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Abstract
Background and Objectives
The 2022 International Consortium for Optic Neuritis diagnostic criteria for optic neuritis
(ON) include optical coherence tomography (OCT). The diagnostic value of intereye dif-
ference (IED) metrics is high for ON in patients with multiple sclerosis and aquaporin-4
antibody seropositive neuromyelitis optica spectrum disorders, but unknown in myelin oli-
godendrocyte glycoprotein antibody–associated ON (MOG-ON).

Methods
A multicenter validation study was conducted on the published IED cutoff values (>4% or
>4 μm in the macular ganglion cell and inner plexiform layer [mGCIP] or >5% or >5 μm in the
peripapillary retinal nerve fiber layer [pRNFL]) in individuals withMOG-ON and age-matched
and sex-matched healthy controls (HCs). Structural data were acquired with Spectralis spectral-
domain OCT >6 months after ON. We calculated sensitivity, specificity, and receiver operating
characteristics for both intereye percentage (IEPD) and absolute difference (IEAD).

Results
A total of 66 individuals were included (MOG-ONN = 33; HCs N = 33). ON was unilateral in
20 and bilateral in 13 subjects. In the pooled analysis, the mGCIP IEPD was most sensitive
(92%), followed by the mGCIP IEAD (88%) and pRNFL (84%). The same pattern was found
for the specificity (mGCIP IEPD 82%, IEAD 82%; pRNFL IEPD 82%, IEAD 79%).
In subgroup analyses, the diagnostic sensitivity was higher in subjects with unilateral ON (>99%
for all metrics) compared with bilateral ON (61%–78%).

Discussion
In individuals with MOG-ON, the diagnostic accuracy of OCT-based IED metrics for ON was
high, especially of mGCIP IEPD.

MORE ONLINE
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Classification of Evidence
This study provides Class III evidence that the intereye difference on OCT can distinguish between those with MOG and
normal controls.

Introduction
The International Consortium for Optic Neuritis (ICON)
has recommended inclusion of retinal optical coherence to-
mography (OCT) as a paraclinical test for the diagnosis of
optic neuritis (ON).1 The potential to identify clinical and
even subclinical damage to the optic nerve through a non-
invasive and cost-effective in vivo measurement of distinct
retinal layers has been previously described in multiple scle-
rosis (MS)–associated ON (MS-ON).2-4 Following ON, at-
rophy is observed in the peripapillary retinal nerve fiber layer
(pRNFL) and the macular ganglion cell-inner plexiform layer
(mGCIP) complex. In addition to absolute pRNFL and

mGCIP values, intereye difference (IED) metrics proved
valuable for identifying, especially unilateral, optic nerve dam-
age. An intereye percentage difference (IEPD) ofmore than 5%
for pRNFL or more than 4% for mGCIP is diagnostic for an
episode of past unilateral ON, with a specificity up to 97% and
sensitivity up to 100% in MS.5-8 Recently, we validated these
IED thresholds in people with aquaporin-4 antibody (AQP4-
IgG) seropositive neuromyelitis optica spectrum disorders and
unilateral ON (AQP4-IgG+NMOSD).9 Yet, no study has been
performed evaluating the applicability of IED in people with a
history of ON in myelin oligodendrocyte glycoprotein

Table 1 Cohort Data

Baseline (subjects)

HCs MOG-ON

Subjects [N] 33 33

Subjects with unilateral ON [N (%)] 20 (61)

Subjects with bilateral ON [N (%)] 13 (39)

Eyes [N] 66 66

Age [y, mean (SD)] 34 (11) 39 (15)

Sex [m, N (%)] 16 (48.5) 16 (48.5)

Time since ON [y, mean (SD)] 3 (4)

pRNFL [μm, mean (SD)] 95.98 (7.91) 71.03 (24.35)

mGCIP [μm, mean (SD)] 86.48 (9.64) 67.32 (19.46)

IEAD pRNFL [μm, mean (SD)] 2.70 (2.49) 23.75 (17.50)

IEPD pRNFL [%, mean (SD)] 2.77 (2.61) 25.90 (16.85)

IEAD mGCIP [μm, mean (SD)] 2.61 (2.70) 20.60 (13.10)

IEPD mGCIP [%, mean (SD)] 2.92 (2.88) 24.94 (14.52)

Abbreviations: HCs = healthy controls; IEAD = intereye absolute difference;
IEPD = intereye percentage difference;mGCIP = combinedmacular ganglion
cell and inner plexiform layer; MOG-ON = myelin oligodendrocyte glyco-
protein antibody–associated optic neuritis; pRNFL = peripapillary retina
nerve fiber layer.

Table 2 Intereye Percentage and Absolute Differences

t p Value

MOG-ON (all subjects) vs HCs

pRNFL IEAD [μm] −6.739 <0.001

pRNFL IEPD [%] −7.678 <0.001

mGCIP IEAD [μm] −6.760 <0.001

mGCIP IEPD [%] −7.473 <0.001

MOG-ON (unilateral) vs HC

pRNFL IEAD [μm] −7.796 <0.001

pRNFL IEPD [%] −8.642 <0.001

mGCIP IEAD [μm] −8.429 <0.001

mGCIP IEPD [%] −8.213 <0.001

MOG-ON (bilateral) vs HC

pRNFL IEAD [μm] −2.499 0.028

pRNFL IEPD [%] −3.118 0.009

mGCIP IEAD [μm] −2.389 0.043

mGCIP IEPD [%] −2.886 0.020

Abbreviations: HCs = healthy controls; IEAD = intereye absolute difference;
IEPD = intereye percentage difference;mGCIP = combinedmacular ganglion
cell and inner plexiform layer; MOG-ON = myelin oligodendrocyte glyco-
protein antibody–associated optic neuritis; pRNFL = peripapillary retina
nerve fiber layer; t = t test statistics.

Glossary
AUC = area under the curve; HCs = healthy controls; ICON = International Consortium for Optic Neuritis; IEAD = intereye
absolute difference; IED = intereye difference; IED = intereye difference; IEPD = intereye percentage difference; mGCIP =
macular ganglion cell and inner plexiform layer; MOG-ON = myelin oligodendrocyte glycoprotein antibody–associated ON;
NMOSD = neuromyelitis optica spectrum disorders; OCT = optical coherence tomography; ON = optic neuritis; pRNFL =
peripapillary retinal nerve fiber layer; ROC = receiver operating characteristic.
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antibody–associated optic neuritis (MOG-ON) and in people
with a history of bilateral ON.

Distinct from MS and AQP4-IgG seropositive neuromyelitis
optica spectrum disorders (NMOSD), MOG-ON is charac-
terized by serum antibodies directed against myelin oligoden-
drocyte glycoprotein (MOG-IgG). Patients with MOG-IgG
may present with a range of neurologic manifestations, the
most frequent presentation being ON. Characteristics of
MOG-ON include, for example, severe edema10 and a high
frequency of bilateral MOG-ON.11 While OCT has been used
to quantify visual pathway damage and dysfunction in ON
associated with MOG-IgG, no studies have yet evaluated the
accuracy of previously established IED thresholds for di-
agnosing MOG-ON.12,13 Owing to the high frequency of bi-
lateral MOG-ON, it is particularly important to evaluate the
diagnostic accuracy of current IED thresholds for bilateral
presentation. Thus, this multicenter study aims to evaluate the
diagnostic accuracy of reported IED values for people with
unilateral and bilateral MOG-ON compared with healthy

controls (HCs). The primary question being addressed is
whether the intereye difference on OCT can effectively dis-
tinguish between individuals with MOG-ON and HCs.

Methods
This is an international, multicenter study. Data are cross-
sectional and retrospective and curated by an adjudication
committee to ensure that both quality and completeness of
data sets were fulfilled. Data from patients with MOG-ON
and HCs were collected at Moorfields Eye Hospital NHS
Foundation Trusts and University College London Queen
Square Institute of Neurology and The National Hospital for
Neurology and Neurosurgery between February 2023 and
May 2023 and at Charité-Universitätsmedizin Berlin, Ger-
many, and Nitte University, Mangalore, India, as part of the
international Collaborative Retrospective OCT in Neuro-
myelitis Optica (CROCTINO) study between September
2016 and September 2018.14

Figure 1 Intereye Percentage and Absolute Differences

IEPD and IEAD comparisons using a beeswarm plot for (A–B) pRNFL and (C–D) mGCIP. The IEPD and IEAD of pRNFL and mGCIP were significantly higher in
MOG-ON compared with HCs (p < 0.001). HCs = healthy controls; IEAD = intereye absolute difference; IEPD = intereye percentage difference; mGCIP =
combined macular ganglion cell and inner plexiform layer; MOG-ON = myelin oligodendrocyte glycoprotein antibody–associated optic neuritis; pRNFL =
peripapillary retina nerve fiber layer.
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We included individuals diagnosed with MOG-ON according
to published criteria,11 who had experienced unilateral or bi-
lateral ON at least 6 months before OCT measurements. An
HC group was used for comparison. To be included in the
study, the following criteria had to be met: (1) OCT data had
to be acquired using Spectralis spectral-domain OCT (SD-
OCT); (2) individuals must not have had any other eye
conditions potentially affecting the OCT analysis (as defined
in the OSCAR-IB criteria15,16); (3) individuals should not
have experienced any additional episodes of ON within the 6
months leading up to the date of examination. Clinical in-
formation including age, sex, and the onset date of ON were
collected at the discretion of each participating study center.
MOG-IgG antibodies were detected in the serum samples
using cell-based assays.17 Our data have been reported in
accordance with the guidelines outlined in the Enhancing the
Quality and Transparency of Health Research reporting.18

Optical Coherence Tomography
All OCT imaging was acquired at each center using Spectralis
SD-OCT devices (Heidelberg Engineering, Heidelberg,
Germany).9 The pRNFL thickness was measured using a 12°

(or 3.5-mm diameter) peripapillary ring scan. The mGCIP
thickness was determined by calculating a 3-mm diameter
annulus around the fovea, excluding the central 1-mm di-
ameter cylinder from a volume scan. The assessment of OCT
data was conducted at Moorfields Eye Hospital NHS Foun-
dation Trusts by 3 graders for the UK data set and the
CROCTINO data set as previously described.19 All OCT
images met the OSCAR-IB criteria15,16 and have been pre-
sented in compliance with the recommendations of Apostel
V.2.0.20,21

Standard Protocol Approvals, Registrations,
and Patient Consents
This study was registered as an audit for publication (Study
Number ROAD 17/01), and the institutional review board
waived the need for approval and informed consent due to its
noninterventional, retrospective design.

Statistical Analyses
We conducted statistical analyses using R (V.4.2.1) (RStudio,
Boston, MA).22 The data were stratified in cohorts based on
diagnosis and history of unilateral or bilateral MOG-ON.

Figure 2 Diagnostic Sensitivity and Specificity of IED in MOG-ON

ROC curves for IED for pRNFL and
mGCIP discriminating between MOG-
ON vs HCs. ROC curves are plotted for
all subjects with MOG-ON. All param-
eters exhibited a high discriminative
power when comparing patients with
MOG-ON with HCs, considering the
entire subject pool (A–D). AUC = area
under the curve; HCs = healthy con-
trols; IEAD = intereye absolute differ-
ence; IEPD = intereye percentage
difference; mGCIP = combined mac-
ular ganglion cell and inner plexiform
layer; MOG-ON = myelin oligoden-
drocyte glycoprotein antibody–
associated optic neuritis; pRNFL =
peripapillary retina nerve fiber layer;
ROC = receiver operating
characteristic.
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Continuous data were described as the mean ± SD, unless
specified otherwise. Intereye absolute difference (IEAD) was
computed as the absolute difference between the measure-
ments in the 2 eyes for both pRNFL and mGCIP. IEPD was
calculated by dividing the IEAD by that of the eye with higher
values and then multiplying the result by 100. Age, IEAD, and
IEPD were compared between groups using unpaired t tests.
Statistical significance was defined at p < 0.05.We assessed the
diagnostic accuracy using receiver operating characteristic
(ROC) curves. The area under the curve (AUC) was used to
evaluate the discriminative power, categorized as low/no
discriminative power (AUC <0.7), moderate discriminative
power (AUC 0.7–0.9), or high discriminative power (AUC
>0.9). The ROC curves were contrasted to evaluate statisti-
cally significant differences between the IEPD and IEAD. The
optimal threshold values were determined using the Youden
index.

Data Availability
Data are available on reasonable request.

Results
Cohort
There were a total of 54 patients with MOG-ON within the
CROCTINO study, and 98 cases were identified at Moor-
fields Eye Hospital NHS Foundation Trusts and University
College London Queen Square Institute of Neurology and

The National Hospital for Neurology and Neurosurgery.
Inclusion criteria were met by 11 patients in the CROCTINO
study and 22 within the London cohort. In total, we included 33
patients with MOG-ON and a history of unilateral or bilateral
ON and 33 age-matched (p= 0.178) and sex-matched (p>0.99)
healthy controls for comparison (Table 1).

Among the patients with MOG-ON, 20 individuals had a
history of unilateral ON (age: 37.8 ± 15.5 years, 50% male,
mean time since ON: 3.4 ± 4.0 years) and 13 patients had a
history of bilateral ON (age: 40.1 ± 14.1 years, 46% male,
mean time since ON: 3.3 ± 4.4 years).

IEPD and IEAD
As expected, the IEPD and IEAD of pRNFL andmGCIPwere
found to be higher in MOG-ON compared with HCs
(Table 2 and Figure 1). This difference existed for both pa-
rameters in the entire cohort and in the subsets of patients
with a history of unilateral ON (p < 0.001) and bilateral ON
(IEPD pRNFL [p = 0.009], IEAD pRNFL [p = 0.028], IEPD
mGCIP [p = 0.020], and IEAD mGCIP [p < 0.044])
(Table 2).

Diagnostic Sensitivity and Specificity of IED
in MOG-ON
The discriminative power of IEPD and IEAD was found to be
high (AUC >0.9) for HCs vs all patients with MOG-ONwhen
considering the mGCIP. Similarly, the discriminative power of

Table 3 Diagnostic Sensitivity and Specificity of IED in MOG-ON

AUC 95% CI Specificity (%) Sensitivity (%) Positive predictive value Negative predictive value

MOG-ON vs HCs

pRNFL IEAD 0.89 0.80–0.98 79 84 0.80 0.83

pRNFL IEPD 0.93 0.86–1.0 82 84 0.82 0.84

mGCIP IEAD 0.92 0.83–1.0 82 88 0.83 0.87

mGCIP IEPD 0.94 0.86–1.0 82 92 0.84 0.91

MOG-ON (unilateral) vs HC

pRNFL IEAD 0.99 0.98–1.0 79 ≥99 0.74 0.99

pRNFL IEPD >0.99 0.98–1.0 82 ≥99 0.77 0.99

mGCIP IEAD 0.99 0.98–1.0 82 ≥99 0.77 0.99

mGCIP IEPD 0.99 0.98–1.0 82 ≥99 0.77 0.99

MOG-ON (bilateral) vs HC

pRNFL IEAD 0.73 0.53–0.93 79 62 0.53 0.84

pRNFL IEPD 0.83 0.67–0.98 82 62 0.57 0.84

mGCIP IEAD 0.79 0.58–1.0 82 67 0.59 0.86

mGCIP IEPD 0.84 0.63–1.0 82 78 0.63 0.90

Abbreviations: HCs = healthy controls; IEAD = intereye absolute difference; IEPD = intereye percentage difference; mGCIP = combined macular ganglion cell
and inner plexiform layer; MOG-ON =myelin oligodendrocyte glycoprotein antibody–associated optic neuritis; pRNFL = peripapillary retina nerve fiber layer.
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IEPD was excellent (AUC >0.9) and that of IEAD was mod-
erate (AUC 0.8–0.9) for the pRNFL (Figure 2, A–D).

When assessing previously reported threshold values (IEAD:
5 μm, IEPD: 5% for pRNFL, and IEAD: 4 μm, IEPD: 4% for
mGCIP), patients with MOG-ON could be distinguished
from HCs with a strong discriminatory power using each
metrics (Figure 2 and Table 3). Similarly, an excellent dis-
criminative power was observed in subgroup analysis when
considering unilateral or bilateral MOG-ON cases vs HCs
(Figures 3 and 4). Remarkably, bilateral MOG-ON can be
distinguished with moderate discriminative power from HCs
using these metrics.

A statistically significant difference was observed when com-
paring the ROC curves for IEPD and IEAD in both pRNFL (p =
0.035) and mGCIP (p = 0.048) across the entire MOG-ON
cohort. This difference was also evident in considering only
bilateral cases, with pRNFL (p= 0.024) andmGCIP (p= 0.016).

When assessing the optimal combined sensitivity and speci-
ficity using the Youden index, the obtained thresholds were
slightly higher than those published.1 For the entire MOG-

ON cohort, the thresholds for IEAD and IEPD in pRNFL
were determined at 6.50 μm (specificity 94%; sensitivity 81%)
and 6.58% (specificity 97%; sensitivity 84%), respectively.
The optimal mGCIP thresholds were 5.50 μm for IEAD
(specificity 91%; sensitivity 84%) and 8.62% for IEPD
(specificity 94%; sensitivity 88%).

Similar thresholds were identified when restricting the anal-
ysis to subjects with unilateral MOG-ON for pRNFL (IEAD:
6.50 μm, specificity: 94%, sensitivity: ≥99%; IEPD: 6.58%,
specificity: 97%, sensitivity: ≥99%) and for mGCIP (IEAD:
5.50 μm, specificity: 91%, sensitivity: ≥99%; IEPD: 8.62%,
specificity: 94%, sensitivity: ≥99%). In the context of bilateral
MOG-ON, the optimal pRNFL thresholds for IEAD were
determined as 6.50 μm (specificity 94%; sensitivity 54%) and
for IEPD as 6.91% (specificity 97%; sensitivity 61%). For
mGCIP, the IEAD threshold was 4.50 μm (specificity 85%;
sensitivity 67%) while the IEPD threshold was 5.16% (spec-
ificity 88%; sensitivity 78%).

This study provides Class III evidence that the intereye dif-
ference on OCT can distinguish between those with MOG
and controls.

Figure 3 Diagnostic Sensitivity and Specificity of IED in Unilateral MOG-ON

ROC curves for IED for pRNFL and
mGCIP discriminating between unilat-
eral MOG-ON vs HCs. ROC curves are
plotted for unilateral MOG-ON. All
parameters exhibited a high discrimi-
native power when comparing pa-
tients with unilateral MOG-ON with
HCs (A–D). AUC = area under the curve;
HCs = healthy controls; IEAD = intereye
absolute difference; IEPD = intereye
percentage difference; mGCIP = com-
bined macular ganglion cell and inner
plexiform layer; MOG-ON = myelin ol-
igodendrocyte glycoprotein
antibody–associated optic neuritis;
pRNFL = peripapillary retina nerve fi-
ber layer; ROC = receiver operating
characteristic.
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Discussion
This study provides evidence for the high performance of
OCT as a paraclinical test for the diagnosis of past ON in
individuals with unilateral and bilateral MOG-ON. Previous
studies have validated the accuracy of IED metrics for iden-
tifying ON inMS6,8,23 and AQP4-ON.9 This study extends on
the validation of the new diagnostic criteria regarding the IED
to MOG-ON and suggests a clear benefit of applying IED
metrics in people with a history of bilateral ON.1

Our data underscore the validity of IEAD (pRNFL 5 μm and
mGCIP 4 μm) and IEPD (pRNFL 5% and mGCIP 4%)
thresholds, as defined in the novel ON diagnostic criteria1

and, in such, show excellent diagnostic sensitivity and speci-
ficity for MOG-ON.

Of interest, the established threshold showed a significant
IED in bilateral MOG-ON cases as well. A similar unexpected
result was previously observed in bilateral MS-ON, where
asymmetric diffuse damage affecting the IEPD of the mGCIP
was considered the likely underlying cause.6 In the case of
bilateral MOG-ON, it is plausible that a prompter

corticosteroid treatment intervention at the onset of the in-
flammatory phase of ON might have contributed to a better
retinal neuroaxonal salvage and maintenance in the second
eye, leading to a high IEPD/IEAD in a significant proportion
of our cases.10,24 This speculation is based on the potential of
corticosteroid administration at onset, which has been shown
to lead to better visual outcomes,25-27 yet it is important to
note that there is currently no clear evidence regarding the
effects of acute corticosteroid treatment in rescuing neuro-
axonal retinal structures. Furthermore, a difference in the
severity of the episodes among eyes might also have con-
tributed to the conservation of a high IEPD/IEAD. Another
factor to consider is the potential influence of asymmetric
involvement in bilateral ON, where one side is primarily af-
fected and milder damage occurs to the fellow nerve. This
may occur as preferential impairment of axons compared with
the actual cell bodies involved in the primarily affected side.

Consistent with studies assessing MS-ON, the IEPD seemed to
have higher diagnostic accuracy compared with IEAD, with
mGCIP being superior to the pRNFL in bilateral cases. The
relatively more homogeneous configuration of the macula,
compared with the higher anatomical variability of the optic disc,

Figure 4 Diagnostic Sensitivity and Specificity of IED in Bilateral MOG-ON

ROC curves for IED for pRNFL and
mGCIP discriminating between bi-
lateral MOG-ON vs HCs. ROC curves
are plotted for bilateral MOG-ON. In
the context of bilateral MOG-ON pre-
sentations, measured parameters
show a moderate discriminative
power in distinguishingMOG-ON from
the healthy control group (A–D). AUC =
area under the curve; HCs = healthy
controls; IEAD = intereye absolute dif-
ference; IEPD = intereye percentage
difference; mGCIP = combined macu-
lar ganglion cell and inner plexiform
layer; MOG-ON = myelin oligodendro-
cyte glycoprotein antibody–associated
optic neuritis; pRNFL = peripapillary
retina nerve fiber layer; ROC = receiver
operating characteristic.
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likely explains why themGCIP data are more consistent between
eyes and patients than pRNFL in MS-ON6,23 and our cohort.

When comparing the published thresholds established in MS
with the optimal cutoff in the context of MOG-ON,1 we
observed that the optimal cutoffs were only marginally higher
than the published thresholds. The higher cutoff values may
be related to the fact that inner retinal layer atrophy is more
severe in MOG than in MS or NMOSD.9 This observation
not only further validates the discriminative efficacy of the
published cutoffs but also supports their value, even in the
context of bilateral ON. Yet, cutoffs for differential diagnoses
might be valuable to consider in the future.

In validating the IED criteria of the ICON2022 inMOG-ON,we
have confirmed the potential of IED as a diagnostic tool for
objective assessment and monitoring in the most common en-
tities of autoimmune ON. However, it is important to note that
although these OCT criteria are useful in detecting previous ON
episodes, they are not diagnostically specific for a subtype of
ON.6,11 Longitudinal studies are necessary to investigate potential
OCT biomarkers that might help to differentiate ON subtypes.
Specifically,MOG-ON is often associatedwith extreme optic disc
and pRNFL edema in the acute phase, followed bymarked retinal
neurodegeneration.12,13,27-30 The IED proves to be a useful pa-
rameter to detect the neuroaxonal degeneration subsequent to
bilateral MOG-ON. Moreover, monitoring IED metrics over
time could serve as a valuable additional tool to differentiate
between monophasic and multiphasic MOG-ON, thereby sup-
porting treatment recommendations and ensuring the correct
enrollment of specific subgroup of patients in clinical trials.

Our study has several strengths, including the multicenter
setting within the international CROCTINO cohort and the
use of one OCT device type (Spectralis spectral domain)
reducing the intermachine bias when considering absolute
values of pRNFL and mGCIP. Yet, focusing on one para-
clinical test alone is also a limitation of these findings. We are
unable to comment on the potential added value of com-
bining multiple paraclinical tests such as OCT and MRI31 or
OCT and visual evoked potentials.32 In addition, we cannot
estimate the influence of the acute treatment, or treatment
delay, the patient underwent on the measured parameters.
Another weakness is the retrospective design, and future work
should consider including prospective and longitudinal data.

Overall, this study provides strong evidence of the diagnostic
accuracy of IED metrics in MOG-ON, validating the recently
published paraclinical OCT criteria in this subgroup of patients.
Our findings emphasize the significance of incorporating IED
parameters in future studies focusing on MOG-ON. By in-
tegrating these metrics, researchers and clinicians can use a non-
invasive, cost-effective tool to diagnose MOG-ON, which has the
additional advantage of providing easily comparable metrics.
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Universitätsmedizin
Berlin; Neuroscience
Clinical Research Center
(NCRC), Charité -
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