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ABSTRACT

Motivation: Subcellular protein localization data are critical to the
quantitative understanding of cellular function and regulation. Such
data are acquired via observation and quantitative analysis of fluores-
cently labeled proteins in living cells. Differentiation of labeled protein
from cellular artifacts remains an obstacle to accurate quantification.
We have developed a novel hybrid machine-learning-based method to
differentiate signal from artifact in membrane protein localization data
by deriving positional information via surface fitting and combining this
with fluorescence-intensity-based data to generate input for a support
vector machine.

Results: We have employed this classifier to analyze signaling pro-
tein localization in T-cell activation. Our classifier displayed increased
performance over previously available techniques, exhibiting both
flexibility and adaptability: training on heterogeneous data yielded a
general classifier with good overall performance; training on more spe-
cific data cyielded an extremely high-performance specific classifier.
We also demonstrate accurate automated learning utilizing additional
experimental data.

Availability: http://atb.slac.stanford.edu/~kasson/membraneclassifier.

html

Contact: brunger@stanford.edu

Supplementary information: http://ath.slac.stanford.edu/~kasson/
classifier_suppl.pdf

INTRODUCTION

The use of subcellular protein localization datato provide positional
information in addition to the expression data provided by genomic
and proteomic assays promises to open new frontiers in the quant-
itative understanding of cellular function. Both static and dynamic
localization of cell surface proteins control numerous aspects of cel-
lular polarity, function, and signaling and defects in localization
have been linked to the pathogenesis of neurodegenerative diseases

*To whom correspondence should be addressed.

(Davies et al., 1997; Saudou et al., 1998), neuromuscular diseases
(Gautam et al., 1996; Ohno et al., 2002), polycystic diseases (Huan
and van Adelsherg, 1999; Roitbak et al., 2004) and cancer metastasis
(Singh et al., 1998; Pagliarini and Xu, 2003; Xiaet al., 2004) anong
others. Protein localization is commonly monitored in real-time
using fluorescence microscopy techniques. Using these microscopy
images, quantitative information on protein localization changes can
be extracted and combined with other functional data for quantitat-
ive analyses of the role of protein localization and redistribution in
cellular function.

We and others have created systems to perform such analyses on
specific classes of proteins (Gerlich et al., 2001, 2003; Genovesio
et al., 2003; Kasson et al., 2005), but the initial process of extract-
ing the region of analytical interest (such as the cell membrane in
the case of membrane protein |ocalization) from fluorescence micro-
scopy datasets remains a major obstacle to accurate analysis. This
process, known as segmentation, is a critical stage because fluor-
escence signal that is erroneously excluded from the segmented
region islost to further analysis; signal that is erroneously included
becomes noise. Further, erroneously included artifacts can change
the topology of the extracted region, complicating subsequent spa-
tial analyses. Currently available techniques suffer from both these
weaknesses, and biological samples segmented with these tech-
niques frequently require extensive manual correction before the
results are suitable for accurate analysis. In this report, we present
anovel, machine-learning-based hybrid method for segmentation of
membrane protein localization data.

The problem of image segmentation—differentiating a structure
of interest from the rest of the image—is often addressed by meth-
ods based on edge-finding region-filling or threshol ding approaches.
Segmentation of the plasma membrane from fluorescence micro-
scopy images, however, is complicated by cellular autofluorescence
and by the presence of internal accumulations of fluorophore (cyto-
plasmic inclusions, internalized dye or green fluorescent protein
(GFP) fusion proteins present in the Golgi) as well as the prob-
lem of distinguishing membrane voxels from voxels external to
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(a) (b)

Fig. 1. Cell images from fluorescence microscopy of membrane proteins.
Shown are visualizations of a CD3;—GFP-labeled T cell. Displayedin (a) is
avolumerendering; displayedin (b) isamidplanethroughthecell. Coloringis
by voxel intensity. The magentaarrow in (b) indicatesaregion of intracellular
fluorophore accumulation; the yellow arrow indicates a portion of the cell
membrane that has low concentration of fluorophore.

the cell. A further challenge to segmentation is the fact that cell
membranes in fluorescence microscopy images are often more than
onevoxel thick and may containinvolutions (Fig. 1). Sincetheactual
thickness of the cell membrane is substantially less than one voxel,
this increased edge thickness may result from time-averaging of
small positional fluctuationsor may reflect increased local membrane
curvature (Glebov and Nichols, 2004).

This combination of internal fluorophore accumulations and
thick membrane edges results in inadequate performance by many
traditional segmentation methods. To address these challenges, we
have designed an advanced segmentation filter to be sensitive, spe-
cific and trainableto different types of data. Our hybrid classification
algorithm extracts positional information regarding cell membrane
contours using a level-set surface fitting approach (Caselles et al.,
1997) and then uses this information in conjunction with the ori-
ginal imageto calculate amultidimensional set of feature vectorsfor
each image voxel in the local neighborhood of the cell surface con-
tour. Final classificationisperformed using asupport vector machine
(SVM) (Cortes and Vapnik, 1995; Joachims, 1999), a supervised
learning technique for pattern recognition that has been successfully
appliedto fields such astext classification, object recognition (Pontil
and Verri, 1998), medical diagnosis, and protein structure and func-
tion prediction (Bock and Gough, 2001; Ding and Dubchak, 2001,
Chou and Cai, 2002; Karchin et al., 2002).

We trained and evaluated our classifier on localization data for
membrane signaling proteins involved in T lymphocyte activation.
These proteins have been observed to undergo changes in localiza-
tion specifically upon cellular activation (Monkset al., 1998; Wulfing
et al., 1998; Grakoui et al., 1999; Krummel et al., 2000), and these
changes are thought to have important functional consequences(Lee
etal., 2002; Daviset al., 2003; Huppaand Davis, 2003; Huppaet al .,
2003; Leeet al., 2003). Efficient segmentation of these localization
dataisrequired for accurate quantitative analysis of protein localiza-
tioninafunctional context. Wetrained and eval uated thisclassifier on
both heterogeneous and more narrowly selected image data, showing
substantial gains over existing segmentation methods for each. We
have also demonstrated the ability of our classifier to learn based on
dual-color datathat use amembrane-specific probeto incorporate an
experimental standard for membrane localization.

SYSTEM AND METHODS
Céll preparation and image acquisition

5C.C7 T lymphoblasts derived from T-cell-receptor transgenic mouse lymph
nodes were grown, retrovirally transfected with fluorophore fusion protein
constructs, and stimulated in vitro with the moth cytochrome ¢ peptide
88-103 presented on antigen-presenting cells (CH27/I-EX) as reported pre-
vioudly (Fink et al., 1986; Ehrlich et al., 2002; Huppa et al., 2003). Expert
manual segmentation experiments (see below) were performed using cells
transfected with CD3¢-GFP or LAT-GFP fusion proteins, while mem-
brane probe dual-color segmentation experiments were performed using
cells co-transfected with CD3¢—-GFP and PKC§—PH-Y FP fusion proteins.
Images were acquired on a Zeiss Axiovert SI00TV microscope with a 1.3
NA 40x Neo-Fluar or Fluar objective or a 1.4 NA 63x Apochromat object-
ive (Carl Zeiss, Jena, Germany). Samples were illuminated by a 300 W
xenon light source with a Sutter DG-4 filter changer (Sutter Instruments,
Novato, CA). Detection was performed using a cooled charge coupled
device (CCD) camera (Roper Scientific, Tucson, AZ). Z-scanning was
accomplished using a piezo-driven motor (Physik Instrumente, Waldbronn,
Germany). Cellswereimaged at 37°C in phenol red-free RPMI. Metamorph
5.0 (Universal Imaging Corporation, Downingtown, PA) was used for micro-
scope control; images were further processed using blind deconvolution
(Deblur 9.2; AutoQuant Imaging, Watervliet, NY). Datasets were collec-
ted at aresolution of 0.3pum x 0.3pum x 1um for dual-color experiments
and 0.5 um x 0.5m x 1 um for single-col or experiments. Theseresolutions
were chosen to optimize the trade-off between high-resolution data and the
motion blurring that results from slower, higher-resolution imaging of live
cells. Image datasets are enumerated in Supplementary Table 1.

I nitial segmentation and calculation of
SVM inputs

Our segmentation algorithm is schematized in Figure 2. The learning-based
classifier utilizesasurface-fitting method to obtain aninitial approximate seg-
mentation of the cell surface (Fig. 2a). For this purpose we employ the active
contour (level-set-based) model of Casselles et al. (1997). Voxels within the
loca neighborhood of the surface, empirically set as 1.7 um, are designated
for inclusion in the initial segmentation (Fig. 2b). Inputs to the SVM mod-
ule are then calculated for these voxels (Fig. 2c). Euclidean distance from
the surface is determined by calculation of a distance map from the active
contour surface as per Danielsson (1980). The observed voxel intensity and
voxel intensity gradient magnitude are calculated directly from the decon-
volved microscopy data. Finally, the surface normal vector is determined for
each voxel intheinitial segmentation and theintensity gradient magnitudeis
calculated for al voxels in the local neighborhood along that vector. These
four inputs constitute the input vector space for the SYM module (Fig. 2d).

SVM module

We employ an SVM (using the SVMlight implementation) using a radial
basis kernel function as follows:

f0=36 ( I ;s_,n ) " ©
j J

where f(x) is the function in transformed space, G is a Gaussian density
function, x is the input vector, &; are the support vectors, A ; are the scaling
parameters, B; are the fit parameters (Cortes and Vapnik, 1995; Joachims,
1999). Both first- and second-order kernels were tested, letting the kernel
function be either apolynomial or aradial basisfunction. A first-order radial
basi s function was sel ected based on optimal performance on thetraining set.
The learning parameter ¢ was set to 0.1.

SVM training

We have pursued two approaches for training the learning-based membrane
classifier. Thefirst and more flexible is training viamanual segmentation by
experts. To obtain training sets via expert manual segmentation, biologists
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Deconvolved Volume Data from Microscopy
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Fig. 2. Learning-based approach for volume segmentation. This schema
gives a high-level depiction of the supervised learning algorithm for volume
segmentation. In stage (a), alevel-set surface-fitting algorithmis used to pro-
duce an initial estimate of the cell surface from the deconvolved microscopy
data. The algorithm employed is a geodesic active contour segmentation
approach (Caselles et al., 1997). In (b), an e-rind is taken around the surface
(using e = 5voxels). In(c), thevoxelsselected in (b) are used to compute the
following inputsfor the SVM module: distance from theinitial surface, voxel
intensity, magnitude of the intensity gradient and magnitude of the intens-
ity gradient normal to the initial surface. In (d), the SYM module [(SVM
implementation by Joachims (1999)] classifies each voxel selected in (b) as
either membrane or non-membrane, yielding a set of segmented voxels. A
radial basis function kernel is used for the SVM, letting the function order
y=1C=01

who regularly analyze T-cell images were asked to trace cell contours for a
series of cells, each represented as a series of planar slices in two different
orientations (sequential x—y and x— planes, respectively). Each dice was
traced four times: by two independent biologists in two orientations each.
These tracings were scanned and combined to yield a segmentation confid-
ence score for each voxel. This score was converted to abinary classification
by a majority vote scheme, and the resulting segmentation was used to train
the SVM.

The five images in the heterogeneous training set were selected for seg-
mentation and training based on their diversity: these images were acquired
on four different days and represent cells labeled with two different fluores-
cent probe constructs: CD3¢—GFP and LAT-GFP. To create a more specific
training set, imageswere selected from experimentson cellsexpressing LAT—
GFP. Only images collected on the same day and manually segmented on the
same day were used; three cellsfit these criteria.

The second and more powerful approach for training our membrane clas-
sifier is to perform two-color microscopy experiments using a fluorescent
probe for the protein of interest in conjunction with a fluorescent membrane
probe. We have performed these experiments using acyan fluorescent protein
(CFP)-CD3¢ conjugate that co-migrates with the T-cell receptor and a yel-
low fluorescent protein (Y FP)—proteinkinase Cs pleckstrin homology domain
(PKCs—PH) conjugate that uniformly labels the plasma membrane (Stauffer
et al., 1998; Varnai and Balla, 1998). Training based on dual-color fluores-
cence with a membrane probe was performed using the membrane probe to
derive a cell-membrane binary classification for usein SVM training on the
test probe (in this case CD3¢) data. The membrane probe datawere classified
via k-means segmentation of the deconvolved microscopy data (k = 3; the
highest-intensity group is selected) or via segmentation of the deconvolved
microscopy data using the Moss filter. This classification was used to train
the SVM.

Implementation of previously available classifiers

k-means clustering was performed using the Matlab Statistics Toolbox (The
MathWorks, Natick, MA). Canny filtering (Canny, 1986) and level-set surface
fitting (Caselles et al., 1997) were implemented using the ITK class library
(http://www.itk.org). The Moss filter (Yang et al., 2001; Moss et al., 2002)
was implemented based on code provided by William Moss.

Evaluation of performance

Performance statistics are computed as follows, using expert manual seg-
mentation as a reference standard. Accuracy is defined as

TP+ TN
TP+FP+TN+FN /'
TP
TP+ FP

TP
(m) ’

where TP denotes the number of true positive classifications, FP the num-
ber of false positives, TN the number of true negatives and FN the number
of false negatives. Accuracy scores provide a composite measure of suc-
cessful membrane classification and successful exclusion of non-membrane
voxels. Recall scores measure how well membrane voxels were detected
by the classifier, and precision scores provide confidence vaues for posit-
ive results. For measurements of intracellular artifact inclusion, distances
to the center of the cell were computed for all voxels. Voxels x for which
dc (surfnearest(x)) — de(x) > one voxel width (0.3 or 0.5um) were spe-
cified as intracellular, where d. is the distance to the center of the cell and
surfnearest(x) is the surface voxel nearest to x.

precision as

and recall as

RESULTS AND DISCUSSION

We have used localization data from membrane signaling proteins
involved in T-cell activation to test and evaluate our learning-based
classifier. We first compare the performance of our classifier to that
of previously available methods on a heterogenous set of experi-
mental data and then go on to perform similar comparisons for
more narrowly focused data. In both cases, thelearning-based classi-
fier out-performs other available methods, particularly with respect
to the elimination of intracellular artifacts. We also demonstrate
methods for training the learning-based classifier using additional
fluorescent labels to visualize the cell membrane. These multiple
training regimes illustrate the power and flexibility of our approach,
as the learning-based classifier can easily be trained for optimal
performance in awide variety of applications.

Comparison of previoudy existing
classification methods

Representative segmentations of a membrane protein localization
dataset using a number of segmentation methods and comparisons
of their performance statistics (using expert manual segmentationasa
reference) are displayed in Figure 3. Adaptive thresholding methods
such as k-means clustering perform reasonably well on cell mem-
branes (Fig. 3b) but, because they ignore positiona information,
they erroneously include any high-intensity artifacts present in the
image. Many edge-based methods such as Canny filtering perform
less well on fluorescence microscopy images because of the thick
membrane edges (Fig. 3c). The Canny filter produces a relatively
poor segmentation, particularly in terms of accuracy and recall—it
does not capture membrane voxels well. More robust surface fitting
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Fig. 3. Existing methods for cell membrane segmentation. Shown in (a) isthe cell displayed in Figure 1, rendered as a series of sequential x—y planes through
the volume dataset. Shown in (b) is the inclusion mask for the same cell segmented via k-means (k = 2) clustering on intensity. Shown in (c) is asimilar
inclusion mask for segmentation by Canny filtering, with the threshold value for thinning set equal to the image median. This value was determined to have
near-optimal accuracy on a single test image. Shown in (d) the output of level-set surface fitting, and shown in (€) is the inclusion mask for segmentation via
the Moss filter. Plotted in (f) is the accuracy of the segmentation filters, plotted in (g) is the precision, and plotted in (h) is the recall with respect to manual
segmentation.
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approaches have been used successfully for related problemsin bio-
logical image segmentation (Zimmer et al., 2002). Such approaches
can successfully segment cell contours, but they fail to capture mem-
branethicknessandinvolutions(Fig. 3d). TheMossfilter (Yangetal.,
2001; Moss et al., 2002), which was developed specifically for the
segmentation of membrane structures, detects membrane structures
with fairly good sensitivity, successfully capturing thick membrane
edges (Fig. 3¢). It nevertheless has two major drawbacks. Firdt, it
produces a segmented cell membrane that is not fully connected and
often hassubstantial holes. Second, it oftenincludesintracellular arti-
facts that can substantially distort analysis. The Moss and k-means
filters have approximately equivalent overall performance. Intracel-
lular artifactsare also included to asimilar extent by the k-meansand
Moss filters. Common challenges to al of the methods compared
include overal performance, membrane thickness and particularly
the erroneous inclusion of intracellular artifacts.

General classifier

Visualizations from representative output of the learning-based clas-
sifier trained on expert manual segmentationsareshownin Figures4a
and b. Accuracy, precision and recall for the learning-based classi-
fier were determined via 5-fold cross-validation on the training data
and compared with the performance of the Moss filter and k-means
clustering onthe samedata. Ascan be seenfromthefigures, perform-
ance of the learning-based classifier (and that of al other classifiers
tested) is best in the planes closest to the equator of the cell, where
the fluorescence signa is highest. Intracellular artifacts are virtu-
aly absent from the segmentation generated by the learning-based
classifier.

A comparison of the performance of the expert-manual-
segmentation-trained classifier with that of the Moss filter is given
in Figure 4c—e. As can be seen from the performance statistics, the
learning-based classifier hasimproved accuracy over both the Moss
filter and k-meansclustering on thetest data, slightly increased preci-
sion and comparablerecall. Performance variations between datasets
result from several factors. First, a relatively heterogeneous set of
test data were chosen. Datasets from both CD3¢—GFP-labeled and
LAT-GFP-labeled cells were used; the fluorophore signal quality
aso varied substantially between datasets. This heterogeneous set
was chosen to train a classifier that would be as general as possible;
aclassifier trained on amore narrowly chosen training set, as shown
in the next section, will have better performance on images similar
to that training set. Also, the quality of the expert segmentations
varies somewhat from test image to test image. Thisis linked to a
larger issue—training and validation by expert segmentation isonly
as good as the expert segmentations themselves, and not all imaging
experts would create the same segmentation given the same image.
Nonetheless, the ability of the learning-based classifier to be trained
by biologists themselves to suit their particular purposes provides
flexibility and applicability to a wide range of biological imaging
problems.

One of the motivations for designing a novel segmentation fil-
ter was to reduce the number of intracellular artifacts segmented
as membrane. Figure 4f shows a comparison of the learning-based
classifier with the Moss filter and k-means classification in this
respect. Thelearning-based filter |abels ~10-fold fewer intracel lular
points as membrane than either the Mossfilter or k-means segment-
ation. Similarly, the false positive points (those labeled membrane
by the classifier but not in the expert segmentation) identified by the

learning-based classifier were on average 64% closer to the nearest
expert-labeled membrane point (and thus to the cell surface) than
those identified by the Moss filter and 210% closer than those iden-
tified by k-means clustering (Supplemental Figure 1b). Most false
positivesidentified by either thelearning-based classifier or the M oss
filter werein close proximity to the cell membrane, but this situation
occursto agreater extent in the learning-based classified output. The
k-means clustering output was notable for having a substantial num-
ber of false positive pointsfar from the membrane. A visualization of
the expert-segmented membrane points and the intracellular points
|abeled membrane by each of the learning-based classifier and Moss
filter is shown in Supplemental Figure 1c.

One weakness of all the classifiers tested, including both pre-
existing segmentation methods and the learning-based classifier
described in this work, is that the ‘top’ and ‘bottom’ of the cell
as it sits on the microscopy stage are segmented substantially less
well than planes near the equator. This difference results from lower
fluorescence signal at the poles of the cell, which in turn is caused
in part by anisotropy of theimage voxels (asymmetry resulting from
image resolution differing in the z-dimensions from that in x and y).
Fluorescence signal is increased near the equator of the cell where
the membranetangent planeisparallel to thelong axis of each voxel,
and is decreased near the poles where the membrane tangent planeis
orthogonal to the long axis of each voxel. Idedlly, a classifier would
take into account the direction of the membrane tangent relative to
the unit voxel dimensions in order to correct for this problem. This
remains an area for future development and a problem for which
machine-learning approaches are well suited.

L AT-specific classifier

Owingtothe nature of supervised learning, itisexpected that training
and cross-validation on amore narrowly chosen range of imageswill
yield agreater gain in performance. To demonstrate this more sel ect-
ive training scheme, images of three cells were chosen from asingle
dataset of LAT-GFP-labeled T cells stimulated as described in the
System and Methods section. The results of cross-validation testing
onthese cellsare shownin Figure 5. Ascan be seeninthefigure, the
LAT-specific classifier has a 35% point improvement in precision,
a 6% point improvement in recall, and a 2% point improvement in
accuracy compared with the Moss filter. Compared with k-means
clustering, it hasa14% point improvement in precision, a 17% point
improvement in recall, and a 2% point improvement in accuracy.
Our learning-based approach is thus quite flexible; it can be used to
train a generally applicable classifier with a moderate gain in per-
formance over existing segmentation agorithms, or it can be used
to train a more situation-specific classifier with markedly increased
performance.

Automated training from membrane
probedata

Even in the case of expert manual segmentation of the plasma mem-
brane, itisoften challenging to differentiateinvol utionsin the plasma
membrane from intracellular inclusions. Expert manual segmenta-
tion is also time-consuming and somewhat variable from inspection
to inspection and expert to expert. The ability to train a classifier
based on an experimental standard for the plasma membrane holds
the potential to address these drawbacks to manual segmentation. To
investigate this possibility, a humber of imaging experiments were
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Fig. 4. Learning-based segmentation of the plasma membrane. Shown are the results of 5-fold cross-validation experiments for the training of our membrane
classifier. Using a set of five 3D microscopy images of cells, the classifier was trained on four of the five and tested on the fifth. This procedure was repeated
for each cell in the test set. The test set contained three cells expressing CD3;—GFP and two cells expressing LAT-GFP. Rendered in (&) is acomparison of our
learning-based segmentation (in red) with manual segmentation (in green) of GFP-labeled LAT on the plasma membrane of asingle T lymphocyte. Regions of
overlap arein yellow. The rendering depicts sequential 1 .m slices through the cell volume. The same slices are given as sequential x—y planesin (b). (c—€)
The performance of our learning-based classifier with that of the Moss segmentation filter and k-means clustering with respect to accuracy of detection (c),
precision (d) and recall (e) are compared. Plotted in (f) is the percentage of intracellular points erroneously identified as membrane (with respect to manual
segmentation) by each classification method. For (c—f), both the individual cross-validation results and the average results are plotted.

performedinwhich T cellsweretransfected with both a CD3¢—-CFP
probe and a membrane-specific PLC§—PH-Y FP probe.

Asafirst stepintheanalysisof thedual -fluorophore data, themem-
brane probe data were automatically segmented to yield areference
set for training the learning-based classifier on the CD3¢ data. Two
approaches were pursued for this automatic segmentation: k-means

clustering (k = 3, with the highest-intensity cluster labeled as
membrane) and Moss filtering. The learning-based classifier was
trained with each approach and the results compared with those
from the learning-based classifier trained on a manua segmenta-
tion of the membrane probe data and those from the Moss filter and
k-means clustering applied to the CD¢ data. Performance statistics
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Fig. 5. Performance of a L AT-specific learning-based classifier. A learning-based classifier trained on a dataset of LAT-GFP-labeled T cell images performs
substantially better on images of other LAT-GFP-labeled T cells. Shown in thisfigure are the results of cross-validation testing on aLAT dataset. Plotted in (a)
isthe accuracy of the LAT-specific learning-based classifier compared with that of the Moss filter and k-meansfiltering (k = 2), plotted in (b) is the precision,
and plotted in (c) isthe recall. The percentage of erroneously included intracellular voxelsis plotted in (d). For each panel, both the individual cross-validation

results and the average results are plotted.

and visualizations comparing these segmentation methods are given
in Figure 6. The k-means-trained classifier and the manually trained
classifier had the best overall performance. Interestingly, the Moss-
trained classifier is similar to the Mossfilter in its performance char-
acteristics, but the k-means-trained classifier improves performance
over k-means segmentation directly on the CD3¢ data. Training this
latter classifier using the high-precision 3-means classification most
probably provides some advantage. The k-means-trained classifier is
thus able to score within measurement error of the manually trained
classifier.

Part of thedifficulty in obtaining resultsfrom automatical ly trained
classifiersequivalent tothosefromamanually trained classifier stems
from the inherent circularity of the automatic training problem. One
hasto segment the membrane probedatain order totrain theclassifier
to segment the data for the labeled protein of interest. Fortunately,
segmentation of the membrane probe data is a substantially easier
problem. The membrane probe used in these studies, PKC§—PH—
YFP, localizes very specifically to the plasma membrane, without
the intracellular inclusions observed with proteins such as CD3¢
and LAT. Thefact that the k-means-trained classifier performanceis
increased over the performance of direct k-means clustering on the
CD3¢ dataisindicative of thisreductionin scopeof the classification
problem.

Beyond automated training of the classifier, an additional benefit
of working with dual-fluorophore data with a membrane probe is

the ability better to differentiate membrane and membrane-proximal
labeled protein from internalized labeled protein. Such internaliza-
tion is particularly prominent and important in T cells undergoing
activation. As currently implemented, our methods can only make
this distinction accurately to within the resolution of the image
data; however, use of additional imaging techniques such as fluor-
escence resonance energy transfer could improve the resolution of
differentiation by an order of magnitude. In addition, since our dual-
fluorophore data come from resting cells, clarification of the nature
of membrane involutions in activated T cells remains an area for
future research.

CONCLUSIONS

We have developed a novel learning-based method for the classi-
fication of plasma membrane protein localization data obtained via
fluorescence microscopy and the differentiation of these data from
intracellular artifacts. The resultswe have presented demonstrate the
increased performance of a learning-based classifier over existing
methods for membrane segmentation. The primary advantages of
this classifier are its flexibility and adaptability. Training the clas-
sifier on data from experimental conditions similar to the test data
yields an extremely good classifier for those test data. Becauseiitis
often not desirable to re-train the classifier for every type of experi-
mental data, we have also trained our classifier on heterogeneous

3784



Machine-learning protein localization classifier

© Accuracy
96% ,

95%

94%
93%
92%
91%
90%
89% 4

Moss Moss- k-means- Manually k-means, k means
trained trained trained k=2
learning learning learning
©) Recall

90%
80%
70%

60%
50%
40%
30%
20%
10%
0%

Moss Moss- k-means- I\u"la;muallyr k means k means
trained trained trained k=2 k=3
learning learning learning

EEEEE
T T
EEEEE
ololol=1s
non

() Precision

100%
90%

80%
70%
60%
50%
40%
0%
0%
0%
0%

=P W

Moss Moss- k-means- Manually k-means, k means
trained trained trained k=2 B
learning learning learning

Fig. 6. Segmentation of dual-color fluorescence images. Dual-color fluorescence images were segmented using the CD3¢—CFP test probe channel asinput and
the PLC5—PH-Y FP membrane probe channel for training and reference segmentations. Displayed in (&) is an overlay of the membrane probe microscopy data
in red and the test probe microscopy datain green. Displayed in (b) is an overlay of the reference segmentation in green and the output of the learning-based
classifier automatically trained on the data using k-means segmentation in red. Multiple images represent sequential x—y planes through the volume data.
Plotted in (c) is a comparison of the accuracy of different segmentation methods for the test probe data. The precision is similarly plotted in (d), and the recall
isplotted in (€). Values shown are averages over thetest set (n = 5), and error bars represent 1 SD of the mean.

data and demonstrated performance on such data superior to that of
other available methods. Even a classifier trained to be extremely
general in its recognition abilities showed performance gainsin sev-
eral key areas, particularly the removal of intracellular artifacts and
overal improvements in accuracy. Much of this inherent benefit

to the learning-based classifier derives from its integration of sev-
era types of image data: intensity information, surface positional
information and gradient edge information. Because analyses such
asthoseof protein clustering that we have performedinearlier studies
require membranes to be segmented with minimal artifacts, our new
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learning-based classifier increases both the accuracy of the analyses
and makes them more automated. We have applied this classifier to
the study of protein localization during T-cell activation and com-
bined the resulting protein localization data with functional data to
study T-cell signaling in an approach that generalizes to a range of
signaling phenomena.

ACKNOWLEDGEMENTS

We thank O. Troyanskaya, M. Vrljic and T. Fenn for many help-
ful discussions. W. Moss allowed use of code for the Moss Filter.
Thiswork was supported in part by the National Institutes of Health
(M.M.D.) and the Medical Scientist Training Program. Funding to
pay the Open Access publication chargesfor thisarticlewasprovided
by the Howard Hughes Medical Institute.

Conflict of Interest: none declared.

REFERENCES

Bock,J.R. and Gough,D.A. (2001) Predicting protein—protein interactions from primary
structure. Bioinformatics, 17, 455-460.

Canny,J. (1986) A computational approach to edge-detection. |EEE Trans. Pattern Anal.
Mach. Intell., 8, 679-698.

Caselles,V. et al. (1997) Geodesic active contours. Int. J. Comput. Vision, 22, 61-79.

Chou,K.C. and Cai,Y.D. (2002) Using functional domain composition and support vec-
tor machines for prediction of protein subcellular location. J. Biol. Chem., 277,
45765-45769.

Cortes,C. and Vapnik,V. (1995) Support-vector networks. Mach. Learn., 20, 273-297.

Danielsson,PE. (1980) Euclidean distance mapping. Comput. Graph. Image Process.,
14, 227-248.

Davies,S.W. et al. (1997) Formation of neuronal intranuclear inclusions underlies the
neurological dysfunction in mice transgenic for the HD mutation. Cell, 90, 537-548.

Davis,M.M. et al. (2003) Dynamics of cell surface moleculesduring T cell recognition.
Annu. Rev. Biochem., 72, 717-742.

Ding,C.H.Q. and Dubchak,|. (2001) Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics, 17, 349-358.

Ehrlich,L.I. et al. (2002) Dynamics of p56lck translocation to the T cell immunological
synapse following agonist and antagonist stimulation. Immunity, 17, 809-822.

Fink,PJ. et al. (1986) Correlations between T-cell specificity and the structure of the
antigen receptor. Nature, 321, 219-226.

Gautam,M. et al. (1996) Defective neuromuscular synaptogenesis in agrin-deficient
mutant mice. Cell, 85, 525-535.

Genovesio,A., Zhang,B. et al. (2003) Tracking of multiple fluorescent biological objects
in three dimensional video microscopy. In 2003 International Conference on Image
Processing.

Gerlich,D. et al. (2001) Four-dimensional imaging and quantitative reconstruction to
analyse complex spatiotemporal processesin live cells. Nat. Cell Biol., 3, 852—855.

Gerlich,D. et al. (2003) Quantitative motion analysis and visualization of cellular
structures. Methods, 29, 3-13.

Glebov,0.0. and Nichols,B.J. (2004) Lipid raft proteins have a random distribution
during localized activation of the T-cell receptor. Nat. Cell Biol., 6, 238-243.

Grakoui,A. et al. (1999) The immunological synapse: a molecular machine controlling
T cell activation. Science, 285, 221-227.

Huan,Y. and van Adelsberg,J. (1999) Polycystin-1, the PKD1 gene product, isin a
complex containing E-cadherin and the catenins. J. Clin. Invest., 104, 1459-1468.

Huppa,J.B. and Davis,M.M. (2003) T-cell-antigen recognition and the immunological
synapse. Nat. Rev. Immunol., 3, 973-983.

Huppa,J.B. et al. (2003) Continuous T cell receptor signaling required for synapse
maintenance and full effector potential. Nat. Immunoal., 4, 749-755.

Joachims,T. (1999) Making large-scale SVM learning practical. In Scholkopf,B.,
Burges,C. and Smola,A. (eds) Advances in Kernel Methods—Support Vector
Learning. MIT Press, Boston.

Karchin,R. et al. (2002) Classifying G-protein coupled receptors with support vector
machines. Bioinformatics, 18, 147-159.

Kasson,PM. et al. (2005) Quantitative imaging of lymphocyte membrane protein
reorganization and signaling. Biophys. J., 88, 579-589.

Krummel,M.F. et al. (2000) Differential clustering of CD4 and CD3zeta during T cell
recognition. Science, 289, 1349-1352.

LeeK.H. et al. (2002) T cell receptor signaling precedes immunological synapse
formation. Science, 295, 1539-1542.

LeeK.H. et al. (2003) The immunological synapse balances T cell receptor signaling
and degradation. Science, 302, 1218-1222.

Monks,C.R. et al. (1998) Three-dimensional segregation of supramolecular activation
clustersin T cells. Nature, 395, 82-86.

Moss,W.C. et al. (2002) Quantifying signaling-induced reorientation of T cell recept-
ors during immunological synapse formation. Proc. Natl Acad. Sci. USA, 99,
15024-15029.

Ohno,K. et al. (2002) Rapsyn mutationsin humans cause endpl ate acetyl choline-receptor
deficiency and myasthenic syndrome. Am. J. Hum. Genet., 70, 875-885.

Pagliarini,R.A. and Xu,T. (2003) A genetic screenin Drosophila for metastatic behavior.
Science, 302, 1227-1231.

Pontil,M. and Verri,A. (1998) Support vector machines for 3D object recognition. |[EEE
Trans. Pattern Anal. Mach. Intell., 20, 637-646.

Roitbak,T. et al. (2004) A polycystin-1 multiprotein complex is disrupted in polycystic
kidney disease cells. Mal. Biol. Cell., 15, 1334-1346.

Saudou,F. et al. (1998) Huntingtin actsin the nucleus to induce apoptosis but death does
not correlate with the formation of intranuclear inclusions. Cell, 95, 55-66.

Singh,S.P. et al. (1998) Loss or atered subcellular localization of p27 in Barrett's
associated adenocarcinoma. Cancer Res., 58, 1730-1735.

Stauffer,T.P. et al. (1998) Receptor-induced transient reduction in plasma membrane
Ptdins(4,5)P2 concentration monitored in living cells. Curr. Biol., 8, 343-346.

Varnai,P. and Balla,T. (1998) Visudization of phosphoinositides that bind pleckstrin
homology domains: calcium- and agonist-induced dynamic changes and rela-
tionship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Bial., 143,
501-510.

Waulfing,C. et al. (1998) Visualizing the dynamics of T cell activation: intracellular
adhesion molecule 1 migratesrapidly tothe T cell/B cell interface and actsto sustain
calcium levels. Proc. Natl Acad. Sci. USA, 95, 6302-6307.

Xia,W. etal. (2004) Phosphorylation/cytoplasmiclocalization of p21Cipl/WAF1isasso-
ciated with HER2/neu overexpression and provides a novel combination predictor
for poor prognosisin breast cancer patients. Clin. Cancer Res., 10, 3815-3824.

Yang,J. et al. (2001) Telomerized human microvasculature is functional in vivo. Nat.
Biotechnol., 19, 219-224.

Zimmer,C. et al. (2002) Segmentation and tracking of migrating cells in videomicro-
scopy with parametric active contours: atool for cell-based drug testing. IEEE Trans.
Med. Imaging, 21, 1212-1221.

3786



