
© The Author(s) 2024. Published by Oxford University Press on behalf of the European Society of 
Cardiology. This is an Open Access article distributed under the terms of the Creative Commons 
Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is 
properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation 
rights for reprints. All other permissions can be obtained through our RightsLink service via the 
Permissions link on the article page on our site⎯for further information please contact 
journals.permissions@oup.com. 1 

PITX2 deficiency leads to atrial mitochondrial dysfunction 1 
2 

Jasmeet S. Reyat 1 ,2*,#, Laura C. Sommerfeld 1,3,4,5 *, Molly O’Reilly 1, Victor R. Cardoso 1,6, Ellen 3 
Thiemann 3,4,7, Abdullah O. Khan1, Christopher O’Shea 1, Sönke Harder 8, Christian Müller 9, Jonathan 4 

Barlow 10, Rachel J. Stapley 1, Winnie Chua 1, S. Nashitha Kabir 1, Olivia Grech 1, Oliver Hummel 11, 5 
Norbert Hübner 12,13, Stefan Kääb 14,15, Lluis Mont 16,17, Stéphane N. Hatem 18, Joris Winters 19, Stef 6 
Zeemering 19, Neil V. Morgan 1, Julie Rayes 1, Katja Gehmlich 1, Monika Stoll 20,21, Theresa Brand 22, 7 

Michaela Schweizer 23, Angelika Piasecki 7, Ulrich Schotten 19, Georgios V. Gkoutos 6, Kristina 8 
Lorenz 22,24, Friederike Cuello 4,7, Paulus Kirchhof 1,3,4 # and Larissa Fabritz 1,3,4,59 

10 
1 Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of 11 
Birmingham, Wolfson Drive, Birmingham, UK 12 
2 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John 13 
Radcliffe Hospital, Oxford, UK 14 
2 Department of Cardiology, University Heart and Vascular Center Hamburg, University Medical 15 
Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany 16 
3 DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University 17 
Medical Center Hamburg-Eppendorf, Germany. 18 
4 University Center of Cardiovascular Sciences, University Medical Center Hamburg -Eppendorf, 19 
Germany 20 
5 Institute of Cancer Genomics, College of Medical and Dental Sciences, University of Birmingham, 21 
Birmingham, UK 22 
6 Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University 23 
Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.  24 
7 Institut für Klinische Chemie und Laboratoriumsmedizin, Massenspektrometrische 25 
Proteomanalytik, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 26 
Hamburg, Germany 27 
8 UKE Bioinformatics Core; University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 28 
20246 Hamburg, Germany 29 
9 Cellular Health and Metabolism Facility, College of Life and Environmental Sciences, University of 30 
Birmingham, Birmingham, UK 31 
10 Max Delbrück Centrum for Molecular Medicine, Berlin, Germany, Charite - Universitätsmedizin 32 
Berlin, German, and German Center for Cardiovascular Research (DZHK), partner site Berlin  33 
11 Charite - Universitätsmedizin Berlin, Germany 34 
12 German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany  35 
13 Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich 36 
(LMU), Munich, Germany 37 
14 German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, 38 
Germany 39 
15 Hospital Clínic, Universitat de Barcelona, Catalonia, Spain 40 
 and Institut de Recerca Biomèdica, August Pi- i Sunyer, Barcelona, Catalonia, Spain 41 
16 Centro Investigación Biomedica en Red Cardiovascular, Madrid, Spain  42 

ACCEPTED M
ANUSCRIP

T

mailto:journals.permissions@oup.com


Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 2 

2 

17 INSERM UMRS1166, ICAN - Institute of Cardiometabolism and Nutrition, Sorbonne University, 1 
Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France 2 
18 Cardiovascular Research Institute Maastricht, Department of Physiology, Maastricht University, 3
Maastricht, The Netherlands 4 
19 Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Germany  5
20 Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, 6
Maastricht University, Maastricht, Netherlands 7 
21 Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany 8
22 Department of Morphology and Electron Microscopy, Center for Molecular Neurobiology, 9
University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany 10 
23 Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Dortmund, Germany 11 

12 
*Co-first Authors13 

14 
#Corresponding Authors: 15 
Paulus Kirchhof  16 
Department of Cardiology 17 
University Heart and Vascular Center Hamburg 18 
University Medical Center Hamburg-Eppendorf 19 
Martinistrasse 52 20 
20246 Hamburg 21 
Germany 22 
p.kirchhof@uke.de23 
+49 40 741053824 (Judith Ebeling)24 

25 
Jasmeet S. Reyat 26 
Department of Cardiovascular Medicine 27 
Radcliffe Department of Medicine 28 
University of Oxford 29 
John Radcliffe Hospital 30 
Oxford 31 
UK 32 
jasmeet.reyat@cardiov.ox.ac.uk 33 
+44 (0)186 523 491534 

35 
36 
37 

ACCEPTED M
ANUSCRIP

T



Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 3 

3 

Author ORCID IDs: 1 
JSR – 0000-0003-3247-9186 2 
LCS – 0000-0001-9837-8770 3 
MOR – 0000-0003-1936-5838 4 
VRC – 0000-0002-9588-6304 5 
AOK – 0000-0003-0825-3179 6 
COS – 0000-0003-3030-7364 7 
SH – 0000-0002-6352-4771 8 
JB – 0000-0002-9463-7234 9 
RJS – 0000-0002-0027 -9158 10 
WC – 0000-0002-6747-8813 11 
SNK – 0000-0003-1811-8683 12 
OG – 0000-0001-5560-802X 13 
OH – 0009-0000-9986-8333 14 
NH – 0000-0002-1218-6223 15 
TB – 0000-0002-0630-4537 16 
MS – 0000-0001-5062-328X 17 
LM – 0000-0002-8115-5906 18 
JW – 0000-0002-4945-3946 19 
SZ – 0000-0003-3738-7328  20 
NVM – 0000-0001-6433-5692 21 
JR – 0000-0003-0499-6880 22 
KG – 0000-0003-4019-1844 23 
FC – 0000-0003-1612-1715 24 
MSt – 0000-0002-2711-4281 25 
KL – 0000-0002-5747-2207 26 
US – 0000-0003-1532-3315 27 
GVG – 0000-0002-2061-091X 28 
PK – 0000-0002-1881-0197 29 
LF- 0000-0002-9241-1733 30 

ACCEPTED M
ANUSCRIP

T



Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 4 

4 

Abstract (250 words): 1 
Aim. Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation. PITX2 2 
is restricted to left atrial cardiomyocytes in the adult heart. The links between PITX2 deficiency, atrial 3 
cardiomyopathy and atrial fibrillation are not fully understood. 4 
Methods and Results. To identify mechanisms linking PITX2 deficiency to atrial fibrillation, we 5 
generated and characterized PITX2-deficient human atrial cardiomyocytes derived from human 6 
induced pluripotent stem cells (hiPSC) and their controls. 7 
PITX2-deficient hiPSC-derived atrial cardiomyocytes showed shorter and disorganised sarcomeres 8 
and increased mononucleation. Electron microscopy found an increased number of smaller 9 
mitochondria compared to the control. Mitochondrial protein expression was altered in PITX2-10 
deficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in 11 
cellular respiration pathways and differentially expressed mitochondrial and ion channel genes in 12 
PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2 repression in hiPSC-derived atrial 13 
cardiomyocytes replicated dysregulation of cellular respiration. Mitochondrial respiration was shifted 14 
to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. PITX2-deficient 15 
human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action 16 
potential duration was more variable with an overall prolongation of early repolarization, consistent 17 
with metabolic defects. Gene expression analyses confirmed changes in mitochondrial genes in left 18 
atria from 42 patients with atrial fibrillation compared to 43 patients in sinus rhythm. Dysregulation 19 
of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated with PITX2 20 
expression in human left atria. 21 
Conclusions. In summary, PITX2 deficiency causes mitochondrial dysfunction and a metabolic shift 22 
to glycolysis in human atrial cardiomyocytes. PITX2-dependent metabolic changes can contribute to 23 
the structural and functional defects found in PITX2-deficient atria. 24 

25 
Keywords: 26 
atrial fibrillation, mitochondrial dysfunction, human induced pluripotent stem cells, metabolic shift, 27 
PITX2, human heart tissue  28 
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Translational perspective. 1 
The strongest genetic predisposition for atrial fibrillation is located on chromosome 4q25, close to the 2 
PITX2 gene. This study in human iPS-derived atrial cardiomyocytes shows that deletion of PITX2 3 
leads to genetic and proteomic changes resulting in metabolic and mitochondrial dysfunction in atrial 4 
cardiomyocytes. Similar PITX2-dependent changes are found in human left atria. Our results identify 5 
metabolic and mitochondrial dysfunction as a novel contributor to atrial fibrillation in patients with a 6 
genetic predisposition. They support the evaluation of metabolic therapies to prevent and to reverse 7 
functional and structural defects related to atrial fibrillation and its genetic basis.  8 
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Graphical abstract 1 

2 

Deficiency in PITX2, a gene with left atrial and skeletal muscle expression in adults leads to 3 
mitochondrial dysfunction. PITX2 deficiency is likely to underlie the genomic basis for atrial 4 
fibrillation (AF). Reduced PITX2 in atrial cardiomyocytes conveys electrical changes and structural 5 
alterations. The cellular mechanisms linking PITX2 deficiency to AF are not fully understood. PITX2 6 
deficiency increases cellular and functional heterogeneity in human iPSC-derived atrial 7 
cardiomyocytes. These experiments show that PITX2 alters mitochondrial function and metabolism 8 
by altering gene and protein expression in atrial cardiomyocytes, creating a metabolic shift away from 9 
respiration towards glycolysis. Left atrial tissue from patients with atrial fibrillation show similar 10 
changes in gene expression patterns of mitochondrial genes and their association with PITX2. 11 ACCEPTED M

ANUSCRIP
T



Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 7 

7 

Introduction: 1 
Atrial fibrillation (AF) is common and the associated cardiovascular mortality and morbidity 2 
profoundly affect patients, their families, and society 1, 2. Better concepts to prevent and treat AF are 3 
needed to improve this situation 3, 4. Genome wide-association studies found over 100 different 4 
common gene variants that are associated with AF 5-8. The most prominent signals are clustered in a 5 
genomic region on chromosome 4q25, close to the PITX2 gene 5-8. The gene variant-carrying locus 6 
regulates the PITX2 gene 9-11, and deletion of AF risk alleles reduces left atrial PITX2 concentrations 9, 7 
10. PITX2 messenger RNA (mRNA) is confined to left atrial cardiomyocytes in the adult human heart8 
12, 13 and in mice 12, 14. Recurrent AF after thoracoscopic AF ablation is related to reduced left atrial 9
cardiomyocyte PITX2 13. Pitx2 mRNA regulates transcription in the adult heart 15 with multiple effects 10 
on cardiac function and structure: partial deletion of Pitx2 modulates atrial electrical function 12, 16-19 11 
with complete Pitx2 deficiency alters atrial structure, calcium handling, and ion channel composition 12 
20-22. To identify PITX2-dependent cellular processes and pathways contributing to these atrial 13 
changes in human cells and in patients with AF, we generated and characterized human induced 14 
pluripotent stem cell (hiPSC)-derived PITX2-deficient atrial cardiomyocytes and wild-type (WT) 15 
controls. Results were validated in human left atrial tissue from patients with and without AF and 16 
compared to published findings. 17 

18 

Materials and Methods: 19 
Cell culture 20 
Based on the known effects of PITX2 deletion in murine and zebrafish models, we chose to delete the 21 
intron-exon region of exon 6 of the PITX2 gene for this study to enable observation of a clear PITX2-22 
dependent phenotype 19-22. The human control iPSC line (F1; MPIMBMi011-A) and the otherwise 23 
isogenic, genome-edited PITX2-deficient line were donated by the group of Boris Greber and have 24 
previously been described 23. HiPSCs were maintained in Gibco StemFlex Medium (Thermo Fisher 25 
Scientific, A3349401) on Geltrex (Thermo Fisher Scientific, A1569601)-coated plates. The 26 
differentiation of hiPSCs into atrial cardiomyocytes (aCMs) and ventricular cardiomyocytes (vCMs) 27 
was optimised based on a published protocol 24. Briefly, on day 0, medium was replaced with 28 
differentiation medium [RPMI-1640 with GlutaMAXTM and HEPES (Thermo Fisher Scientific, 29 
72400047) containing 0.5 mg/ml human recombinant albumin (Sigma -Aldrich, A9731), 0.2 mg/ml L-30 
ascorbic acid 2-phosphate (Sigma-Aldrich, 49752)] supplemented with 4 µM CHIR99021 (Sigma-31 
Aldrich, SML1046) to promote mesoderm induction. On day 2, medium was replaced with 32 
differentiation medium containing 5 µM IWP-2 (Sigma-Aldrich, I0536) to promote cardiac progenitor 33 
cell differentiation. After day 4, cells were maintained in cardiomyocyte differentiation medium. To 34 
induce atrial cardiomyocyte specification, 1 µM retinoic acid (Sigma Aldrich, R2625) was 35 
supplemented to the medium between days 3 – 6 of differentiation. On day 6, medium was changed to 36 
cardiomyocyte maintenance medium (cardiomyocyte differentiation medium supplemented with 2% 37 
B-27TM, Thermo Fisher Scientific, 17504044) and medium was refreshed every 48 hours. Beating38 
cardiomyocytes were observed from as early as day 8 of differentiation. At day 12, aCMs and vCMs 39 
were re-plated at a lower density by dissociating cells using StemPro Accutase Cell Dissociation 40 

ACCEPTED M
ANUSCRIP

T



Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 8 

8 

Reagent (Thermo Fisher Scientific, A1110501) and cultured in cardiomyocyte plating medium 1 
[cardiomyocyte maintenance medium with the addition of 10% KnockOut TM Serum (Gibco, 2 
10828028) and 1 µM Thiazovivin (Sigma-Aldrich, SML1045)] for 24 hours before the medium was 3 
changed to cardiomyocyte selection medium [RPMI 1640 no glucose (Gibco, 11879020) supplemented 4 
with 0.5 mg/ml human recombinant albumin, 0.2 mg/ml L-ascorbic 2-phosphate and 4 mM lactate 5 
(Sigma-Aldrich, 1614308)] for an additional 5 days. Afterwards, aCMs and vCMs were maintained in 6 
cardiomyocyte maintenance medium until day 30, a time -point in which hiPSC-derived aCMs and 7 
vCMs express key cardiac markers 24, 25. 8 

9 
Immunofluorescence staining 10 
HiPSC-derived atrial cardiomyocytes were fixed with 4% paraformaldehyde, blocked with 4% goat 11 
serum, and incubated with primary antibodies (Supplementary Table 1) overnight at 4°C on a 12 
rocker. Cells were subsequently washed and stained with the corresponding Alexa Fluor secondary 13 
antibody conjugates (Thermo Fisher Scientific) for 1 hour at room temperature and then 14 
counterstained with DAPI (1:10,000) for 5 minutes and mounted using Prolong Gold Anti -fade 15 
reagent (Thermo Fisher Scientific) ready for imaging using a Zeiss LSM 880 Airyscan confocal 16 
microscope (Carl Zeiss NTS Ltd.). Images were analysed using Fiji software. Sarcomere structure 17 
analysis was carried out using a previously published MATLAB (MathWorks) script 26. Analysis of 18 
nuclei parameters was carried out using a previously described pipeline in Cell Profiler 4.2.1 27. 19 

20 
Electron microscopy 21 
HiPSC-derived atrial cardiomyocytes were cultured in 3.5 cm plastic dishes for 3 days, fixed in a 22 
mixture of 4% paraformaldehyde and 1% glutaraldehyde (Science Services, Germany) in 0.1 M 23 

phosphate buffer overnight at 4 ◦C. Samples were rinsed three times in 0.1 M sodium cacodylate24 
buffer (pH 7.2–7.4), scraped off the cell culture dish and osmicated using 1% osmium tetroxide in 25 
cacodylate buffer. Following osmication, the samples were dehydrated using ascending ethanol 26 
concentrations, followed by two rinses in propylene oxide. Infiltration of the embedding medium was 27 
performed by immersion in a 1:1 mixture of propylene oxide and Epon (Science Services, Germany), 28 

followed by neat Epon and hardening at 60 ◦C for 48 h. For electron microscopy, ultra-thin sections29 
(60 nm) were cut and mounted on copper grids and stained using uranyl acetate and lead citrate. The 30 
sections were analysed with a JEM- 2100Plus Transmission Electron Microscope at 200kV (Jeol, 31 
Germany). Images were acquired with the XAROSA CMOS camera (Emsis, Germany).  32 

33 
Flow cytometry 34 
HiPSC-derived atrial cardiomyocytes were processed using the FoxP3 / Transcription Factor Staining 35 
Buffer kit (eBiosciencesTM, 00-5523-00) according to manufacturer’s instructions before being 36 
incubated with primary antibodies (Supplementary Table 1) overnight at 4°C on a rocker. 37 
Subsequently, samples were induced with corresponding Alexa Flour secondary antibody conjugates 38 
(Thermo Fisher Scientific) for 30 minutes at 4°C. For experiments looking at cell proliferation, hiPSC-39 
derived atrial cardiomyocytes were incubated with 5-ethynyl-2’-deoxyuridine (EDU) using the Click-40 
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iTTM EDU Alexa Fluor 488 Flow Cytometry Assay Kit (Thermo Fisher Scientific, C10420) according to 1 
the manufacturer’s instructions. Samples were processed using a BD LSR Fortessa TM (BD Biosciences) 2 
and data was analysed using FlowJo software.  3 

4 
RNA isolation and quantitative real-time PCR 5 
Total RNA was isolated from aCMs and vCMs using the RNeasy Mini Kit (QIAGEN, 74104) and 6 
reverse transcribed into cDNA using the High-Capacity cDNA Reverse Transcription Kit (Applied 7 
Biosystems, 4368814) using a total of 1 µg of RNA. RNA was quantified using the QubitTM RNA high 8 
sensitivity kit (Invitrogen, Q32852) using a Qubit Fluorometer. cDNA was diluted to a working 9 
concentration of 5 ng/µl using RNA-free water (QIAGEN, 129112). Quantitative real-time PCR (RT-10 
qPCR) was performed using 10 ng of template cDNA and PowerUp TM SYBRTM Green Master Mix 11 
(Applied Biosystems, A25742). Samples were run on the 7500 Fast Real-Time PCR system (Thermo 12 
Fisher Scientific). Gene of interest Ct values were normalised to housekeeping gene Ct values using 13 
the ΔΔCt method 28. Sequences of primers used for RT-qPCR are provided in Supplementary Table 14 
2. 15 

16 
Proteomics 17 
Protein quantification, quality assessment, imputation, differential expression analysis and 18 
enrichment analyses were conducted by the UKE Bioinformatics Core, Hamburg, Germany. HiPSC-19 
derived atrial cardiomyocytes from 6 independent differentiation runs were pelleted, washed with 20 
sterile PBS and shock-frozen in liquid nitrogen. Samples were prepared using established proteomic 21 
techniques (for details see supplementary materials and methods). 22 

23 
Extracellular flux analysis 24 
Mitochondrial oxidative phosphorylation and glycolytic flux were measured with a Seahorse XF -96 25 
Analyser (Agilent). HiPSC-derived atrial cardiomyocytes were plated into XF-96 well (Agilent, 26 
103794-100) Geltrex-coated plates at a cell density of 50,000 cells per well. Measurements were made 27 
in XF RPMI Medium pH 7.4 supplemented with 10 mM glucose, 1mM HEPES, 2 mM L-Glutamine 28 
and 1 mM sodium pyruvate. Mitochondrial oxidative phosphorylation and glycolytic proton efflux was 29 
assessed using the following parameters: oligomycin (2 µg/ml), BAM15 (3 µM) and rotenone and 30 
antimycin A (2 µM) and desoxyglucose (2-DG; 50 mM). ATP supply fluxes and corrections of 31 
mitochondrial acidification were calculated as previously described 29-31. 32 

33 
Analysis of mitochondrial membrane potential 34 
The mitochondrial membrane potential was analysed using the mitochondrial -selective dye 35 
tetramethylrhodamine methyl ester (TMRM; 2.5 nM). To normalize to mitochondrial content, hiPSC-36 
derived atrial cardiomyocytes were stained with MitoTrackerGreen (200 nM, 1 hr). HiPSC-derived 37 
atrial cardiomyocytes were plated on gelatine-coated glass coverslips and cultured for 6 to 7 days at 38 
5% CO2 and 37°C. Measurements were performed on a Leica TCS SP5 confocal microscope at basal 39 
conditions or in response to oligomycin A treatment (2 µM). TMRM was excited at 561 nm and 40 
emission assessed between 580 and 700 nm. MitoTrackerGreen was excited at 488 nm and emission 41 
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assessed between 500 and 530 nm. The images were processed using LAS X software (version 1 
3.5.6.21594). Mean intensity values of TMRM fluorescence (corrected for background) was 2 
normalized to the mean intensity value of MitoTrackerGreen fluorescence (corrected for background) 3 
per image to correct for mitochondrial content. n=3 independent hiPSC-derived atrial cardiomyocyte 4 
differentiation runs and 20 images per condition per hiPSC-derived atrial cardiomyocyte batch were 5 
analysed. Data were normalized to mean values of WT hiPSC-derived atrial cardiomyocytes at basal 6 
conditions. 7 

8 
Western blotting 9 
Protein isolation and Western blotting was carried out as previously described 13. Briefly, proteins 10 
were isolated from hiPSC-derived atrial cardiomyocytes using 1% Triton X-100 (Sigma-Aldrich, 11 
T8787) and protease and phosphatase inhibitors (Thermo Fisher, 78440) and subsequently quantified 12 
using the DC Protein Assay kit (Bio-Rad, 500-01112). SDS-polyacrylamide gel electrophoresis and 13 
Western blot analysis were performed using NovexTM WedgeWellTM 4 to 20% Tris-Glycine gels 14 
(Thermo Fisher, XP04205). Membranes were blocked in Intercept® (TBS) blocking buffer (LI-COR, 15 
927-60001) and incubated at 4°C overnight on an orbital shaker. On the next day, membranes were16 
incubated overnight at 4°C with primary antibodies (Supplementary Table 1). Membranes were 17 
then washed and incubated with mouse and rabbit fluorescently conjugated secondary antibodies (LI -18 
COR) for 2 hours at room temperature before visualisation on the LI-COR Fc Dual-Mode Imaging 19 
System. Quantification of Western blots was carried out using Image Studio Lite software (LI-COR) 20 
with quantification normalised to GAPDH expression.  21 

22 
Single nuclei RNA-sequencing of WT and PITX2-/- hiPSC-derived atrial cardiomyocytes and analysis 23 
In order to assess changes of gene expression resulting from suppression of the PITX2 gene at the 24 
single cell level, we applied single nuclei RNA-sequencing (snRNAseq) to hiPSC-derived atrial 25 
cardiomyocytes. Nuclei from hiPSC-derived atrial cardiomyocytes were isolated and processed for 26 
snRNAseq as described 32. We compared 2 replicates of the PITX2-/- hiPSC-derived atrial 27 
cardiomyocyte cell line with 3 replicates of the WT hiPSC-derived atrial cardiomyocytes as controls. 28 
Data were mapped to the human genome (GRCh38) using 10X cellranger version 6.1.2 29 
(www.10xgenomics.com), processed to remove doublets and identify nuclei that met high quality 30 
standards, and harmonized to remove batch effects 33. Manifolds were constructed using Uniform 31 
Manifold Approximation and Projections (UMAPs) for all individual nuclei of knock-out and control 32 
samples (https://arxiv.org/pdf/1802.03426.pdf). Populations were defined by assignment of nuclei to 33 
individual clusters based on Leiden-annotation with a resolution of 0.5 34. To perform differential 34 
gene expression analyses (DGE) between PITX2-/- hiPSC-derived atrial cardiomyocytes and WT 35 
groups we created aggregated pseudobulk samples from our single -nuclei dataset (one pseudobulk 36 
sample per each cluster/Leiden annotated 35). To be considered, one sample should have at least five 37 
nuclei per cluster. To test for differential gene expression we used edgeR implemented in R. Before 38 
fitting our quasi-likelihood negative binomial generalized log-linear model, we filtered for genes that 39 
have sufficient counts (at least 10) and that were expressed in at least 50% of the samples (min.prop = 40 
0.5) to be considered in statistical analysis. We used the empirical Bayes quasi -likelihood test 41 
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(glmQLFtest) to perform gene-wise tests across contrasts. Pathway enrichment analysis of RNASeq 1 
data from aCM was performed using Bioconductor packages in R (Version 4.3.3) and RStudio 2 
(Version 2023.12.1). To compare gene expression changes in response to PITX2 repression, a recently 3 
published data set of hiPSC-derived ventricular-like cardiomyocytes exposed to PITX2-repressing 4 
siRNA or to scrambled control RNA was accessed 36. Pathway analysis using gene ontology and 5 
expression of metabolic differentially expressed genes of interest was performed. KEGG pathways and 6 
GO terms of differentially expressed genes were determined by Benjamini-Hochberg tests with a p-7 
value threshold of 0.05. 8 

9 
Whole-cell patch-clamp electrophysiology 10 
HiPSC-derived atrial cardiomyocytes were plated at a density of 25,000 – 35,000 cells on Geltrex-11 
coated 15 mm round glass coverslips to obtain single cell distribution. The cells were maintained in 12 
culture for a minimum of 7 days until experiments were carried out. Action potential (AP) recordings 13 
were made using the whole-cell patch-clamp technique on an Axopatch 200B amplifer (Molecular 14 
Devices), recorded in the current-clamp configuration. Briefly, cells were superfused at 3 ml/min, 36-15 
37°C, with a solution containing in mM: 145 NaCl, 5.4 KCl, 5 HEPES, 1.8 CaCl2, 1.2 MgCl2, 0.33 16 
NaH2PO4, 0.83 MgSO4.7H20, and 11 glucose, pH 7.4 with NaOH. The internal pipette solution 17 
contained in mM: 130 K-glutamate, 10 KCl, 10 NaCl, 0.5 MgCl2, 10 HEPES and 5 MgATP, pH 7.2 with 18 
KOH (all reagents from Sigma-Aldrich). Pipette resistance ranged between 1.5-3 MΩ. Spontaneously 19 
occurring APs were recorded for 60 seconds before action potentials were triggered by 1 ms current 20 
injections (1 nA). AP trains were stimulated at 1 Hz, 2 Hz or 3 Hz for 60 seconds to allow rate 21 
adaptation and digitized at 50 kHz using CED micro1401 driven by Signal v6 (Cambridge Electronic 22 
Design). Only spontaneously beating cells were used for experiments. APs were analysed for diastolic 23 
membrane potential and AP duration (APD 30, APD50, APD70, and APD90) using modified 24 
algorithms from ElectroMap software 37. Information on additional parameters measured can be 25 
found in the supplementary materials and methods section.  26 

27 
Bulk RNA sequencing of human left atrial appendages and analysis  28 
Bulk RNA sequencing was performed on human left atrial appendages (see study approval) collected 29 
from patients undergoing open heart surgery with excision of left and right atria at six centers as 30 
published 13. Sequencing was performed at University of Münster, Germany (M Stoll). Good quality 31 
samples were aligned to the human genome (GRCh38p12) using the HISAT2 alignment tool 38. The 32 
aligned files were sorted and indexed using samtools 39. Feature counts (transcript level) were 33 
computed using the htseq tool 38. Htseq readcounts were normalised using DESeq2. Data was 34 
transformed using regularised log transformation with DEseq2 prior to visualisation. Differential gene 35 
expression analysis was performed by modelling the Benjamini-Hochberg FDR. Differentially 36 
expressed genes were defined as FDR <0.05 and Log2(fold change) >0.1. For heatmaps, data was 37 
visualised as log-normalised counts from DESeq2. GO Pathway Enrichment analysis was carried out 38 
using Gene Ontology. 39 

40 
41 
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Statistical analysis 1 
Data were analysed using PRISM (GraphPad Software Inc., version 6), and results are presented as 2 
mean ± SD unless otherwise stated. All experiments were repeated a minimum of three times using 3 
different batches of differentiated cells accounting for biological replicates, which are specified in the 4 
figure legends. The number of samples (n) and the statistical test used for each analysis are indicated 5 
in the figure legends. Where possible, experimenters were blinded to the genotypes of tissue 6 
samples/cells. p-values are stated in the figures. 7 

8 
Study approval 9 
Biopsies from left atrial appendages were sampled during open heart surgery from six separate cohort 10 
studies run at the universities of Barcelona, Birmingham, Maastricht, Muenster, Munich and Paris (all 11 
part of the CATCH ME consortium), and immediately frozen in liquid nitrogen to prevent RNA 12 
degradation. All study participants provided written informed consent. The investigation complied 13 
with the principles that govern the use of human tissues outlined in the Declaration of Helsinki. The 14 
Medical Ethics Committee of each participating center approved the study and its protocols. Overall 15 
governance was provided by Maastricht University. Details of the clinical characteristics of the 16 
patients have been published 40. This analysis compared patients who were in sinus rhythm at the 17 
time of surgery and who did not have a history of AF prior to surgery (sinus rhythm) with patients 18 
who had established, permanent AF.  19 

20 
Results: 21 
Generation and differentiation of PITX2-deficient hiPSC-derived atrial cardiomyocytes 22 
PITX2-deficient hiPSC line and the respective control (WT) cells showed a normal karyotype and 23 
pluripotency status (Supplementary Fig 1A-C). PITX2-deficient hiPSCs and WT hiPSCs were 24 
successfully differentiated into atrial cardiomyocytes (aCMs) (Fig 1A) with a high yield 25 
(Supplementary Fig 1D). Time course analysis revealed robust induction of PITX2 expression, 26 
peaking between day 8 – 12 of differentiation in WT cells (Fig 1B). This early peak reflects the known 27 
role of PITX2 in right-left patterning during early mesodermal development 41-43. BMP10 expression 28 
was detected from 30 days of differentiation, reflecting differentiation of the cells into hiPSC-derived 29 
atrial cardiomyocytes (Fig 1C) 24, 25. As intended, PITX2 was reduced in PITX2-/- hiPSC-derived atrial 30 
cardiomyocytes (Fig 1D). As expected, WT hiPSC-derived ventricular cardiomyocytes (vCMs) showed 31 
no PITX2 expression (Fig 1D). Subsequent analysis of cardiomyocyte developmental transcriptional 32 
factors revealed a reduction in MYCOD and an increase in TBX5 expression in the PITX2-/- hiPSC-33 
derived atrial cardiomyocytes (Supplementary Fig 2A). Atrial cardiomyocyte markers BMP10, 34 
KCNJ3, NR2F1 and NR2F2 expression was reduced as expected (Supplementary Fig 2B). 35 
Ventricular-specific genes were largely undetectable in WT and PITX2-/- hiPSC-derived atrial 36 
cardiomyocytes (Supplementary Fig 2C). 37 

38 
39 
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Altered cardiomyocyte structure and nuclear morphology in PITX2-deficient hiPSC-derived atrial 1 
cardiomyocytes 2 
PITX2-/- hiPSC-derived atrial cardiomyocytes exhibited sarcomere disarray (Fig 1E) and shortened 3 
sarcomeres (Fig 1F) compared to WT controls. mRNA concentrations of the sarcomeric transcripts 4 
MYH6, TNNT2 and TNNI1 mRNA were increased in PITX2-/- hiPSC-derived atrial cardiomyocytes 5 
compared to WT controls (Fig 1G). PITX2-/- hiPSC-derived atrial cardiomyocytes displayed a greater 6 
ratio of mononucleated cardiomyocytes compared to multi-nucleated cardiomyocytes (Fig 1H). 7 
These nuclei were increased in number, larger, and displayed an altered shape (Supplementary 8 
Table 4). Given that mononucleation is associated with an increased proliferative capacity in 9 
cardiomyocytes 44, we next investigated the proliferation status of PITX2-/- hiPSC-derived atrial 10 
cardiomyocytes. PITX2-/- hiPSC-derived atrial cardiomyocytes displayed increased 5-ethylnyl-2’-11 
deoxyuridine (EdU) incorporation compared to WT hiPSC-derived atrial cardiomyocytes 12 
(Supplementary Fig 2D) and showed a proliferative gene signature with increased expression of 13 
CCNA1 and CCNB1 (Supplementary Fig 2E) and a reduction in the cellular quiescence genes TP53, 14 
CDKN1a, CDKN2a and HES1 (Supplementary Fig 2F), confirming increased proliferation. 15 

16 
Proteomic analysis identifies altered mitochondrial and metabolic pathways in PITX2-deficient 17 
hiPSC-derived atrial cardiomyocytes 18 
Principal component analysis of the proteomic data revealed close clustering of the PITX2-/- hiPSC-19 
derived atrial cardiomyocytes (Fig 2A). In total, 150 out of 3128 proteins were differentially 20 
expressed between genotypes (Fig 2B). Gene Set Enrichment Analysis identified differentially 21 
expressed mitochondrial proteins (Fig 2C) and upregulated Normalized Enrichment Scores (NES) in 22 
PITX2-/- hiPSC-derived atrial cardiomyocytes for processes affecting mitochondria, the generation of 23 
metabolites, energy allocation and mitochondrial translation and organization, specifically of the 24 
cristae and enhanced collagen biosynthesis (Fig 2D). Endoplasmic reticulum and ribosome 25 
organization, translation and extracellular matrix organization were downregulated. These data 26 
identify a link between PITX2 deficiency and expression of proteins relevant for mitochondrial and 27 
metabolic function in hiPSC-derived atrial cardiomyocytes. Targeted comparisons of key proteins 28 
relevant for mitochondrial fission and fusion (Fig 2E) and of mitophagy and biogenesis (Fig 2F) 29 
were differentially expressed in PITX2-/- hiPSC-derived atrial cardiomyocytes. 30 

31 

PITX2-dependent changes in gene expression based on single-nuclear RNA sequencing 32 
Pseudobulk analysis of single nuclei RNA sequencing data from PITX2-/- and WT hiPSC-derived atrial 33 
cardiomyocytes showed differential expression of a large number of transcripts (Volcano plot in Fig 34 
3A). Gene ontology analysis identified respiration as one of the main affected processes (Fig 3B). 35 
Based on Leiden-annotated UMAP clustering six distinct cell populations were found, with 60.8% of 36 
all cells belonging to cluster C1 (Fig 3C). Cell clusters C1, 2, 4, and 6 consist of both PITX2-/- and WT 37 
aCM nuclei. Clusters 3 and 5, containing approximately 10% of cells, consist predominantly of PITX2-38 
/- aCM nuclei (Fig 3D). These results identify an increased heterogeneity of PITX2-/- hiPSC-derived 39 
atrial cardiomyocyte nuclei. Among the possible comparisons of cell lines and cells belonging to the 40 
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different clusters, two were considered as important: differences between genotypes in the largest 1 
cluster (C1) and differentially expressed genes in the PITX2-/--enriched cluster (C3) compared to the 2 
main WT cluster (C1). Among the top differentially-expressed genes between WT and PITX2-/- hiPSC-3 
derived atrial cardiomyocytes in cell cluster C1 were the mitochondrial genes COX6a and ABCA1 and 4 
the sodium channel SCN9A. Among the top differentially expressed genes between PITX2-/- of C1 and 5 
PITX2-/- of C3 were cell-cell contact and structural proteins and transcription factors (Fig 3E). 6 
Analysis of published 36 gene expression data in hiPSC-derived ventricular-like cardiomyocytes 7 
exposed to PITX2-repressing RNA or scrambled control RNA identified similar pathways regulated in 8 
response to PITX2 repression using gene ontology (Fig 3F). 9 

10 
Changes in metabolism and mitochondrial function in PITX2-deficient hiPSC-derived atrial 11 
cardiomyocytes 12 
Electron microscopy revealed no overt morphological defects between PITX2-/- hiPSC-derived atrial 13 
cardiomyocytes and WT controls. However, mitochondria in PITX2-/- hiPSC-derived atrial 14 
cardiomyocytes were smaller and less structured: some mitochondria showed a fractured outer 15 
membrane. Mitochondria in WT cells appeared elongated with visible cristae (Fig 4A). Expression of 16 
FOXO1, PPARGC1a and PYGM was increased in PITX2-/- hiPSC-derived atrial cardiomyocytes 17 
compared to WT controls (Fig 4B), suggesting increased glycolytic activity. Seahorse experiments 18 
confirmed increased glycolysis in PITX2-/- hiPSC-derived atrial cardiomyocytes (Fig 4C and D). 19 
PITX2-/- hiPSC-derived atrial cardiomyocytes showed decreased SLC27A6 expression (Fig 4E). 20 
The mitochondrial/nuclear DNA ratio showed no difference between WT and PITX2-/- hiPSC-derived 21 
atrial cardiomyocytes (Fig 5A). PITX2-/- hiPSC-derived atrial cardiomyocytes showed more 22 
mitochondrial membrane content by TOMM20 flow cytometry (Fig 5B). RT-qPCR of common 23 
mitochondrial genes revealed increased COX7C and reduced MCU expression in PITX2-/- hiPSC-24 
derived atrial cardiomyocytes (Fig 5C). Functional analysis of mitochondrial respiration revealed 25 
lower basal and maximal mitochondrial respiration in PITX2-/- hiPSC-derived atrial cardiomyocytes 26 
without changes in proton leak and oligomycin-sensitive ATP generation (Fig 5D and E). These 27 
experiments also found a higher glycolytic index in PITX2-/- hiPSC-derived atrial cardiomyocytes (Fig 28 
5F). Basal mitochondrial membrane potential was higher compared to WT control cells, suggesting 29 
that PITX2-/- hiPSC-derived atrial cardiomyocytes already exhibit a more glycolytic metabolic state 30 
under normal culture conditions. Mitochondrial membrane potential (Fig 5G) was more sensitive to 31 
Oligomycin A in WT than in PITX2-/- hiPSC-derived atrial cardiomyocytes. Representative fluorescent 32 
microscopy images for TMRM and MitoTrackerGreen for both genotypes are shown (Fig 5H). 33 
Together, these results suggest that PITX2 deficiency causes a metabolic shift to glycolysis in hiPSC-34 
derived atrial cardiomyocytes. PITX2-/- hiPSC-derived atrial cardiomyocytes increase their number of 35 
mitochondria, likely to compensate for the less efficient energy generation.  36 

37 
Faster beating rates and more heterogeneous and prolonged atrial action potentials in PITX2-38 
deficient hiPSC-derived atrial cardiomyocytes 39 
As expected from Pitx2-dependent suppression of pacemaker activity in the murine left atrium 45, 40 
spontaneously beating PITX2-/- hiPSC-derived atrial cardiomyocytes showed an increased beating 41 
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frequency compared to WT hiPSC-derived atrial cardiomyocytes (Fig 6A). Concentrations of the 1 
sino-atrial node gene SHOX2 and the myocardial gene NKX2-5 were increased in PITX2-/- hiPSC-2 
derived atrial cardiomyocytes (Fig 6B). To compare action potential (AP) morphologies, we applied 3 
unbiased clustering to all AP waveforms recorded in WT and PITX2-/- hiPSC-derived atrial 4 
cardiomyocytes (Fig 6C). Atrial AP clustered into three distinct morphologies (clusters 1-3). PITX2-/- 5 
hiPSC-derived atrial cardiomyocytes consistently showed more AP waveforms belonging to “cluster 3” 6 
action potentials (with prolonged APs) compared to WT hiPSC-derived atrial cardiomyocytes during 7 
pacing and spontaneous beating (Fig 6C and Supplementary Table 6). The additional AP 8 
morphology is one of the reasons why, on average, PITX2-/- hiPSC-derived atrial cardiomyocytes 9 
showed prolonged AP durations (APD, Fig 6D and Supplementary Fig 3A and B). AP amplitude 10 
(Fig 6E) and peak upstroke velocity (dV/dtmax) hiPSC-derived atrial cardiomyocytes (Fig 6G) were 11 
reduced in PITX2-/- hiPSC-derived atrial cardiomyocytes compared to WT. The diastolic membrane 12 
potential was variable, but not different between genotypes (Fig 6F and G)). These 13 
electrophysiological changes were less pronounced at high pacing rates (2 Hz and 3 Hz, 14 
Supplementary Fig 3C-E). Exclusion of more depolarized, less normal appearing action potentials 15 
prior to clustering led to almost identical results (data on file). PITX2-/- hiPSC-derived atrial 16 
cardiomyocytes showed reduced KCNA5 expression and increased KCNA4 and KCNH2 gene 17 
expression (Fig 6H). Protein concentrations of KCNA5 and hERG were reduced in PITX2-/- hiPSC-18 
derived atrial cardiomyocytes, and Kv1.4 concentrations were increased (Fig 6I). 19 

20 
Differential expression of metabolic genes in left atrial tissue from patients with AF  21 
RNA-sequencing data in left atrial appendage tissue collected from 85 patients during open heart 22 
surgery were compared between patients in sinus rhythm without a diagnosis of AF (“sinus rhythm”) 23 
and patients with AF diagnosed prior to surgery and in AF during tissue collection (Fig 7A, clinical 24 
details in Supplementary Fig 4A-B). Gene enrichment analysis identified 1150 upregulated genes 25 
in left atrial appendage tissue from patients with AF compared to patients in sinus rhythm (Fig 7A). 26 
Biological processes linked to mitochondrial organisation, ion transport and muscle contraction were 27 
upregulated in AF patients (Supplementary Fig 4C, Supplementary Tables 7 and 8) . COX7A1 28 
gene expression was upregulated and SLC25A4 gene expression was downregulated in atrial tissue 29 
from patients with AF compared to patients in sinus rhythm (Fig 7C). 30 
A detailed analysis of genes that surround the chromosome 4q25 locus topological associating domain 31 
identified only reduced PITX2 in left atria from patients in AF when compared to patients in sinus 32 
rhythm (Supplementary Fig 4D). Five upregulated genes and 14 downregulated genes were also 33 
found to be regulated in both the human left atrial RNAseq and in the PITX2-/- hiPSC-derived atrial 34 
cardiomyocyte proteomic data sets (Supplementary Fig 5A). Integrated analysis using our 35 
proteomics dataset and two published data sets of PITX2-deficient heart tissue from zebra fish and 36 
mice revealed 9 common genes upregulated and 8 common genes downregulated in PITX2-/- hiPSC-37 
derived atrial cardiomyocytes and Pitx2-/- heart tissue (Supplementary Fig 5B and 3C). 38 

39 
40 
41 

ACCEPTED M
ANUSCRIP

T



Reyat, Sommerfeld, et al. PITX2 deficiency leads to atrial mitochondrial dysfunction, CVR-2023-1095 R page 16 

16 

Association of PITX2 with metabolic and ion channel genes in human left atria with AF.  1 
Three genes implicated in glycolytic metabolism significantly correlated with PITX2 expression in 2 
both AF patients and PITX2-/- hiPSC-derived atrial cardiomyocytes (SLC27A6, forkhead box protein 3 
O1 (FOXO1) and glycogen phosphorylase (PYGM) Fig 7D). Consistent with findings in PITX2-/- 4 
hiPSC-derived atrial cardiomyocytes, COX7C expression was positively associated with PITX2 5 
expression (Fig 7B). The PITX2 correlation of MYH6 and TNNT2 was also replicated in human atrial 6 
tissue (Fig 7C). Genes implicated in cell cycling and quiescence (CCNA1, CCNB1 and HES1) showed 7 
no correlation with PITX2 in AF patients (Supplementary Fig 6A). The ion channel genes KCNA5 8 
and KCNH2 were correlated with PITX2, consistent with findings in PITX2-/- hiPSC-derived atrial 9 
cardiomyocytes (Supplementary Fig 6B). Exploratory analyses of the human LA appendage 10 
RNAseq data set and proteomic data from PITX2-/- hiPSC-derived atrial cardiomyocytes replicate 11 
differences in the expression of genes required for mitochondrial oxidative processes and ATP 12 
generation (Supplementary Fig 7). Overall, these associations support a role for PITX2-dependent 13 
regulation of oxidative phosphorylation, mitochondrial structure and function, and cardiac ion 14 
channels in patients with AF.  15 

16 

Discussion: 17 
Main findings. 18 
PITX2 deficiency reduces mitochondrial respiration and induces a metabolic shift towards enhanced 19 
glycolysis in hiPSC-derived atrial cardiomyocytes. Similar results can be replicated in human left atria 20 
with AF. In addition, PITX2 deficiency affects metabolic and respiratory pathways in hiPSC-derived 21 
atrial cardiomyocytes and increases heterogeneity of nuclear RNA expression. These PITX2-22 
dependent effects can interact and contribute to the structural and functional changes found in 23 
PITX2-deficient atria and lead to AF. Our results suggest a potential effect of metabolic interventions 24 
to prevent and treat PITX2-dependent atrial defects and AF. 25 

26 
PITX2-dependent mitochondrial and metabolic dysfunction.  27 
PITX2 deficiency led to altered protein and gene expression (Fig 2, Fig 3, Fig 4) that include 28 
reduced mitochondrial respiration and a metabolic shift towards increased glycolysis in atrial 29 
cardiomyocytes (Fig 4). Such defects and the resulting metabolic dysfunction can lead to fatty 30 
deposits 46, 47, promote fibrosis 48, and underlie sarcomeric dysfunction (Fig 1, similar findings in 21) 31 
in experimental AF 49, thereby contributing to three key features of AF. A similar FOXO-dependent 32 
metabolic switch has been described in PITX2-deficient skeletal muscle 50. Differential expression of 33 
metabolic genes was confirmed in human left atrial tissue (Fig 7). Single cell nuclear RNA sequencing 34 
identified an additional cell cluster in PITX2-/- CMs (Fig 3C) that can further add to electrical 35 
heterogeneity (Fig 5). Our findings are consistent with a role of PITX2 in the maintenance of 36 
mitochondrial structure and function and in the regulation of mitochondrial genes in the murine heart 37 
suggested by others 51, 52. Mitochondrial capacity in the heart declines during ageing 53, leading to 38 
increased mitochondrial oxidative stress in cardiomyocytes 54. Subtle PITX2-dependent mitochondrial 39 
defects could aggravate ageing-induced mitochondrial dysfunction and oxidative stress 53, 54 and 40 
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thereby promote AF. Further studies testing metabolic challenges in PITX2-deficient atrial models are 1 
warranted to unmask subtle metabolic defects and to study whether PITX2 is involved in atrial 2 
protection against hypoxia and oxidative stress 51. Our findings support the concept that metabolic 3 
support of the atria conveys at least a part of the AF-preventing effects of SGLT2 inhibitors 55, 56 and of 4 
PARP inhibition 57. 5 

6 
PITX2-dependent regulation of cellular function and metabolic predisposition to AF.  7 
Cardiomyocyte function including ion homeostasis requires sustained and high energy production. 8 
The increased heterogeneity of atrial action potentials (Fig 5), shorter sarcomeres (Fig 1), and 9 
contractile dysfunction 49 seen in PITX2-/-hiPSC-derived atrial cardiomyocytes and in other models of 10 
PITX2 deficiency in mice 20, 22 can be caused by mitochondrial dysfunction altering atrial calcium 11 
handling 58-61 and repolarization 62, in addition to direct, PITX2-dependent regulation of ion channel 12 
expression (Supplementary Fig 6). The pathway analyses in PITX2-/- hiPSC-derived atrial 13 
cardiomyocytes and of published data in cardiomyocytes with post -differentiation repression of 14 
PITX2 (Fig 3) show dysregulation of metabolic and mitochondrial respiration, suggesting that 15 
metabolic dysfunction is one of the main changes associated with PITX2 deficiency in cardiomyocytes. 16 
The increased functional heterogeneity in PITX2-/- hiPSC-derived atrial cardiomyocytes may also 17 
reflect the effects of an additional cell cluster found by single nuclear sequencing (Fig 3). Future 18 
interventional studies aiming at restoring mitochondrial function can determine a role of metabolic 19 
dysfunction for these PITX2-dependent changes. Structural defects have been described in 20 
conditionally PITX2-deficient hearts before 20. This study finds structural defects in PITX2-deficient 21 
hiPSC-derived atrial cardiomyocytes kept in culture, compounding a direct effect of PITX2 deficiency 22 
on structural alterations in the heart. Combined PITX2-/- hiPSC-derived atrial cardiomyocytes 23 
proteomics, single-nuclear RNA sequencing and analysis of human atrial RNA sequencing identified 24 
PITX2-regulated ion channel and mitochondrial genes. Changes in mitochondrial genes are consistent 25 
with recent RNAseq data sets in animal models of AF 63, and in patients with AF (ETFB gene) 64. 26 
Correlation of PITX2 gene expression and metabolic gene expression in atria from patients with AF 27 
(Fig 7), dysregulation in PITX2-deficient hiPSC-derived atrial cardiomyocytes (Fig 3) and changes in 28 
cardiomyocytes exposed to PITX2 siRNA (Fig 3) support metabolic gene regulation by PITX2. 29 
Compared to the shortening of atrial action potentials in murine models of Pitx2 deficiency 12, 18, the 30 
action potential prolongation observed in this study (Fig 5) was unexpected. The present findings are 31 
consistent with PITX2-deficiency dependent electrophysiological changes in another, independently 32 
generated PITX2-deficient hiPSC-derived atrial cardiomyocyte model 19. Metabolic and other PITX2-33 
dependent effects and inter-species variability may contribute to these differences. The more subtle 34 
electrical phenotype in heterozygous Pitx2-deficient (Pitx2c+/-) mice 12, 16-18 is consistent with a less 35 
profound, dose-dependent defect. Key next steps to better understand the interactions between 36 
mitochondrial and metabolic state, gene expression, cardiomyocyte structure, ion channel 37 
dysregulation, and altered atrial electrophysiology are metabolic challenges and interventions aiming 38 
to restore mitochondrial function to assess the resulting phenotypic changes and a role of PITX2. Our 39 
findings suggest that therapies improving cardiomyocyte metabolism could help to prevent AF linked 40 
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to PITX2. The prevention of AF by SGLT2 inhibitors 55, 65 is a first clinical sign that metabolic 1 
interventions have the potential for AF treatment. 2 

3 
Strengths and Limitations. 4 
Strengths of the study are a human aCM model enabling the observation of structural and functional 5 
PITX2-dependent changes in atrial cardiomyocytes in the absence of arrhythmias and other 6 
cardiovascular stressors, the hypothesis-generating characterisation of the hiPSC-derived atrial 7 
cardiomyocytes and the confirmation of key findings in human atria with AF. Independent validation 8 
in hiPSC-derived cardiomyocytes and in other experimental and clinical models is desirable, including 9 
in organoid models and in animals with left and right atria. Our single -nuclei RNA-sequencing 10 
analysis confirms metabolic changes and finds an increased cellular heterogeneity affecting 11 
approximately 10% of cells. This illustrates multifaceted effects of suppression of PITX2 in 12 
cardiomyocytes. Future research is needed to define potential dose -dependent, milder metabolic 13 
phenotypes in other PITX2-deficient cells and animal models 12, 16-18. Further research is also needed 14 
to identify the mechanisms of mitochondrial dysfunction and to identify potential therapeutic targets. 15 
Putative crosstalk between cardiomyocytes and other atrial cells requires further studies in 16 
multicellular hiPSC-derived, animal, and human models. Another limitation is the relatively high 17 
variability of electrical function in the hiPSC-derived atrial cardiomyocytes 19 which reflects different 18 
cell clusters and variable maturation 66. This variability may have obviated subtle differences, e.g. in 19 
diastolic potential, between genotypes. Improved hiPSC-atrial cardiomyocyte maturation using 20 
engineered heart tissue 19 and three-dimensional growth techniques 67 may generate more mature 21 
cells and organoids suitable to address these questions. Finally, although RNA sequencing of left atrial 22 
appendages enabled us to evaluate PITX2’s function in patients, these analyses were limited to bulk 23 
sequencing of atrial tissue obtained during open-heart surgery. Limited access to cardiac tissue 24 
outside of surgical procedures renders this limitation difficult to overcome. The single -nuclei 25 
sequencing removed mitochondria prior to sequencing. Genes encoded by mitochondrial DNA (13 26 
genes) were not included in the single nuclear sequencing analyses. In view of the large number of 27 
mitochondrial genes encoded by nuclear DNA, this is a minor limitation in our view.  28 
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Figures and Figure Legends 1 

2 
Figure 1. Characterisation of WT and PITX2-/- hiPSC-derived atrial cardiomyocytes 3 
(aCMs). 4 
(A) Schematic overview of differentiation protocol used to generate hiPSC-derived aCMs. (B) Gene5 
expression analysis of PITX2 and (C) BMP10 over the time course of atrial cardiomyocyte6 
differentiation using WT hiPSC-derived aCMs (WT aCMs) as assessed by RT-qPCR (n=3). Dashed line7 
represents the basal expression of PITX2 or BMP10 in WT hiPSCs. (D) Gene expression of PITX2 in8 
day 30 aCMs from WT and PITX2-/- (PITX2-/- aCMs) lines as assessed by RT-qPCR. Day 30 hiPSC-9 
derived ventricular cardiomyocytes from the WT line (WT vCMs) were used as a control (n=6). (E)10 
Confocal microscopy of immunofluorescently-labelled α-actinin in WT and PITX2-/- aCMs (blue =11 
DAPI and magenta = α-actinin). Scale bar = 10µm. (F) Sarcomere length measurements in WT and12 
PITX2-/- aCMs (WT aCMs = 63 images; PITX2-/- aCMs = 62 images). (G) Gene expression of MYH6,13 
ACTN2, TNNT2, TNNI1 and TNNI3 in WT and PITX2-/- aCMs as assessed by RT-qPCR (n=6). Data14 
are expressed as the mean relative expression and presented as box and whisker plots (min to max).15 
Mann-Whitney U-tests were uses to compare gene concentrations between groups. (H) Bi-nucleated16 
and mono-nucleated cell analysis in WT and PITX2-/- aCMs.17 
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1 
Figure 2. Proteomic analysis of PITX2-/- hiPSC-derived atrial cardiomyocytes (aCMs). 2 
(A) Principal component analysis (PCA) of samples used in proteomic analysis. (B) Volcano plot3 
showing protein enriched in WT aCMs verses PITX2-/- aCMs. Significantly enriched proteins (log2FC >4 
1) are shown in black. (C) Differentially expressed mitochondrial proteins in WT aCMs and PITX2-/-5 
aCMs presented as a heatmap. (D) Gene-set enrichment analysis of enriched and downregulated6 
pathways in WT aCMs and PITX2-/- aCMs. Proteins with an FDR < 0.05 and an absolute log2-fold-7 
change > 1 were considered significantly changed. Further information on data analysis can be found8 
in the Supplementary materials. (E, F) Expression of proteins linked to mitochondrial fission and9 
fusion (E) and related to mitochondrial biogenesis and mitophagy (F) in WT and PITX2-/- aCMs10 
(n=6).11 A
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1 
Figure 3. Transcriptional changes in PITX2-deficient hiPSC-derived atrial 2 
cardiomyocytes (aCM). (A) Volcano plot of differentially expressed genes in “pseudo-bulk” mRNA 3 
sequencing analysis of nuclei from PITX2-/- and WT control hiPSC-derived atrial cardiomyocytes. (B) 4 
Gene ontology analysis of the bulk RNA sequencing data. (C) Leiden plot of single -nuclei RNA-5 
sequencing identifies six clusters of cells, including one cluster containing mainly PITX2-/- cells. (D) 6 
Differential gene expression patterns in the single -nuclear RNA sequencing data sets of WT 7 
(PITX2+/+) and PITX2-/- aCM depicted by cell cluster (Leiden plot). (E) List of 56 most differentially 8 
expressed genes in PITX2-/- hiPSC-derived atrial cardiomyocytes (PK) vs WT based on the single 9 
nuclear RNA sequencing analysis. (F) Gene expression differences in a published data set 36 of hiPSC-10 
derived cardiomyocytes exposed to PITX2-small interfering RNA (siRNA) or scrambled control 11 
siRNA. Left panel: Volcano plot. Right panel: Gene ontology analysis of differentially expressed genes. 12 
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1 
Figure 4. Glycolytic metabolism in PITX2-/-  hiPSC-derived atrial cardiomyocytes 2 
(aCMs). (A) Electron microscopy revealed no overt morphological differences between genotypes. 3 
Mitochondria appeared elongated and structured in WT aCMs, while they were smaller with in part 4 
fractured outer membranes in PITX2-/- aCMs. G: golgi; L: lipid droplet; M: mitochondria; scale bar 5 
500 nm. (B) Gene expression of FOXO1, PFKM, PPARAGC1a, PYGM and SCL2A1 in WT and PITX2-/- 6 
aCMs (n=6) as assessed by qRT-PCR. Data are expressed as the mean relative expression and 7 
presented as box and whisker plots (min to max). (C) Measurement of glycolysis (glycoPER) as 8 
assessed by Seahorse measurements (n=6). Traces shown are PER corrected after subtracting non -9 
glycolytic acidification from the rates post 2-DE addition and mitochondrial acidification 10 
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contributions 29, 30. For representation purposes, oligomycin A and BAM addition have been removed 1 
from the trace as these aren’t relevant for the glycolytic measurements reported. (D) Quantification of 2 
basal glycolysis (glycoPER) and maximal glycolysis (Max glycoPER). (E) Gene expression of 3 
ADIPOR2, CD36, LPIN1, PPARA, SLC27A1 and SLC27A6 in WT and PITX2-/- aCMs (n=6) as assessed 4 
by qRT-PCR. Data are expressed as the mean relative values and presented as box and whisker plots 5 
(min to max). Statistical analyses were carried out using Mann-Whitney U-tests to compare between 6 
two groups.7 
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Figure 5. Mitochondrial respiration in PITX2-/- hiPSC-derived atrial cardiomyocytes (aCMs). (A) Mitochondrial (ND1) to nuclear DNA (B2M) 1 
ratio as assessed by RT-qPCR (n=6). (B) Flow cytometry analysis of mitochondrial membrane content in WT and PITX2-/- aCMs using TOMM20 staining (n=6). 2 
(C) Gene expression of COX7C, MCU, NRF1, PRDX5, SOD1 and SOD2 in WT and PITX2-/- aCMs (n=6) as assessed by RT-qPCR. (D) Traces showing oxygen3 
consumption rates (OCR) in WT and PITX2-/- aCMs (n=6). (E) Quantification of OCRs shown in (D). (F) Quantification of J ATP from either oxidative4 
phosphorylation or glycolytic sources. Data are expressed as glycolytic indexes (GI) showing absolute values of ATP supply. ( G) aCMs were loaded with the5 
mitochondrial membrane-sensitive dye tetramethylrhodamine methyl ester (TMRM) and MitoTrackerGreen as a mitochondrial -selective loading control.6 
Subsequently, aCMs were exposed to oligomycin A (2 µM for 10 min). Alterations in mitochondrial membrane potential of PITX2-/- aCMs (blue) or the isogenic7 
control cells (wildtype WT; black) at baseline (-) or in response to oligomycin A (+) were expressed as the ratio of TMRM/MitoTrackerGreen fluorescence as8 
fold change of the WT. The graph represents the data summarized from 3 independent experiments of at least 20 images per expe riment from three independent9 
aCM differentiation runs. One-way ANOVA with Sidak post-test for multiple comparisons was performed. (H) Exemplary fluorescence images used to generate10 
the mitochondrial potential data shown in Fig 5G. Scale bar indicates 25 µm.11 
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Figure 6. Electrophysiological characterisation of PITX2-/- hiPSC-derived atrial cardiomyocytes (aCMs). (A) Spontaneous beating rate in WT 1 
and PITX2-/- aCMs (WT n= 43, PITX2-/- n= 87). (B) Gene expression of NKX2-5, NPPA, SHOX2 and TBX3 in in WT and PITX2-/- aCMs (n=6) as assessed by 2 
RT-qPCR. (C) Combined APs from 1 Hz, 2 Hz and 3 Hz WT and PITX2-/- aCMs following unsupervised clustering categorised into three distinct clusters. 3 
Computationally modelled APs are shown (top) with the percentage of APs representative of those traces in WT and PITX2-/- aCMs quantified (below). (D) 4 
Representative action potential (AP) traces of spontaneously beating or 1 Hz paced WT aCMs and PITX2-/- aCMs using whole-cell patch clamp (top). 5 
Quantification of action potential duration (APD) at APD30, 50, 70 and 90 in spontaneously beating or 1 Hz paced WT and PITX2-/- aCMs (Spontaneously 6 
beating WT n= 43, PITX2-/- n= 87; 1 Hz WT n=82, PITX2-/- n=112 over 5 batches of independently differentiated cells: below).  (E) Action potential amplitude 7 
(APA) in 1 Hz paced WT or PITX2-/- aCMs (1 Hz – WT n=82, PITX2-/- n=112). Diastolic potential and peak upstroke velocity (dV/dt max) in spontaneously 8 
beating (F) and 1Hz paced (G) WT or PITX2-/- aCMs (spontaneously beating – WT n= 43, PITX2-/- n= 87; 1Hz - WT n=82, PITX2-/- n=112). Note that only 9 
some cells showed spontaneous beating, resulting in different diastolic potential values than in paced cells. (H) Gene expres sion of KCNA5, KCNA4, KCNJ12 10 
and KCNH2 in WT and PITX2-/- aCMs (n=6) as assessed by RT-qPCR. (I) Western blot analysis of KCNA5, Kv1.4, Kir2.2 and hERG in WT and PITX2-/- aCMs 11 
(n=4). Western blots are shown on top with quantification below. GAPDH was used as a loading control. Data are expressed as t he mean relative expression 12 
and presented as box and whisker plots (min to max). For electrophysiological analysis, statistics were carried out using a repeated measures ANOVA to 13 
compare differences in electrophysiological parameters. For gene and protein analysis, Mann -Whitney U-tests were used to compare between two groups.  14 
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1 
Figure 7. Bulk RNA-sequencing of left atrial appendage tissue from AF and SR patients. 2 
Left atrial tissue was collected during open heart surgery from patients without known atrial 3 
fibrillation and in sinus rhythm (SR) during the operation (“Sinus Rhythm”) and from patients with 4 
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permanent atrial fibrillation (AF) including during surgery. (A) Volcano plot showing genes in 1 
patients with AF (permanent AF) verses those in SR at the time of tissue harvest. Significantly 2 
enriched genes in AF patients (log2FC > 1; blue) and significantly enriched genes in SR patients 3 
(log2FC < -1; grey) are shown. (B) Differentially expressed genes in individual samples of patients in 4 
SR and AF. Selected genes represent the top 10 enriched genes in either SR patients (top) or AF 5 
patients (bottom). (C) Expression of COX7A1 and SLC25A4 in sinus rhythm (SR) and permanent 6 
atrial fibrillation (AF) patients’ atrial tissue (Sinus rhythm n=42; Atrial Fibrillation n=43). Correlation 7 
analysis of PITX2-regulated genes in patients with chronic (permanent) AF implicated in (D) 8 
metabolism (SLC27A6, FOXO1 and PYGM), (E) mitochondrial function (COX7C, MCU and NRF1) and 9 
(F) cardiomyocyte structure (MYH6, TNNT2 and TNNI1). Data represents n=43 with Spearman r10 
values and corrected p-values shown on graph.11 
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