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Aims Reduced left atrial PITX2 is associated with atrial cardiomyopathy and atrial fibrillation (AF). PITX2 is restricted to left atrial
cardiomyocytes (aCMs) in the adult heart. The links between PITX2 deficiency, atrial cardiomyopathy, and AF are not fully
understood.

Methods 
and results

To identify mechanisms linking PITX2 deficiency to AF, we generated and characterized PITX2-deficient human aCMs derived
from human induced pluripotent stem cells (hiPSC) and their controls. PITX2-deficient hiPSC-derived atrial cardiomyocytes
showed shorter and disorganized sarcomeres and increased mononucleation. Electron microscopy found an increased num-
ber of smaller mitochondria compared with isogenic controls. Mitochondrial protein expression was altered in PITX2-de-
ficient hiPSC-derived atrial cardiomyocytes. Single-nuclear RNA-sequencing found differences in cellular respiration  
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pathways and differentially expressed mitochondrial and ion channel genes in PITX2-deficient hiPSC-derived atrial cardio-
myocytes. PITX2 repression in hiPSC-derived atrial cardiomyocytes replicated dysregulation of cellular respiration. 
Mitochondrial respiration was shifted to increased glycolysis in PITX2-deficient hiPSC-derived atrial cardiomyocytes. 
PITX2-deficient human hiPSC-derived atrial cardiomyocytes showed higher spontaneous beating rates. Action potential dur-
ation was more variable with an overall prolongation of early repolarization, consistent with metabolic defects. Gene ex-
pression analyses confirmed changes in mitochondrial genes in left atria from 42 patients with AF compared with 43 
patients with sinus rhythm. Dysregulation of left atrial mitochondrial (COX7C) and metabolic (FOXO1) genes was associated 
with PITX2 expression in human left atria.

Conclusion PITX2 deficiency causes atrial mitochondrial dysfunction and a metabolic shift to glycolysis in human aCMs. PITX2- 
dependent metabolic changes can contribute to the structural and functional defects found in PITX2-deficient atria.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Graphical Abstract

Deficiency in PITX2, a gene with left atrial and skeletal muscle expression in adults leads to mitochondrial dysfunction. PITX2 deficiency is likely to underlie 
the genomic basis for atrial fibrillation (AF). Reduced PITX2 in atrial cardiomyocytes (aCMs) conveys electrical changes and structural alterations. The cel-
lular mechanisms linking PITX2 deficiency to AF are not fully understood. PITX2 deficiency increases cellular and functional heterogeneity in human iPSC- 
derived aCMs. These experiments show that PITX2 alters mitochondrial function and metabolism by altering gene and protein expression in aCMs, creating 
a metabolic shift away from respiration towards glycolysis. Left atrial tissue from patients with AF shows similar changes in gene expression patterns of 
mitochondrial genes and their association with PITX2. Figure was generated using BioRender.com.
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1. Introduction
Atrial fibrillation (AF) is common and the associated cardiovascular mor-
tality and morbidity profoundly affect patients, their families, and soci-
ety.1,2 Better concepts to prevent and treat AF are needed to 
improve this situation.3,4 Genome-wide association studies found over 
100 different common gene variants that are associated with AF.5–8

The most prominent signals are clustered in a genomic region on 
chromosome 4q25, close to the PITX2 gene.5–8 The gene variant- 
carrying locus regulates the PITX2 gene,9–11 and deletion of AF risk al-
leles reduces left atrial PITX2 concentrations.9,10 PITX2 messenger 
RNA (mRNA) is confined to left atrial cardiomyocytes (aCMs) in the 
adult human heart12,13 and in mice.12,14 Recurrent AF after thoraco-
scopic AF ablation is related to reduced left aCM PITX2.13 Pitx2 
mRNA regulates transcription in the adult heart15 with multiple effects 
on cardiac function and structure: Partial deletion of Pitx2 modulates at-
rial electrical function,12,16–19 while complete Pitx2 deficiency alters at-
rial structure, calcium handling, and ion channel composition.20–22 To 
identify PITX2-dependent cellular processes and pathways contributing 
to these atrial changes in human cells and in patients with AF, we 
generated and characterized human induced pluripotent stem cell 
(hiPSC)-derived PITX2-deficient aCMs and wild-type (WT) controls. 
Results were validated in human left atrial tissue from patients with 
and without AF and compared with published findings.

2. Methods
2.1 Cell culture
Based on the known effects of PITX2 deletion in murine and zebrafish mod-
els, we chose to delete the intron-exon region of exon 6 of the PITX2 gene 
for this study to enable observation of a clear PITX2-dependent pheno-
type.19–22 The human control iPSC line (F1; MPIMBMi011-A) and the 
otherwise isogenic, genome-edited PITX2-deficient line were donated 
by the group of Boris Greber and have previously been described.23

HiPSCs were maintained in Gibco StemFlex Medium (Thermo Fisher 
Scientific, Rugby, A3349401) on Geltrex (Thermo Fisher Scientific, 
A1569601)-coated plates. The differentiation of hiPSCs into atrial cardio-
myocytes and ventricular cardiomyocytes (vCMs) was optimized based on 
a published protocol.24 Briefly, on day 0, the medium was replaced with dif-
ferentiation medium [RPMI-1640 with GlutaMAXTM and HEPES (Thermo 
Fisher Scientific, 72400047) containing 0.5 mg/mL human recombinant 
albumin (Sigma-Aldrich, Gillingham, A9731), 0.2 mg/mL L-ascorbic acid 
2-phosphate (Sigma-Aldrich, 49752)] supplemented with 4 µM CHIR99021 
(Sigma-Aldrich, SML1046) to promote mesoderm induction. On day 2, 
the medium was replaced with a differentiation medium containing 5 µM 
IWP-2 (Sigma-Aldrich, I0536) to promote cardiac progenitor cell differ-
entiation. After day 4, cells were maintained in the cardiomyocyte dif-
ferentiation medium. To induce aCM specification, 1 µM retinoic acid 
(Sigma-Aldrich, R2625) was supplemented to the medium between 
days 3 and 6 of differentiation. On day 6, the medium was changed to car-
diomyocyte maintenance medium (cardiomyocyte differentiation medium 
supplemented with 2% B-27TM, Thermo Fisher Scientific, 17504044), and 
the medium was refreshed every 48 h. Beating cardiomyocytes were 
observed from as early as day 8 of differentiation. At day 12, aCMs and 
vCMs were re-plated at a lower density by dissociating cells using StemPro 
Accutase Cell Dissociation Reagent (Thermo Fisher Scientific, A1110501) 
and cultured in cardiomyocyte plating medium [cardiomyocyte maintenance 

medium with the addition of 10% KnockOutTM Serum (Gibco, 10828028) 
and 1 µM Thiazovivin (Sigma-Aldrich, SML1045)] for 24 h before the medium 
was changed to cardiomyocyte selection medium [RPMI 1640 no glucose
(Gibco, 11879020) supplemented with 0.5 mg/mL human recombinant
albumin, 0.2 mg/mL L-ascorbic 2-phosphate and 4 mM lactate (Sigma-
Aldrich, 1614308)] for an additional five days. Afterwards, aCMs and
vCMs were maintained in a cardiomyocyte maintenance medium until
day 30, a time-point in which hiPSC-derived aCMs and vCMs express
key cardiac markers.24,25

2.2 Immunofluorescence staining
HiPSC-derived atrial cardiomyocytes were fixed with 4% paraformalde-
hyde, blocked with 4% goat serum, and incubated with primary antibodies
(see Supplementary material online, Table S1) overnight at 4°C on a rock-
er. Cells were subsequently washed and stained with the corresponding
Alexa Fluor secondary antibody conjugates (Thermo Fisher Scientific) for
1 h at room temperature and then counterstained with DAPI (1:10,000)
for 5 min and mounted using Prolong Gold Anti-fade reagent (Thermo
Fisher Scientific) ready for imaging using a Zeiss LSM 880 Airyscan con-
focal microscope (Carl Zeiss NTS Ltd., Oberkochen). Images were ana-
lysed using Fiji software. Sarcomere structure analysis was carried out
using a previously published MATLAB (MathWorks) script.26 Analysis
of nuclei parameters was carried out using a previously described pipeline
in Cell Profiler 4.2.1.27

2.3 Electron microscopy
HiPSC-derived atrial cardiomyocytes were cultured in 3.5-cm plastic dishes
for 3 days, fixed in a mixture of 4% paraformaldehyde and 1% glutaralde-
hyde (Science Services, ) in 0.1 M phosphate buffer overnight at 4°C.
Samples were rinsed three times in 0.1 M sodium cacodylate buffer (pH
7.2–7.4), scraped off the cell culture dish, and osmicated using 1% osmium
tetroxide in cacodylate buffer. Following osmication, the samples were de-
hydrated using ascending ethanol concentrations, followed by two rinses in
propylene oxide. Infiltration of the embedding medium was performed by
immersion in a 1:1 mixture of propylene oxide and Epon (Science Services,
Germany), followed by neat Epon and hardening at 60°C for 48 h. For elec-
tron microscopy, ultra-thin sections (60 nm) were cut and mounted on
copper grids and stained using uranyl acetate and lead citrate. The sections
were analysed with a JEM- 2100Plus Transmission Electron Microscope at
200 kV (Jeol, Germany). Images were acquired with the XAROSA CMOS
camera (Emsis, Germany).

2.4 Flow cytometry
HiPSC-derived atrial cardiomyocytes were processed using the FoxP3/
Transcription Factor Staining Buffer kit (eBiosciencesTM, 00–5523–00) ac-
cording to manufacturer’s instructions before being incubated with primary
antibodies (see Supplementary material online, Table S1) overnight at 4°C 
on a rocker. Subsequently, samples were induced with corresponding Alexa 
Flour secondary antibody conjugates (Thermo Fisher Scientific) for 30 min 
at 4°C. For experiments looking at cell proliferation, hiPSC-derived atrial 
cardiomyocytes were incubated with 5-ethynyl-2′-deoxyuridine (EDU) using 
the Click-iTTM EDU Alexa Fluor 488 Flow Cytometry Assay Kit (Thermo 
Fisher Scientific, C10420) according to the manufacturer’s instructions. 
Samples were processed using a BD LSR FortessaTM (BD Biosciences), and 
data were analysed using FlowJo software.
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2.5 RNA isolation and quantitative real-time 
PCR
Total RNA was isolated from aCMs and vCMs using the RNeasy Mini Kit 
(QIAGEN, 74104) and reverse transcribed into cDNA using the High- 
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 4368814) 
using a total of 1 µg of RNA. RNA was quantified using the QubitTM RNA 
high-sensitivity kit (Invitrogen, Q32852) using a Qubit Fluorometer. cDNA 
was diluted to a working concentration of 5 ng/µL using RNA-free water 
(QIAGEN, 129112). Quantitative real-time PCR (RT-qPCR) was performed 
using 10 ng of template cDNA and PowerUpTM SYBRTM Green Master Mix 
(Applied Biosystems, A25742). Samples were run on the 7500 Fast Real-Time 
PCR system (Thermo Fisher Scientific). Gene of interest Ct values were 
normalized to housekeeping gene Ct values using the ΔΔCt method.28

Sequences of primers used for RT-qPCR are provided in Supplementary 
material online, Table S2.

2.6 Proteomics
Protein quantification, quality assessment, imputation, differential expression 
analysis, and enrichment analyses were conducted by the UKE Bioinformatics 
Core, Hamburg, Germany. HiPSC-derived atrial cardiomyocytes from six 
independent differentiation runs were pelleted, washed with sterile PBS, 
and shock-frozen in liquid nitrogen. Samples were prepared using estab-
lished proteomic techniques (for details see Supplementary materials 
and methods).

2.7 Extracellular flux analysis
Mitochondrial oxidative phosphorylation and glycolytic flux were measured 
with a Seahorse XF-96 Analyser (Agilent). HiPSC-derived atrial cardiomyo-
cytes were plated into XF-96 well (Agilent, 103794-100) Geltrex-coated 
plates at a cell density of 50 000 cells per well. Measurements were made 
in XF RPMI Medium pH 7.4 supplemented with 10 mM glucose, 1 mM 
HEPES, 2 mM L-Glutamine, and 1 mM sodium pyruvate. Mitochondrial oxi-
dative phosphorylation and glycolytic proton efflux were assessed using the 
following parameters: oligomycin (2 µg/mL), BAM15 (3 µM), rotenone and 
antimycin A (2 µM), and desoxyglucose (2-DG; 50 mM). ATP supply fluxes 
and corrections of mitochondrial acidification were calculated as previously 
described.29–31

2.8 Analysis of mitochondrial membrane 
potential
The mitochondrial membrane potential was analysed using the mitochondrial- 
selective dye tetramethylrhodamine methyl ester (TMRM; 2.5 nM). To nor-
malize mitochondrial content, hiPSC-derived atrial cardiomyocytes were 
stained with MitoTrackerGreen (200 nM, 1 h). HiPSC-derived atrial cardio-
myocytes were plated on gelatine-coated glass coverslips and cultured for 
6–7 days at 5% CO2 and 37°C. Measurements were performed on a Leica 
TCS SP5 confocal microscope at basal conditions or in response to oligomycin 
A treatment (2 µM). TMRM was excited at 561 nm and emission assessed be-
tween 580 and 700 nm. MitoTrackerGreen was excited at 488 nm and emis-
sion assessed between 500 and 530 nm. The images were processed using 
LAS × software (version 3.5.6.21594). Mean intensity values of TMRM fluor-
escence (corrected for background) were normalized to the mean intensity 
value of MitoTrackerGreen fluorescence (corrected for background) per im-
age to correct for mitochondrial content. n = 3 independent hiPSC-derived 
atrial cardiomyocyte differentiation runs and 20 images per condition per 
hiPSC-derived atrial cardiomyocyte batch were analysed. Data were normal-
ized to mean values of WT hiPSC-derived atrial cardiomyocytes at basal 
conditions.

2.9 Western blotting
Protein isolation and western blotting were carried out as previously 
described.13 Briefly, proteins were isolated from hiPSC-derived atrial car-
diomyocytes using 1% Triton X-100 (Sigma-Aldrich, T8787) and protease 
and phosphatase inhibitors (Thermo Fisher, 78440) and subsequently 

quantified using the DC Protein Assay kit (Bio-Rad, 500-01112). 
SDS-polyacrylamide gel electrophoresis and western blot analysis 
were performed using NovexTM WedgeWellTM 4–20% Tris-Glycine 
gels (Thermo Fisher, XP04205). Membranes were blocked in 
Intercept® (Tris-buffered Saline) blocking buffer (LI-COR, 927-60001) 
and incubated at 4°C overnight on an orbital shaker. On the next day, 
membranes were incubated overnight at 4°C with primary antibodies 
(see Supplementary material online, Table S1). Membranes were then 
washed and incubated with mouse and rabbit fluorescently conjugated 
secondary antibodies (LI-COR) for 2 h at room temperature before visu-
alization on the LI-COR Fc Dual-Mode Imaging System. Quantification of 
western blots was carried out using Image Studio Lite software (LI-COR) 
with quantification normalized to GAPDH expression.

2.10 Single-nuclei RNA-sequencing of WT 
and PITX2−/− hiPSC-derived atrial 
cardiomyocytes and analysis
In order to assess changes in gene expression resulting from suppres-
sion of the PITX2 gene at the single-cell level, we applied single-nuclei 
RNA-sequencing (snRNAseq) to hiPSC-derived atrial cardiomyocytes. 
Nuclei from hiPSC-derived atrial cardiomyocytes were isolated and 
processed for snRNAseq as described.32 We compared two replicates 
of the PITX2−/− hiPSC-derived atrial cardiomyocyte cell line with three 
replicates of the WT hiPSC-derived atrial cardiomyocytes as controls. 
Data were mapped to the human genome (GRCh38) using 10X cellran-
ger version 6.1.2 (www.10xgenomics.com), processed to remove doub-
lets and identify nuclei that met high-quality standards, and harmonized 
to remove batch effects.33 Manifolds were constructed using Uniform 
Manifold Approximation and Projections (UMAPs) for all individual nu-
clei of knock-out and control samples (https://arxiv.org/pdf/1802.03426. 
pdf). Populations were defined by assignment of nuclei to individual 
clusters based on Leiden-annotation with a resolution of 0.5.34 To per-
form differential gene expression analyses (DGE) between PITX2−/−

hiPSC-derived atrial cardiomyocytes and WT groups we created 
aggregated pseudo-bulk samples from our single-nuclei dataset (one 
pseudo-bulk sample per each cluster/Leiden annotated35). To be con-
sidered, one sample should have at least five nuclei per cluster. To 
test for DGE we used edgeR implemented in R. Before fitting our quasi- 
likelihood negative binomial generalized log-linear model, we filtered for 
genes that have sufficient counts (at least 10) and that were expressed in 
at least 50% of the samples (min.prop = 0.5) to be considered in statis-
tical analysis. We used the empirical Bayes quasi-likelihood test 
(glmQLFtest) to perform gene-wise tests across contrasts. Pathway en-
richment analysis of RNASeq data from aCM was performed using 
Bioconductor packages in R (Version 4.3.3) and RStudio (Version 
2023.12.1). To compare gene expression changes in response to 
PITX2 repression, a recently published data set of hiPSC-derived 
ventricular-like cardiomyocytes exposed to PITX2-repressing siRNA 
or to scrambled control RNA was accessed.36 Pathway analysis using 
gene ontology and expression of metabolic differentially expressed 
genes of interest was performed. Kyoto Encyclopedia of Genes and 
Genomes pathways and GO terms of differentially expressed genes 
were determined by Benjamini–Hochberg tests with a P-value threshold 
of 0.05.

2.11 Whole-cell patch-clamp 
electrophysiology
HiPSC-derived atrial cardiomyocytes were plated at a density of 25 000–35  
000 cells on Geltrex-coated 15 mm round glass coverslips to obtain single- 
cell distribution. The cells were maintained in culture for a minimum of seven 
days until experiments were carried out. Action potential (AP) recordings 
were made using the whole-cell patch-clamp technique on an Axopatch 
200B amplifier (Molecular Devices), recorded in the current-clamp configur-
ation. Briefly, cells were superfused at 3 mL/min, 36–37°C, with a solution 
containing in mM: 145 NaCl, 5.4 KCl, 5 HEPES, 1.8 CaCl2, 1.2 MgCl2, 0.33 

1910                  J.S. Reyat et al.

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://www.10xgenomics.com
https://arxiv.org/pdf/1802.03426.pdf
https://arxiv.org/pdf/1802.03426.pdf


NaH2PO4, 0.83 MgSO4.7H20, and 11 glucose, pH 7.4 with NaOH. The in-
ternal pipette solution contained in mM: 130K-glutamate, 10 KCl, 10 
NaCl, 0.5 MgCl2, 10 HEPES, and 5 MgATP, pH 7.2 with KOH (all reagents 
from Sigma-Aldrich). Pipette resistance ranged between 1.5 and 3 MΩ. 
Spontaneously occurring APs were recorded for 60 s before APs were trig-
gered by 1 ms current injections (1 nA). AP trains were stimulated at 1, 2, or 
3 Hz for 60 s to allow rate adaptation and digitized at 50 kHz using CED mi-
cro1401 driven by Signal v6 (Cambridge Electronic Design). Only spontan-
eously beating cells were used for experiments. APs were analysed for 
diastolic membrane potential and AP duration (APD 30, APD50, APD70, 
and APD90) using modified algorithms from ElectroMap software.37

Information on additional parameters measured can be found in the 
Supplementary materials online.

2.12 Bulk RNA-sequencing of human left 
atrial appendages and analysis
Bulk RNA-sequencing was performed on human left atrial appendages (see 
study approval) collected from patients undergoing open-heart surgery 
with excision of left and right atria at six centres as published.13 Sequencing 
was performed at the University of Münster, Germany (M Stoll). 
Good-quality samples were aligned to the human genome (GRCh38p12) 
using the HISAT2 alignment tool.38 The aligned files were sorted and indexed 
using samtools.39 Feature counts (transcript level) were computed using the 
htseq tool.38 Htseq readcounts were normalized using DESeq2. Data was 
transformed using regularized log transformation with DEseq2 prior to visu-
alization. DGE analysis was performed by modelling the Benjamini–Hochberg 
false discovery rate (FDR). Differentially expressed genes were defined as 
FDR <0.05 and Log2(fold change) >0.1. For heatmaps, data were visualized 
as log-normalized counts from DESeq2. GO Pathway Enrichment analysis 
was carried out using Gene Ontology.

2.13 Statistical analysis
Data were analysed using PRISM (GraphPad Software Inc., version 6), and 
results are presented as mean ± SD unless otherwise stated. All experi-
ments were repeated a minimum of three times using different batches 
of differentiated cells accounting for biological replicates, which are speci-
fied in the figure legends. The number of samples (n) and the statistical test 
used for each analysis are indicated in the figure legends. Where possible, 
experimenters were blinded to the genotypes of tissue samples/cells. 
P-values are stated in the figures.

2.14 Study approval
Biopsies from left atrial appendages were sampled during open-heart sur-
gery from six separate cohort studies run at the universities of Barcelona, 
Birmingham, Maastricht, Muenster, Munich, and Paris (all part of the 
CATCH ME consortium), and immediately frozen in liquid nitrogen to pre-
vent RNA degradation. All study participants provided written informed 
consent. The investigation complied with the principles that govern the 
use of human tissues outlined in the Declaration of Helsinki. The Medical 
Ethics Committee of each participating centre approved the study and 
its protocols. Overall governance was provided by Maastricht University. 
Details of the clinical characteristics of the patients have been published.40

This analysis compared patients who were in sinus rhythm (SR) at the time 
of surgery and who did not have a history of AF prior to surgery (SR) with 
patients who had established, permanent AF.

3. Results
3.1 Generation and differentiation of 
PITX2-deficient hiPSC-derived atrial 
cardiomyocytes
PITX2-deficient hiPSC line and the respective control (WT) cells showed a 
normal karyotype and pluripotency status (see Supplementary material 

online, Figure S1A–C). PITX2-deficient hiPSCs and WT hiPSCs were success-
fully differentiated into aCMs (Figure 1A) with a high yield (see Supplementary 
material online, Figure S1D). Time course analysis revealed robust induction 
of PITX2 expression, peaking between days 8 and 12 of differentiation in WT 
cells (Figure 1B). This early peak reflects the known role of PITX2 in right-left 
patterning during early mesodermal development.41–43 BMP10 expression 
was detected from 30 days of differentiation, reflecting differentiation of 
the cells into hiPSC-derived atrial cardiomyocytes (Figure 1C).24,25 As 
intended, PITX2 was reduced in PITX2−/− hiPSC-derived atrial cardiomyo-
cytes (Figure 1D). As expected, WT hiPSC-derived vCMs showed no PITX2
expression (Figure 1D). Subsequent analysis of cardiomyocyte developmental
transcriptional factors revealed a reduction in MYCOD and an increase in
TBX5 expression in the PITX2−/− hiPSC-derived atrial cardiomyocytes (see
Supplementary material online, Figure S2A). aCM markers BMP10, KCNJ3,
NR2F1, and NR2F2 expression was reduced as expected (see
Supplementary material online, Figure S2B). Ventricular-specific genes were
largely undetectable in WT and PITX2−/− hiPSC-derived atrial cardiomyo-
cytes (see Supplementary material online, Figure S2C).

3.2 Altered cardiomyocyte structure and 
nuclear morphology in PITX2-deficient 
hiPSC-derived atrial cardiomyocytes
PITX2−/− hiPSC-derived atrial cardiomyocytes exhibited sarcomere disarray
(Figure 1E) and shortened sarcomeres (Figure 1F) compared with WT controls.
mRNA concentrations of the sarcomeric transcripts MYH6, TNNT2, and
TNNI1 mRNA were increased in PITX2−/− hiPSC-derived atrial cardiomyo-
cytes compared with WT controls (Figure 1G). PITX2−/− hiPSC-derived atrial
cardiomyocytes displayed a greater ratio of mono-nucleated cardiomyocytes
compared with multi-nucleated cardiomyocytes (Figure 1H). These nuclei
were increased in number, larger, and displayed an altered shape (see
Supplementary material online, Table S4). Given that mononucleation is
associated with an increased proliferative capacity in cardiomyocytes,44 we
next investigated the proliferation status of PITX2−/− hiPSC-derived atrial
cardiomyocytes. PITX2−/− hiPSC-derived atrial cardiomyocytes displayed
increased 5-ethylnyl-2′-deoxyuridine (EdU) incorporation compared with
WT hiPSC-derived atrial cardiomyocytes (see Supplementary material
online, Figure S2D) and showed a proliferative gene signature with increased
expression of CCNA1 and CCNB1 (see Supplementary material online,
Figure S2E) and a reduction in the cellular quiescence genes TP53, CDKN1a,
CDKN2a and HES1 (see Supplementary material online, Figure S2F), confirm-
ing increased proliferation.

3.3 Proteomic analysis identifies altered 
mitochondrial and metabolic pathways in 
PITX2-deficient hiPSC-derived atrial 
cardiomyocytes
Principal component analysis of the proteomic data revealed close clustering
of the PITX2−/− hiPSC-derived atrial cardiomyocytes (Figure 2A). In total,
150 out of 3128 proteins were differentially expressed between genotypes
(Figure 2B). Gene-Set Enrichment Analysis identified differentially expressed
mitochondrial proteins (Figure 2C) and up-regulated Normalized Enrichment
Scores in PITX2−/− hiPSC-derived atrial cardiomyocytes for processes affect-
ing mitochondria, the generation of metabolites, energy allocation and
mitochondrial translation and organization, specifically of the cristae and en-
hanced collagen biosynthesis (Figure 2D). Endoplasmic reticulum and ribo-
some organization, translation, and extracellular matrix organization were 
down-regulated. These data identify a link between PITX2 deficiency and ex-
pression of proteins relevant to mitochondrial and metabolic function in 
hiPSC-derived atrial cardiomyocytes. Targeted comparisons of key proteins 
relevant for mitochondrial fission and fusion (Figure 2E) and of mitophagy and 
biogenesis (Figure 2F) were differentially expressed in PITX2−/− hiPSC-derived 
atrial cardiomyocytes.

PITX2-dependent changes in gene expression based on single-nuclear 
RNA-sequencing pseudo-bulk analysis of single-nuclei RNA-sequencing 
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Figure 1 Characterization of WT and PITX2−/− hiPSC-derived atrial cardiomyocytes (aCMs). (A) Schematic overview of differentiation protocol used to 
generate hiPSC-derived aCMs. (B) Gene expression analysis of PITX2 and (C ) BMP10 over the time course of atrial cardiomyocyte differentiation using 
WT hiPSC-derived aCMs (WT aCMs) as assessed by RT-qPCR (n = 3). Dashed line represents the basal expression of PITX2 or BMP10 in WT hiPSCs. 
(D) Gene expression of PITX2 in day 30 aCMs from WT and PITX2−/ (PITX2−/− aCMs) lines as assessed by RT-qPCR. Day 30 hiPSC-derived ventricular car-
diomyocytes from the WT line (WT vCMs) were used as a control (n = 6). (E) Confocal microscopy of immunofluorescently labelled α-actinin in WT and 
PITX2−/− aCMs. Scale bar = 10 µm. (F ) Sarcomere length measurements in WT and PITX2−/− aCMs (WT aCMs = 63 images; PITX2−/− aCMs = 62 images). 
(G) Gene expression of MYH6, ACTN2, TNNT2, TNNI1 and TNNI3 in WT and PITX2−/− aCMs as assessed by RT-qPCR (n = 6). Data are expressed as the mean
relative expression and presented as box and whisker plots (min to max). Mann–Whitney U tests were used to compare gene concentrations between groups.
(H ) Bi-nucleated and mono-nucleated cell analysis in WT and PITX2−/− aCMs.
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data from PITX2−/− and WT hiPSC-derived atrial cardiomyocytes showed 
differential expression of a large number of transcripts (Volcano plot in 
Figure 3A). Gene ontology analysis identified respiration as one of the main 
affected processes (Figure 3B). Based on Leiden-annotated UMAP clustering 

six distinct cell populations were found, with 60.8% of all cells belonging to 
cluster C1 (Figure 3C). Cell clusters C1, 2, 4, and 6 consist of both PITX2−/− 

and WT aCM nuclei. Clusters 3 and 5, containing ∼10% of cells, consist pre-
dominantly of PITX2−/− aCM nuclei (Figure 3D). These results identify an 

A B

C D

E

F

WT aCM PITX2-/- aCM

RPM1
HACD2
RFC1
TUBB3
MMP11
AKAP9
PRKD1
GSTM3
CNN1
THBS1
DPYSL4
SCP2
HTRA1
USP14
FXYD6

-2 0 2

NES

GO:0006091 Generation of precursor metabolites
GO:0005739 Mitochondrion
GO:0007005 Mitochondrion organisation
GO:0022857 Transmembrane transporter activity
GO:0044281 Small molecule metabolic process
GO:0005975 Carbohydrate metabolic process
GO:0016829 Lyase activity
GO:0005794 Golgi apparatus
GO:0005730 Nucleolus
GO:0005198 Structural molecule activity
GO:0003735 Structural constituent of ribosome
GO:0030198 Extracellular matrix organisation
GO:0005783 Endoplasmic reticulum
GO:0000228 Nuclear chromosome
GO:0031012 Extracellular matrix
GO:0030312 External encapsulating structure
GO:0004386 Helicase activity
GO:0042254 Ribosome biogenesis

! Enriched in WT aCM Enriched in PITX2-/- aCM "

-lo
g 1
0
P
-v
al
ue

log2 Fold change

Mitochondrial Fission and Fusion

0

1×108

2×108

3×108

4×108

5×108

FIS1

A
bu
nd
an
ce

0.0005

0

1×109

2×109

3×109

4×109

AIFM1

A
bu
nd
an
ce

0.0005

0

1×109

2×109

3×109

4×109

5×109

CYCS

A
bu
nd
an
ce

0.0005

0

5×108

1×109

1.5×109

2×109

OPA1

A
bu
nd
an
ce

0.0110

0

1×1010

2×1010

3×1010

4×1010

5×1010

SLC25A4

A
bu
nd
an
ce

0.0002

0

2×108

4×108

6×108

8×108

NDUFS4
A
bu
nd
an
ce

<0.0001

0

2×107

4×107

6×107

8×107

MAPK1

A
bu
nd
an
ce

0.0180

Mitochondrial Biogenesis and Mitophagy

0

5×107

1×108

1.5×108

2×108

PAM16

A
bu
nd
an
ce

0.0009

0

1×1010

2×1010

3×1010

HSPA9

A
bu
nd
an
ce

0.0002

0

1×108

2×108

3×108

4×108

DNAJA3

A
bu
nd
an
ce

0.0013

0

5×108

1×109

1.5×109

2×109

TIMM44

A
bu
nd
an
ce

0.0615

0

2×109

4×109

6×109

ACADVL

A
bu
nd
an
ce

0.0066

0

2×1010

4×1010

6×1010

HSPD1

A
bu
nd
an
ce

0.0018

Figure 2 Proteomic analysis of PITX2−/− hiPSC-derived atrial cardiomyocytes (aCMs). (A) Principal component analysis (PCA) of samples used in 
proteomic analysis. (B) Volcano plot showing protein enriched in WT aCMs vs. PITX2−/− aCMs. Significantly enriched proteins (log2FC > 1) are 
shown in black. (C ) Differentially expressed mitochondrial proteins in WT aCMs and PITX2−/− aCMs presented as a heatmap. (D) Gene-set enrich-
ment analysis of enriched and down-regulated pathways in WT aCMs and PITX2−/− aCMs. Proteins with an FDR < 0.05 and an absolute 
log2-fold-change > 1 were considered significantly changed. Further information on data analysis can be found in the Supplementary materials. 
(E, F ) Expression of proteins linked to mitochondrial fission and fusion (E) and related to mitochondrial biogenesis and mitophagy (F ) in WT 
and PITX2−/− aCMs (n = 6).
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Figure 3 Transcriptional changes in PITX2-deficient hiPSC-derived atrial cardiomyocytes (aCM). (A) Volcano plot of differentially expressed genes in 
‘pseudo-bulk’ mRNA sequencing analysis of nuclei from PITX2−/− and WT control hiPSC-derived atrial cardiomyocytes. (B) Gene ontology analysis of the 
bulk RNA-sequencing data. (C ) Leiden plot of single-nuclei RNA-sequencing identifies six clusters of cells, including one cluster containing mainly PITX2−/− 

cells. (D) Differential gene expression patterns in the single-nuclear RNA-sequencing data sets of WT (PITX2+/+) and PITX2−/− aCM depicted by cell cluster 
(Leiden plot). (E) List of 56 most differentially expressed genes in PITX2−/− hiPSC-derived atrial cardiomyocytes (PK) vs. WT based on the single-nuclear 
RNA-sequencing analysis. (F ) Gene expression differences in a published data set36 of hiPSC-derived cardiomyocytes exposed to PITX2-small interfering 
RNA (siRNA) or scrambled control siRNA. Left panel: Volcano plot. Right panel: Gene ontology analysis of differentially expressed genes.

1914                  J.S. Reyat et al.



increased heterogeneity of PITX2−/− hiPSC-derived atrial cardiomyocyte nu-
clei. Among the possible comparisons of cell lines and cells belonging to the 
different clusters, two were considered important: differences between gen-
otypes in the largest cluster (C1) and differentially expressed genes in the 
PITX2−/−-enriched cluster (C3) compared with the main WT cluster (C1). 
Among the top differentially expressed genes between WT and PITX2−/− 

hiPSC-derived atrial cardiomyocytes in cell cluster C1 were the mitochondrial 
genes COX6a and ABCA1 and the sodium channel SCN9A. Among the top 
differentially expressed genes between PITX2−/− of C1 and PITX2−/− of C3 
were cell-cell contact and structural proteins and transcription factors 
(Figure 3E). Analysis of published36 gene expression data in hiPSC-derived 
ventricular-like cardiomyocytes exposed to PITX2-repressing RNA or 
scrambled control RNA identified similar pathways regulated in response 
to PITX2 repression using gene ontology (Figure 3F).

3.4 Changes in metabolism and 
mitochondrial function in PITX2-deficient 
hiPSC-derived atrial cardiomyocytes
Electron microscopy revealed no overt morphological defects between 
PITX2−/− hiPSC-derived atrial cardiomyocytes and WT controls. However, 
mitochondria in PITX2−/− hiPSC-derived atrial cardiomyocytes were smaller 
and less structured: some mitochondria showed a fractured outer mem-
brane. Mitochondria in WT cells appeared elongated with visible cristae 
(Figure 4A). Expression of FOXO1, PPARGC1a, and PYGM was increased in 
PITX2−/− hiPSC-derived atrial cardiomyocytes compared with WT controls 
(Figure 4B), suggesting increased glycolytic activity. Seahorse experiments con-
firmed increased glycolysis in PITX2−/− hiPSC-derived atrial cardiomyocytes 
(Figure 4C and D). PITX2−/− hiPSC-derived atrial cardiomyocytes showed de-
creased SLC27A6 expression (Figure 4E).

The mitochondrial/nuclear DNA ratio showed no difference between WT 
and PITX2−/− hiPSC-derived atrial cardiomyocytes (Figure 5A). PITX2−/− 

hiPSC-derived atrial cardiomyocytes showed more mitochondrial membrane 
content by TOMM20 flow cytometry (Figure 5B). RT-qPCR of common mito-
chondrial genes revealed increased COX7C and reduced MCU expression in 
PITX2−/− hiPSC-derived atrial cardiomyocytes (Figure 5C). Functional analysis 
of mitochondrial respiration revealed lower basal and maximal mitochondrial 
respiration in PITX2−/− hiPSC-derived atrial cardiomyocytes without changes 
in proton leak and oligomycin-sensitive ATP generation (Figure 5D and E). 
These experiments also found a higher glycolytic index in PITX2−/− 

hiPSC-derived atrial cardiomyocytes (Figure 5F). Basal mitochondrial mem-
brane potential was higher compared with WT control cells, suggesting that 
PITX2−/− hiPSC-derived atrial cardiomyocytes already exhibit a more glycoly-
tic metabolic state under normal culture conditions. Mitochondrial membrane 
potential (Figure 5G) was more sensitive to Oligomycin A in WT than in 
PITX2−/− hiPSC-derived atrial cardiomyocytes. Representative fluorescent mi-
croscopy images for TMRM and MitoTrackerGreen for both genotypes are 
shown (Figure 5H). Together, these results suggest that PITX2 deficiency 
causes a metabolic shift to glycolysis in hiPSC-derived atrial cardiomyocytes. 
PITX2−/− hiPSC-derived atrial cardiomyocytes increase their number of mito-
chondria, likely to compensate for the less efficient energy generation.

3.5 Faster beating rates and more 
heterogeneous and prolonged atrial APs in 
PITX2-deficient hiPSC-derived atrial 
cardiomyocytes
As expected from Pitx2-dependent suppression of pacemaker activity in the 
murine left atrium,45 spontaneously beating PITX2−/− hiPSC-derived atrial 
cardiomyocytes showed an increased beating frequency compared with 
WT hiPSC-derived atrial cardiomyocytes (Figure 6A). Concentrations of 
the sino-atrial node gene SHOX2 and the myocardial gene NKX2-5 were in-
creased in PITX2−/− hiPSC-derived atrial cardiomyocytes (Figure 6B). To 
compare AP morphologies, we applied unbiased clustering to all AP wave-
forms recorded in WT and PITX2−/− hiPSC-derived atrial cardiomyocytes 
(Figure 6C). Atrial AP clustered into three distinct morphologies (clusters 

1–3). PITX2−/− hiPSC-derived atrial cardiomyocytes consistently showed 
more AP waveforms belonging to ‘cluster 3’ APs (with prolonged APs) com-
pared with WT hiPSC-derived atrial cardiomyocytes during pacing and 
spontaneous beating (Figure 6C and Supplementary material online, 
Table S6). The additional AP morphology is one of the reasons why, on aver-
age, PITX2−/− hiPSC-derived atrial cardiomyocytes showed prolonged AP 
durations (APD, Figure 6D and Supplementary material online, Figure S3A 
and B). AP amplitude (Figure 6E) and peak upstroke velocity (dV/dtmax) 
hiPSC-derived atrial cardiomyocytes (Figure 6G) were reduced in PITX2−/− 

hiPSC-derived atrial cardiomyocytes compared with WT. The diastolic mem-
brane potential was variable, but not different between genotypes (Figure 6F
and G). These electrophysiological changes were less pronounced at high pa-
cing rates (2 and 3 Hz, Supplementary material online, Figure S3C–E).
Exclusion of more depolarized, less normal-appearing APs prior to clustering
led to almost identical results (data on file). PITX2−/− hiPSC-derived atrial car-
diomyocytes showed reduced KCNA5 expression and increased KCNA4 and
KCNH2 gene expression (Figure 6H). Protein concentrations of KCNA5 and
hERG were reduced in PITX2−/− hiPSC-derived atrial cardiomyocytes, and
Kv1.4 concentrations were increased (Figure 6I).

3.6 Differential expression of metabolic 
genes in left atrial tissue from patients with 
AF
RNA-sequencing data in left atrial appendage tissue collected from 85
patients during open-heart surgery were compared between patients in
SR without a diagnosis of AF (‘SR’) and patients with AF diagnosed prior
to surgery and in AF during tissue collection (Figure 7A, clinical details in
Supplementary material online, Figure S4A–B). Gene enrichment analysis
identified 1150 up-regulated genes in left atrial appendage tissue from pa-
tients with AF compared with patients in SR (Figure 7A). Biological processes
linked to mitochondrial organization, ion transport, and muscle contraction
were up-regulated in AF patients (see Supplementary material online,
Figure S4C and Tables S7 and S8). COX7A1 gene expression was up- 
regulated and SLC25A4 gene expression was down-regulated in atrial tissue
from patients with AF compared with patients in SR (Figure 7C).

A detailed analysis of genes that surround the chromosome 4q25
locus topological associating domain identified only reduced PITX2 in left
atria from patients in AF when compared with patients in SR (see
Supplementary material online, Figure S4D). Five up-regulated genes and
14 down-regulated genes were also found to be regulated in both the hu-
man left atrial RNAseq and the PITX2−/− hiPSC-derived atrial cardiomyo-
cyte proteomic data sets (see Supplementary material online, Figure S5A).
Integrated analysis using our proteomics data set and two published data
sets of PITX2-deficient heart tissue from zebrafish and mice revealed
nine common genes up-regulated and eight common genes down- 
regulated in PITX2−/− hiPSC-derived atrial cardiomyocytes and Pitx2−/− 

heart tissue (see Supplementary material online, Figures S5B and S3C).

3.7 Association of PITX2 with metabolic and
ion channel genes in human left atria with AF
Three genes implicated in glycolytic metabolism were associated with PITX2
expression in both AF patients and PITX2−/− hiPSC-derived atrial cardiomyo-
cytes (SLC27A6, forkhead box protein O1 (FOXO1) and glycogen phosphoryl-
ase (PYGM) Figure 7D). Consistent with findings in PITX2−/− hiPSC-derived
atrial cardiomyocytes, COX7C expression was positively associated with
PITX2 expression (Figure 7E). The PITX2 correlation of MYH6 and TNNT2 
was also replicated in human atrial tissue (Figure 7F). Genes implicated in cell 
cycling and quiescence (CCNA1, CCNB1, and HES1) showed no correlation 
with PITX2 in AF patients (see Supplementary material online, Figure S6A). 
The ion channel genes KCNA5 and KCNH2 were associated with PITX2, consist-
ent with findings in PITX2−/− hiPSC-derived atrial cardiomyocytes (see 
Supplementary material online, Figure S6B). Exploratory analyses of the human 
LA appendage RNAseq data set and proteomic data from PITX2−/− 

hiPSC-derived atrial cardiomyocytes replicated differences in the expression 
of genes required for mitochondrial oxidative processes and ATP generation 

PITX2 deficiency leads to atrial mitochondrial dysfunction 1915

http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data
http://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvae169#supplementary-data


0 10 20 30
0

100

200

300

400

500

Time (minutes)

FOXO1 PFKM PPARGC1a PYGM SLC2A1
0

1

2

3

4

0.0072 0.0002

<0.0001

>0.9999
0.9368

R
el
at
iv
e
E
xp
re
ss
io
n

ADIPOR2 CD36 LPIN1 PPARA SLC27A1 SLC27A6
0

1

2

3
<0.0001

<0.0001
0.4673

0.1479 0.9953 0.9041

R
el
at
iv
e
E
xp
re
ss
io
n

Fatty acid metabolism genes Glycolytic metabolism genes

gl
yc
oP
E
R
(p
m
ol
O
2/
m
in
/w
el
l)

R/A

pm
ol
O
2/
m
in
/w
el
l

glycoPER Max glycoPER
0

200

400

600

0.0416

0.9399

A

B

C D

E

Figure 4 Glycolytic metabolism in PITX2−/− hiPSC-derived atrial cardiomyocytes (aCMs). (A) Electron microscopy revealed no overt morphological differences 
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(see Supplementary material online, Figure S7). Overall, these associations sup-
port a role for PITX2-dependent regulation of oxidative phosphorylation, mito-
chondrial structure and function, and cardiac ion channels in patients with AF.

4. Discussion
4.1 Main findings
PITX2 deficiency reduces mitochondrial respiration and induces a metabol-
ic shift towards enhanced glycolysis in hiPSC-derived atrial cardiomyocytes. 
Similar results can be replicated in human left atria with AF. In addition, 
PITX2 deficiency affects metabolic and respiratory pathways in hiPSC- 
derived atrial cardiomyocytes and increases heterogeneity of nuclear 
RNA expression. These PITX2-dependent effects can interact and contrib-
ute to the structural and functional changes found in PITX2-deficient atria 
and lead to AF. Our results suggest a potential effect of metabolic interven-
tions to prevent and treat PITX2-dependent atrial defects and AF.

4.2 PITX2-dependent mitochondrial and 
metabolic dysfunction
PITX2 deficiency led to altered protein and gene expression (Figures 2–4)
that include reduced mitochondrial respiration and a metabolic shift to-
wards increased glycolysis in atrial cardiomyocytes (Figures 4 and 5).
Such defects and the resulting metabolic dysfunction can lead to fatty
deposits,46,47 promote fibrosis,48 and underlie sarcomeric dysfunction 
(Figure 1, similar findings in21) in experimental AF,49 thereby contributing 
to three key features of AF. A similar FOXO-dependent metabolic switch 
has been described in PITX2-deficient skeletal muscle.50 Differential ex-
pression of metabolic genes was confirmed in human left atrial tissue 
(Figure 7). Single-cell nuclear RNA-sequencing identified an additional cell 
cluster in PITX2−/− CMs (Figure 3C and D) that can further add to electrical 
heterogeneity (Figure 6). Our findings are consistent with the role of PITX2 
in the maintenance of mitochondrial structure and function and in the 
regulation of mitochondrial genes in the murine heart suggested by 
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others.51,52 Mitochondrial capacity in the heart declines during ageing,53

leading to increased mitochondrial oxidative stress in cardiomyocytes.54

Subtle PITX2-dependent mitochondrial defects could aggravate ageing-in-
duced mitochondrial dysfunction and oxidative stress53,54 and thereby pro-
mote AF. Further studies testing metabolic challenges in PITX2-deficient 
atrial models are warranted to unmask subtle metabolic defects and 
to study whether PITX2 is involved in atrial protection against hypoxia 
and oxidative stress.51 Our findings support the concept that metabolic 

support of the atria conveys at least a part of the AF-preventing effects 
of SGLT2 inhibitors55,56 and PARP inhibition.57

4.3 PITX2-dependent regulation of cellular 
function and metabolic predisposition to AF
Cardiomyocyte function including ion homeostasis requires sustained and high 
energy production. The increased heterogeneity of atrial APs (Figure 6), shorter 
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Figure 6 Electrophysiological characterization of PITX2−/− hiPSC-derived atrial cardiomyocytes (aCMs). (A) Spontaneous beating rate in WT and PITX2−/− aCMs 
(WT n = 43, PITX2−/− n = 87). (B) Gene expression of NKX2-5, NPPA, SHOX2, and TBX3 in WT and PITX2−/− aCMs (n = 6) as assessed by RT-qPCR. (C) Combined 
APs from 1, 2, and 3 Hz WT and PITX2−/− aCMs following unsupervised clustering categorized into three distinct clusters. Computationally modelled APs are shown 
(top) with the percentage of APs representative of those traces in WT and PITX2−/− aCMs quantified (below). (D) Representative action potential (AP) traces of 
spontaneously beating or 1 Hz paced WT aCMs and PITX2−/− aCMs using whole-cell patch-clamp (top). Quantification of action potential duration (APD) at 
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(1 Hz—WT n = 82, PITX2−/− n = 112). Diastolic potential and peak upstroke velocity (dV/dtmax) in spontaneously beating (F) and 1 Hz paced (G) WT or 
PITX2−/− aCMs (spontaneously beating—WT n = 43, PITX2−/− n = 87; 1 Hz—WT n = 82, PITX2−/− n = 112). Note that only some cells showed spontaneous 
beating, resulting in different diastolic potential values than in paced cells. (H ) Gene expression of KCNA5, KCNA4, KCNJ12 and KCNH2 in WT and PITX2−/− 

aCMs (n = 6) as assessed by RT-qPCR. (I) Western blot analysis of KCNA5, Kv1.4, Kir2.2 and hERG in WT and PITX2−/− aCMs (n = 4). Western blots are shown 
on top with quantification below. GAPDH was used as a loading control. Data are expressed as the mean relative expression and presented as box and whisker plots 
(min to max). For electrophysiological analysis, statistics were carried out using a repeated measures ANOVA to compare differences in electrophysiological para-
meters. For gene and protein analysis, Mann–Whitney U tests were used to compare between two groups.
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sarcomeres (Figure 1), and contractile dysfunction49 seen in PITX2−/−hiPSC- 
derived atrial cardiomyocytes and in other models of PITX2 deficiency in 
mice20,22 can be caused by mitochondrial dysfunction altering atrial calcium 
handling58–61 and repolarization,62 in addition to direct, PITX2-dependent regu-
lation of ion channel expression (see Supplementary material online, Figure S6). 
The pathway analyses in PITX2−/− hiPSC-derived atrial cardiomyocytes and of 
published data in cardiomyocytes with post-differentiation repression of PITX2 
(Figure 3) show dysregulation of metabolic and mitochondrial respiration, sug-
gesting that metabolic dysfunction is one of the main changes associated 
with PITX2 deficiency in cardiomyocytes. The increased functional hetero-
geneity in PITX2−/− hiPSC-derived atrial cardiomyocytes may also reflect 
the effects of an additional cell cluster found by single-nuclear sequencing 
(Figure 3). Future interventional studies aiming at restoring mitochondrial 
function can determine the role of metabolic dysfunction in these 
PITX2-dependent changes. Structural defects have been described in con-
ditionally PITX2-deficient hearts before.20 This study finds structural de-
fects in PITX2-deficient hiPSC-derived atrial cardiomyocytes kept in 
culture, showing a direct effect of PITX2 deficiency on structural alterations 
in the heart. Combined PITX2−/− hiPSC-derived atrial cardiomyocytes pro-
teomics, single-nuclear RNA-sequencing and analysis of human atrial 
RNA-sequencing identified PITX2-regulated ion channel and mitochondrial 
genes. Changes in mitochondrial genes are consistent with recent RNAseq 
data sets in animal models of AF,63 and in patients with AF (ETFB gene).64

Correlation of PITX2 gene expression and metabolic gene expression in at-
ria from patients with AF (Figure 7), dysregulation in PITX2-deficient 
hiPSC-derived atrial cardiomyocytes (Figure 3) and changes in cardiomyo-
cytes exposed to PITX2 siRNA (Figure 3) support metabolic gene regulation 
by PITX2. Compared with the shortening of atrial APs in murine models of 
Pitx2 deficiency,12,18 the AP prolongation observed in this study (Figure 6) 
was unexpected. The increased heterogeneity of early repolarisation found 
here is consistent with PITX2-deficiency-dependent electrophysiological 
changes in another, independently generated PITX2-deficient 
hiPSC-derived atrial cardiomyocyte model.19 Metabolic and other 
PITX2-dependent effects and inter-species variability may contribute to 
these differences. The more subtle electrical phenotype in heterozygous 
Pitx2-deficient (Pitx2c+/−) mice12,16–18 is consistent with a less profound, 
dose-dependent defect. Key next steps to better understand the interac-
tions between mitochondrial and metabolic state, gene expression, cardio-
myocyte structure, ion channel dysregulation, and altered atrial 
electrophysiology are metabolic challenges and interventions aiming to re-
store mitochondrial function to assess the resulting phenotypic changes and 

a role of PITX2. Our findings suggest that therapies improving cardiomyo-
cyte metabolism could help to prevent AF linked to PITX2. The prevention 
of AF by SGLT2 inhibitors55,65 is a clear clinical sign that metabolic interven-
tions have potential for AF treatment.

4.4 Strengths and limitations
Strengths of the study are a human aCM model enabling the observation 
of structural and functional PITX2-dependent changes in atrial cardiomyocytes 
in the absence of arrhythmias and other cardiovascular stressors, the 
hypothesis-generating characterization of the hiPSC-derived atrial 
cardiomyocytes and the confirmation of key findings in human atria 
with AF. Independent validation in hiPSC-derived cardiomyocytes and 
in other experimental and clinical models is desirable, including in orga-
noid models and animals with left and right atria. Our single-nuclei 
RNA-sequencing analysis confirms metabolic changes and finds an in-
creased cellular heterogeneity affecting ∼10% of cells. This illustrates 
the multifaceted effects of suppression of PITX2 in cardiomyocytes. 
Future research is needed to define potential dose-dependent, milder 
metabolic phenotypes in other PITX2-deficient cells and animal mod-
els.12,16–18 Further research is also needed to identify the mechanisms 
of mitochondrial dysfunction and to identify potential therapeutic tar-
gets. Putative crosstalk between cardiomyocytes and other atrial cells 
requires further studies in multicellular hiPSC-derived, animal, and hu-
man models. Another limitation is the relatively high variability of elec-
trical function in the hiPSC-derived atrial cardiomyocytes19 which 
reflects different cell clusters and variable maturation.66 This variability 
may have obviated subtle differences, e.g. in diastolic potential, between 
genotypes. Improved hiPSC-atrial cardiomyocyte maturation using engi-
neered heart tissue19 and three-dimensional growth techniques67 may 
generate more mature cells and organoids suitable to address these 
questions. Finally, although RNA-sequencing of left atrial appendages 
enabled us to evaluate PITX2’s function in patients, these analyses 
were limited to bulk sequencing of atrial tissue obtained during open- 
heart surgery. Limited access to cardiac tissue outside of surgical proce-
dures renders this limitation difficult to overcome. The single-nuclei 
sequencing removed mitochondria prior to sequencing. Genes encoded 
by mitochondrial DNA (13 genes) were not included in the single- 
nuclear sequencing analyses. In view of the large number of mitochon-
drial genes encoded by nuclear DNA, this is a minor limitation in our 
view.

Translational perspective
The strongest genetic predisposition for AF is located on chromosome 4q25, close to the PITX2 gene. This study in human iPS-derived atrial cardi-
omyocytes shows that deletion of PITX2 leads to genetic and proteomic changes resulting in metabolic and mitochondrial dysfunction in atrial cardi-
omyocytes. Similar PITX2-dependent changes are found in human left atria. Our results identify metabolic and mitochondrial dysfunction as a novel 
contributor to AF in patients with a genetic predisposition. They support the evaluation of metabolic therapies to prevent and reverse functional and 
structural defects related to AF and its genetic basis.
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Supplementary material is available at Cardiovascular Research online.
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