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ABSTRACT
Motivation: Subcellular protein localization data are critical to the
quantitative understanding of cellular function and regulation. Such
data are acquired via observation and quantitative analysis of fluores-
cently labeled proteins in living cells. Differentiation of labeled protein
from cellular artifacts remains an obstacle to accurate quantification.
We have developed a novel hybrid machine-learning-based method to
differentiate signal from artifact in membrane protein localization data
by deriving positional information via surface fitting and combining this
with fluorescence-intensity-based data to generate input for a support
vector machine.
Results: We have employed this classifier to analyze signaling pro-
tein localization in T-cell activation. Our classifier displayed increased
performance over previously available techniques, exhibiting both
flexibility and adaptability: training on heterogeneous data yielded a
general classifier with good overall performance; training on more spe-
cific data cyielded an extremely high-performance specific classifier.
We also demonstrate accurate automated learning utilizing additional
experimental data.
Availability: http://atb.slac.stanford.edu/∼kasson/membraneclassifier.
html
Contact: brunger@stanford.edu
Supplementary information: http://atb.slac.stanford.edu/∼kasson/
classifier_suppl.pdf

INTRODUCTION
The use of subcellular protein localization data to provide positional
information in addition to the expression data provided by genomic
and proteomic assays promises to open new frontiers in the quant-
itative understanding of cellular function. Both static and dynamic
localization of cell surface proteins control numerous aspects of cel-
lular polarity, function, and signaling and defects in localization
have been linked to the pathogenesis of neurodegenerative diseases
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(Davies et al., 1997; Saudou et al., 1998), neuromuscular diseases
(Gautam et al., 1996; Ohno et al., 2002), polycystic diseases (Huan
and van Adelsberg, 1999; Roitbak et al., 2004) and cancer metastasis
(Singh et al., 1998; Pagliarini and Xu, 2003; Xia et al., 2004) among
others. Protein localization is commonly monitored in real-time
using fluorescence microscopy techniques. Using these microscopy
images, quantitative information on protein localization changes can
be extracted and combined with other functional data for quantitat-
ive analyses of the role of protein localization and redistribution in
cellular function.

We and others have created systems to perform such analyses on
specific classes of proteins (Gerlich et al., 2001, 2003; Genovesio
et al., 2003; Kasson et al., 2005), but the initial process of extract-
ing the region of analytical interest (such as the cell membrane in
the case of membrane protein localization) from fluorescence micro-
scopy datasets remains a major obstacle to accurate analysis. This
process, known as segmentation, is a critical stage because fluor-
escence signal that is erroneously excluded from the segmented
region is lost to further analysis; signal that is erroneously included
becomes noise. Further, erroneously included artifacts can change
the topology of the extracted region, complicating subsequent spa-
tial analyses. Currently available techniques suffer from both these
weaknesses, and biological samples segmented with these tech-
niques frequently require extensive manual correction before the
results are suitable for accurate analysis. In this report, we present
a novel, machine-learning-based hybrid method for segmentation of
membrane protein localization data.

The problem of image segmentation—differentiating a structure
of interest from the rest of the image—is often addressed by meth-
ods based on edge-finding region-filling or thresholding approaches.
Segmentation of the plasma membrane from fluorescence micro-
scopy images, however, is complicated by cellular autofluorescence
and by the presence of internal accumulations of fluorophore (cyto-
plasmic inclusions, internalized dye or green fluorescent protein
(GFP) fusion proteins present in the Golgi) as well as the prob-
lem of distinguishing membrane voxels from voxels external to
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(a) (b)

Fig. 1. Cell images from fluorescence microscopy of membrane proteins.
Shown are visualizations of a CD3ζ–GFP-labeled T cell. Displayed in (a) is
a volume rendering; displayed in (b) is a midplane through the cell. Coloring is
by voxel intensity. The magenta arrow in (b) indicates a region of intracellular
fluorophore accumulation; the yellow arrow indicates a portion of the cell
membrane that has low concentration of fluorophore.

the cell. A further challenge to segmentation is the fact that cell
membranes in fluorescence microscopy images are often more than
one voxel thick and may contain involutions (Fig. 1). Since the actual
thickness of the cell membrane is substantially less than one voxel,
this increased edge thickness may result from time-averaging of
small positional fluctuations or may reflect increased local membrane
curvature (Glebov and Nichols, 2004).

This combination of internal fluorophore accumulations and
thick membrane edges results in inadequate performance by many
traditional segmentation methods. To address these challenges, we
have designed an advanced segmentation filter to be sensitive, spe-
cific and trainable to different types of data. Our hybrid classification
algorithm extracts positional information regarding cell membrane
contours using a level-set surface fitting approach (Caselles et al.,
1997) and then uses this information in conjunction with the ori-
ginal image to calculate a multidimensional set of feature vectors for
each image voxel in the local neighborhood of the cell surface con-
tour. Final classification is performed using a support vector machine
(SVM) (Cortes and Vapnik, 1995; Joachims, 1999), a supervised
learning technique for pattern recognition that has been successfully
applied to fields such as text classification, object recognition (Pontil
and Verri, 1998), medical diagnosis, and protein structure and func-
tion prediction (Bock and Gough, 2001; Ding and Dubchak, 2001;
Chou and Cai, 2002; Karchin et al., 2002).

We trained and evaluated our classifier on localization data for
membrane signaling proteins involved in T lymphocyte activation.
These proteins have been observed to undergo changes in localiza-
tion specifically upon cellular activation (Monks et al., 1998; Wulfing
et al., 1998; Grakoui et al., 1999; Krummel et al., 2000), and these
changes are thought to have important functional consequences (Lee
et al., 2002; Davis et al., 2003; Huppa and Davis, 2003; Huppa et al.,
2003; Lee et al., 2003). Efficient segmentation of these localization
data is required for accurate quantitative analysis of protein localiza-
tion in a functional context. We trained and evaluated this classifier on
both heterogeneous and more narrowly selected image data, showing
substantial gains over existing segmentation methods for each. We
have also demonstrated the ability of our classifier to learn based on
dual-color data that use a membrane-specific probe to incorporate an
experimental standard for membrane localization.

SYSTEM AND METHODS

Cell preparation and image acquisition
5C.C7 T lymphoblasts derived from T-cell-receptor transgenic mouse lymph
nodes were grown, retrovirally transfected with fluorophore fusion protein
constructs, and stimulated in vitro with the moth cytochrome c peptide
88–103 presented on antigen-presenting cells (CH27/I-Ek) as reported pre-
viously (Fink et al., 1986; Ehrlich et al., 2002; Huppa et al., 2003). Expert
manual segmentation experiments (see below) were performed using cells
transfected with CD3ζ–GFP or LAT–GFP fusion proteins, while mem-
brane probe dual-color segmentation experiments were performed using
cells co-transfected with CD3ζ–GFP and PKCδ–PH–YFP fusion proteins.
Images were acquired on a Zeiss Axiovert S100TV microscope with a 1.3
NA 40× Neo-Fluar or Fluar objective or a 1.4 NA 63× Apochromat object-
ive (Carl Zeiss, Jena, Germany). Samples were illuminated by a 300 W
xenon light source with a Sutter DG-4 filter changer (Sutter Instruments,
Novato, CA). Detection was performed using a cooled charge coupled
device (CCD) camera (Roper Scientific, Tucson, AZ). Z-scanning was
accomplished using a piezo-driven motor (Physik Instrumente, Waldbronn,
Germany). Cells were imaged at 37◦C in phenol red-free RPMI. Metamorph
5.0 (Universal Imaging Corporation, Downingtown, PA) was used for micro-
scope control; images were further processed using blind deconvolution
(Deblur 9.2; AutoQuant Imaging, Watervliet, NY). Datasets were collec-
ted at a resolution of 0.3 µm × 0.3 µm × 1 µm for dual-color experiments
and 0.5 µm×0.5 µm×1 µm for single-color experiments. These resolutions
were chosen to optimize the trade-off between high-resolution data and the
motion blurring that results from slower, higher-resolution imaging of live
cells. Image datasets are enumerated in Supplementary Table 1.

Initial segmentation and calculation of
SVM inputs
Our segmentation algorithm is schematized in Figure 2. The learning-based
classifier utilizes a surface-fitting method to obtain an initial approximate seg-
mentation of the cell surface (Fig. 2a). For this purpose we employ the active
contour (level-set-based) model of Casselles et al. (1997). Voxels within the
local neighborhood of the surface, empirically set as 1.7 µm, are designated
for inclusion in the initial segmentation (Fig. 2b). Inputs to the SVM mod-
ule are then calculated for these voxels (Fig. 2c). Euclidean distance from
the surface is determined by calculation of a distance map from the active
contour surface as per Danielsson (1980). The observed voxel intensity and
voxel intensity gradient magnitude are calculated directly from the decon-
volved microscopy data. Finally, the surface normal vector is determined for
each voxel in the initial segmentation and the intensity gradient magnitude is
calculated for all voxels in the local neighborhood along that vector. These
four inputs constitute the input vector space for the SVM module (Fig. 2d).

SVM module
We employ an SVM (using the SVMlight implementation) using a radial
basis kernel function as follows:

f (x) =
∑

j

G

( ‖x − ξj‖
λj

)
βj , (1)

where f (x) is the function in transformed space, G is a Gaussian density
function, x is the input vector, ξj are the support vectors, λj are the scaling
parameters, βj are the fit parameters (Cortes and Vapnik, 1995; Joachims,
1999). Both first- and second-order kernels were tested, letting the kernel
function be either a polynomial or a radial basis function. A first-order radial
basis function was selected based on optimal performance on the training set.
The learning parameter c was set to 0.1.

SVM training
We have pursued two approaches for training the learning-based membrane
classifier. The first and more flexible is training via manual segmentation by
experts. To obtain training sets via expert manual segmentation, biologists
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Fig. 2. Learning-based approach for volume segmentation. This schema
gives a high-level depiction of the supervised learning algorithm for volume
segmentation. In stage (a), a level-set surface-fitting algorithm is used to pro-
duce an initial estimate of the cell surface from the deconvolved microscopy
data. The algorithm employed is a geodesic active contour segmentation
approach (Caselles et al., 1997). In (b), an ε-rind is taken around the surface
(using ε = 5 voxels). In (c), the voxels selected in (b) are used to compute the
following inputs for the SVM module: distance from the initial surface, voxel
intensity, magnitude of the intensity gradient and magnitude of the intens-
ity gradient normal to the initial surface. In (d), the SVM module [(SVM
implementation by Joachims (1999)] classifies each voxel selected in (b) as
either membrane or non-membrane, yielding a set of segmented voxels. A
radial basis function kernel is used for the SVM, letting the function order
γ = 1, C = 0.1.

who regularly analyze T-cell images were asked to trace cell contours for a
series of cells, each represented as a series of planar slices in two different
orientations (sequential x–y and x–z planes, respectively). Each slice was
traced four times: by two independent biologists in two orientations each.
These tracings were scanned and combined to yield a segmentation confid-
ence score for each voxel. This score was converted to a binary classification
by a majority vote scheme, and the resulting segmentation was used to train
the SVM.

The five images in the heterogeneous training set were selected for seg-
mentation and training based on their diversity: these images were acquired
on four different days and represent cells labeled with two different fluores-
cent probe constructs: CD3ζ–GFP and LAT–GFP. To create a more specific
training set, images were selected from experiments on cells expressing LAT–
GFP. Only images collected on the same day and manually segmented on the
same day were used; three cells fit these criteria.

The second and more powerful approach for training our membrane clas-
sifier is to perform two-color microscopy experiments using a fluorescent
probe for the protein of interest in conjunction with a fluorescent membrane
probe. We have performed these experiments using a cyan fluorescent protein
(CFP)–CD3ζ conjugate that co-migrates with the T-cell receptor and a yel-
low fluorescent protein (YFP)–protein kinase Cδ pleckstrin homology domain
(PKCδ–PH) conjugate that uniformly labels the plasma membrane (Stauffer
et al., 1998; Varnai and Balla, 1998). Training based on dual-color fluores-
cence with a membrane probe was performed using the membrane probe to
derive a cell-membrane binary classification for use in SVM training on the
test probe (in this case CD3ζ ) data. The membrane probe data were classified
via k-means segmentation of the deconvolved microscopy data (k = 3; the
highest-intensity group is selected) or via segmentation of the deconvolved
microscopy data using the Moss filter. This classification was used to train
the SVM.

Implementation of previously available classifiers
k-means clustering was performed using the Matlab Statistics Toolbox (The
MathWorks, Natick, MA). Canny filtering (Canny, 1986) and level-set surface
fitting (Caselles et al., 1997) were implemented using the ITK class library
(http://www.itk.org). The Moss filter (Yang et al., 2001; Moss et al., 2002)
was implemented based on code provided by William Moss.

Evaluation of performance
Performance statistics are computed as follows, using expert manual seg-
mentation as a reference standard. Accuracy is defined as(

TP + TN

TP + FP + TN + FN

)
,

precision as (
TP

TP + FP

)

and recall as (
TP

TP + FN

)
,

where TP denotes the number of true positive classifications, FP the num-
ber of false positives, TN the number of true negatives and FN the number
of false negatives. Accuracy scores provide a composite measure of suc-
cessful membrane classification and successful exclusion of non-membrane
voxels. Recall scores measure how well membrane voxels were detected
by the classifier, and precision scores provide confidence values for posit-
ive results. For measurements of intracellular artifact inclusion, distances
to the center of the cell were computed for all voxels. Voxels x for which
dc (surfnearest(x)) − dc(x) > one voxel width (0.3 or 0.5 µm) were spe-
cified as intracellular, where dc is the distance to the center of the cell and
surfnearest(x) is the surface voxel nearest to x.

RESULTS AND DISCUSSION
We have used localization data from membrane signaling proteins
involved in T-cell activation to test and evaluate our learning-based
classifier. We first compare the performance of our classifier to that
of previously available methods on a heterogenous set of experi-
mental data and then go on to perform similar comparisons for
more narrowly focused data. In both cases, the learning-based classi-
fier out-performs other available methods, particularly with respect
to the elimination of intracellular artifacts. We also demonstrate
methods for training the learning-based classifier using additional
fluorescent labels to visualize the cell membrane. These multiple
training regimes illustrate the power and flexibility of our approach,
as the learning-based classifier can easily be trained for optimal
performance in a wide variety of applications.

Comparison of previously existing
classification methods
Representative segmentations of a membrane protein localization
dataset using a number of segmentation methods and comparisons
of their performance statistics (using expert manual segmentation as a
reference) are displayed in Figure 3. Adaptive thresholding methods
such as k-means clustering perform reasonably well on cell mem-
branes (Fig. 3b) but, because they ignore positional information,
they erroneously include any high-intensity artifacts present in the
image. Many edge-based methods such as Canny filtering perform
less well on fluorescence microscopy images because of the thick
membrane edges (Fig. 3c). The Canny filter produces a relatively
poor segmentation, particularly in terms of accuracy and recall—it
does not capture membrane voxels well. More robust surface fitting
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Existing methods for cell membrane segmentation. Shown in (a) is the cell displayed in Figure 1, rendered as a series of sequential x–y planes through
the volume dataset. Shown in (b) is the inclusion mask for the same cell segmented via k-means (k = 2) clustering on intensity. Shown in (c) is a similar
inclusion mask for segmentation by Canny filtering, with the threshold value for thinning set equal to the image median. This value was determined to have
near-optimal accuracy on a single test image. Shown in (d) the output of level-set surface fitting, and shown in (e) is the inclusion mask for segmentation via
the Moss filter. Plotted in (f) is the accuracy of the segmentation filters, plotted in (g) is the precision, and plotted in (h) is the recall with respect to manual
segmentation.
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approaches have been used successfully for related problems in bio-
logical image segmentation (Zimmer et al., 2002). Such approaches
can successfully segment cell contours, but they fail to capture mem-
brane thickness and involutions (Fig. 3d). The Moss filter (Yang et al.,
2001; Moss et al., 2002), which was developed specifically for the
segmentation of membrane structures, detects membrane structures
with fairly good sensitivity, successfully capturing thick membrane
edges (Fig. 3e). It nevertheless has two major drawbacks. First, it
produces a segmented cell membrane that is not fully connected and
often has substantial holes. Second, it often includes intracellular arti-
facts that can substantially distort analysis. The Moss and k-means
filters have approximately equivalent overall performance. Intracel-
lular artifacts are also included to a similar extent by the k-means and
Moss filters. Common challenges to all of the methods compared
include overall performance, membrane thickness and particularly
the erroneous inclusion of intracellular artifacts.

General classifier
Visualizations from representative output of the learning-based clas-
sifier trained on expert manual segmentations are shown in Figures 4a
and b. Accuracy, precision and recall for the learning-based classi-
fier were determined via 5-fold cross-validation on the training data
and compared with the performance of the Moss filter and k-means
clustering on the same data. As can be seen from the figures, perform-
ance of the learning-based classifier (and that of all other classifiers
tested) is best in the planes closest to the equator of the cell, where
the fluorescence signal is highest. Intracellular artifacts are virtu-
ally absent from the segmentation generated by the learning-based
classifier.

A comparison of the performance of the expert-manual-
segmentation-trained classifier with that of the Moss filter is given
in Figure 4c–e. As can be seen from the performance statistics, the
learning-based classifier has improved accuracy over both the Moss
filter and k-means clustering on the test data, slightly increased preci-
sion and comparable recall. Performance variations between datasets
result from several factors. First, a relatively heterogeneous set of
test data were chosen. Datasets from both CD3ζ–GFP-labeled and
LAT–GFP-labeled cells were used; the fluorophore signal quality
also varied substantially between datasets. This heterogeneous set
was chosen to train a classifier that would be as general as possible;
a classifier trained on a more narrowly chosen training set, as shown
in the next section, will have better performance on images similar
to that training set. Also, the quality of the expert segmentations
varies somewhat from test image to test image. This is linked to a
larger issue—training and validation by expert segmentation is only
as good as the expert segmentations themselves, and not all imaging
experts would create the same segmentation given the same image.
Nonetheless, the ability of the learning-based classifier to be trained
by biologists themselves to suit their particular purposes provides
flexibility and applicability to a wide range of biological imaging
problems.

One of the motivations for designing a novel segmentation fil-
ter was to reduce the number of intracellular artifacts segmented
as membrane. Figure 4f shows a comparison of the learning-based
classifier with the Moss filter and k-means classification in this
respect. The learning-based filter labels ∼10-fold fewer intracellular
points as membrane than either the Moss filter or k-means segment-
ation. Similarly, the false positive points (those labeled membrane
by the classifier but not in the expert segmentation) identified by the

learning-based classifier were on average 64% closer to the nearest
expert-labeled membrane point (and thus to the cell surface) than
those identified by the Moss filter and 210% closer than those iden-
tified by k-means clustering (Supplemental Figure 1b). Most false
positives identified by either the learning-based classifier or the Moss
filter were in close proximity to the cell membrane, but this situation
occurs to a greater extent in the learning-based classified output. The
k-means clustering output was notable for having a substantial num-
ber of false positive points far from the membrane. A visualization of
the expert-segmented membrane points and the intracellular points
labeled membrane by each of the learning-based classifier and Moss
filter is shown in Supplemental Figure 1c.

One weakness of all the classifiers tested, including both pre-
existing segmentation methods and the learning-based classifier
described in this work, is that the ‘top’ and ‘bottom’ of the cell
as it sits on the microscopy stage are segmented substantially less
well than planes near the equator. This difference results from lower
fluorescence signal at the poles of the cell, which in turn is caused
in part by anisotropy of the image voxels (asymmetry resulting from
image resolution differing in the z-dimensions from that in x and y).
Fluorescence signal is increased near the equator of the cell where
the membrane tangent plane is parallel to the long axis of each voxel,
and is decreased near the poles where the membrane tangent plane is
orthogonal to the long axis of each voxel. Ideally, a classifier would
take into account the direction of the membrane tangent relative to
the unit voxel dimensions in order to correct for this problem. This
remains an area for future development and a problem for which
machine-learning approaches are well suited.

LAT-specific classifier
Owing to the nature of supervised learning, it is expected that training
and cross-validation on a more narrowly chosen range of images will
yield a greater gain in performance. To demonstrate this more select-
ive training scheme, images of three cells were chosen from a single
dataset of LAT–GFP-labeled T cells stimulated as described in the
System and Methods section. The results of cross-validation testing
on these cells are shown in Figure 5. As can be seen in the figure, the
LAT-specific classifier has a 35% point improvement in precision,
a 6% point improvement in recall, and a 2% point improvement in
accuracy compared with the Moss filter. Compared with k-means
clustering, it has a 14% point improvement in precision, a 17% point
improvement in recall, and a 2% point improvement in accuracy.
Our learning-based approach is thus quite flexible; it can be used to
train a generally applicable classifier with a moderate gain in per-
formance over existing segmentation algorithms, or it can be used
to train a more situation-specific classifier with markedly increased
performance.

Automated training from membrane
probe data
Even in the case of expert manual segmentation of the plasma mem-
brane, it is often challenging to differentiate involutions in the plasma
membrane from intracellular inclusions. Expert manual segmenta-
tion is also time-consuming and somewhat variable from inspection
to inspection and expert to expert. The ability to train a classifier
based on an experimental standard for the plasma membrane holds
the potential to address these drawbacks to manual segmentation. To
investigate this possibility, a number of imaging experiments were
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Learning-based segmentation of the plasma membrane. Shown are the results of 5-fold cross-validation experiments for the training of our membrane
classifier. Using a set of five 3D microscopy images of cells, the classifier was trained on four of the five and tested on the fifth. This procedure was repeated
for each cell in the test set. The test set contained three cells expressing CD3ζ–GFP and two cells expressing LAT–GFP. Rendered in (a) is a comparison of our
learning-based segmentation (in red) with manual segmentation (in green) of GFP-labeled LAT on the plasma membrane of a single T lymphocyte. Regions of
overlap are in yellow. The rendering depicts sequential 1 µm slices through the cell volume. The same slices are given as sequential x–y planes in (b). (c–e)
The performance of our learning-based classifier with that of the Moss segmentation filter and k-means clustering with respect to accuracy of detection (c),
precision (d) and recall (e) are compared. Plotted in (f) is the percentage of intracellular points erroneously identified as membrane (with respect to manual
segmentation) by each classification method. For (c–f), both the individual cross-validation results and the average results are plotted.

performed in which T cells were transfected with both a CD3ζ–CFP
probe and a membrane-specific PLCδ–PH–YFP probe.

As a first step in the analysis of the dual-fluorophore data, the mem-
brane probe data were automatically segmented to yield a reference
set for training the learning-based classifier on the CD3ζ data. Two
approaches were pursued for this automatic segmentation: k-means

clustering (k = 3, with the highest-intensity cluster labeled as
membrane) and Moss filtering. The learning-based classifier was
trained with each approach and the results compared with those
from the learning-based classifier trained on a manual segmenta-
tion of the membrane probe data and those from the Moss filter and
k-means clustering applied to the CDζ data. Performance statistics
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(a) (b)

(c) (d)

Fig. 5. Performance of a LAT-specific learning-based classifier. A learning-based classifier trained on a dataset of LAT–GFP-labeled T cell images performs
substantially better on images of other LAT–GFP-labeled T cells. Shown in this figure are the results of cross-validation testing on a LAT dataset. Plotted in (a)
is the accuracy of the LAT-specific learning-based classifier compared with that of the Moss filter and k-means filtering (k = 2), plotted in (b) is the precision,
and plotted in (c) is the recall. The percentage of erroneously included intracellular voxels is plotted in (d). For each panel, both the individual cross-validation
results and the average results are plotted.

and visualizations comparing these segmentation methods are given
in Figure 6. The k-means-trained classifier and the manually trained
classifier had the best overall performance. Interestingly, the Moss-
trained classifier is similar to the Moss filter in its performance char-
acteristics, but the k-means-trained classifier improves performance
over k-means segmentation directly on the CD3ζ data. Training this
latter classifier using the high-precision 3-means classification most
probably provides some advantage. The k-means-trained classifier is
thus able to score within measurement error of the manually trained
classifier.

Part of the difficulty in obtaining results from automatically trained
classifiers equivalent to those from a manually trained classifier stems
from the inherent circularity of the automatic training problem. One
has to segment the membrane probe data in order to train the classifier
to segment the data for the labeled protein of interest. Fortunately,
segmentation of the membrane probe data is a substantially easier
problem. The membrane probe used in these studies, PKCδ–PH–
YFP, localizes very specifically to the plasma membrane, without
the intracellular inclusions observed with proteins such as CD3ζ

and LAT. The fact that the k-means-trained classifier performance is
increased over the performance of direct k-means clustering on the
CD3ζ data is indicative of this reduction in scope of the classification
problem.

Beyond automated training of the classifier, an additional benefit
of working with dual-fluorophore data with a membrane probe is

the ability better to differentiate membrane and membrane-proximal
labeled protein from internalized labeled protein. Such internaliza-
tion is particularly prominent and important in T cells undergoing
activation. As currently implemented, our methods can only make
this distinction accurately to within the resolution of the image
data; however, use of additional imaging techniques such as fluor-
escence resonance energy transfer could improve the resolution of
differentiation by an order of magnitude. In addition, since our dual-
fluorophore data come from resting cells, clarification of the nature
of membrane involutions in activated T cells remains an area for
future research.

CONCLUSIONS
We have developed a novel learning-based method for the classi-
fication of plasma membrane protein localization data obtained via
fluorescence microscopy and the differentiation of these data from
intracellular artifacts. The results we have presented demonstrate the
increased performance of a learning-based classifier over existing
methods for membrane segmentation. The primary advantages of
this classifier are its flexibility and adaptability. Training the clas-
sifier on data from experimental conditions similar to the test data
yields an extremely good classifier for those test data. Because it is
often not desirable to re-train the classifier for every type of experi-
mental data, we have also trained our classifier on heterogeneous
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(a) (b)

(c)

(e)

(d)

Fig. 6. Segmentation of dual-color fluorescence images. Dual-color fluorescence images were segmented using the CD3ζ–CFP test probe channel as input and
the PLCδ–PH–YFP membrane probe channel for training and reference segmentations. Displayed in (a) is an overlay of the membrane probe microscopy data
in red and the test probe microscopy data in green. Displayed in (b) is an overlay of the reference segmentation in green and the output of the learning-based
classifier automatically trained on the data using k-means segmentation in red. Multiple images represent sequential x–y planes through the volume data.
Plotted in (c) is a comparison of the accuracy of different segmentation methods for the test probe data. The precision is similarly plotted in (d), and the recall
is plotted in (e). Values shown are averages over the test set (n = 5), and error bars represent 1 SD of the mean.

data and demonstrated performance on such data superior to that of
other available methods. Even a classifier trained to be extremely
general in its recognition abilities showed performance gains in sev-
eral key areas, particularly the removal of intracellular artifacts and
overall improvements in accuracy. Much of this inherent benefit

to the learning-based classifier derives from its integration of sev-
eral types of image data: intensity information, surface positional
information and gradient edge information. Because analyses such
as those of protein clustering that we have performed in earlier studies
require membranes to be segmented with minimal artifacts, our new
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learning-based classifier increases both the accuracy of the analyses
and makes them more automated. We have applied this classifier to
the study of protein localization during T-cell activation and com-
bined the resulting protein localization data with functional data to
study T-cell signaling in an approach that generalizes to a range of
signaling phenomena.
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