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Supplemental Methods

This document comprises an extension to the Methods section from the main

manuscript and the supplementary information aims to increase readability of the

manuscript.

DNA extraction and nanopore sequencing

High molecular weight (HMW) DNA was extracted from 5 to 10 million cells or 15 to 25

mg of tissue using the MagAttract HMW DNA kit (Qiagen N.V., Venlo, Netherlands)

according to the manufacturer’s protocol. DNA concentration was measured with a

Qubit 3.0 Fluorometer (Thermo Fisher) and quality control was performed using a

4200 TapeStation System (Agilent Technologies, Inc., Santa Clara, CA). For library

preparation, the Ligation Sequencing Kit (SQK-LSK109 or SQK-LSK110, Oxford

Nanopore Technologies Ltd, Oxford, UK) was used. All libraries were sequenced on a

R9.4.1 MinION flowcell (FLO-MIN106, Oxford Nanopore Technologies Ltd, Oxford,

UK) for more than 24 h.

Decoil algorithm

Decoil (deconvolve extrachromosomal circular DNA isoforms from long-read data) is

a graph-based method to reconstruct circular DNA variants from shallow long-read

WGS data. This uses (1) structural variants (SV) and (2) focal amplification informa-

tion to reconstruct circular ecDNA elements. The algorithm consists of seven modules:

Genome fragmentation, Graph encoding, Search simple circles, Circles quantification,

Candidates selection, Output and Visualization using Decoil-viz. All the modules are

fully described in the main Methods section of the manuscript, except for Circles

quantification module, which is below described.
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Circles quantification

This steps filters artifacts and quantifies the likely cycles describing the amplification

in the data. Because P is a partition of S, the subsets Mk 2 P do not share genomic

fragments, k index of Mk, 1 <= k <= N . Therefore, the circle quantification step

(including the LASSO regression) was performed for each subset individually. To allow

the reconstruction of complex ecDNA structures, i.e. large duplications and/or heavily

rearranged, a derived cycles set (Dk) was generated, by merging/combining simple

cycles, which share a genomic region. In the real dataset an average of 8 simple cycles

per cluster were found by Decoil (Supplemental Fig S9), which generates an input

matrix of 256 rows for the LASSO regression and is computational feasible. However,

small deletions and very rearranged genomes can inflate the matrix exponentially

and discover many simple cycles with high sequence identity per subset/cluster (Mk).

Therefore only simple cycles su�ciently dissimilar are considered. For this purpose, a

filtered subset M⇤
k was computed, by excluding simple cycles with an similarity higher

equal than >= x (default 0.9) (keep the longer cycles). The similarity was defined as

the jaccard index JC:

JC =
F1 \ F2

F1 [ F2
=

P
length(fi)P
length(fj)

(5)

Where

• F1, F2 - fragment sets describing the cycles c1, c2 2 Mk

• length(fi), length(fj), length of fragments fi, fj

• Fragments fi 2 F1 \ F2, fj 2 F1 [ F2

Using the filtered subset M⇤
k , the derived cycles set Dk was created by performing all

the combinations, in the mathematical sense, e.g.
�|M⇤

k |
2

�
,
�|M⇤

k |
3

�
, ..., between simple

cycles c 2 M
⇤
k , which are su�ciently dissimilar in the fragment composition with

JC <= smax, (default 0.7). Which means, per subset M⇤
k there can be at maximum
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2|M
⇤
k | � 1� |M⇤

k | combinations.

Example: Let S=c1,c2,c3,c4 be all simple cycles and P=M1, M2 be the partition of S,

where every subset, M1=c1,c2,c3 and M2=c4 contains simple cycles with overlapping

region. For M1 we compute all derived cycles, by combining all simple cycles in M1,

i.e D1 = c1c2,c1c3,c2c3. From M2 we cannot compute derived cycles. We assume

that c1,c2,c3 have a pair-wise JC <= smax.

Let Fk be the subset of all genomic fragments F which compose the simple cycles

Mk and derived cycles Dk. To find the parsimonious set of circular elements which

describes the underlying coverage profile, a LASSO model was used to fit input

features X
|Fk|⇥(|Mk|+|Dk|) against the targets Y

|Fk|, where Y = X� + �0, �|Mk|+|Dk|

model coe�cients vector. LASSO regularization generates a sparse solution, i.e. it

pulls model coe�cients � to zeros and it allows putative artifacts or cycles redun-

dancies to be discarded. This means, LASSO performs direct feature selection, i.e. it

selects a minimal set of likely cycles candidates. At the same time, it estimates the

proportions of these cycles in the sample, which are the optimized coe�cients �⇤. �0

is the intercept, estimated implicitly by LASSO, and, it models the linear genome

coverage to ensure a better estimation of the cycles proportions.

The optimization objective (cost function) for LASSO is (in line with the literature):

E(�) + ↵R(�) (6)

Where, E(�), error term, defined as:

E(�) = argmin
�

(
1

|Fk|

|Fk|X

j=1

 
yj � �0 �

|Mk|+|Dk|X

i=1

xji�i

!2)
(7)
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And R(�) regularization term, defined as:

R(�) =

|Mk|+|Dk|X

i=1

|�i| (8)

Let �⇤ be the coe�cients after the optimization (solution):

�
⇤ = argmin[E(�) + ↵R(�)] (9)

To avoid overfitting of the model, a penalty term ↵ = 0.1 was used. xji 2 X is defined

as the occurrence of fragment fj in circle ci, with ci 2 Mk [ Dk. yj 2 Y represents

the mean coverage of the alignment spanning the genomic fragment fj . The optimized

LASSO coe�cients �
⇤ represent the estimated proportions all cycles ci 2 Mk [ Dk

(example in Supplemental Fig S10). In the final candidates cycles set Ck, only ci

with a �i > t were kept, where threshold t = max(min(coverage(fj))/4. The higher

the �i the more likely is the cycle ci to be a true ecDNA element. The final set contains

all cycles candidates C = [N
k=1Ck.

Ranking system of ecDNA topologies

To assess Decoil’s reconstruction performance, we generated an in-silico collection

of ecDNA elements, spanning various sequence complexities for systematic evalu-

ation. We introduced a ranking system and defined seven topologies of increasing

computational complexity, based on the SV’s contained on the ecDNA element:

1. Simple circularization - no structural variants on the ecDNA
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2. Simple SV’s - ecDNA element contains either a series of inversions or deletions

3. Mixed SV’s - ecDNA element has a combination of inversions and deletions

4. Multi-region - ecDNA element contains di↵erent genomic regions from the same

chromosome (DEL, INV and TRA allowed)

5. Multi-chromosomal - ecDNA element originates from multiple chromosomes (DEL,

INV and TRA allowed)

6. Duplications - ecDNA element contains duplications defined as a region larger than

50 bp repeated on the amplicon (DUP’s + other simple rearrangements)

7. Foldbacks - ecDNA element contains a foldback defined as a two consecutive frag-

ments which overlap in the genomic space, with di↵erent orientations (INVDUP’s

+ all other simple SV’s)

Every topology can contain a mixture of all other low-rank topologies.

Simulate ecDNA sequence templates

The simulation framework contains probabilistic variables, which model the chro-

mosome weights, fragment position, fragment length, small deletion ratio, inversion

ratio, foldback ratio, and tandem-duplication ratio. Simulation strategy for individ-

ual ecDNA templates starts by choosing the genomic position relative to previous

simulated fragment, covering four scenarios (Fig 2A#1):

• neighbor - the next simulated fragment starts right next to the previous fragment

• [0 to 5 kb] - the next simulated fragment starts within a 5 kb distance relative to

the previous fragment

• >5 kb - the next simulated fragment starts a least at a 5 kb distance relative to the

previous fragment

• switch chromosome - the next simulated fragment is sampled from another

chromosome
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Next, to simulate small deletions (DELs), < 10% of fragment size can be cut out

with a certain probability p, at the left or right end of the fragment (Fig 2a#2).

With a probability p, inversions (Fig 2a#3) and tandem-duplications (Fig 2a#4) are

simulated. To cover a wide range of possible conformations we generate first a so-

called conformation array, which encodes the di↵erent event types for describing the

simulation of individual ecDNA template. The conformation array has binary entries

(except the first position which encodes the fragments number), where every bit is set

to 0 (disable the occurrence of the event on ecDNA) or to 1 (allows the occurrence of

the event with a probability p).

Supplementary Table S6 Conformation array for ecDNA templates simulation. N FRAG -
number of fragments; SMALL DEL - allow small deletions on the right and left side of the fragment;
DUP - allow simple duplication; INV - allow inversions; INTERCHR - allow fragments to originate
from multiple chromosomes; MULTI REGION - allow fragments to originate from multiple regions on
same chromosome; FOLDBACK - allow foldbacks, which are here defined as two overlapping genomic
fragments, which are immediately chained in the ecDNA template, regardless of the strand orientation.

N FRAG SMALL DEL DUP INV INTERCHR MULTI REGION FOLDBACK

Conformation array for the seven topologies based on which multiple rounds of

simulations were performed:

Simple circularization:

1 0 0 0 0 0 0

Simple SV’s:

2 - 10 [0|1] 0 0 0 0 0

Mixed SV’s:

2 - 10 1 0 1 0 0 0

Multi-region :

2 - 10 [1|0] 0 [1|0] 0 1 0

Multi-chromosomal:

2- 10 [1|0] 0 [1|0] 1 1 0
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Duplications:

2 - 10 [1|0] 1 [1|0] [1|0] [1|0] 0

Foldbacks:

2 - 10 [1|0] [1|0] [1|0] [1|0] [1|0] 1

In total 577 conformation arrays were obtained, based on which more

than 2000 ecDNA templates were generated. Code available under

https://github.com/madagiurgiu25/ecDNA-sim.

Simulate in-silico long-read ecDNA-containing samples

To assess ecDNA reconstruction performance, in-silico ecDNA-containing samples

were generated based on the ecDNA sequence templates collection. The workflow

takes as input the defined ecDNA elements in BED format and generates its asso-

ciated FASTA reference. Afterwards, noisy long-reads, with an average length of

7,000 bp, are sampled from this reference using an adapted version of PBSIM2

(Ono et al. 2021 Ono et al. (2021)), at a specified depths of coverage. This

package was customized for the purpose of this paper to (1) allow reads sam-

pling from a circular reference, and (2) provide a better coverage uniformity of

the reads at fragments boundary by using Mersenne twister (Harase 2014 Harase

(2014)) instead of the pseudorandom number generator included in the origi-

nal package (https://github.com/madagiurgiu25/pbsim2). The in-silico reads are

stored in FASTQ format. This workflow steps is part of the benchmarking pipeline

https://github.com/madagiurgiu25/ecDNA-simulate-validate-pipeline.
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Alignment-free ecDNA reconstruction using Shasta from

simulated data

To de novo assemble the simulated ecDNA the reads were filtered using

NanoFilt De Coster et al. (2018) 2.6.0 (-l 300 -q 20 –headcrop 20 –tailcrop 20). De

novo assembly was performed using Shasta Shafin et al. (2020) 0.10.0 with parameters

–config Nanopore-May2022 –Reads.minReadLength 1000 –Kmers.distanceThreshold

500 –Kmers.probability 0.5.

Alignment-based ecDNA reconstruction using Decoil from

simulated data

To reconstruct the ecDNA using Decoil, the reads were filtered using

NanoFilt De Coster et al. (2018) 2.6.0 (-l 300 -q 20 –headcrop 20 –tailcrop 20),

aligned to the reference genome GRCh38/hg38 using ngmlr Sedlazeck et al. (2018)

0.2.7 with stardard parameters. Structural variant calling was performed using snif-

fles Sedlazeck et al. (2018) 1.0.12 (–min homo af 0.7 –min het af 0.1 –min length 50

–cluster –min support 4) and the bigWig coverage tracks were computed using bam-

Coverage (-50 bins) from deepTools Ramı́rez et al. (2016) 3.5.1 suite. Decoil used the

alignment, SV calls and coverage profile as input to reconstruct simulated ecDNA (–

min-vaf 0.01 –min-cov-alt 6 –min-cov 8 –max-explog-threshold 0.01 –fragment-min-cov

10 –fragment-min-size 500).

Alignment-based ecDNA reconstruction using CReSIL from

simulated data

Simulated ecDNA was also identified using CReSIL Wanchai et al. (2022)

v1.0.0 [https://github.com/visanuwan/cresil, commit:646aec9], with standard param-

eters, using ‘cresil trim‘, followed by ‘cresil identify wgls‘ and reference genome

GRCh38/hg38.
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Performance evaluation on simulated data for Decoil, Shasta

and CReSIL

For benchmarking purpose, Decoil was compared against two additional methods,

CReSIL, a long-read method for reconstructing small and large circular elements,

and Shasta, a de novo assembler. Decoil and CReSIL are alignment-based methods,

whereas Shasta is a alignment-free approach.

CReSIL uses a graph-based approach, similarly to Decoil, to discover cycles. CReSIL

implements a directed multi-graph, where a node represents a genomic fragment

(including orientation) and an edge is a linkage connecting two regions. CReSIL starts

with raw reads (FASTQ), whereas Decoil starts with a BAM file and pre-computed

SV calls. Decoil implements an undirected multi-graph, where nodes are the genomic

fragments start / ends sites (to track fragment orientation) and SV supporting

reads are edges. This allows traversing the genomic fragments in both forward and

reverse orientation, which allows the discovery of inverted duplications, which is not

possible if the node has a predefined orientation, as in the case of CReSIL. Decoil

merges simple cycles into derived cycles to allow the discovery of complex rearrange-

ments, containing e.g. large duplications. CReSIL searches for the longest path in

the subgraph covering all nodes/genomic-fragments, approach which cannot resolve

duplications or foldbacks on the amplicon. Additionally, Decoil uses a LASSO model

to select likely cycles, by removing putative artifacts and redundancies. This approach

allows to discover confidently co-occurring ecDNA structures with shared genomic

loci on the amplicon, which is not possible with CReSIL method. The challenge

of resolving the structure of co-occurring ecDNA structures with shared genomic

loci, i.e. deconvolving ecDNA structure heterogeneity from bulk WGS data, was not

previously addressed by any method from bulk WGS and represents a significant
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improvement over state-of-the art methods.

To evaluate the accuracy of ecDNA reconstructions, QUAST Mikheenko

et al. (2018) 5.2.0 was applied to compute di↵erent metrics

(https://quast.sourceforge.net/docs/manual.html). The overall reconstruction per-

formance was quantified as the mean and standard deviation of the largest contig

metric, defined as the longest contig in the assembly. The contiguity of the recon-

struction was visualized using dotplots, for which paf alignments from the true and

reconstructed were generated using minimap2 Li (2021) 2.26-r1175.

Metrics definitions used for the comparison (adapted from QUAST):

• Largest contig norm - Largest contig is the length of the longest contig in the

assembly, normalized by true length

• Total length norm - is the total number of bases in the assembly, normalized by

true length

• N50 norm - is the length for which the collection of all contigs of that length or

longer covers at least half an assembly, normalized by true length

• N90 norm - same as N50 but but with 90% instead of 50%

• auN norm - is the area under the N50, normalized by true length. This metric was

proposed and justified by Heng Li in his blog https://lh3.github.io/2020/04/08/a-

new-metric-on-assembly-contiguity.

• Largest alignment norm - is the length of the largest continuous alignment in the

assembly, normalized by true length

• Total aligned length norm - is the total number of aligned bases in the assembly,

normalized by true length

• Misassembled contigs length norm - is the total number of bases in misassembled

contigs, normalized by true length

10

https://quast.sourceforge.net/docs/manual.html
https://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity
https://lh3.github.io/2020/04/08/a-new-metric-on-assembly-contiguity


2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530

Linear models comparison to deconvolve ecDNA elements

from simulated overlapping fragments data

In order to identify the probable ecDNA components within a given sample, we employ

a regression-based technique to deconvolve the circular paths that best align with the

coverage profile and determine their estimate proportions. Four di↵erent regression

models were tested, i.e LASSO (Least Absolute Shrinkage and Selection Operator),

Rigde regression, Linear regression and SGD (Stochastic Gradient Descent) regression.

This experiment simulates the matrix formulation for the regression. In the simulation

it can be specified how many fragments two di↵erent circular structure share and

randomly chosen. The amplicon copies per circular structure is sampled from a normal

distribution N (200, 150). For every fragment of the circular the length is samples from

a normal distributionN (7000, 3000). To calculate the error between predicted coverage

Yp and true coverage profile Yt the total absolute error was used, i.e. e =
P

i |ypi�yti|,

with ypi 2 Yp and yti 2 Yt.

Evaluate amplicon’s breakpoints recovery in ecDNA mixtures

To evaluate how well Decoil can reconstruct ecDNA elements with overlapping

footprints a series of dilutions was generated by mixing the CHP212, STA-NB-

10DM and TR14 cell lines at di↵erent ratios. We generated two types of mixtures.

First, 100% of one sample with di↵erent percentages of another sample, i.e. 10, 25,

50, 75, 90, 100% (Fig 3C) were combined. Secondly, mixtures at di↵erent ratios

for both samples (10-90, 25-75, 50-50, 75-25, 90-10%) were generated. Picard 2.26

(https://broadinstitute.github.io/picard/) was used to downsample the BAM files to

10, 25, 50, 75, 90% and SAMtools 1.9 to merge the di↵erent ratios and to create in-

silico ecDNA mixtures. SV calling was performed using sni✏es Sedlazeck et al. (2018)

1.0.12 with same parameters as for the original 100% BAM files, i.e. –min homo af 0.7

–min het af 0.1 –min length 50 –cluster –min support 4. Decoil was run on all these
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mixtures with parameters –min-vaf 0.01 –min-cov-alt 10 –min-cov 10 –max-explog-

threshold 0.01 –fragment-min-cov 10 –fragment-min-size 500. The completeness of

the reconstructed ecDNA elements in mixtures was evaluated by counting how many

breakpoints are identical compared to the true ecDNA elements in the 100% samples.

Preprocess nanopore sequencing data from cell lines and

patient samples

For the analysis five neuroblastoma cell lines and 13 patients were sequenced using

shallow whole-genome sequencing. For all the samples the status of MYCN amplifica-

tion on ecDNA was experimentally determined by FISH. The patients cohort included

10 patients ecDNA positive and three ecDNA negative, serving as negative control.

One ecDNA-containing sample was removed from the analysis due to failed QC. The

cell lines CHP212, TR14, STA-NB-10DM and all 13 patient samples were prepro-

cessed by performing base-calling using Guppy 5.0.14 (dna r9.4.1 450bps hac model),

followed by a quality check using NanoPlot 1.38.1. The reads were filtered by qual-

ity using NanoFilt De Coster et al. (2018) 2.8.0 (-l 300 –headcrop 50 –tailcrop 50)

and aligned using ngmlr Sedlazeck et al. (2018) 0.2.7 against the reference genome

GRCh38/hg38. The structural variant calling was performed using sni✏es Sedlazeck

et al. (2018) 1.0.12 (–min homo af 0.7 –min het af 0.1 –min length 50 –min support

4). The bigWig coverage tracks were obtained by applying bamCoverage (-50 bins)

from deepTools Ramı́rez et al. (2016) 3.5.1 suite. The cell lines LAN-5 and CHP126

were similarly processed using the reference genome GRCh37/hg19. The pipeline is

available under https://github.com/henssen-lab/nano-wgs.
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Reconstruct ecDNA elements for cell lines and patient samples

using Decoil

To reconstruct the ecDNA elements for CHP212, TR14 and STA-NB-10DM Decoil

was applied using the parameters –min-vaf 0.1 –min-cov-alt 10 –min-cov 8 –fragment-

min-cov 10 –fragment-min-size 1000 –filter-score 35 or –min-vaf 0.01 –min-cov-alt

10 –min-cov 10 –max-explog-threshold 0.01 –fragment-min-cov 10 –fragment-min-size

500, the reference genome GRCh38/hg38 and annotation GENCODE V42. Similarly,

for LAN-5 and CHP126 the ecDNA reconstruction was performed using Decoil with

same parameters, reference genome GRCh19/hg19 and annotation GENCODE V41.

The ecDNA elements in patient samples were reconstructed by Decoil using –min-vaf

0.1 –min-cov-alt 10 –min-cov 30 –max-explog-threshold 0.01 –fragment-min-cov 20

–fragment-min-size 100.
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