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In systemic lupus erythematosus (SLE) loss of immune tolerance, autoantibody production
and immune complex deposition are required but not sufficient for organ damage'. How
inflammatory signals are initiated and amplified in the setting of autoimmunity remains
elusive. Here, we set out to dissect layers and hierarchies of autoimmune Kkidney
inflammation in order to identify tissue-specific cellular hubs that amplify auto-
inflammatory responses. Using high-resolution single-cell profiling of kidney immune and
parenchymal cells, in combination with antibody blocking and genetic deficiency, we show
that tissue-resident NKp46* innate lymphoid cells (ILC) are crucial signal amplifiers of
disease-associated macrophage expansion and epithelial cell injury in lupus nephritis,
downstream of autoantibody production. NKp46 signaling in a distinct subset of ILC1
instructed an unconventional immune-regulatory transcriptional program, which included
the expression of the myeloid cell growth factor CSF2. CSF2 production by NKp46* ILC
promoted the population expansion of monocyte-derived macrophages. Blockade of the
NKp46 receptor (using the antibody mNCR1.15?) or genetic deficiency of NKp46 abrogated
epithelial cell injury. The same cellular and molecular patterns were operative in human
lupus nephritis. Our data support that NKp46* ILC1 promote parenchymal cell injury by
granting monocyte-derived macrophages access to epithelial cell niches. NKp46 activation in
ILC1 thus constitutes a previously unrecognized, critical tissue rheostat that amplifies organ
damage in autoimmune hosts, with broad implications for inflammatory pathologies and

therapies.
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Lupus nephritis is a major cause of morbidity and mortality in SLE, an autoimmune disease that
predominantly affects young women. Clinical data show that while most SLE patients have
autoantibodies, not all develop severe inflammatory disease. Thus, breach of immunological
tolerance per se may not be sufficient to initiate full blown inflammation and tissue damage!. This
raises the important question of how inflammatory signals are initiated and amplified in
autoimmune diseases. Given their immune-regulatory role in various tissues®, we considered that
kidney tissue-resident ILC may be a central rheostat of the inflammatory spiral, conferring

differential susceptibility of SLE patients to severe disease and organ damage.

Tissue NKp46* ILC increase in numbers in lupus nephritis

Similar to human SLE, female NZB/W F1 mice develop type I IFN-driven disease®.
Administration of poly(I:C) synchronizes disease onset, while concurrent treatment with blocking
antibodies to IFNARI suppresses disease (Extended Data Fig. la-b). To discriminate between
leukocytes in the kidney tissue and those in the kidney vasculature, we injected NZB/W F1 mice
with fluorescently-labelled CD45 antibodies intravenously (i.v.) directly before analysis.
Leukocytes within vessels (vessel-associated) were CD45..v.", whereas leukocytes in tissues were
CD45i.v.-negative. Type I IFNs induced a significant increase in tissue leukocytes (Extended Data
Fig. lc).

ILC1, NKp46" ILC3 and conventional NK cells® express the activating immunoreceptors
NKp46 and NK1.1 and are here collectively referred to as NKp46® ILC (Lin” NKp46" NK1.1*
cells). CD49b (integrin a2) and Eomes are expressed by NK cells but not by CD49b" ILC1 or
ILC35. In kidneys from young NZB/W F1 mice, vessel-associated cells were Eomes" CD49b* (Fig.

la, Extended Data Fig. 1d), whereas tissue cells were Eomes™ CD49b. Strikingly, an increase in
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tissue NKp46* ILC (both, CD49b* and CD49b" cells) was observed in nephritic mice (Fig. 1a).
NK cells depend on Eomes, while ILC1 and NKp46* ILC3 depend on Gata3>. Similarly, poly(I:C)
injections into B6 mice increased the representation of CD49b* and CD49b" tissue NKp46* ILC
(Extended Data Fig. 1f-g). CD49b" cells were >95% reduced in Ncr1“™"; Eomes"™ mice, while
CDA49b” CD45i.v. tissue cells were not significantly affected. In contrast, CD49b" NK cells were
maintained in poly(I:C)-treated Ncr1¢*; Gata3"" mice, but tissue CD49b- cells were significantly
reduced in numbers. Thus, CD49b* NKp46* ILC are NK cells and tissue CD49b" NKp46* cells are

ILC1 or NKp46™ ILC3.

NKp46* ILC control autoimmune organ damage

We addressed the role of NKp46™ ILC in lupus nephritis. While short-term injection of anti-
asialoGM1, known to target NK cells® and NKp46* ILC’, effectively depleted both tissue and
vessel-associated NKp46® ILC (data not shown), extended treatment with anti-asialoGMI1
(Extended Data Fig. 1h) significantly reduced tissue but not vessel-associated NKp46* ILC (Fig.
la). Remarkably, extended anti-asialoGM1 treatment significantly ameliorated lupus nephritis
shown by reduced proteinuria and serum blood urea nitrogen (BUN) levels (Fig. 1b, Extended
Data Fig. 1i), but did not affect serum anti-dsDNA antibody titers (Fig. 1c). Anti-asialoGM1
treatment also ameliorated spontaneous lupus nephritis (Extended Data Fig. 1j-k).

To selectively target NKp46" ILC and to explore the role of NKp46 signaling, we injected
NZB/W F1 mice with blocking antibodies to the activating immunoreceptor NKp46 (clone
mNCRI1.15)? (Fig. 1d-e, Extended Data Fig. 2a-c). Short-term mNCR1.15 treatment did not
deplete NKp46* ILC (Extended Data Fig. 2d-¢). Rather, mNCR1.15 showed blocking activity in

conventional killing assays and binding assays using recombinant NKp46 fusion proteins and
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ligand-expressing target cells (Extended Data Fig. 2f-h). Blockade of NKp46 improved parameters
of kidney damage (BUN levels) and prevented the increased expression of Havcerl, encoding KIM-
1, a marker of tubular injury (Fig. 1d) and the population expansion of tissue NKp46™ ILC
(Extended Data Fig. 2c¢). Serum anti-dsDNA titers were unaffected (Fig. le). Thus, NKp46
signaling controls autoimmune kidney damage.

To explore the effect of NKp46" ILC depletion on the kidney parenchyma, we performed single
cell RNA-sequencing (scRNA-seq) of whole kidneys of lupus-prone mice (Fig. 1f, Extended Dat

Fig. 3a-c, Supplementary Table 1), including groups depleted of tissue NKp46* ILC. We analyzed

podocytes, since podocyte injury leads to proteinuria®. After subsetting parietal epithelial cell
(PEC)/podocyte clusters (Fig. 1g-h), we identified podocytes, based on expression of podocyte-
specific transcripts (Fig. 11, Extended Data Fig. 3d-e). Podocyte cluster Pod2 was substantially
underrepresented in lupus nephritis (Fig. 1h, Extended Data Fig. 3f), reflecting extensive podocyte
injury. This was prevented by depletion of tissue NKp46* ILC.

PEC react to glomerular injury by forming cellular crescents’. Flat PEC (fPEC) cover the
Bowman’s capsule, while intermediate PEC (iPEC) are a transitional population between fPEC
and proximal tubular cells’. We observed reduced representation of homeostatic fPEC and an
expansion of lupus nephritis (LN)-associated clusters LN-iPEC1, LN-iPEC2, LN-iPEC3, and LN-
fPEC (Fig. 1h, Extended Data Fig. 3f), changes that were abrogated by depleting tissue NKp46*
ILC. An unbiased analysis of differentially co-regulated genes across PEC/podocytes revealed
three modules (Fig. 1j). Module 1 comprised of genes belonging to iPEC/LN-iPEC, module 2
included typical podocyte marker genes and module 3 consisted of genes derived from fPEC/LN-
fPEC. Module 1 contained Cd44, a marker of activated iPEC'?, Cd9, required for the oriented

migration of PECs!!, chemokine transcripts (Ccl2, Ccl5, Cxcl16, and Cxcll), and 1134, encoding a



149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

ligand for macrophage colony stimulating factor receptor (CSF1R). LN-iPEC were particularly
enriched in transcripts reflecting immune cell functions (e.g., Ccl2, Ccl5, 1134, H2-Aa, H2-Ab1) or
epithelial cell injury (Havcrl) and fibrosis (e.g. Pdgfa). A similar transcriptional program related
to epithelial activation was expressed by a cluster of proximal tubular epithelial cells (LN-PT)
(Extended Data Fig. 3g-j).

Analysis of module 3 revealed a mesenchymal cell state, promoting extracellular matrix
remodeling and a pro-fibrotic response (e.g. Acta2, Fnl, Pdfgrb) (Fig. 1j). Module 3 transcripts
were significantly enriched in LN-fPEC (Fig. 1k). Epithelial cells within cellular crescents, in close
contact with F4/80" macrophages, expressed smooth muscle actin (a-SMA), a marker of fibrosis
encoded by Acta?, and the iPEC activation marker CD44 (Fig. 11). Both histological and
transcriptional disease-associated changes were reversed by tissue NKp46" ILC depletion (Fig.
1h,i,I) or NKp46 blocking (Fig. Im).

In lupus nephritis, immune complexes deposit in glomerular capillaries. Capillary (cEC) and
glomerular capillary (gEC) endothelial cells'? (Extended Data Fig. 4a-d) from nephritic kidneys
had reduced expression of typical endothelial cell markers, including P/vap and markers associated
with VEGF signaling and vessel growth, such as Nrpl (encoding neuropilin 1), Kdr (encoding
VEGEF receptor 2), and Esm! (encoding endothelial cell specific molecule 1) (Extended Data Fig.
4e-f). Further, they expressed higher levels of genes related to pathological angiogenesis (i.e.,
Lgrl)'3, profibrotic and stress responses (i.e., Coldal, Colda2, Serpine2, Mtl)'*'>. These
transcriptional changes were reversed by tissue NKp46" ILC depletion. Pathways related to
physiological angiogenesis were downregulated in cEC and gEC from nephritic kidneys, while

profibrotic pathways and IFN responses were upregulated (Extended Data Fig. 4g-h).
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Three small EC clusters were overrepresented in lupus nephritis (clusters LN-EC1, LN-EC2,
LN-EC3). LN-EC1 and LN-EC2 had reduced levels of typical cEC or gEC markers (Extended
Data Fig. 4b-d), and increased levels of transcripts related to oxidative stress (e.g., Gpx3 and
Ucp2)'617, LN-EC3 were enriched in genes related to replication stress (i.e., Rrm2, Brcal, Brea?2,
Ccna2, Cenbl, and E2f2) (Extended Data Fig. 41)'8. Overall, the data are consistent with capillary
EC injury and a profibrotic response. Immunofluorescence showed extensive remodeling of
peritubular cECs and capillary loops in nephritic glomeruli, reversed by tissue NKp46" ILC
depletion (Extended Data Fig. 4j). Thus, blockade of NKp46 or depletion of tissue NKp46" ILC
reversed podocyte loss, capillary endothelial cell injury, and expansion of LN-associated iPECs.

To test the role of NKp46 signaling in lupus nephritis using mouse genetics, we treated BALB/c
mice with imiquimod (a TLR7 agonist), thus inducing lupus-like nephritis?’. NKp46-deficient
(NcrI”7) BALB/c mice had significantly reduced proximal tubular damage (i.e. reduced expression
of KIM-1, encoded by Havcrl) and were protected from kidney failure (i.e., elevated serum BUN
levels) (Fig. 1n-p). Collectively, data from two mouse SLE models, using antibody blockade and
gene targeting, demonstrate that autoimmune tissue damage requires operative NKp46 signaling

and tissue NKp46* ILC.

An immunoregulatory program instructed by NKp46

We analyzed tissue NKp46* ILC by scRNA-seq (Extended Data Fig. 5a-b, Supplementary Table

2), including tissue NK1.1" ILC from mice treated with NKp46 blocking antibodies. Tissue
NKp46" ILC could be divided into tILC (ILC1 and NKp46" ILC3) and tNK (tissue NK cells). tILC

expressed high levels of ILC1- (e.g., Thyl, Cxcr6, Cd226, Thx21) but low levels of NK-related
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genes (e.g., Eomes, granzymes, and Klra genes, encoding Ly49 receptors) (Fig. 2a-b, Extended
Data Fig. 5c-d).

Two tNK clusters were enriched in nephritis (Extended Data Fig. 5a): Tcf7* tNK expressed
Tcf7 and Eomes consistent with an early state of NK cell differentiation!®, Tigit" tNK expressed
higher levels of Tigit but lower levels of Thx21, Gzma, and Prf1 (Extended Data Fig. 5d-e). TIGIT
has been linked to NK cell exhaustion?°. Tigir" tNK also expressed Lgals3, encoding Galectin 3,
which  has inhibitory effects in human NK cells?!. Thus, Tigit" tNK may represent a
“dysfunctional” NK cell state??. In agreement, tNK cells from nephritic kidneys showed very low
degranulation in response to target cells when compared to vessel-associated NK cells. The latter
retained cytotoxic potential, albeit at lower levels than splenic NK cells (Extended Data Fig. 5f).

Zfp683* (Zfp683 encodes Hobit) and 1/7r" tILC likely represented mature and immature ILC1
clusters?*2*: Zfp683* tILC expressed higher levels of Zfp683, Cxcr6, Cd226, Tnfsf10, Gzma, and
Prfl, while II7r" tILC expressed higher levels of 1/7r, 1118r1, Ikzf2, and Cd160 (Fig. 2b, Extended
Data Fig. 5c-e). 112" tILC were enriched in nephritic kidneys (Extended Data Fig. 5a) and
expressed higher levels of transcripts associated with an immature ILC state (7cf7, 1I7r) or ILC
activation and proliferation (Gzmec, 1/2) (Fig. 2b, Extended Data Fig. 5e).

We identified a cluster, annotated as Tnfrsf9" tILC, with unique characteristics setting them
apart from Hobit-expressing ILC1 and suggesting an immune-regulatory role: while expressing
canonical ILC genes (e.g. Cxcr6, 117r, Tkzf2 and 1d2), Tnfrsf9" tILC expressed lower levels of
Zfp683 but high levels of //2ra (encoding CD25), TNF superfamily genes (e.g. Tnfrsf1b encoding
TNF receptor 2, Tnfrsf9 encoding 4-1BB, Lta encoding Lymphotoxin a, Tnfsf14 encoding
LIGHT), class II MHC-related transcripts (i.e. Cd74, H2-Ebl, H2-Aa, H2-Abl), leukocyte

adhesion molecules (Icam!), chemokine (Ccl/l) and growth factor genes (Csf1, Csf2 and Tgfbl)

10
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(Fig. 2b, Extended Data Fig. 5c-e). Prominent were NF-«kB target genes (e.g. 7rp53, Rel, Nfkb2,
Nfatcl, Icaml, Tnfrsf9, Csf2) and Crtam (class I MHC-restricted T cell-associated molecule),
encoding a surface molecule that promotes cytokine transcription and tissue residency in activated
T cells®>%6. Tnfrsf9" tILC expressed higher levels of Csf2, Tnfisf9, and class I MHC molecules in

nephritis, suggesting cellular activation (Fig. 2c). Strikingly, Tnfrsf9" tILC, but not other NKp46*

ILC clusters, were highly enriched in NKp46 activation-associated genes (Fig. 2d). Tnfrsf9" tILC

were increased in nephritis, in an NKp46-dependent manner (Fig. 2e).

NKp46* tILC in human lupus nephritis

Re-analysis of leukocytes derived from human lupus nephritis biopsies?®, identified NKp46™ ILC
based on the lack of typical T cell markers and higher expression of NCRI and NCAM1 (clusters
CT1 and CT5b, Extended Data Fig. 6a, b). NKp46* ILC consisted of one cluster with typical NK
cell markers, and a cluster expressing markers of tILC, including lower levels of GZMB and ZEB?2,
and higher levels of XCL/I (Extended Data Fig. 6¢). Within the second cluster, a subset of cells
expressed higher levels of KIT, IL7R, LTB, ILIRI, AHR and RORC, reminiscent of an ILC3
signature and another subset of cells expressed CXCR6, CXCR3, GZMA, GZMK and ZNF683
(encoding HOBIT), characteristic of ILC1. Thus, NKp46* ILC1 and ILC3-like cells are also

present in human lupus nephritis.

NKp46-instructed ILC are ILC1
To assign Tnfrsf9" tILC to the ILC1 vs. ILC3 lineage, we used double reporter mice for Eomes
(EomesS™*) and RORyt (RORyt-fate map (FM) mice), where cells that expressed RORyt are

permanently marked by YFP?. Vessel-associated NKp46" ILC were mostly Eomes" NK cells,

11
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while tissue NKp46* ILC at steady-state were mostly Eomes® RORyt-FM- ILC1. A distinct
population of RORyt-FM" Eomes™ ILC was also observed (Extended Data Fig. 6d). Poly(I:C)
treatment increased Eomes™ tNK cells and Eomes” NKp46* tILC.

We analyzed tissue RORyt-FM* and RORyt-FM™ NKp46" ILC by scRNA-seq, including cells
from poly (I:C)-treated mice. Similar to nephritic mice, we identified clusters of tILC, tNK cells
and a Tnfrsf9" tILC cluster enriched in NKp46 activation-associated genes (Extended Data Fig.

6e-g, Supplementary Table 3). RORyt-FM" and RORyt-FM-NKp46* ILC did not locate to distinct

clusters (Extended Data Fig. 6h). Tnfrsf9* tILC derived mostly from RORyt-FM- ILC, but within
Tnfrsf9" tILC, RORyt-FM" expressed higher levels of NKp46 activation-associated genes
compared to RORyt-FM- cells (Extended Data Fig. 6i-j). We conclude that NKp46 stimulation may
lead to temporary activation of RORyt gene expression in NKp46* ILC1 coordinating a

transcriptional program with some overlap to ILC3.

NKp46 amplifies renal injury via CSF2

NKp46* tILC showed low cytotoxic activity and did not produce high levels of cytokines that can
cause tissue damage. Given the production of CSF2 by NKp46* tILC, and the remarkable changes
in mononuclear phagocyte dynamics observed in the inflamed kidney*, we explored if kidney Csf2
expression links NKp46* ILC to organ damage. NKp46 engagement regulated CSF2 production
by ILC1 on the protein level, since CD49b ILC1 but not CD49b* NK cells from nephritic mice
produced substantial amounts of CSF2 when triggered with NKp46 (Fig. 3a). Tnfrsf9" tILC were
the only source of Csf2 transcripts among all kidney tILC and tNK subsets and Csf2 expression

depended on NKp46 signaling (Fig. 3b). Csf2 expression in the kidney was low in healthy controls,

12
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but significantly increased in nephritis in both NZB/W F1 and in the imiquimod model (Fig. 3c).
This increase was reversed by depletion of tissue NKp46™ ILC or Ncrl deficiency, respectively.
CSF2 blocking antibodies (clone MP1-22E9) substantially reduced proteinuria, serum BUN,
accumulation of macrophages, and proximal tubular epithelial cell injury (i.e. KIM-1 expression)
(Fig. 3d-e). NKp46™ ILC were the main CSF2-expressing population in glomerular areas following
poly(I:C) stimulation of Csf2-tdTomato reporter mice and NKp46™ CSF2* ILC were associated
with macrophages. We confirmed this association in nephritic NZB/W F1 mice (Fig. 3f-g). Thus,
NKp46 signaling controls CSF2 production by NKp46* tILC associated with macrophages and

NKp46* tILC-derived CSF2 is required for autoimmune organ damage.

NKp46 controls monocyte-derived macrophages

We asked whether blocking of NKp46 may regulate disease-associated macrophage population
dynamics in lupus nephritis. Tissue macrophages were CD11b"°" and MHCII"e" in control mice,
but CD11b"e" in nephritis (Fig. 4a). The latter included a MHCII"&" and a MHCII®V- subset.
NKp46 blocking did not reinstate the homeostatic phenotype (CD11b°Y MHCIIMeh), but it
substantially diminished the numbers of disease-associated, periglomerular, and peritubular
macrophages (Fig. 4a-b). In particular, anti-NKp46 affected the MHCII'V disease-associated
macrophage subset. Numbers of vessel-associated (CD45:.v.") monocytes and accumulation of
CD45i.v." cells within the glomeruli were not reduced by NKp46 blockade (Extended Data Fig.
7a-d). Similar effects on disease-associated macrophages were observed with CSF2 blocking (Fig.
4c). Thus, CSF2-producing NKp46* tILC are associated with macrophages around glomeruli and

NKp46 activation controls the population expansion of disease-associated macrophages via CSF2.
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Transcriptional analysis of immune cells subclustered from the whole kidney dataset showed
that tissue-resident macrophages (TR-M®) were significantly under-represented in nephritic
kidneys, while three lupus nephritis-associated M® clusters were over-represented (clusters LN-
M®1, LN-M®2, LN-M®3); this was reversed by depletion of NKp46* tILC (Fig. 4d, Extended
Data Fig. 7e). Unbiased analysis of differentially co-regulated genes across conditions and
monocyte/macrophage clusters identified three modules (Extended Data Fig. 7f): Module 1 genes
were related to phagocytosis (Cd36, Fcerlg), migration (Ccr2), production of reactive oxygen
species (Cybb), and alternative activation (Chill). Module 2 genes contained homeostatic
macrophage markers, such as Mafb and Clgq, but also Maf, Mrcl, Apoe and Trem2. TREM?2 is a
transmembrane receptor binding lipoproteins, phospholipids, and apoptotic cells, promoting
phagocytosis, removal of apoptotic cells and macrophage population expansion®>-*°. Module 3 was
dominated by ribosomal genes.

GO term analysis for biological processes and analysis of genes differentially expressed across
immune cells confirmed that macrophages were enriched in antigen processing and presentation,
phagocytosis and complement regulation, ‘phospholipid binding’ and ‘lipoprotein particle
binding’ (Extended Data Fig. 7g). They expressed transcripts associated with phagocytosis and
lysosomal processing (Trem2, Mrcl, Lgmn), cholesterol metabolism (Apoe, Abcal) and leukocyte
recruitment (Veaml, Ccr2, Vecaml) (Extended Data Fig. 7h). LN-M®3 were enriched in genes
related to cell cycle and proliferation (Ccnbl, Cenb2, Cdkl) and in Cfp, encoding the NKp46
ligand properdin (Extended Data Fig. 71). Monocytes were enriched in pathways related to reactive
oxygen species, Fc receptor-mediated phagocytosis and NF-«B signaling. Analysis of a renal
leukocyte dataset from human lupus nephritis patients?® confirmed that TREM2 expression

faithfully marks LN-M® in lupus nephritis across species (Extended Data Fig. 7j).
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Strikingly, Trem2 expression correlated with the expression of genes that were enriched in LN-
M®s, including Mrcl, Ctsl, Lgmn, Abcal, Vcaml and Ccll2. In contrast, upregulation of Trem?2
negatively correlated with the expression levels of pro-inflammatory transcripts, such as Nfkb and
Irf5 (Fig. 4e). Thus, Trem2 upregulation is linked to a LN-M® transcriptional program promoting
uptake and processing of apoptotic cells and negatively correlates with pro-inflammatory
transcripts. Since Trem2 positively correlated with Mrcl transcripts (encoding the mannose
receptor C-type 1 or CD206, a marker of anti-inflammatory macrophages), we used CD206 as a
surrogate marker to explore the location of Trem2M macrophages, using multiplexed tissue
imaging. CD206* macrophages were in periglomerular areas and associated with activated tubular
epithelial cells (Extended Data Fig. 7k), suggesting a role of Trem2" macrophages in mounting a
response to tissue damage.

Although macrophages at homeostasis expressed very low levels of Csf2rb and Trem?2, both
were highly expressed by disease-associated macrophages during nephritis; this was abrogated by
NKp46 blocking (Fig. 4f, Extended Data Fig. 8a-b). Analysis of differentially expressed genes by
Csf2rb* vs. Csf2rb- macrophages revealed that Csf2rb* macrophages expressed a pro-inflammatory
program reminiscent of monocytes (i.e. C3, Myd88, Nrdal, Ikbke, Itgb7, Cebpb, Plac8, Lyz2,
Itga4, Cxcl2, §100a4, S100a6), whereas they expressed lower levels of genes expressed by

homeostatic macrophages (Hexb, Clqga) (Fig. 4g, Supplementary Table 4).

We next analyzed the two major phenotypic subsets of disease-associated macrophages (Fig.
4a) by bulk RNA-seq. Compared to MHCII" CD11b" macrophages, MHCII'® macrophages
expressed lower levels of disease-associated macrophage signature genes (e.g., Trem2, Mrcl,
Clga, Mertk, Axl), but higher levels of monocyte-related genes (e.g., Cxcr4, Nrd4al, Plac$,

S100a4, S100a6) and Spp1, encoding Osteopontin, a profibrotic molecule?!-*? (Extended Data Fig.
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9¢). Collectively, the data reveal a spectrum of disease-associated macrophage programs: at the
one end of the spectrum were Csf2rb" cells with a monocyte-related, pro-inflammatory and pro-
fibrotic program and at the other end Trem2" macrophages with an anti-inflammatory, phagocytic,
lipid-processing profile. CSF2-producing NKp46* ILC regulated the population expansion of all
disease-associated macrophages, and particularly of the Csf2rb" MHCII®Y subset.

Do NKp46-regulated macrophages derive from blood monocytes? RNA velocity analysis
predicted no contribution of Ly6C'® monocytes (cluster Mo2) to tissue macrophage clusters (Fig.
4h). However, it predicted that Ccr2® macrophages, with possible contribution of Ly6CM
monocytes (cluster Mol) may transition to LN-M®s, while TR-M® may be a second source of
LN-M®s. To address if longer-lived kidney-resident macrophages or bone marrow-derived
monocytes sustain the pool of disease-associated macrophages, we employed Cx3criCeERT2;
R26R'Tomate mice treated with tamoxifen, followed by a chase period of 8 weeks, followed by no
treatment vs. poly(I:C). In control mice, most CD45i.v.” macrophages were tdTomato™, i.e. kidney-
resident macrophages (Extended Data Fig. 9a-b). Poly(I:C) induced a ‘replacement’ of tdTomato™
by tdTomato~ macrophages. This was reversed by CSF2 blocking. Thus, disease-associated
macrophages receive substantial contributions from blood monocytes and the population size of
monocyte-derived macrophages is controlled by CSF2.

To explore the contribution of monocyte-derived macrophages in nephritis, we labelled
circulating cells with CD45.2 antibodies coupled to two different fluorochromes injected
intravenously 5 min and 12 h before analysis®}. Myeloid cells were thus divided into 4 categories:
‘5min vessel-associated’, *12 h vessel-associated’, ‘recruited within 12 h tissue cells’, and ‘tissue
cells’, the latter representing tissue-resident cells or recruited 12h prior to analysis (Extended Data

Fig. 9¢). Ly6C" monocytes were enriched in the gate ‘5 min vessel-associated’ but were absent
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from tissues (Extended Data Fig. 9d). In contrast, Ly6C!® CD43" monocytes were enriched in the
’12 h vessel-associated” gate. MHC II'°" macrophages were particularly enriched in the gate
‘recruited within 12h tissue cells’ (Extended Data Fig. 9¢). Collectively, RNA velocity analysis,
fate labelling of CX3CR1" cells and an i.v. labelling approach, support that NKp46" ILC control

the population expansion of monocyte-derived macrophages via CSF2.

TREM?2 regulates monocyte-derived macrophages

To explore whether disease-associated macrophage depletion regulate tissue damage and NKp46-
dependent glomerular fibrosis (Fig. 1m), we blocked CSFIR signaling (Fig. 5a-b, Extended Data
Fig. 9f-g). Complete depletion of macrophages by CSF1R blocking suppressed periglomerular
fibrosis. CD45i.v." monocyte numbers were not affected. Thus, macrophages are required for
periglomerular fibrosis, a hallmark of severe lupus nephritis.

To explore whether TREM?2, expressed specifically by disease-associated macrophages (Fig.
5¢), regulates disease progression, we generated B6.Slel Yaa; Trem2” mice. Trem2 deficiency did
not affect the numbers of MHCIIM disease-associated macrophages, nor vessel-associated Ly6C'*™
and Ly6C" monocytes (Extended Data Fig. 9h-i). In contrast, B6.Sle! Yaa; Trem2” mice had
significantly higher numbers of MHCIIY macrophages, expressing the monocyte marker CD43
(Fig. 5d). Trem?2 deficiency resulted in increased levels of periglomerular smooth muscle actin and
distorted periglomerular capillary architecture (Fig. 5f). TREM2 may thus accelerate monocyte-

derived macrophage differentiation towards an anti-inflammatory state.

Discussion
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Amplifiers of autoimmune tissue damage are largely elusive. Our data uncover that NKp46
signaling regulates interactions of ILCI, disease-associated macrophages, and kidney
parenchymal cells, resulting in amplification of the inflammatory cascades that cause organ
damage without affecting autoimmunity (Extended Data Fig. 10). ILC3-derived CSF2 has been
linked to monocyte-derived macrophage programs in the intestine**3¢, In lupus nephritis, NKp46
signaling in ILC1 instructs an immunoregulatory ILC3-like program controlling the population
expansion of disease-promoting monocyte-derived macrophages via CSF2-CSF2R interactions.
Disruption of this cascade ameliorated kidney disease in SLE supporting that NKp46-driven
activation of ILC1 is an essential amplifier of nephritis severity. Our data do not exclude an
additional role of vessel-associated cytotoxic NK cells in disease progression, but our findings that
they were not depleted by extended anti-AGM1 treatment and had rather low cytotoxic activity
when compared to splenic NK cells, do not support a primary role of NK cells. An open question
remains how the NKp46 receptor is triggered during lupus nephritis. A potential ligand is
properdin, a serum glycoprotein that activates the alternative complement pathway and that can
bind to apoptotic cells*’. We found that properdin is expressed by disease-associated mononuclear
phagocytes in nephritic mice, suggesting a bi-directional crosstalk between NKp46" ILC and
monocyte-derived macrophages. The localized expression of CSF2 by a limited number of
NKp46* ILC in the kidney parenchyma suggests spatially targeted interactions of ILC1 with
CSF2R-expressing monocyte-derived macrophages. Monocyte-derived macrophages in a second
step upregulate TREM2, which suppresses pro-inflammatory macrophage programs and promotes

epithelial cell repair. The latter may be a broader function of TREM2 in chronic kidney diseases®3.

These findings provide a deeper understanding of the molecular determinants of host susceptibility
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to autoimmune organ damage, with broad implications for the immunotherapy of chronic

inflammatory diseases.
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Figure legends

Figure 1. NKp46" ILC control autoimmune organ damage

a, Flow cytometry plots and quantification of kidney NKp46" ILC subsets (left to right, mice per

group: n = 5, 6, 6). Representative of 2 independent experiments. b-e, Quantification of serum

BUN, anti-dsDNA antibody titers and Havcrl expression in renal cortex from NZB/W F1 mice

(mice per group: n =9, 12, 11 for b-¢; n = 18, 12, 8 for d-BUN; n =4, 6, 4 for d-Havcrl; n=4,

6, 6 for e). Pooled from (b, c, d-BUN) or representative of (d-Havcrl, e) 2 independent

experiments. f, UMAP plot of 74,850 whole kidney cells (» = 3 mice per group). PT, proximal

tubular cell; STR, stromal cell; NP, nephron progenitors; IMU, immune cell; LOH, loop of Henle;
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EC, endothelial cell; DCT, distal convoluted tubule; PEC/Pod, parietal epithelial cell/podocyte;
IC, intercalated cell; CD, collecting duct. g, UMAP plot of 1294 PEC/Podocytes. iPEC,
intermediate PEC; LN-iPEC, LN-associated iPEC; fPEC, flat PEC; LN-fPEC, LN-associated
fPEC; Pod, podocyte. h, Distribution of each experimental group on the UMAP plot. i, Feature
plots of Nphs2, Ccl2, and Acta? in the indicated groups. j, Pseudotime heatmap depicting
expression of significant marker genes corresponding to three expression modules spanning the
transition from PEC to Pod. Color scale indicates scaled marker gene expression across
pseudotime. Representative genes included in each module are shown. k, Matrix plot indicating
log2-transformed row scaled expression of exemplar genes selected from each module shown in j.
I-m, a—-SMA (light teal) and DAPI (grey) or CD44 (yellow) and F4/80 (dark purple)
immunofluorescence (IF) images of kidney cortex and quantification of periglomerular ac—SMA*
and CD44" area per visual field (visual fields: n = 10, 14, 23 pooled from 3, 4, 3 mice per group
forl, and n =5, 18, 11 pooled from 2 mice per group for m). n, CD31 (grey), F4/80 (vermilion)
and KIM-1 (light teal) IF images of kidney cortex and quantification of KIM-1" area (n = 12 visual
fields pooled from 4 mice per group). 0, Havcrl expression in renal cortex from imiquimod-treated
BALB/c mice (n =5, 6, 7, 8 mice per group). p, Quantification of serum BUN (n =5, 3, 7, 8 mice
per group). One-way ANOVA followed by Tukey’s test (a-e, p-q) or Kruskal-Wallis test followed

by Dunn's test (I-n). Bars show mean + SD.

Figure 2. An NKp46-instructed immunoregulatory program.
a, UMAP plot of 17,766 single-cell transcriptomes of kidney tissue NKp46* ILC, colored by cell
annotation. tILC, tissue ‘helper’ innate lymphoid cell; tNK, tissue natural killer cell. b, Feature

plots of selected marker genes (Eomes, Kira8, Zfp683, 117v, I12ra, Csf2, and Csf1), split into young
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and nephritis-1 conditions. ¢, Volcano plot showing differentially expressed genes (DEG) of
Tnfrsf9" tILC from young vs. nephritis-1. d, Violin plots showing levels of expression of an NKp46
activation®’ signature across the kidney tissue NKp46" ILC clusters. e, Composition of tissue

NKp46™ tILC split into the indicated conditions. The bars show mean + SD.

Figure 3. NKp46 signaling in NKp46* ILC amplifies renal injury via CSF2.

a, Representative flow cytometry plots of kidney NK1.1*ILC stimulated with plate-bound NKp46
or isotype, analyzed for CD49b and CD45. Indicated subsets were analyzed for CSF2. Right:
Percent of CSF2* cells among CD49b- NKp46* ILC per condition. b, Dot plot showing the
expression levels of Csf2 across tissue (CD45.2i.v.)) NKp46™ ILC clusters, split into isotype
(nephritis-2) and anti-NKp46 treated conditions. Dot size indicates percentage of expressing cells
(% Exp.), and color scale shows average expression level of log normalized counts (Avg Exp.) c,
Quantitative PCR of Csf2 in kidney cortex; relative to expression of Gapdh. (left to right: n =3, 3,
4,6top; n=4,6,7, 8 mice per group bottom). d, Quantification of urine Albumin/Creatinine Ratio
and serum BUN (n = 3, 6, 6 mice per group). e, CD31 (grey), F4/80 (vermilion) and KIM-1 (light
teal) IF of kidney cortex and quantification of KIM-1 area per visual field (n =9, 9, 12 visual fields
pooled from 3, 3, 4 mice per group). f, Tdtomato (vermilion), NKp46 (light teal) and DAPI (grey)
IF images of kidney cortex and percentage of NKp46 * and NKp46~ Csf2-TdTomato™ cells per
visual field (n = 23, 49 visual fields pooled from 3 mice per group). g, Left: F4/80 (light teal),
TdTomato (vermilion), and NKp46 (grey) IF images of kidney cortex and quantification of Csf2*
NKp46" ILC associated with macrophages (M®) per 10 visual fields (z = 3 mice per group). Right:
NKp46 (grey), F4/80 (light teal), and EOMES (light teal) and DAPI (dark blue) IF images of

kidney cortex, representative of 3 mice. Two-tailed paired t-Test (a); one-way ANOVA followed
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by Tukey’s test (¢, e); Kruskal-Wallis test followed by Dunn's test (f); two-tailed unpaired t-Test

(g, h). The bars show mean + SD.

Figure 4. NKp46 signaling controls disease-associated macrophages

a, ¢, Representative flow cytometry plots of kidney M®, analyzed for MHC II and CD11b and
quantification of M® subsets (left to right: n = 4, 6, 4 mice per group for a and n = 4, 6, 6 for ¢),
representative of 2 independent experiments. b, CD31 (grey), F4/80 (dark purple) IF images of
kidney cortex, representative of 4 mice per group. White arrows point to periglomerular and yellow
arrows to peritubular areas. d, UMAP plot of 4,769 immune cells, TR-M®, tissue resident M®;
LN-M®, lupus nephritis (LN)-associated M®; Ccr2” M®, M® enriched in Ccr2 transcripts; Mo,
Monocyte; PMN, polymorphonuclear neutrophils; cDC, conventional dendritic cell; PC, plasma
cells; T, T cell; UNO, unidentified cells. Bottom: Distribution of each experimental group on the
UMAP plot. e, Heatmap of significantly coregulating genes (adjusted p-value < 0.05) in immune
cells. Color scale indicates Spearman’s rank correlation coefficient (r). Top bar plots show
Spearman’s rank correlation coefficient to 7rem2. f, Violin plots showing levels of expression of
Trem?2 and Csf2rb in MO clusters split into the indicated conditions. g, Volcano plot showing DEG
by Csf2rb* vs Csf2rb- macrophages (pseudobulk analysis of M® clusters 2,18, 27, shown in
Extended Data Fig. 8a). h, RNA velocity analysis of kidney immune cell subpopulations from

nephritic kidneys. One-way ANOVA followed by Tukey’s test (a, ¢). The bars show mean + SD.

Fig. 5§ TREM2 regulates monocyte-derived macrophages.

a-b, Experimental set up in Extended Data Fig. 9f. a, CD31 (grey), F4/80 (dark purple) and smooth

muscle actin (a-SMA, light teal) IF images of kidney cortex and quantification of periglomerular

24



586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

o-SMA™ area per visual field. Each Dot is average value per mouse. (n = 6 mice per group pooled
from 3 independent experiments). b, Representative flow cytometry plots of kidney M®, analyzed
for CD11b and MHC?2 and quantification of the indicated M® subsets (n =4, 6, 6 mice per group).
¢, Dot plot showing the expression levels of Trem?2 across whole kidney cell populations (left), or
across immune cell clusters (right). Dot size indicates percentage of expressing cells (% Exp.) and
color scale shows average expression level of log-normalized counts (Avg Exp.). d, Representative
flow cytometry plots of kidney M® stained for MHC2 and CD11b (top) or MHC2 and CD43
(bottom) and quantification of the indicated M® subsets (z = 3, 12, 7 mice per group). e, oc—SMA
(light teal), F4/80 (dark purple) and CD31 (grey) IF images of kidney cortex and quantification of
periglomerular ao—SMA™ area per visual field. Each dot is average value per mouse (n = 6, 10, 8
mice per group). b, d, one-way ANOVA followed by Tukey’s test. a, e, Kruskal-Wallis test

followed by Dunn's test. The bars show mean + SD.

Methods

Mice

NZB/W F1,NZB, NZW, BALB/c mice were purchased from Jackson Laboratory or bred in house.
Eomes™3% Gata3V140, Ncr1-Cre™*' | Rorc(y)-Cre™*?, Rosa26-LSL-YFP*, Eomes®”* 4 all on
the C57BL/6 background, were bred locally. B6.Slel. Yaa mice**® were purchased from Jackson
Laboratory or imported from the University of Oxford and crossed locally to Trem2”~ mice®.
Ncr12PeP mice on a BALB/c background*® were imported from the University of Rijeka and bred
locally. Csf2-tdTomato reporter mice*® mice were imported from the University of Zurich and bred
locally. All mice were kept in the FEM animal facility of the Charité¢ University under Standard

Pathogen-Free conditions. All animal experiments were approved and were in accordance with the
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guidelines of the local animal care and use committees (Landesamt fiir Gesundheit und Soziales,

Berlin).

poly (I:C)-induced lupus nephritis and in vivo treatments

The poly (I:C)-induced lupus nephritis model has been previously described*. Briefly, 19-week-
old female mice were treated i.p. with 200pg poly (I:C) (Invivogen, San Diego, CA) in sterile
endotoxin-free water three times per week for 4 weeks and analysed 2 weeks after the last poly
(I:C) injection. Indicated groups of mice were treated i.p. with anti-NKp46 (mNCR1.15, IgGlk,
150pg per injection, provided by Stipan Jonjic, University of Rijeka, Center of Proteomics), anti-
CSFIR (clone AFS98, rat I[gG2ak, BioXCell Catalog #BE0213, 300ug per injection,), anti-CSF2
(clone MP1-22E9, rat IgG2ak, BioXCell Catalog #BE0259, 300ug per injection with a loading
dose of 500ug) or isotype control of the same quantity (IgG1k, clone MOPC-21, BioXCell Catalog
#BE0083 and IgG2a clone 2A3, BioXCell Catalog #BE0089). Anti-IFNAR (clone MARI5A3,
BioXCell Catalog #BE024, 250ug per injection) and anti-AGM1 antibodies (FUJIFILM Wako
Chemicals 20ul solution) were injected twice a week for 6 weeks. Where indicated in the figures,
rabbit polyclonal IgG (BioXCell Catalog #BE0095, 200 pg per injection) was used as control to
anti-AGM1. Anti-CSF1R, and anti-NKp46 or isotype control were injected every other day for 2
weeks following the 4-week poly (I:C)-treatment. Anti-CSF2 was either injected every other day
for 2 weeks or daily for 1 week, following poly (I:C) treatment. Cx3cr I ERT2; R26RTomato mjce
were injected with two tamoxifen injections as previously described. poly (I:C) and anti-CSF2
were injected 8 weeks later i.p. for two weeks. Where indicated, mice were injected with anti-

CD45.2 antibodies i.v. before analysis.
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The monoclonal anti-NKp46 blocking antibody (Clone mNCRI1.15, isotype IgGlk,
Antigen/Immunogen: mNCRI1 ectodomain fused to hlgG1l Fc fragment) has been extensively
described>. mNCRI1.15 was produced by Stipan Jonjic, University of Rijeka, Center for
Proteomics. Briefly, hybridoma cells were cultured in RPMI 1640 media, antibodies were purified
from the serum-free medium using an AKTA Pure system equipped with prepacked protein G
columns with one column dedicated to each clone. For every lot, a battery of tests was conducted,

including one functional test per clone.

The imiquimod-induced lupus nephritis model has been previously described?’. Topical
Imiquimod (ALDARA® 5 % cream, Viatris Healthcare GbmH, 25mg creme containing 1.25mg
Imiquimod per application) was applied every other day on the dorsal surface of the right ear for

5-7 weeks. All mice were analysed within 7 days after the onset of proteinuria.

Immunofluorescence on tissue sections and confocal microscopy

Kidneys were fixed in PLP containing PFA overnight at 4°C. The tissue was washed and incubated
again overnight in 30% sucrose in phosphate buffer and subsequently frozen in O.C.T. Tissue Tek
(Sakura) and stored at -80°C. For analysis, 10-20 pm sections were cut using the cryotomes Nx70
or HM560 (ThermoFisher). Sections were dried, rehydrated, and blocked for 1 h with 1% bovine
serum albumin (BSA) and 10% donkey serum (Jackson Immunoresearch, 017-000-121) and 20
min with Fc-block FcgRI/III (Invitrogen) and FcgRIV (Biolegend). Unlabelled primary antibodies
against NKp46 (R&D Systems, polyclonal), EOMES (R&D Systems, clone 1219A),
TIM1/KIM1/HAVCR (R&D Systems, polyclonal) and RFP/ DsRed/ TdTomato (Rockland,

polyclonal) were diluted in PBS with 1% BSA and 0.1% Triton X-100 in PBS and sections were
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incubated overnight at 4°C. Sections were incubated with secondary antibodies, including donkey
anti-goat-AF488, donkey anti-goat-AF594, donkey anti-goat-AF647, goat anti-rabbit-AF546, goat
anti-rabbit-AF594 (ThermoFisher Scientific), followed by directly conjugated antibodies CD31-
AF594 (Biolegend, clone MEC13.3) or CD31-AF647 (BioLegend, clone 390), F4/80-AF488 and
F4/80-e660 (Invitrogen, clone BM8), a.-Smooth Muscle Actin-AF488 (Cell Signaling, clone 1A4)
CD11b-AF488 (eBioscience, clone M1/70) and CD44-AF594 (DRFZ, clone IM7), sequentially
for 1-2h each at room temperature. For nuclear staining, sections were stained with 1pg per ml
DAPI (Thermofisher) in PBS and the slides were mounted using Fluorescence Mounting Medium
(Agilent, S302380-2). The slides were imaged on a Laser-Scanning-Microscope (LSM 880, Zeiss)

at 40x magnification.

CODEX staining

Sum slices of murine young and nephritic kidneys were prepared and used for CODEX staining
following manufacturer’s instructions (Akoya Biosciences). Briefly, sections were retrieved from
the freezer, let dry on Drierite beads and subsequently fixed for 10 min in ice-cold acetone.
Samples were rehydrated in hydration buffer and photobleached twice for 45min as previously
described °!-*2. After photobleaching, sections were blocked and stained with a 28-plex CODEX
antibody panel overnight at 4°C. The following antibodies were used: anti-CD11b (Clone M1/70,
BioLegend), anti-CD11c¢ (Clone N418, BioLegend), anti- CD169 (Clone 3D6.112, BioLegend),
anti- CD172a (Clone P84, BioLegend), anti- CD26 (Clone H194-112, BioLegend), anti- CD31
(Clone MEC13.3, BioLegend), anti- CD4 (Clone RM4-5, BioLegend), anti- CD44 (Clone IM7,
BioLegend), anti- CD45 (Clone 30-F11, BioLegend), anti- CD8a (Clone 53-6.7, BioLegend), anti-

CD90.2 (Clone 53-2.1, BioLegend), anti- EpCAM (Clone G8.8, BioLegend), anti- F4/80 (Clone
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BMS, Thermo Scientific), anti- Ly6C (Clone HKI1.4, Biolegend), anti- Ly6G (Clone 1AS,
BioLegend), anti- MHCII (Clone M5/114.15.2, BioLegend), anti- NKp46 (Clone 29Al.4,
BioLegend), anti- SiglecF (Clone IRNM44N, Thermo Scientific), anti- TCRb (Clone H57-597,
BioLegend), anti- XCR1 (Clone ZET, BioLegend), anti- CX3CR1 (Clone SAO11F11,
BioLegend), anti- SMA (Clone 1A4, BioLegend), anti- CD64 (Clone X54-5/7.1, BioLegend), anti-
IBA1, (Clone EPR16589, Abcam), anti- ApoE (Clone EPR19392, Abcam), anti- CD206 (Clone
MR5D3, BioRad) and anti- Nephrin (Clone AF31-59SP, R&D systems).

After staining, samples were washed with staining buffer, fixed with ice-cold methanol, washed
with 1x PBS and fixed with BS3 fixative (Sigma Aldrich, St. Louis, MO, USA). A final washing
step with 1x PBS was performed and samples were stored at 4°C before imaging for a maximum

of 1 week in CODEX storage buffer (Akoya Biosciences).

CODEX imaging, processing and analysis

Prior to imaging, stained coverslips were equilibrated at room temperature. A multicycle CODEX
experiment was performed following manufacturer’s instructions (Akoya Biosciences). Images
were acquired with a Zeiss Axio Observer widefield fluorescence microscope using a 20x
objective (NA 0.85). A total of 10 slices with a z-spacing of 1.5 um were acquired. The 405, 488,
568, and 647 nm channels were used. Raw files were exported using the CODEX Instrument
Manager (Akoya Biosciences, Marlborough, MA, USA) and processed with CODEX Processor

v1.7 (Akoya Biosciences).

To quantify the macrophage distribution, images were exported to QuPath 3. Activated and non-

activated tubules were identified based on the expression of EpCAM, CD44 and MHCII. Arterioles
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were identified based on the co-expression of CD31 and SMA and glomeruli were delineated using
Nephrin signals. Several of these anatomical areas were randomly selected in the medulla and
cortex and a 10um radius was drawn around them. Cells were detected and single object classifiers
were implemented to identify the different cell types in the annotated areas. The total number of

cells (for each cell type) per area was quantified.

Quantitative real time PCR from renal cortex

The kidney cortex was dissected and snap-frozen in liquid nitrogen. After homogenizing of the
tissue with UltraTurrax (VWR, 431-0179) in RLT buffer, total RNA was extracted using the
RNeasy mini kit with on-column DNase digestion (Qiagen, 74106 and 79254) and 2 pg total RNA
was reverse-transcribed using a High-Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Thermo Fisher Scientific, 4374966). 60 ng cDNA per reaction were subsequently
subjected to real-time PCR. qRT-PCR reactions were performed using SYBR Green Select
(Thermo Fisher Scientific, 4472908) and the following primers: Gapdh FW 5°
TGGAGAAACCTGCCAAGTATG, RV 5" GTTGAAGTCGCAGGAGACAAC, Trem2 FW 5’
TTCAGATCCTCACTGGACCC, RV 5 TCCTGCTCCCAGGATAGGTG, Csf2 FW 5’
TGCCTGTCACGTTGAATGAAG, RV 5" GTGTTTCACAGTCCGTTTCCG and Havcrl (Kim-
1) FW 5" AAACCAGAGATTCCCACACG, RV 5'GTCGTGGGTCTTCCTGTAGC. qRT-PCR
was performed with the StepOnePlus Real-Time PCR Systems (Thermo Fisher). Relative amounts

of mRNA were calculated by the AACt method using GAPDH as an internal control.

Measurement of blood urea nitrogen (BUN), albumin / creatinine ratio
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Urine albumin (Albuwell M (m Albumin ELISA, Strip Plate, Ethos Biosciences, Inc., 1011) and
urine creatinine (The Creatinine Companion (h,m,r microplate, Ethos Biosciences, Inc., 1012),
serum blood urea nitrogen (BUN) (Urea Nitrogen Colorimetric Detection Kit, Thermo Fisher,
EIABUN) were measured according to the kit manufacturer’s instructions. All measurements were

carried out using SpectraMax Plus (Molecular Devices) and analyzed using SoftMaxPro.

anti-double stranded DNA ELISA

To measure anti-dsDNA antibody levels in the serum, measurement plates were pre-coated with
poly-Lysin (Sigma, P1274) for 1 hour at 37°C followed by DNA (Calf Thymus-DNA,
Calbiochem, 2618) in TE-Buffer overnight at 4°C in the fridge. After blocking with 2% FBS in
PBS, samples were diluted 1:100 in blocking buffer and incubated at room temperature for 2 hours,
followed by incubation with Goat anti-mouse IgG (Fc)-HRPO, diluted in blocking buffer 1:10.000
(Dianova Cat# 115-035.071) for 1 hour. ABTS (2,2'-azino-di-(3-ethylbenzthiazoline sulfonic
acid)) (Roche, Cat# 11684302001) was used as substrate. All measurements were carried out with

SpectraMax Plus (Molecular Devices) and analyzed with SoftMaxPro.

Preparation of single cell suspensions for whole kidney scRNA-seq

Female NZB/W F1 were analyzed at 12 (‘young’) and 25 weeks of age (‘age-matched’). 25 weeks
old mice were pre-treated with poly (I:C) (‘nephritis’), or with poly (I:C) and anti-asialoGM1
antibodies (‘aAGM1’) to deplete NKp46* ILC. Whole kidney single cell suspensions were
prepared as previously described, (https://www.protocols.io/view/p1-kidney-cold-active-protease-
single-cell-dissoci-kqdg306pg25z/v1) with slight modifications. Briefly, kidneys were isolated in

ice-cold PBS and minced on a petri dish on ice. 25 mg of kidney tissue was added to 1 ml of
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protease solution (5 mM CaCl,, 10 mg/ml Bacillus licheniformis protease, and 125 U/ml DNase,
incubated on ice and triturated every 2 min using a 1 ml pipet. After 11 min, digested tissue was
passed through a 40 pm filter, rinsed with 1% BSA in PBS, and transferred to a new tube to which
1 ml of protease solution was added. The mix was further digested in a thermomixer at 1100RPM
at 4°C with titruration every 2 min on ice. After 19 min, the mix was passed through a 30 um filter,
rinse with 1% BSA in PBS, and subjected to a third and fourth round of digestion in a thermomixer
at 1200RPM and 1400RPM at 4°C. During the third (29 min) and fourth (40 min) digestion the
mixture was triturated every 3 minutes using a 18G needle. After the fourth digestion, and another
trituration and filtering through a 30 um filter, the digested tissue was rinsed with 1% BSA in PBS,
centrifuged and resuspended in RBC lysis buffer. Following titruration and 2 min incubation on
ice, the digested tissue was washed and resuspended in 1% BSA in PBS. The single cell

suspensions were visually inspected under the microscope to check cell integrity.

Preparation of kidney single cell suspensions for flow cytometry and sorting

Kidneys were harvested, minced and placed into RPMI 1640 Medium with GlutaMAX (Gibco)
with collagenase IV (Worthington Biochemical, 570 U/ml) and DNase I (Roche, 12,5 U/ml).
Tissue digestion was performed using the gentleMACS™ Dissociator and incubation with the
enzymes at 37°C for 20 minutes. Single cell suspensions were obtained by passing cells through a
70-um and 40-um strainer and washing once with flow cytometry buffer. Following centrifugation
at 500g for 5 minutes at 4°C, erythrocytes were removed by incubation in Red Blood Cell Lysing
Buffer Hybri-Max™ (Sigma-Aldrich) or by centrifugation in Percoll gradient. For sorting of

NKp46© ILC or LinNKI1.1" ILC, leukocytes were further enriched by Percoll gradient
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centrifugation (Cytiva). The pellet was resuspended in 40% Percoll layered over 80% Percoll prior

to density centrifugation (1306g 20 min at 20°C with no brake).

Single-cell suspensions were plated in 96-well V-bottom plates on ice. FcyRIII/II were blocked
with purified anti-CD16/32 (FcyRIII/IL, eBioscience, 1:250) for 15 minutes at 4°C. Antibody
mixes were added and incubated at 4°C in the dark for 30 minutes, then incubated with streptavidin
conjugates for 20 minutes. Dead cells were excluded with either DAPI (eBioscience) or Fixable
Viability Dye (FVD; eBioscience). Flow cytometry was performed using a BD Biosciences
LSRFortessa or BD FACSymphony A5 flow cytometer and the BD Diva software (BD
Bioscience). Cell sorting was performed using a BD Biosciences FACSAria II cell sorter achieving
a purity rate of > 98%. Flow cytometry data were acquired using FACS Diva software v8.0.1 (BD

Bioscience) and the data obtained were analyzed using FlowJo v10.10 (Flow Jo, BD Biosciences).

For intracellular staining of Eomes, cells were fixed at 4°C overnight and permeabilized for 1h at
4°C. Following fixation and permeabilization, cells were stained at 4°C with antibodies against

Eomes in permeabilization buffer (1:100).

For intracellular staining of CSF2, live CD45" lineage (CD3, CD5, CD19, Ly6G) NK1.1" cells
were sorted with BD FACS Aria, treated with IL-2 (10 ng/mL) and IL-7 (10ng/ml) in complete
RPMI overnight and then stimulated ex vivo with IL-2 (50 ng/mL, Peprotech), IL-7 (20 ng/mL,
Peprotech), IL-12 (50 ng/mL, Miltenyi) plus IL-18 (50 ng/mL, R&D) for 6h in either purified anti-
NKp46 antibody (BioLegend, Cat. 137602) or isotype (rat IgG2a, BioXCell, #BE0089) coated

wells. BD GolgiPlug (including Brefeldin A) and BD Golgi Stop (4uL / 6mL) were added in the
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medium after 1h. Cells were then fixed for 1h and permeabilized for 1 h at 4°C. Following fixation
and permeabilization, cells were stained at 4°C with antibodies against CSF2 in permeabilization

buffer (1:100).

The following antibodies were used for cell-surface staining: CD49b-FITC (DX5), MHC Class 11
(I-A/I-E)-FITC (M5/114.15.2), CD1l1c-PerCP-Cyanine5.5 (N418), CD335 (NKp46)-PerCP-
Cyanine5.5 (29A1.4), CD11b-PE-Cyanine7 (M1/70), NK1.1-PE-Cyanine7 (PK136), CD45-APC-
eFluor780 (30-F11), CD3e-Biotin (145-2C11), CD5-Biotin (53-7.3), CD19-Biotin (MB19-1),
CD335 (NKp46)-Biotin (29A1.4), CD335 (NKp46)-PE-Cyanine7 (29A1.4), CD49b-APC (DX5),
NKI1.1-Super Bright 702 (PK136), MHCII-APC-eFluor® 780 (M5/114.15.2), CD11b-APC-
eFluor® 780 (M1/70), CD45.2-FITC (104), MHCII - Super Bright™ 600 (M5/114.15.2), CD45-
PerCP-Cyanine5.5 (30-F11), F4/80-FITC (BMS), CD45.2-PE (MP1-22E9), CD45.2-APC (104),
CD45.2-PE (104), F4/80-eFluor®660 (BMS8), CD16/32 (FcyRII/IT)-Purified (93) all from
eBioscience, CD62L-APC (clone MEL-14), anti-Ly-6G-Biotin (1A8), asialoGM1-Alexa Fluor®
647 (Poly21460), CD49d-PE-Cyanine7 (R1-2), Ly6C - BV605 (clone HK1.4), Ly6C-BV711
(HK1.4), XCR-APC (ZET), XCR1-PeDazzle (ZET), CD45.2-BV711 (104) from BioLegend, and
CD43-BV786 (S7), F4/80-BUV395 (T45-2342), CD45 BV711 (30-F11) from BD Biosciences.
The following antibodies were used for intracellular staining: GM-CSF-PE (MP1-22E9), CD107a
(LAMP-1)-Alexa Fluor® 647 (1D4B), Eomes-eFluor® 660 (Danl 1mag), Ki67-Alexa Fluor® 647

(B56).

NKp46" ILC in Fig. la were identified as CD45" Lineage (CD3/CD5/CD19/Ly6G)- NKp46*

NK1.17 cells. For scRNA-seq analysis of kidney tissue NKp46* ILC (Fig. 2a-e, Extended Data
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Fig. 5a-e), tissue NKp46* ILC were sorted from 10 healthy young, 8 nephritic and 6 anti-NKp46-
treated NZB/W F1 mice (gating strategy shown in Extended Data Fig. 5a-b). For the quantification
of the percentage of CSF2" cells among CD49b- NKp46™ ILC (Fig. 3a) one ‘young’ sample was
pooled from 3 young mice; two of the 3 ‘nephritic’ samples correspond each to one nephritic
mouse, the third ‘nephritic’ sample was pooled from 2 nephritic mice. For scRNA-seq analysis of
kidney leukocytes (Fig. 4f-g, Extended Data Fig. 8a-b), kidney leukocytes, including vessel-
associated (CD45.2i.v.") NK cells were isolated from 2 nephritic and 3 anti-NKp46 treated NZB/W
F1 mice (gating strategy shown in Extended Data Fig. 8a). For scRNA-seq analysis of tNKp46*
ILC (Extended Data Fig. 6e-j), we isolated tissue (CD45.2i.v.") NKp46" ILC from 12 untreated
and 8 poly(I:C)-treated RORgt-FM mice. For bulk RNA-seq analysis of kidney M® subsets
(Extended Data Fig. 8c), kidney CD11b'® MHC II"¢" M® were isolated from 2 young NZB/W
F1 mice; CD11bMed MHC II"¢" M® from 3 and CD11b"eh MHC 11" M® and tissue F4/80"°"

MHCII™ monocytes from 4 nephritic NZB/W F1 mice.

Degranulation and Cytotoxicity assay

For CD107a surface stain (degranulation assay) of kidney NKp46" ILC and spleen NK cells, cells
were incubated overnight at 37°C with IL-2 (20 ng/mL, Peprotech). IL-2 concentration was then
increased to 50 ng/mL, apoptotic BI6F10 cells and anti-CD107a (BioLegend) was added and
incubated at 37°C for 4 hours. Cells were further incubated with Momensin (BD GolgiStop™)
before surface marker stain. To test the blocking activity of mNCRI1.15 in a conventional killing
assay, NKp46 ligand-expressing RMA-S cells were labelled with 5 uM CFSE for 10 min at 37°C,
and extensively washed. NK cell frequencies in splenocyte suspensions from C57BL/6 mice were

determined using flow cytometry. 10,000 CSFE-labelled RMA-S were mixed with splenocytes so
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that an NK:effector ratio of 4:1 was achieved. To block NKp46 receptor-ligand interactions 10
pg/mL NKp46 (mouse IgG1) or control Ab (KIR2DL1.03, mouse IgG1, kappa) were added to the
assay. Cells were incubated in triplicates for 4 hours in a humidified atmosphere of 5% CO- and
37°C and in the presence of 100 U/ml IL-2. Cells were then harvested and analyzed. The
percentage of specific lysis was calculated as follows: [mean % of viable CFSE" target cells
incubated with effectors] - [mean % of viable CFSE" target cells without effectors] / 100 - [mean

% of viable CFSE" target cells without effectors] x 100.

bulk RNA-seq library preparation and sequencing

Gene expression library preparation was performed using total RNA from 2 samples from cells
pooled from 2 young mice and 5 samples from 1 nephritic mouse each, with 15,000 to 20,000 cells
per sample. RNA quality was determined on a Fragment Analyzer using the HS RNA 15nt Kit
(Agilent Technologies). For poly-A dependent cDNA synthesis and a first amplification step the
Smart-Seq v4 mRNA Ultra Low Input RNA Kit (Clontech) was used with 100 pg RNA input and
according to the manufacturer’s instructions. After quality control (HS NGS Fragment Kit (1-
6000bp), Agilent) and concentration measurement (Qubit dSDNA HS Assay Kit, Invitrogen), 3 ng
of the purified cDNA were used for library completion with the Nextera XT library preparation
kit (Illumina). Quality and quantity of the final sequencing libraries was again assessed with the
tools mentioned for intermediate analysis. In the following, 2x59 nt paired-end sequencing was
performed on an [llumina NextSeq2000 using a P1 flow cell (100 Cycles).

After sequencing and mapping (refdata-gex-mm10-2020-A, 10xGenomics), Fragments per

kilobase million (FPKM) were computed based on the count matrices. Principal Component
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Analysis (PCA) was performed using DESeq2. The web version of ClustVis >* was used to

generate heatmaps from this dataset.

scRNA-seq library preparation and sequencing

Isolated single cells were counted using a Countess™ II automated cell counter (Life
Technologies) after trypan blue staining using at least two separate counts. The cell suspension
was loaded on Chromium Controller (10X Genomics) with a targeted cell recovery of 10,000 per
reaction. For whole kidneys, 3’ gene expression libraries were prepared using v3 Chromium Single
Cell reagent or Next GEM Single Cell 3' GEM Kit v3 (10X Genomics) according to the
manufacturer’s instruction. For kidney NKp46"'NK1.1* ILC, 5 gene expression libraries were
generated using Chromium Next GEM Single Cell 5' Kit v2 (10X Genomics) according to the
manufacturer’s instruction. Quality control of ¢cDNA and final libraries was done using
Bioanalyzer High Sensitivity DNA Analysis (Agilent) and the KAPA library quantification kit.

Libraries were sequenced using HiSeq 4000 (Illumina) or NextSeq 2000 (Illumina).

Computational analysis of scRNA-seq data

Transcriptome mapping

After sequencing, the sequence data were mapped to the mouse reference genome (mm10 pre-built
references v 3.0.0) provided by 10X Genomics using the CellRanger suite (v.3.0.1). The count
matrices generated by CellRanger as follows were used for the further analysis. Mapping quality

was assessed using the CellRanger summary statistics.

Empty droplets removal and doublet estimation
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Empty droplets were identified by Emptydrops, which is implemented in the CellRanger
workflow. After removal of empty droplets, we applied scrublet per sample™ to assign a doublet

score (scrublet score) to the metadata container of each cell.

Cell quality control and filtering

Downstream analysis employed the concatenated filtered feature-barcode matrices, using Seurat™®.
Genes were filtered out when they were expressed in less than three cells. We applied two sets of
cell filtering criteria due to data quality differences between the technical batches. The filtering
cut-off was decided based on the distribution of data quality and the estimated doublet ratio
provided by 10X Genomics (in case of 10,000 targeted recovery, the estimated doublet ratio is up
to 8%). For the analysis of the first batch of the whole kidney dataset (H 01, D 01 and T 01),
cells were filtered for counts (nCount RNA < 30,000), genes (500 < nFeature RNA < 6,000),
mitochondrial genes (percent.mt < 75%), ribosomal genes (percent.ribo < 30%) and scrublet score
(scrublet_score < 0.2). For the rest of whole kidney dataset, cells were filtered for counts
(nCount RNA <20,000), genes (500 < nFeature RNA <4,000), mitochondrial genes (percent.mt
< 75%), ribosomal genes (percent.ribo < 30%) and scrublet score (scrublet score < 0.2). For
NZB/W and RORgt-FM kidney NK1.1*NKp46* ILC, cells were filtered for counts (nCount RNA
< 15,000), genes (300 < nFeature RNA < 4,000), mitochondrial genes (percent.mt < 3%),
ribosomal genes (percent.ribo < 30%) and scrublet score (scrublet score <0.2). 8-11% of the low-
quality cells and estimated doublets per sample were filtered out. For the dataset of kidney
leukocytes and vessel-associated NK cells, cells were filtered for counts (nCount RNA < 20,000),
genes (300 < nFeature RNA < 5,000), mitochondrial genes (percent.mt < 5%), ribosomal genes

(percent.ribo < 45%) and scrublet score (scrublet score < 0.05). For human leukocytes, cells were
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filtered for counts (nCount RNA < 600,000) and genes (nFeature RNA < 6,000). After filtering
and quality control, the resulting datasets included: a) 74,850 whole kidney cells, isolated from 3
young, 3 age-matched, 3 nephritic and 3 anti-AGMIl-treated NZB/W F1 mice; b)
17,766 tissue NKp46" ILC isolated from 10 young, 8 nephritic and 3 anti-NKp46 treated NZB/W
F1 mice; c) 8,396 tissue NKp46* ILC from 12 untreated and 8 poly(I:C)-treated RORgt-FM mice;
d) 18,972 kidney leukocytes and vessel-associated NK cells, isolated from 2 nephritic and 3 anti-

NKp46 treated NZB/W F1 mice.

Dimensionality reduction, clustering, and analysis of differentially expressed genes

After read count normalization and log-transformation, top 2000 highly variable genes were
selected. Prior to manifold construction using UMAP, top 20 principal components were
harmonized by anchored canonical correlation analysis (CCA)*”. Cells were clustered using the
original Louvain algorithms. DEGs per cluster were calculated using FindMarkers function of
Seurat with the Wilcoxon rank sum test. For the marker gene computation, we selected genes
expressed in at least 25% of cells in either of the populations and with a log-transformed fold
change of at least 0.25. Genes with adjusted p-value < 0.05 were called as marker DEGs. Cell
type/states annotation was performed based on those results and manually selected canonical

marker gene expression.

Analysis of differentially expressed genes within a cluster and gene ontology term analysis
DEGs within subsets of a cluster were calculated using the FindMarkers function of Seurat with
the Wilcoxon rank sum test by default settings. For the marker gene computation, we selected

genes expressed in at least 10% of cells in either of the populations and with a logz-transformed
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fold change of at least 0.25. Genes with adjusted p-value < 0.05 were called DEGs. For GO term

analysis within clusters, DEGs were used as input for g:Profiler functional profiling.

Computation of an NKp46 activation signature
Using a previously published gene set’’, we calculated a gene signature score by applying the

function AddModuleScore from Seurat including genes that were detectable in our dataset.

Identification of genes coregulated with 7rem2 in immune cells

To find genes coregulated with 7Trem?2 in immune cells, raw sum counts matrices (pseudo-bulk
count matrices) were calculated per immune cell cluster per sample. Fragments per kilobase
million (FPKM) were computed based on the pseudo-bulk count matrices. Protein-coding genes
with FPKM >1 were used for the further analysis. DESeq2-normalized counts of pairwise
complete observations were computed from the pseudo-bulk raw count. Samples with zero counts
for a specific gene were excluded from the correlation calculations. Spearman correlations were
calculated to test for coregulation using the DESeq2-normalized counts. Genes with the absolute
of correlation coefficient (r) > 0.5 and adjusted p-value <0.05 were called significantly coregulated

genes.

Identification of modules of genes differentially expressed across cellular trajectories

To generate cellular trajectories (pseudotemporal dynamics) we used the monocle3 R package®.
We ordered cells in a semi-supervised manner based on their Seurat clustering. Differentially
expressed genes across the pseudotime trajectory were computed by graph test function of

monocle3 and genes with Moran’s I test > 0.1 and FDR < 0.05 were called differentially expressed.
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Modules were calculated by the find module gene function implemented by monocle3 with g-

value < 0.05.

Differentiation trajectory analysis by RNA velocity analysis

In order to estimate cell velocities from their spliced and unspliced mRNA content, referred to
RNA velocity, we initially used the velocyto python package v0.13 (whole kidney)>® to recover
spliced and unspliced read-counts from the bam files from CellRanger outputs per data set. Finally,
the scVelo package (version 0.2.4) was employed to translate the unspliced-spliced ratios into
velocities and visualize the result. The analysis was conducted according to the “dynamical” model
implementation, as described in the respective online tutorial
(https://scvelo.readthedocs.io/DynamicalModeling/). Aggregated velocity fields and transition
probabilities per subpopulations were visualized on UMAP representations generated by the

Seurat-pipeline.

Statistical analysis, visualization and reproducibility

Statistical analysis was performed using Graphpad Prism 10 or R (v4.1.2). Dot, violin and feature
plots were created using Seurat implemented functions. Heatmap were generated using
ComplexHeatmap v 2.13.0, ggplot2 v 3.3.6, pheatmap v 1.1.12 and gplots v 3.1.3.

Statistical tests used are indicated in the figure legends. Paired or unpaired t-test or Mann-Whitney
test at 95% confidence interval was performed for comparisons between two groups, as indicated
in the figure legends. For real-time PCR, biochemical assays, and flow cytometric quantifications

comparing more than two groups, one-way ANOVA followed by Tukey’s test at 95% confidence
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interval was performed. Areas positive for a marker by histology were compared using Kruskal-

Wallis test followed by Dunn's multiple comparisons, as indicated in the figure legends.

Data availability

The data will be available for download under the following repositories: European Nucleotide
Archive at EMBL-EBI, accession number PRJEB54636 (whole kidney scRNA-seq); Gene
Expression Omnibus, accession number GSE207139 (kidney NKp46* ILC scRNA-seq), accession
number GSE269399 (kidney CD45+ scRNA-seq), accession number GSE269400 (kidney ILC
RORgtfm scRNA-seq) and accession number GSE269402 (kidney macrophage bulk RNA-seq).
Re-analysis of leukocyte scRNA-seq derived from human lupus nephritis biopsies was done on
the dataset from Arazi et al®, which is publicly available found in the database of Genotypes and

Phenotypes (dbGaP) (accession code phs001457.v1.p1)
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Extended Data Figure Legends

Extended Data Figure 1. Regulation and role of tissue NKp46* ILC in lupus nephritis. a,
Experimental set-up for anti-IFNARI treatment, related to b-e. b, Quantification of urine
Albumin/Creatinine Ratio. (left to right: » = 8, 10, 9, 10 mice per group), pooled from 2
independent experiments. ¢, Left: Representative flow cytometry plots of kidney leukocytes
(CD45™). The gates indicate tissue (CD45.2i.v.") and vessel-associated (CD45.2i.v.") leukocytes.
Right: Quantification of tissue and vessel-associated leukocytes (left to right: n =4, 5, 5, 5 mice
per group), representative of 2 independent experiments. d, Kidney NKp46* ILC subsets of tissue
CD49b" (red), tissue CD49b" (orange) and vessel-associated CD49b" (blue) in young non-nephritic
and poly (I:C) nephritic kidneys were analyzed for Eomes expression. e, left: Kidney leukocytes
were gated on CD45" Lineage (CD3/CD5/CD19/Ly6G) NKp46" NK1.1" cells (i.e., NKp46"ILC).
Representative flow cytometry plots of kidney NKp46* ILC are shown. The black gate indicates
tissue (CD45.2i.v.") NKp46" ILCs. Right: Quantification of kidney tissue NKp46* ILC (left to

right: n =4, 5,5, 5 mice per group), representative of 3 independent experiments. f, Left:
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Representative flow cytometry plots of kidney NKp46* ILC analyzed for CD49b and CD45.2i.v.,
indicating tissue CD49b", tissue CD49b" and vessel-associated CD49b" subsets from untreated and

flox/flox and Eomes°¥/1°%; Ncp 11€Te mice. Right: Quantification of tissue

poly (I:C)-treated Eomes
CD49b, tissue CD49b" and vessel-associated NKp46* ILC (n = 4, 3, 3, 3 mice per group),
representative of 2 independent experiments. g, Top: Representative flow cytometry plots of
kidney CD45" Lineage (CD5/CD3/CD19/Ly6G) NKp46" ILC analyzed for CD49b, CD45.2i.v.,
indicating tissue CD49b", tissue CD49b" and vessel-associated CD49b* subsets from poly (I:C)-
treated Gata3"¥1°x and Gata31°¥1°xX; Ncr1i€Te mice. Right: Quantification of tissue CD49b" and
CD49b" NKp46* ILC (n = 3, 4 mice per group), representative of 2 independent experiments. h,
Experimental set up for anti-AGM1 treatment, related to i, and Fig. 1a-c, l. i, Quantification bar
chart of urine Albumin/Creatinine Ratio. (=9, 11, 11 mice per group), pooled from 2 independent
experiments. j, Experimental set up for anti-AGM1 treatment in spontaneous nephritis, related to
k. k, Quantification bar chart of urine Albumin/Creatinine Ratio (left) and serum BUN (middle).
Renal cortex Haverl mRNA expression (right) analyzed by real-time PCR; values are relative to
Gapdh. Relative mRNA expression of untreated young control kidneys was considered as 1. (n =
4,7, 6 mice per group for Albumin/Creatinine Ratio and Havcrl and n =4, 7, 5 mice per group

for BUN). One-way ANOVA followed by Tukey’s test (b, c, e-f, i, k) or two-tailed unpaired t-

Test (g). The bars show mean + SD.

Extended Data Figure 2. mNCRI1.15 antibody shows NKp46 blocking activity. a,
Experimental set-up for NKp46 blocking with mNCR1.15 in NZB/W F1 mice, related to b, ¢ and
Fig.1d-e. b, Downregulation of NKp46 from the cell surface of Lin'NKI1.1" ILC following

treatment with mNCRI.15. Representative NKp46 antibody staining of kidney Lin'NK1.1" ILC
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normalized to mode (left) and quantification of mean fluorescence intensity (right) (n =4, 4, 6, 4

mice per group). ¢, Representative flow cytometry plots and quantification of kidney NKp46* ILC
subsets (n =4, 4, 6, 4 mice per group). d, Experimental set-up for short term treatment of NZB/W
F1 mice with mNCRI1.15, or isotype control, related to e. e, Quantification of kidney Lin'NK1.1*
cells (n = 4 mice per group). f, RMA-S cells express NKp46 (NCR1) ligands. Representative
staining (2 independent experiments) with NCR1-hlg fusion or irrelevant fusion protein, measured
by flow cytometry. g, Splenic NK cells were pre-incubated with mNCRI1.15 or isotype control
antibody. They were then mixed with RMA-S target cells in a 4:1 ratio. Quantification of target
cell killling is shown. h, Pre-incubation of the NCR1-hIG fusion protein with mNCR1.15 inhibits
its binding to B16 target cells, unlike other NKp46-targeting antibody clones, such as mNCR1.22
or mNCR1.05, whose pre-incubation does not inhibit or only partially inhibits the binding of
NCRI1-hIG fusion protein to B16 target cells, respectively. Representative images of 3 independent
experiments are shown. One-way ANOVA followed by Tukey’s test (b, ¢) or two-tailed unpaired

t-Test (e, g). The bars show mean & SD.

Extended Data Figure 3. Whole kidney scRNA-seq analysis of lupus nephritis. a, Fractions of
kidney cell populations presented as percent of the whole kidney cells within each of the indicated
experimental groups (n = 3 mice per group). b, Violin plots of canonical marker genes across
kidney cell types. ¢, Dot plot of top 5 expressed genes across the kidney cell types shown in Figure
If. Dot size indicates percentage of expressing cells (% Exp.) and color scale shows average
expression level of log-normalized counts (Avg Exp.). d, Violin plots of canonical marker genes
across the PEC/Podocyte subpopulations shown in Fig. 1g. e, Dot plot of top 5 expressed genes

across the PEC/podocyte clusters shown in Figure 1g. Dot size indicates percentage of expressing
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cells (% Exp.) and color scale shows average expression level of log-normalized counts (Avg
Exp.). f, Fractions of PEC/podocyte subpopulations presented as percent of all PEC/podocytes
within each of the indicated conditions (» = 3 mice per group). g, UMAP embedding for the
subcluster analysis of 44,077 single-cell transcriptomes of proximal tubular cells (» = 3 mice per
group). h, Fractions of proximal tubular cell subpopulations presented as percent of all proximal
tubular cells within each of the indicated conditions (» = 3 mice per group). i, Violin plots of
canonical marker genes across proximal tubular cells. j, Dot plot showing the expression levels of
selected marker genes for the indicated proximal tubular cell clusters. Dot size indicates percentage
of expressing cells (% Exp.) and color scale shows average expression level of log-normalized
counts (Avg Exp.). One-way ANOVA followed by Tukey’s test (a, f, h). The bars show mean +

SD.

Extended Data Figure 4: Capillary endothelial cell de-differentiation in lupus nephritis. a,
UMAP embedding for the subcluster analysis of 5,251 endothelial cells (EC). Annotation to EC
subpopulations was based on Louvain clustering and expression of canonical marker genes. cEC,
capillary EC; gEC, glomerular EC; artl-EC, arteriolar EC; DVR, descending vasa recta; art-EC,
arterial EC; LN-EC, lupus nephritis-associated EC. b, Left: Distribution of each experimental
group on UMAP embedding. Right: Fractions of EC subpopulations presented as percent of the
whole kidney cells within each of the indicated experimental groups (n =3 mice per group). c,
Violin plots of canonical marker genes across EC subpopulations. d, Dot plot of top 5 expressed
genes across EC clusters shown in a. Dot size indicates percentage of expressing cells (% Exp.)
and color scale shows average expression level of log-normalized counts (Avg Exp.). e, f, Volcano

plot showing differentially expressed genes of cEC (e) or gEC (g) from nephritis vs young (left
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panel) or nephritis vs aAGMI treated (right panel). The intercepts of x dashed lines are -0.25 and
+0.25. The intercept of y dashed lines is -log10(0.05). g, h, Selected pathways regulated by GO
term analysis of differentially expressed genes in cEC and gEC in the indicated conditions
(nephritis vs. young controls). i, Dot plot showing the expression levels of selected endothelial cell
marker genes for LN-EC3. Dot size indicates percentage of expressing cells (% Exp.) and colour
scale shows average expression level of log-normalized counts (Avg Exp.). j, CD31 (white) IF
from kidney cortex, representative from 3 independent experiments. Green arrows point to long,
thin peritubular capillaries. Blue arrows point to short intertubular vessels. Short yellow arrows
point to glomerular areas devoid of capillaries. One-way ANOVA followed by Tukey’s test (b) or
cumulative hypergeometric test as implemented in the g:Profiler by default settings (g-h). The bars

show mean + SD.

Extended Data Figure 5: scRNA-seq analysis of tissue NKp46* ILC.

a-b, Experimental set-up for scRNA-seq analysis related to a-e and Fig. 2. Samples were pooled
from experiments 1 and 2. In experiment 1 kidney tissue NKp46" ILC were isolated from 10 young
and 6 nephritic mice (nephritis 1). In experiment 2 kidney tissue NK1.1" ILC were isolated from
2 isotype-treated nephritic (nephritis 2) - and 3 anti-NKp46 (mNCR1.15)-treated mice. tILC, tissue
‘helper’ innate lymphoid cell; tNK, tissue natural killer cell. Left: Flow cytometry plots of kidney
NKp46" ILC (a) and Lineage” NK1.1" ILC (b). The red gate indicates tissue (CD45.2i.v.") cells
that were isolated and sequenced. Middle: Distribution of each experimental group on UMAP
embedding. Right: Fractions of kidney tissue NKp46“ILC (a) and LinNK1.1"ILC (b) presented
as percent of tissue NKp46™* tILC for tILC clusters and as percent of tissue NKp46"* tNK for tNK

clusters within each of the indicated experimental conditions. ¢, Dot plot of top 5 expressed genes
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across tissue NKp46™ ILC clusters shown in Fig. 2a. d, Violin plots show expression of canonical
marker genes across tissue NKp46™ ILC subpopulations shown in Figure 2a. Dot size indicates
percentage of expressing cells (% Exp.) and color scale shows average expression level of log-
normalized counts (Avg Exp.). e, Dot plot showing the expression levels of selected marker genes
for the indicated tissue NKp46™ ILC clusters. Dot size indicates percentage of expressing cells (%
Exp.) and color scale shows average expression level of log-normalized counts (Avg Exp.). f,
Representative flow cytometry plots of kidney NKp46© ILC and spleen NK cells, indicating
CD107a expression in tissue vs vessel-associated subpopulations (n = 2 young and 4 nephritic

mice).

Extended Data Figure 6. NKp46* tILC in human lupus nephritis.

a, Left: Experimental set-up. Graphic created with Biorender. Right: UMAP embedding of 2,302
human leukocytes from 24 lupus nephritis patients and 10 controls?® color-coded for T cell/
NKp46“ ILC clusters. b, Violin plots of the indicated genes across human leukocyte
subpopulations. ¢, Left: UMAP embedding of 341 NKp46" ILC, color-coded for NK cells (pink)
and ILC1/NKp46" ILC3 subsets (turquoise). Right/Bottom: Feature plots of the indicated genes
across human NKp46" ILC subpopulations. d, Left: Representative flow cytometry plots of kidney
NKp46* ILC analyzed for Eomes and RORgt-FM. The gates indicate RORgt-FM* Eomes™ ILC3
(green), RORgt-FM- Eomes™ ILC1 (pink) and RORgt-FM~ Eomes" NK cells (blue) in untreated
and in RORgt-FM;Eomes-GFP reporter mice treated with poly (I:C). Vessel-associated
(CD45.2i.v.") (top row) and tissue (CD45.2i.v.") (bottom row) NKp46" ILC were analyzed
separately. Middle: Quantification of the fraction of ILC1, ILC3, and NK cells among vessel-

associated (top) and tissue (bottom) NKp46* ILC. Right: Quantification of ILC1, ILC3, and NK
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cells (n = 4 mice per group). e, UMAP embedding of 8,396 single-cell transcriptomes of kidney
tissue NKp46" ILC colored by cell annotation. tILC, tissue innate lymphoid cell; tNK, tissue
natural killer cell. f, Dot plot of top 5 expressed genes across the kidney tissue NKp46* ILC shown
in b. Dot size indicates percentage of expressing cells (% Exp.) and color scale shows average
expression level of log-normalized counts (Avg Exp.). g, Violin plots showing levels of expression
of an NKp46 activation gene signature’’ across kidney tissue NKp46" ILC clusters. h,
Composition of tissue NKp46* ILC per condition. i, Contribution of RORyt-FM* and RORyt-FM"
cells to Tnfrsf9" tILC per condition. j, Violin plots showing levels of expression of an NKp46
activation signature®’ in Tnfrsf9* tILC in poly (I:C)-treated mice split into RORyt-FM* and RORyt-

FM- cells. Two-tailed unpaired t-Test (d) or two-tailed Mann-Whitney Test (j).

Extended Data Figure 7. Disease-associated macrophage program in murine and human
lupus nephritis. a, Gating strategy to identify kidney macrophages and monocytes by flow
cytometry in nephritis. b, Quantification of blood monocytes (left to right: n» = 4, 6, 4 mice per
group). ¢, F4/80 (dark purple) and CD45:.v. (light teal) IF of kidney cortex, representative of n =
3, 4 mice per group. d, CD11b (dark purple) and CD45i.v. (light teal) IF of kidney cortex, images
representative of 3 independent experiments. e, Fractions of M® subsets presented as percent of
all immune cells within each of the indicated conditions. The bars show mean = SD (n = 3 mice
per group). f, Pseudotime heatmap depicting expression of significant marker genes corresponding
to three expression modules spanning the transition from monocyte (Mo) to M®. Annotations were
colored by cell type, cell state and experimental groups (condition). Color scale indicates scaled
marker gene expression across pseudotime. Representative genes included in each module are

shown. g, Selected pathways regulated in M® and Mo, in nephritis vs young mice. h, Matrix plot
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indicating log2-transformed column scaled expression of exemplar genes selected from each
module shown in f. i, Dot plot showing the expression levels of Cfp across whole kidney cell
populations (left), or immune cell clusters (right). Dot size indicates percentage of expressing cells
(% Exp.) and color scale shows average expression level of log-normalized counts (Avg Exp.). j,
Violin plots of CI1QB, TREM2, APOE, LGMN across leukocyte subpopulations. Subcluster
analysis of 2,302 single-cell transcriptomes of human leukocytes isolated from 24 lupus nephritis
patients and 10 controls.?® k, Top: representative images from CODEX analysis of kidney sections
from young and nephritic mice. Bottom: Quantification of the location of CD206* macrophages
in nephritic kidneys and young controls (top to bottom: n = 11, 11, 26, 8 visual fields for young
and n =17, 19, 23, 5 visual fields for nephritis). One-way ANOVA followed by Tukey’s test (e)

or Kruskal-Wallis test followed by Dunn's test (k).

Extended Data Figure 8. scRNA-seq analysis of leukocytes with and without aNKp46 and
bulkRNA-seq of macrophage subsets. a, Left: Experimental set-up for scRNA-seq analysis of
all immune cells minus tissue NKp46* ILC, isolated from 2 nephritic mice, and 3 mice treated
anti-NKp46 blocking antibodies, related to b and Fig. 4f, g. Flow cytometry dot plots of kidney
CD45" leukocytes. The red gates indicate NK1.1- leukocytes, as well as vessel-associated NK1.1*
cells. The two populations were sequenced together. Right: UMAP embedding of 18,972 single-
cell transcriptomes of kidney lymphocytes colored by Louvain clustering. Annotation to immune
cell subpopulations was based on expression of canonical marker genes. M®, macrophage; Mo,
Monocyte; cDC, conventional dendritic cell; T cell; PMN, polymorphonuclear neutrophils; Eos,
eosinophils; B, B cell; UNO, unidentified cells. b, Dot plot of top 5 expressed genes across the

kidney immune cell clusters shown in a. Dot size indicates percentage of expressing cells (% Exp.)
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and color scale shows average expression level of log-normalized counts (Avg Exp.). ¢, Heat map
showing levels of expression of selected genes in CD11bh MHC2" and CD11bM MHC" disease-
associated macrophages and monocytes isolated from 3 nephritic mice vs CD11b" MHC2" tissue

resident macrophages isolated from 3 young non-nephritic controls.

Extended Data Figure 9. NKp46+ ILC control monocyte-derived M® via CSF2.

a, Experimental set-up to label longer-lived tissue macrophages followed by poly (I:C) treatment
and isotype control or anti-CSF2 blocking antibodies, related to b. b, Right top: representative
flow cytometry plots of kidney Lin~ CD11b" cells stained for CD45i.v and F4/80. The gates
indicate F4/80" CD45i.v.”™ M®. Right bottom: representative dot plots of F4/80" CD45i.v.”int
macrophages analyzed for F4/80 and CX3CR1-TdTomato. Left: Quantification of TdTomato and
TdTomato™ M® (left to right: n = 3, 4, 4 mice per condition). ¢, Top: Experimental set up to label
blood derived cells 5 min and 12 hours prior to analysis, related to d, e. d, Top: Representative
flow cytometry plots of kidney Lin"CD11b" cells that were either CD45i.v.” (‘tissue cells’) or were
labeled positive with CD45i.v. injected Smin (‘5Smin vessel-associated’), Smin and 12h (‘12h
vessel-associated’), 12h but not Smin (‘recruited within 12h tissue cells’) before analysis, analyzed
for F4/80 expression. Bottom: Representative flow cytometry plots of kidney Lin" CD11b"F4/80"
cells analyzed for Ly6C and CD43. e, Representative flow cytometry plots of kidney M®, analyzed
for MHC2, CD11b and CDA43. Data in d-e are representative of 3 nephritic mice. f, Experimental
set up for anti-CSFIR treatment, related to g, and Fig. 5a, b. g, Quantification of the indicated
monocyte subsets (left to right: n =4, 6, 6 mice per group). h, Experimental Set-up for the analysis

of B6.Slel Yaa and B6.Slel Yaa;Trem2” mice, related to i-j and Fig. 5d-e. i, Quantification of the
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indicated M® (i) and monocyte (j) subsets (left to right: n = 3, 12, 7 mice per group). One-way

ANOVA followed by Tukey’s test (b, g, i, j). The bars show mean + SD.

Extended Data Fig. 10. Graphic Summary and Proposed Model

a, At homeostasis kidney tissue contains resident innate immune cells, including kidney tissue-
resident ILC1 expressing NKp46, and kidney-resident macrophages, which at homeostasis are
closely associated with capillary endothelial cells®. b, In autoimmunity, NKp46 may bind NKp46
ligands expressed by disease-associated macrophages, such as properdin’’, a serum glycoprotein
that activates the alternative complement pathway and that can bind to apoptotic cells. NKp46
activation induces the expression of immunoregulatory molecules, including CSF2, in a distinct
subset of NKp46* tissue ILC, Tnfrsf9" ILC1. ILC1-derived CSF2 in turn promotes the population
expansion of monocyte-derived, disease-associated macrophages that we link to epithelial cell
damage and fibrosis. Prolonged monocyte-derived and kidney-resident macrophage interactions
with activated injured epithelial cells lead to upregulation of TREM?2, giving rise to TREM2"
disease-associated macrophages. ¢, Blocking of NKp46" ILC or genetic deficiency of NKp46
suppresses kidney CSF2, disease-associated macrophage population expansion and severe tissue

damage. d, TREM2 signaling promotes anti-inflammatory macrophage states.
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