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A B S T R A C T

Background: Four-dimensional cardiovascular magnetic resonance flow imaging (4D flow CMR) plays an im-
portant role in assessing cardiovascular diseases. However, the manual or semi-automatic segmentation of aortic 
vessel boundaries in 4D flow data introduces variability and limits the reproducibility of aortic hemodynamics 
visualization and quantitative flow-related parameter computation. This paper explores the potential of deep 
learning to improve 4D flow CMR segmentation by developing models for automatic segmentation and analyzes 
the impact of the training data on the generalization of the model across different sites, scanner vendors, se-
quences, and pathologies.
Methods: The study population consists of 260 4D flow CMR datasets, including subjects without known aortic 
pathology, healthy volunteers, and patients with bicuspid aortic valve (BAV) examined at different hospitals. 
The dataset was split to train segmentation models on subsets with different representations of characteristics, 
such as pathology, gender, age, scanner model, vendor, and field strength. An enhanced three-dimensional U-net 
convolutional neural network (CNN) architecture with residual units was trained for time-resolved two-di-
mensional aortic cross-sectional segmentation. Model performance was evaluated using Dice score, Hausdorff 
distance, and average symmetric surface distance on test data, datasets with characteristics not represented in 
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the training set (model-specific), and an overall evaluation set. Standard diagnostic flow parameters were 
computed and compared with manual segmentation results using Bland-Altman analysis and interclass corre-
lation.
Results: The representation of technical factors, such as scanner vendor and field strength, in the training dataset 
had the strongest influence on the overall segmentation performance. Age had a greater impact than gender. 
Models solely trained on BAV patients’ datasets performed well on datasets of healthy subjects but not vice versa.
Conclusion: This study highlights the importance of considering a heterogeneous dataset for the training of 
widely applicable automatic CNN segmentations in 4D flow CMR, with a particular focus on the inclusion of 
different pathologies and technical aspects of data acquisition.

1. Background

Four-dimensional cardiovascular magnetic resonance flow imaging 
(4D flow CMR) enables a comprehensive visualization and evaluation of 
aortic hemodynamics [1] that can support the assessment and under-
standing of cardiovascular diseases [2–6]. For application in clinical 
practice, standardized post-processing procedures and quantification 
concepts have been jointly proposed by research experts and clinicians 
[7,8]. They suggest the assessment of hemodynamic properties based 
on two-dimensional (2D) segmentations of aortic cross-sections in all 
timeframes of the 4D flow CMR image series.

Previous studies analyzed the reproducibility of the corresponding 
hemodynamic parameters in healthy volunteers showing their de-
pendency on the segmentations [9–13]. They found that the variability 
by expert segmentations was higher than between scans and reported 
the impact on extracted flow parameters. Vessel wall parameters, such 
as wall shear stress (WSS) [9,10,12], were strongly influenced by seg-
mentation variation, and the strongest effect was observed in the as-
cending aorta (AAo) [11]. Zimmermann et al. [13] demonstrated the 
effects of slight changes in vessel contours on the resulting WSS. They 
found a strong increase in systolic values when shrinking contours so 
that they were placed inside the vessel lumen. Juffermans et al. [14]
found increased differences in expert segmentations in patient datasets 
compared to healthy controls. Casciaro et al. [15] also reported positive 
and negative blood flow to be significantly affected by segmentation 
variation, more evidently in the AAo and in subjects with bicuspid 
aortic valve (BAV). Huellebrand et al. [16] further reported consider-
able inter-scanner differences for flow parameters as well as radiomics 
features in the AAo of volunteers.

A variety of software solutions for post-processing and analysis of 
4D flow CMR offer semi-automatic aortic vessel segmentation to reduce 
observer-based variation. The temporally resolved cross-sectional seg-
mentations required for the extraction of clinically relevant flow 
parameters can either be derived from a 4D (three-dimensional [3D] 
+t) aorta segmentation or from a two-dimensional (2D)+t segmenta-
tion of a multiplanar reformation (MPR) that can be defined as a cross- 
section of a 3D aorta segmentation [7].

Atlas-based approaches can generate fully automatic 3D segmenta-
tions and propagate them through the cardiac cycle to provide 4D (3D 
+t) segmentation masks [17], but they are computationally expensive, 
relatively slow, and limited with respect to fitting individual anatomic 
shapes.

Deep learning (DL) has shown the potential to enable fast automatic and 
reproducible 4D flow CMR segmentation and analysis [18]. Segmentation 
solutions in 3D [19] and 3D with each frame as independent sample [20,21]
achieve good results for 4D flow data, comparable to expert annotation. 
However, published models are typically trained on datasets with specific 
imaging sequences and scanner manufacturers [19–22].

2D+t cross-sectional vessel segmentations can be performed semi- 
automatically based on a manual segmentation of a single timeframe, 
which is then automatically propagated to the full time series 
[16,23,24]. Successful convolutional neural network (CNN)-based ap-
proaches for aortic cross-section 2D segmentation have been published 
for 2D flow CMR sequences [25]. Fujiwara et al. [26] proposed a 3D DL 

approach that further addressed the problem of variations in imaging 
sequences and scanner manufacturers [27–29], expanding a previously 
developed CNN [19] by using pediatric data from two centers. The 
model performance was comparable to manual annotations and CNNs 
trained on single-site data. The two combined datasets differ in site, 
scanner model, vendor, and magnetic field strength, so that the impact 
of the single characteristics on the model generalizability could not be 
analyzed independently.

Automatic accurate reproducible segmentations could broaden the 
applicability of 4D flow CMR in clinical settings; the development of a 
DL model that is widely applicable across different sites, vendors, se-
quence types, and pathologies, including their anatomical variability 
might solve this task.

The goal of this work is to assess the generalizability of a DL seg-
mentation model on multi-site, multi-scanner, and multi-sequence 4D 
flow CMR data and investigate how the representation of technical 
imaging properties (site, scanner vendor and model, field strength) or 
subject characteristics (pathology, age, and gender) in the training data 
influence the segmentation and quantification performance.

To this end, we trained a state-of-the-art CNN on subsets of het-
erogeneous multi-site and multi-vendor data from eight different sites 
leaving out one technical property or patient characteristic per training 
set.

The outputs of the CNN segmentation models were evaluated via 
comparison with the manual ground truth annotation and the effect of 
segmentation differences on derived clinical parameters such as 
through-plane flow (net flow) and maximum velocity.

2. Methods

We considered data from eight scanning sites to obtain a hetero-
geneous multi-vendor dataset. We trained seven models, each ne-
glecting a specific subject or scanner characteristic. Based on the fil-
tering criteria applied to the training data, two subsets per model 
emerged for the model performance assessment: one in which the 
characteristic feature representation corresponds to the training set 
(test set) and another containing datasets with the neglected char-
acteristic (unrepresented characteristic set). To generate unbiased 
subsets of the available data for training, testing, and evaluation of 
models representing different characteristics, we ensured that data from 
the same subject did not appear in different sets. To further assess the 
generalizability and compare the models, we created an overall eva-
luation set, which contains datasets with additional aortic valve con-
figurations and post-treatment datasets.

2.1. Study population

Two hunderd sixty 4D flow MRI acquisitions of different subjects 
were retrospectively included in this study: 

• 131 subjects without known aortic pathology [4].
• 23 healthy volunteers were scanned at three different sites [30,31].
• 106 bicuspid aortic valve patients were scanned at four different 

sites [32–35].
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Detailed subject and scanner information is provided in Table 1 and 
Fig. 1.

We included volunteers and BAV patients in the main dataset for 
model training and testing (Table 1). The overall evaluation set con-
tains the following additional aortic valve configurations and post- 
surgical datasets: 

• 16 patients (190 cross-sections) with stenotic tricuspid aortic valve 
(TAV) from site 5.

• 5 patients (57 cross-sections) with stenotic unicuspidal aortic valve 
from the dataset of site 8.

• 20 post‐surgery scans (220 cross-sections) from site 8.

Fig. 1 provides an overview of the data and the different subsets, 
detailed statistical information is shown in Figs. 2 and 3.

2.2. Data processing and annotation

4D flow CMR images were processed and annotated using 
MEVISFlow (Fraunhofer Institute for Digital Medicine MEVIS, software 
version 11.5, Bremen, Germany) [24]. Preprocessing included back-
ground phase offset correction with a polynomial fit and phase un-
wrapping using the PRELUDE algorithm [36]. The aortic centerline was 
derived from the 3D aorta segmentation of the phase-contrast magnetic 
resonance angiography.

Following the protocol defined by Schafstedde et al. [23], four cross- 
sectional planes were placed perpendicular to the aortic centerline in 
specific locations (Fig. 4): distal to the coronary ostia (A3.1), proximal 
to the brachiocephalic trunk (B1), between the branches (B2 and B3), 
distal to the subclavian artery (B4.1), and adjacent to the pulmonary 
artery (D1.1). The additional cross-sections were automatically placed 
with equal distance, resulting in a total number of 2981 cross-sections 
for the main set and 467 for the overall evaluation set.

Three experts manually annotated the vessel contour on all time-
frames (15 to 57 frames/cardiac cycle) of each cross-section con-
sidering magnitude and velocity images after an initial training. Each 
user segmented cases from 2 or 3 sites. Segmentations were randomly 
cross-checked by another user.

Detailed information about the datasets can be found in the corre-
sponding publications [4,30–35].

2.3. Training setup

Seven data subsets resulting from selecting different technical 
properties or patient characteristics were randomly divided into 80% 
for training, 10% for validation, and 10% for testing. Splits were per-
formed site-wise to maintain the proportion between the different 
scanning sites and subject-wise to avoid data leakage and biases in 
validation and testing [29].

The subsets of the main dataset (Fig. 2) were chosen as follows: 

• Model 1: All available data (Ntrain = 202, Nval = 28, Ntest = 30)
• Model 2: Only healthy subjects (Ntrain = 121, Nval = 16, Ntest = 17)
• Model 3: Only BAV patients (Ntrain = 82, Nval = 11, Ntest = 13)
• Model 4: Only vendor 1 scanners (Ntrain = 150, Nval = 21, Ntest 

= 22)
• Model 5: Only male subjects (Ntrain = 113, Nval = 17, Ntest = 20)
• Model 6: Subjects aged 20 to 60 (Ntrain = 124, Nval = 17, Ntest 

= 20)
• Model 7: Only 3T scanners (Ntrain = 141, Nval = 18, Ntest = 20)

The datasets left out in the training of the respective models were 
used to assess the model performance on data with unseen character-
istics. The evaluation dataset was composed to enable the comparative 
assessment of the models’ performance and generalizability on an un-
represented aortic valve configuration and post-surgical data. Detailed Ta
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statistical information for each model-specific split is provided in the 
Supplementary Material.

2.4. Data preprocessing for model training and application

Per cross-section annotation, we generated four corresponding 2D 
+t MPR sequences representing the magnitude and the three velocity 
components as well as one corresponding mask sequence. Z-score 
normalization was applied to the magnitude sequence. To ensure an in- 
plane resolution of 1.54 mm2 and a temporal resolution of 64 timesteps 
per sequence, a spatiotemporal resampling with bilinear interpolation 
was applied for the two spatial directions, and nearest-neighbor inter-
polation was used for the temporal interpolation. A final in-plane di-
mension of 64 × 64 was obtained via padding or cropping. The full 
inclusion of the vessel cross-section was ensured using centerline-based 
plane positioning and a random weighted cropping transformation that 

used the mask information to locate the crop region. We applied basic 
data augmentation including translation, rotation, and flipping (cross- 
section normal). Expert segmentation masks were resampled spatio-
temporally with nearest-neighbor interpolation. The magnitude and 
velocity 2D+t sequences were concatenated as channels, resulting in 
the final four channels input for the model.

2.5. Model architecture

We chose an enhanced version of a 3D U-net with residual units that 
uses convolutions to change the input dimension to match the output 
[37]. Each of the six layers has a skip connection between the encode 
and decode path. Downsampling and upsampling operations are per-
formed at the beginning of each block via strided convolutions and 
strided transpose convolutions with stride = 2, respectively. Inference 
is performed with a sliding window with an overlap of 0.5. We trained 

Fig. 1. Flowchart of the data subset generation. Image data from patients with no aortic pathology (site 1), healthy volunteers (sites 2–4), and bicuspid aortic valve 
(BAV) patients (sites 5–8) are used to train and test the proposed automatic aortic cross-section segmentation models. Evaluation dataset: stenotic tricuspid aortic 
valve (TAV) patients from site 5, stenotic unicuspid aortic valve (UAV) patients from site 8, and postoperative scanners from site 8 have been separated to be used for 
additional comparative evaluation of the models
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the model to generate 2D+t aortic cross-sectional segmentations (x, y, 
t). A sigmoid function generates per voxel probabilities to belong to the 
vessel cross-section, and a threshold of 0.5 was set to generate a binary 
mask. Unconnected areas assumed to represent noise and artifacts are 
removed by keeping only the largest connected component of the re-
sulting mask. A composite loss function (cross entropy and Dice loss) 
was used during training. The model was implemented in Python 3.7.6 
(Python Software Foundation, Beaverton, Oregon) using monai 0.8.1 
[38]. Training and testing were performed on an AMD EPYC 7302 16- 
Core Processor with a Nvidia A40 graphics processing unot (GPU).

2.6. Model evaluation and statistical analysis

The segmentation results generated by the seven models on the 
overall evaluation set and their corresponding test and unrepresented 
characteristic sets were compared with the expert segmentation masks 
using the Dice score (DS), Hausdorff distance (HD), and average sym-
metric surface distance (ASSD) (computed with monai 0.8.1, see 

Supplementary Material for details).
The model-generated segmentation masks were imported into 

MEVISFlow to calculate through-plane flow (net flow), cross-section 
area, and peak velocity to enable a comparison with the corresponding 
clinical parameters derived from the expert segmentations. To evaluate 
the agreement of the hemodynamic parameters, we computed interclass 
correlation coefficients (ICC2, two-way random, single measure, abso-
lute agreement) and confidence intervals. Additionally, Bland-Altman 
analysis was performed, and limits of agreement were reported together 
with bias. The analysis was performed with pingouin 0.5.3.

2.7. Intra- and inter-observer variability analysis

The experts re-segmented 10 cases (out of the 30 in the test set from 
model 1, selected maintaining site proportions) to enable the assessment of 
intra- and inter-observer variability. We computed ICC2, confidence inter-
vals, bias, and limits of agreement (Bland-Altman analysis) for both net flow 
and peak velocity in the intra- and inter-observer analysis.

Fig. 2. Properties of the main dataset 
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3. Results

The seven segmentation models were successfully trained using the 
respective training and validation sets. The resulting models were ap-
plied to their test and unrepresented characteristics sets (Nmodel2 

= 106, Nmodel3 = 154, Nmodel4 = 67, Nmodel5 = 110, Nmodel6 = 99, and 
Nmodel7 = 81), as well as the common overall evaluation set (N = 41) to 
generate the 2D+t segmentations of the aortic vessel cross-sections. 
Inference time of the models on the evaluation set was 13 to 18 ms per 
model with an AMD EPYC 7302 16-Core Processor with a Nvidia A40 
GPU. The DS, HD, ASSD, and standard deviations for all model seg-
mentations are reported in Supplementary Material, Table 1. Box plots 
showing the evaluation metric distributions are provided in Fig. 5.

In Table 2, DS values are reported per model per cross-section location 
(AAo, aortic arch [AArch], and descending aorta [DAo]). All seven models 
reached good DS on all locations, and model 1 achieved the best results 

(DS  >  0.9). DS and ICC values of net flow and peak velocity per location 
are listed in Tables 2 and 3, Supplementary Material.

Flow (net flow, forward flow, and backward flow) and maximum 
velocity curves were computed for all model segmentations. Bland- 
Altman plots for net flow on the model’s specific test and unrepresented 
characteristic sets as well as on the overall evaluation data are shown in 
Fig. 6. The Bland-Altman analysis for maximum velocity is reported in 
the Supplementary Material, Fig.2. For both, net flow (through-plane 
flow) and peak velocity, no clinically relevant bias was found. All seven 
segmentation models showed good agreement with the expert annota-
tions on their test sets. Net flow and velocity results showed more 
random fluctuation in the values for the unrepresented datasets. The 
underrepresentation of healthy subjects, female subjects, and young or 
very old subjects had less influence on flow parameter agreement of the 
resulting models than the neglection of vendors or field strengths. Flow 
results were strongly correlated than the peak velocity, which resulted 

Fig. 3. The overall evaluation dataset consists of 16 stenotic tricuspid aortic valve patients, 5 unicuspid stenotic aortic valves, and 20 post-treatment scans. AV aortic 
valve
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in more disperse data. On the overall evaluation set, which contained 
pathologic and postoperative data (POSTOP), the best agreement be-
tween the automatic segmentation and the manual ground truth net 
flow was found for model 1 (bias [limits of agreements (LoA)] = -0.003 
[−0.018, 0.012] L). All models achieved comparable results for net 
flow. For peak velocity, the lowest bias (-0.002 m/s) was achieved by 
model 4 (vendor 1) followed by model 7 (3T).

Bland-Altman analysis was performed on a subset of the model 1 test 
dataset to compare intra- and inter-observer variability for net flow 
(Bias [LoA]: 0.0037 [−0.033, 0.041] L and 0.0042 [−0.032, 0.041] L 
for intra- and inter-observer, respectively), and for peak velocity (Bias 
[LoA]: 0.017 [−0.243, 0.277] m/s and −0.009 [−0.229, 0.211] m/s 
for intra- and inter-observer, respectively).

Additionally, the ICC values and confidence intervals are reported in 
Table 3. According to the definition by Koo et al. [39] (ICC < 0.5: poor, 
0.5–0.75: moderate, 0.75–0.9: good, and ICC > 0.9 excellent correla-
tion), we found most of the correlation to be excellent except: 

• Flow on the test dataset of model 7 (3T) showed a good correlation.
• On their respective unrepresented datasets, model 2 (healthy), 4 

(vendor 1), and 7 (3T) showed good correlation for the velocity, and 
for model 3 (BAV) flow correlation was reported good.

• On the evaluation dataset, velocity correlation was found good for 
model 2 (healthy), 4 (vendor 1), and 7 (3T), and flow correlation 
was good for model 2 (healthy).

The ICC values and confidence intervals were computed also on a 
subset of model 1 test set for intra- and inter-observer variability ana-

Fig. 4. Twelve cross-sectional planes covering the ascending aorta (AAo), the 
aortic arch (AArch), and the descending aorta (DAo). A3.1, B1, B2, B3, B4.1, 
and D1.1 were placed manually by expert users. Based on these positions 
A3.2–3, B4.2–3, D1.2–3 are automatically placed with equidistant spacing

Fig. 5. Box plots of the evaluation metrics computed on the model-specific test sets and unrepresented sets, as well as on the common evaluation set. Minimum 
values, percentiles (25th, 50th, and 75th), mean, maximum and outlier values are shown. ASSD average symmetric surface distance
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lysis for both net flow (ICC [CI]: 0.779 [0.69, 0.84] for both intra- and 
inter-observer) and peak velocity (ICC [CI]: 0.981 [0.97, 0.99] and 
0.973 [0.96, 0.98] for intra- and inter-observer, respectively).

To better understand the generalizability of our models based on 
different stenotic aortic valve morphology and POSTOP, the metrics 
and the flow parameters were analyzed specifically for the overall 
evaluation set (unicuspid or tricuspid stenotic aortic valve and post-
operative). In Table 4, the DS values and the ICC for net flow and peak 
velocity are reported for stenotic TAV, stenotic unicuspid aortic valve 
(UAV), and POSTOP. Excellent correlation for net flow and the peak 
velocity was found in all groups. The DS was found acceptable for all 
the models on all subclasses of the overall evaluation dataset. Worst 
scores were achieved for TAV patients. The best DS and ICC values were 
found for model 1. Only the peak velocity ICC was better for model 6 
(age).

Bland-Altman plots for systolic area in mm2 on the model’s specific 
test and unrepresented characteristic sets and the overall evaluation set 
are reported in the Supplementary Material, Fig. 3. We observed a 
general underestimation of the systolic area, and model 1 achieved the 
lowest bias (−65.1 mm2) on the evaluation test.

Fig. 7 displays the systolic segmentation results of the seven models 
on two cross-sections of the AAo (A3.2 and A3.3) of an evaluation 
dataset of a tricuspid stenotic aortic valve patient. The segmentation 
results of model 2 (trained only on healthy subjects) in both cross- 
sections differ most from the ground truth. The bulls-eye-plots illustrate 
the effect of the vessel segmentation differences on the axial WSS. In 
cross-section A3.2, high velocities occur in the lumen center. Axial WSS 
values of the model 1 segmentation are higher than those of the manual 
contour, which is located further away from the lumen center. Con-
versely, in cross-section A3.3, high velocities are observed close to the 
lumen border, resulting in strong differences for the WSS values in the 
corresponding segments for the different segmentations.

4. Discussion

The most important result of the presented work is the analysis of 
the impact of training data characteristics representations on the ap-
plication performance of a state-of-the-art segmentation model on 
heterogeneous 4D flow CMR data of the aorta. Our analysis showed a 
stronger influence of scan-related characteristics (different vendors and 
field strength) than of patient characteristics, such as age and gender, 
on the segmentation performance. This is illustrated in Fig. 5 (Table 1, 
Supplementary Material), showing e.g. that the models trained on male 
subjects only or on subjects aged 20–60 perform well also for datasets of 
female subjects (DS = 0.89, HD = 2.88, and ASSD = 0.72) and younger 
or older subjects (DS = 0.89, HD = 3.05, and ASSD = 0.78).

While model 2, which was trained only on data from healthy subjects, 
performed worst on both unrepresented characteristics (BAV) as well as on 

the evaluation set, model 3, which was trained on BAV datasets, also per-
formed well on healthy subjects’ data (unrepresented characteristic dataset 
in Fig. 5 and values in Table 1, Supplementary Material). This could be 
explained by the presence of cross-sections of the DAo with relatively la-
minar flow in the training set of model 3. This was in line with the slightly 
lower DS of the model in the AAo in both the unrepresented and overall 
evaluation sets (Table 2). The performance difference between these two 
models (healthy and BAV trained) could also be influenced by the inclusion 
of a wider variety of velocity encoding settings in the BAV datasets, re-
sulting in an improvement in the generalization of the model. Furthermore, 
the valve pathologies represented in the overall evaluation set can cause 
flow profiles that are similar to those of bicuspid valves and therefore model 
3 reached the second-best DS there. On the overall evaluation set, model 1, 
which was trained on all the data, achieved the best DS (0.911  ±  0.039), 
HD (2.797  ±  1.166 mm), and ASSD (0.655  ±  0.267 mm). No substantial 
differences in segmentation metrics were found between cross-sectional 
planes, with model 1 (all) achieving the best DS values (> 0.909) for all 
locations.

The Bland-Altman analysis reported good agreement for all models 
on all datasets for net flow, with worse results on the unrepresented 
characteristics dataset. We considered absolute values of net flow bias 
< 0.004 L and peak velocity bias < 0.069 m/s clinically not relevant 
since these values are smaller than the ones observed in scan-rescan 
analysis in [9] and [30], respectively. No clinically relevant bias was 
found for net flow for model 1 (Supplementary Material); the lowest 
values were found for model 1 on the overall evaluation set (−0.003 
[−0.018, 0.012], Table 4, Supplementary Material). Peak velocity 
Bland-Altman analysis showed a weaker agreement, obtaining clinically 
relevant biases for model 2 (healthy) on the unrepresented character-
istic set and for model 3 (BAV) and model 5 (male) on the overall 
evaluation set. On their corresponding unrepresented characteristic 
sets, model 5 (male) and 6 (age) achieved excellent ICC values, showing 
the positive effect of the good segmentation agreement on the clinical 
parameter reproducibility. On the overall evaluation set, model 1 (all), 
3 (BAV), 5 (male) and model 6 (age) achieved excellent ICCs for both 
net flow and peak velocity. No clinically relevant bias was found for 
model 1 (all) in neither the net flow nor the peak velocity, and excellent 
correlation found for both parameters, indicating that its segmentation 
might be more robust with regard to the inclusion of lumen with low 
flow velocities than the other models, which had a negative bias.

There were no relevant differences between segmentation results 
provided for datasets of patients with different stenotic aortic valve 
morphologies and postoperative data by the differently trained seven 
models, only a slightly lower DS for TAV (Table 4).

Model 1 trained on the complete heterogeneous dataset showed 
good performance for the different manufacturers, pathologies, and 
cross-section positions for all age groups, achieving an excellent DS of 
0.911  ±  0.039. Model 1 performance is comparable to the one 

Table 2 
Dice score (mean  ±  standard deviation) for every model per aortic segment. Best DS values per location and set are in bold 

Dice score Model 1 (all) Model 2 (healthy) Model 3 (BAV) Model 4 (vendor 1) Model 5 (male) Model 6 (age 20-60) Model 7 (3T)

Test AAo 0.901  ±  0.041 0.901  ±  0.037 0.907  ±  0.038 0.913  ±  0.028 0.911  ±  0.029 0.895  ±  0.052 0.911  ±  0.039
AArch 0.902  ±  0.040 0.908  ±  0.031 0.896  ±  0.044 0.911  ±  0.035 0.912  ±  0.028 0.901  ±  0.037 0.902  ±  0.046
DAo 0.901  ±  0.044 0.910  ±  0.027 0.902  ±  0.031 0.904  ±  0.038 0.910  ±  0.027 0.900  ±  0.040 0.901  ±  0.052

Unrepresented AAo 0.839  ±  0.084 0.873  ±  0.095 0.872  ±  0.087 0.893  ±  0.061 0.893  ±  0.054 0.839  ±  0.120
AArch 0.850  ±  0.090 0.888  ±  0.039 0.87  ±  0.072 0.894  ±  0.046 0.891  ±  0.054 0.853  ±  0.097
DAo 0.861  ±  0.091 0.894  ±  0.038 0.872  ±  0.073 0.892  ±  0.044 0.893  ±  0.052 0.855  ±  0.092

Evaluation AAo 0.914  ±  0.038 0.844  ±  0.104 0.896  ±  0.065 0.891  ±  0.068 0.901  ±  0.057 0.889  ±  0.062 0.876  ±  0.080
AArch 0.909  ±  0.042 0.838  ±  0.114 0.907  ±  0.041 0.877  ±  0.076 0.903  ±  0.043 0.892  ±  0.062 0.870  ±  0.079
DAo 0.911  ±  0.034 0.855  ±  0.094 0.906  ±  0.037 0.891  ±  0.052 0.902  ±  0.038 0.888  ±  0.057 0.870  ±  0.086

AAo ascending aorta, AArch aortic arch, DAo descending aorta, BAV bicuspid aortic valve
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Fig. 6. Bland-Altman plots showing automatic-manual segmentations’ agreement of net flow for models 1 to 7. Estimated biases (mean difference) and 95% limits of 
agreement (average difference  ±  1.96 SD of the difference) are shown by continuous and dotted lines, and the values are reported in the right-upper corner of each 
plot. Biases and limits of agreements are reported in the Supplementary Material. The x and y axes represent mean and difference (CNN − manual) of the net flow in 
liters resulting from manual and CNN segmentation, respectively. CNN convolutional neural network
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obtained by the multi-site 3D DL approach proposed by Fujiwara et al. 
[26], for both DS (0.911 vs 0.915) and net flow bias and LoA in liters 
(−0.003 [−0.018, 0.012] vs 0.002 [−0.011, 0.015]). Model 1 auto-
matic segmentation (bias [LoA]: −0.004 [−0.018, 0.011] and ICC 
0.954) provided comparable net flow bias results and better ICC com-
pared to the intra-observer analysis (bias [LoA]: 0.0036 [−0.033, 
0.041] and ICC 0.778) and the inter-observer analysis (bias [LoA]: 
0.0042 [−0.032, 0.041] and ICC 0.778). The automatic segmentation 
provided flow and velocity curves comparable with expert analyses, 
showing ICC values comparable to those observed in literature for inter- 
user agreement [16]. This strengthens the hypothesis that the perfor-
mance of U-net-based segmentation models depends on the similarity of 
the dataset to be processed and the training set, thus cross-sectional 4D 
flow CMR segmentation models can be applied to new patient groups if 
their characteristics do not result in completely new cross-sectional 
velocity and magnitude intensity patterns.

The negative bias of the lumen area in systole corresponds to the 
negative bias observed for the net flow. In the experiments by 
Zimmermann et al. [13] contour shrinking resulted in an increase in 

WSS. The examples in Fig. 7 illustrate that the negative area bias does 
not necessarily mean that the segmentations with a smaller area are 
inside the expert lumen segmentations. Furthermore, we observe flow 
patterns, for which the velocities can decrease toward the lumen center. 
We therefore assume that the WSS values determined with the seg-
mentations by the best model are not necessarily correct or adjustable 
by a lumen expansion.

5. Limitations

The most important limitation of this work is the difference in the 
number of subjects provided by the different sites. The evaluation was 
performed using data from the site which was least represented in the 
main dataset. Although different aortic valve morphologies were ana-
lyzed, only stenotic patients were included in the main and evaluation 
datasets. The impact of including additional pathologies remains to be 
investigated. In addition, just one exemplary popular DL architecture 
was analyzed.

Table 3 
ICC values and confidence intervals for net flow and peak velocity for models 1 to 7 on their test and unrepresented characteristic sets (unrepr) as well 
as the overall evaluation set. 

ICC2 Model 1 
(all)

Model 2 
(healthy)

Model 3 
(BAV)

Model 4 
(vendor 1)

Model 5 
(male)

Model 6 
(age 20-60)

Model 7 
(3T)

Te
st

Net Flow
0.954 0.923 0.919 0.965 0.946 0.915 0.866

[0.92 0.97] [0.86 0.95] [0.56 0.97] [0.95 0.98] [0.73 0.98] [0.70 0.96] [0.75 0.92]
Peak 
Velocity

0.963 0.952 0.954 0.932 0.938 0.982 0.980
[0.95 0.97] [0.94 0.96] [0.93 0.97] [0.91 0.95] [0.92 0.95] [0.98 0.99] [0.97 0.98]

U
nr

ep
r Net Flow

0.917 0.851 0.939 0.937 0.907 0.927
[0.88 0.94] [0.70 0.91] [0.88 0.96] [0.91 0.95] [0.80 0.95] [0.86 0.96]

Peak 
Velocity

0.860 0.979 0.881 0.964 0.951 0.879
[0.84 0.88] [0.98 0.98] [0.86 0.90] [0.96 0.97] [0.94 0.96] [0.86 0.89]

Ev
al

ua
�o

n Net Flow
0.969 0.893 0.938 0.946 0.944 0.917 0.918

[0.95 0.98] [0.86 0.92] [0.85 0.97] [0.90 0.97] [0.88 0.97] [0.84 0.95] [0.85 0.95]
Peak 
Velocity

0.913 0.824 0.917 0.899 0.919 0.909 0.871
[0.90 0.93] [0.79 0.85] [0.89 0.93] [0.88 0.91] [0.90 0.94] [0.89 0.92] [0.85 0.89]

ICC interclass correlation coefficient, BAV bicuspid aortic valve
The cells are color-coded following the definition by [39], white for excellent and yellow for good correlation. Best values within models are in bold

Table 4 
Dice score metric and ICC for net flow and peak velocity in the ascending aorta for the overall evaluation dataset split into TAV, UAV, and POSTOP. 

Dice score mean Net flow ICC Peak velocity ICC

TAV UAV POSTOP TAV UAV POSTOP TAV UAV POSTOP

Model 1 (all) 0.889 0.906 0.937 0.965 0.979 0.996 0.941 0.979 0.985
Model 2 (healthy) 0.764 0.832 0.912 0.836 0.943 0.988 0.933 0.973 0.957
Model 3 (BAV) 0.865 0.874 0.926 0.914 0.934 0.986 0.907 0.942 0.951
Model 4 (vendor 1) 0.840 0.896 0.930 0.933 0.970 0.995 0.935 0.879 0.925
Model 5 (male) 0.868 0.894 0.930 0.925 0.948 0.992 0.915 0.958 0.961
Model 6 (age 20−60) 0.846 0.893 0.923 0.874 0.877 0.992 0.913 0.989 0.955
Model 7 (3T) 0.817 0.878 0.923 0.882 0.949 0.992 0.920 0.932 0.950

ICC interclass correlation coefficient, TAV tricuspid aortic valve, UAV unicuspid aortic valve, POSTOP postoperative
Best Dice score values and ICC are in bold
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Fig. 7. Example of systolic segmenta-
tion results on two cross-sections A3.2 
(upper) and A3.3 (bottom) of a tricuspid 
stenotic valve patient from site 5 in the 
evaluation set. (78-year old male pa-
tient, scanned with Philips Achieva 
1.5T, venc = 600 cm/s). The 3D visua-
lizations show systolic velocity vectors 
for manual segmentation (a) and for 
model 1 automatic segmentation (b) and 
the segmentation results for every model 
on the magnitude image in systole (c). 
The bull’s-eye plots (BEP) for axial WSS 
computed for the manual and automatic 
contours (d). Note that BEPs depict two 
WSS metrics: maximum axial WSS 
(inner BEP values) and mean WSS in 
systole (outer BEP values). The circle 
and square glyphs indicate the orienta-
tion. Venc velocity encoded, 3D three- 
dimensional, WSS wall shear stress
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6. Conclusion

We investigated the dependency of a state-of-the-art segmentation 
model’s performance for aortic cross-section segmentation in 4D flow 
CMR on the representation of patient characteristics as well as scanner 
and imaging sequence properties in the training data. We found that the 
field strength and aortic valve pathologies were the most important 
characteristics for training a widely applicable segmentation model for 
reproducible flow quantification in the aorta. This study underlines the 
importance of model cards reporting the properties of the training data 
of machine learning models, so that the users can assess the suitability 
of the models for processing their datasets. In the future, we intend to 
address time-resolved 3D segmentation methods, enabling further 
analysis such as pressure maps and WSS, and extending our investiga-
tion beyond the constraints of 2D+t segmentation.
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