of CLL subclones (CCF
values) or individual mtDNA mutations.

C Number of dynamic somatic nuclear DNA mutations (left) and dynamic mtDNA mutations (right) across
genetically stable and evolving CLL cases as defined by changes in CCF values.

D Number of dynamic mtDNA mutations (left) and dynamic somatic nuclear DNA mutations (right) as a
function of days between first and last CLL sample.

E Distribution of changes in CCF values (left) and mtDNA heteroplasmy (right) across genetically stable
and evolving CLL cases.

F Longitudinal tracking of individual mtDNA mutations above their respective detection limit as indicated
by the horizontal lines.

Statistical testing using Student t-test (C, E) or Pearson’s correlation coefficient (D).

Figure 2. Co-evolution of mitochondrial and somatic nuclear DNA mutations in CLL at single cell
resolution.

A Overview of experimental strategy. Swimmer plot of CLL cases used for analysis. Peripheral blood
samples for bulk RNA-seq were obtained before and after therapy with fludarabine, cyclophosphamide
and rituximab (FCR) followed by reduced intensity conditioning (RIC) hematopoietic stem cell
transplantation (HSCT). Cases indicated by asterisks (*) were also analyzed using single-cell (sc) DNA
sequencing (Tapestri platform MissionBio) (E-H).

B Association of the mean increase in heteroplasmy of mitochondrial DNA (mtDNA) mutations and the
time from pre-FCR to post-HSCT sample.

C Days from pre-FCR to post-HSCT sample in genetically stable and evolving CLL as characterized by
changes in mtDNA mutations.

D Tracking of individual mtDNA mutations in CLL5328.

E Overview of experimental strategy (E-H). To track co-evolution of somatic nuclear and mtDNA
mutations, scDNA-seq was performed on 6 peripheral blood samples from 3 patients. Based on
previously identified mtDNA mutations from mtscATAC-seq (15) and whole-exome sequencing (19) in
these patients, we designed 98 targeted panels for scDNA-seq to track their co-evolution.

F UMAP projections of surface marker expression data (n=5,596) obtained from CLL5328 with 45 Total-
seq D antibodies annotated by cell types (left) or identification of CLL-specific mtDNA mutations
(3538G>A — common founder mutation, 16247A>G — pre-FCR and 16290C>T — post-HSCT) (top right)
and donor immune cell-specific mtDNA mutations (1918G>A and 5650G>A — CD8" T cells or 786G>A —
pan immune cells) (bottom right).

G Single-cell variant allele frequencies (VAFs) and heteroplasmy of mtDNA mutations in CLL5328 pre-
FCR and post-HSCT, in recipient-derived (rec.) and donor-derived (donor) immune cells. Fish plot
summarizing results (bottom), showing clonal replacement of CLL5328 before and after therapy, marked
by 16247A>G (pre-FCR) or 16290T>C and 6426G>A (post-HSCT) alongside 7 (pre-FCR) or 9 (post-
HSCT) somatic nuclear DNA mutations.

H ldentification of 3 resistant CLL single cells (circled) pre-FCR based on 16290T>C, 6426G>A (both
mtDNA), DPCD®**€ and ZNF215™*?" (both somatic nuclear) mutations.

Statistical testing with Pearson’s correlation coefficient (B) and Wilcoxon signed-rank test (C).
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Figure 3. Applicability and sensitivity of donor-recipient deconvolution using mitochondrial DNA
mutations.

A Simulation of donor-recipient pairing using 81 published (24) bulk mitochondrial DNA (mtDNA)-seq
profiles. A median of 35 (range 2 — 94) homoplasmic mMtDNA mutations distinguished simulated donor-
recipient pairings.

B ldentification of a total of 924 homoplasmic mtDNA mutations across 189 individuals from 3 published
datasets (24,25). Shown is the number of total mtDNA mutations as a function of the number of
individuals analyzed.

C In-silico mixing experiment using published (15) mitochondrial single-cell chromatin accessibility
(mtscATAC-seq) and single-cell RNA sequencing (ScCRNA-seq) profiles of peripheral blood obtained from
pre-transplant CLL patients (CLL4 and CLL5) to benchmark mitochondrial DNA (mtDNA)-based
deconvolution with single nucleotide polymorphisms (SNPs).

Top: Correctly annotated CLL4 cells after deconvolution of mixed data for conditions from 1 to 1,000
CLL4 cells spiked into 7,579 CLL5 cells.

Bottom: Germline-free deconvolution of mixed scRNA-seq data with souporcell. For fewer than 100
(souporcell) CLL4 cells spiked into 10,000 CLL5 cells annotations are randomly assigned (left).
Deconvolution using vireo and scRNA-seq germlines (right).

D In-vitro mixing experiment. CD28/CD3-bead stimulated and IL7/IL15-expanded T cells transduced with
a lentiviral expression vector encoding a MART1-specific murinized T cell receptor (TCR) from donorl
were mixed with unmanipulated peripheral blood mononuclear cells (PBMCs) from donor2 at ratios of 1:3,
1:30 and 1:300. Total-seq B (TSB) oligotags were used for detection of surface marker expression with
ASAP-seq. Flow cytometry plot shows the percentage of MART1-specific T cells in donorl after T cell
expansion and transduction with lentiviral expression vector.

E UMAP projection of 13,988 single-cell chromatin accessibility profiles annotated by cell types (top left),
donorl (orange) or donor2 (purple) (top right) and detected fragments of the lentiviral expression vector
(red) (bottom left).

F-G Identification of donorl- or donor2-derived cells, doublets and unannotated cells with maternal
MtDNA variants.

H Correlation of identified cells from donorl with experimental mixing conditions.

| Effect of T cell expansion protocol on chromatin profiles of CD8" T cells demonstrated by differential
chromatin accessibility of transcription factor binding motifs.

J Absolute number of MART1-specific T cells detected across donorl and donor2 across the 3 dilution
steps.
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Figure 4. Tracking of AML in post-HSCT AML relapse responsive to immunosuppression tapering
(IST).

A Overview of experimental strategy. Bone marrow and peripheral blood samples of 4 patients with AML
(IST1-4) who had an incipient relapse post-HSCT treated with rapid IST (left) were analyzed by ASAP-
seq to capture chromatin accessibility, surface protein expression and mitochondrial DNA (mtDNA)
profiles. Surface protein expression was detected using Total-seq B (TSB) antibodies (right).

B UMAP representation of 19,143 single-cell chromatin accessibility profiles annotated by cell types
derived from manual annotation (left) and donor-recipient annotation (right).

C Longitudinal dynamics of cell types before (pre, light blue) and after (post, light green) IST in bone
marrow (BM, black) or peripheral blood (PB, grey).

D Donor chimerism across various cell types pre and post-IST.

E Surface protein expression (TSB), gene scores, transcription factor motif activity (both inferred from
chromatin accessbility) and mtDNA mutations in recipient- and donor-derived monocytes in IST1. The
specificity of mtDNA mutations for AML (top), donor-derived immune cells (middle) and donor-recipient
deconvolution (bottom) is indicated.

F Surface protein levels of CD11c and CD14 in recipient- and donor-derived monocytes in IST1.

G Chromatin accessibility of IL1B in recipient- and donor-derived monocytes in IST1.

H CD4 and CD8 surface protein levels of donor-or recipient-derived T cells in IST3 and IST4.

| Level of surface PD1 in donor- or recipient-derived T cells in IST3.

J Surface protein expression (TSB), gene scores and activity of EOMES transcription factor motif (both
inferred from chromatin accessibility) in recipient- and donor-derived T cells in IST3.

Figure 5. Identification of residual donor-derived hematopoiesis and tracking of AML subclones.

A Overview of experimental strategy. ASAP-seq was performed on serial bone marrow samples from 5
participants of the ETCTN/CTEP 10026 study (decitabine and ipilimumab for post-transplant AML
relapse).

Study time points (black) included screening, after one cycle of decitabine, following
ipilimumab/decitabine combination (C1, C2, C4, C10) and end of treatment. Additional samples for select
patients are indicated and include complete remission (CR) and relapse prior to first or following second
stem cell transplantation (HSCT1, HSCT2).

Total-seq A (TSA) was used for hashing of samples while Total-seq B (TSB) was used for detection of
surface protein expression.

B UMAP projection of single-cell chromatin accessibility profiles annotated into cell types using ASAP-seq
(top) and annotated by identified donor-derived non-T cells (black) that represent residual donor-derived
hematopoiesis within disease relapse (grey) (bottom). For AML1012, residual hematopoiesis was
detected based on absence of copy number variations (CNV).

C Percentage of residual donor-derived hematopoiesis across cell subsets in AML1010, AML1011 and
AML1026.

D Correlation of clinical T cell bulk chimerism from short-tandem repeat analysis with mtDNA-based
single-cell T cell chimerism.

E ldentification of subclones in AML1010 using 71 mtDNA mutations (left) and longitudinal tracking
throughout the ETCTN/CTEP 10026 study across cellular compartments (right).

F Longitudinal tracking of mtDNA-derived subclones in AML1012 (left) and AML1011 (right) at indicated
timepoints.

G Longitudinal tracking of mtDNA-derived subclones in AML1007 throughout ETCTN/CTEP 10026 and at
relapse after a second haploidentical allogeneic hematopoietic stem cell transplantation (left). UMAP
representations showing cell types in AML1007 (top left UMAP) and heteroplasmy of 5668G>C at the
indicated timepoints (right).

Statistical testing with Pearson’s correlation coefficient (D).
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Figure 6. Co-evolution of somatic nuclear and mitochondrial DNA (mtDNA) mutations in AML.

A Overview of experimental strategy. Three AML cases were previously genetically characterized using
whole-exome sequencing (31).

Through design of an amplicon panel with 127 targets in combination with a pan-mtDNA panel, single-cell
DNA sequencing (scDNA-seq) on the Tapestri platform (MissionBio) was used to enable read-out of
somatic nuclear and mitochondrial DNA mutations in the same cells. This permitted combined analysis of
co-segregation and co-evolution of these two classes of mutations.

B Heatmap of AML1010. Protein expression with Total-seq D (top), somatic nuclear DNA mutations
(middle) and mtDNA mutations (bottom) are shown.

C Fish plot of subclonal structure in AML1010 taking into account somatic nuclear and mitochondrial DNA
mutations (left). Two mutually exclusive mutations in TCF define the main clones of AML1010, while
additional mtDNA mutations further refine the identification of subclones. One subclone (brown) is further
notable for the absence of NRAS®*?P,

Changes in subclones of AML1010 across phenotypic compartments during decitabine/ipilimumab
treatment on ETCTN/CTEP 10026 (right).

D Heatmap of AML1026. Protein expression with Total-seq D (top), somatic nuclear DNA mutations
(middle) and mtDNA mutations (bottom) are shown.

E Fish plot of subclonal structure in AML1026 taking into account somatic nuclear and mitochondrial DNA
mutations (left).

While all AML cells harbor mutations in SRSF2°%", SF3B17"*? and NRAS®™*?, two main subclones are
identified that are driven by POLR3B"*'* or CCDC88B"***" and PLBC2 %, respectively.

Changes in subclones of AML1026 during decitabine/ipilimumab treatment on ETCTN/CTEP 10026

(right).

Figure 7. Co-evolution of somatic nuclear and mitochondrial DNA (mtDNA) mutations in AML1012.
A Heatmap of single cell proteogenomic data of AML1012 prior to (Screening) and following four cycles
(C4) of decitabine and ipilimumab treatment. Protein expression with Total-seq D (top), identification of
somatic nuclear DNA mutations (middle) and mtDNA mutations (bottom) are shown.

B Fish plot of subclonal structure in AML1012 taking into account somatic nuclear and mitochondrial DNA
mutations (left). Changes in subclones of AML1012 across phenotypic compartments during
decitabine/ipilimumab treatment on ETCTN/CTEP 10026 (right).

C Expansion of FBXW77*%¢ 13708G>C and 14739G>C in AML1012 after 4 cycles of therapy with
decitabine/ipilimumab compared to the screening timepoint. 14739G>C is uniquely detectable in the
expanding cluster 4 (orange) (right).
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