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aCharité – Universitätsmedizin Berlin (corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of
Health), Department of Psychiatry and Neurosciences, Berlin, Germany

bMax-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
cHelmholtz Imaging, Berlin, Germany

dDigital Engineering Faculty of the University of Potsdam, Germany
eBernstein Center for Computational Neuroscience, Berlin, Germany

fFaculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Germany
gHertie Institute for AI in Brain Health, University of Tübingen, Germany

Abstract

“Predicted brain age” refers to a biomarker of structural brain health derived from machine learning analysis of T1-
weighted brain magnetic resonance (MR) images. A range of machine learning methods have been used to predict
brain age, with convolutional neural networks (CNNs) currently yielding state-of-the-art accuracies. Recent advances
in deep learning have introduced transformers, which are conceptually distinct from CNNs, and appear to set new
benchmarks in various domains of computer vision. However, transformers have not yet been applied to brain age
prediction. Thus, we address two research questions: First, are transformers superior to CNNs in predicting brain
age? Second, do conceptually different deep learning model architectures learn similar or different “concepts of brain
age”? We adapted a Simple Vision Transformer (sViT) and a Shifted Window Transformer (SwinT) to predict brain
age, and compared both models with a ResNet50 on 46,381 T1-weighted structural MR images from the UK Biobank.
We found that SwinT and ResNet performed on par, while additional training samples will most likely give SwinT the
edge in prediction accuracy. We identified that different model architectures may characterize different (sub-)sets of
brain aging effects, representing diverging concepts of brain age. Thus, we systematically tested whether sViT, SwinT
and ResNet focus on different concepts of brain age by examining variations in their predictions and clinical utility for
indicating deviations in neurological and psychiatric disorders. Reassuringly, we did not find substantial differences in
the structure of brain age predictions between model architectures. Based on our results, the choice of deep learning
model architecture does not appear to have a confounding effect on brain age studies.

1. Introduction

The brain undergoes structural changes while aging
(MacDonald and Pike, 2021), accompanied by reduced
cognitive function and increased risk of neurodegener-
ative disorders (Peters, 2006; Farooqui and Farooqui,
2009). The rate at which aging alters the brain appears
to be influenced by the presence of disease (Anderton,
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1997), lifestyle (Peters, 2006), and environmental factors
(Esiri, 2007).

Brain age prediction estimates biological age using ma-
chine learning (ML) techniques applied to neuroimaging
data. Such brain age prediction models are generally
trained on healthy cohorts, ensuring that the model learns
the amount of aging considered normal for healthy sub-
jects (Feng et al., 2020; Dinsdale et al., 2021; Kolbeins-
son et al., 2020). Differences between brain-predicted age
and chronological age (brain age gap, BAG) (Ballester
et al., 2023; Chen et al., 2022; Man et al., 2021) have been
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elevated for patients with various psychiatric and neu-
rological disorders, including Alzheimer’s disease (AD),
Parkinson’s disease (PD), multiple sclerosis (MS), mild
cognitive impairment (MCI), major depression (MD),
schizophrenia and bipolar spectrum disorder (BSD) (Be-
heshti et al., 2020; Cole et al., 2020; Eickhoff et al., 2021;
Bashyam et al., 2020; Nenadić et al., 2017; Kaufmann
et al., 2019). Elevated BAGs have also been linked to
markers of poor health such as obesity, high blood pres-
sure, and diabetes (Wrigglesworth et al., 2021). This el-
evation in BAGs is thought to arise from an overlap be-
tween the effects of aging, the secondary neurobiologi-
cal effects of diseases and poor general health (Cole and
Franke, 2017). The accumulating evidence linking BAGs
with various health-related factors and neurological and
mental diseases has boosted the popularity of BAGs as
individualized biomarkers of structural brain health (Cole
and Franke, 2017).

It is commonly believed that accurate brain age mod-
els are essential to provide useful biomarkers (Hahn et al.,
2021; Peng et al., 2021; Cole, 2020; Tanveer et al., 2023;
Niu et al., 2020), and deep learning with convolutional
neural networks (CNNs) has yielded the most accurate
age predictions to date (Peng et al., 2021; Gong et al.,
2021; Leonardsen et al., 2022). Deep learning models
such as CNNs are capable of operating on minimally pro-
cessed neuroimaging data, primarily voxel-wise structural
magnetic resonance imaging (sMRI) brain images (Feng
et al., 2020; Dinsdale et al., 2021; Lee et al., 2022; Peng
et al., 2021; Leonardsen et al., 2022). Using voxel-wise
input images, CNNs can learn to model complex visual
features of brain aging from the ground up.

A recent innovation in deep learning architectures has
been the development of transformer models Vaswani
et al. (2017), such as vision transformers (Dosovitskiy
et al., 2021). Whereas single layers of CNNs combine in-
formation that is locally related in the input, vision trans-
formers are more flexible. They can create visual features
by including information from different parts of the input,
even if these are not spatially close together. Although the
greater flexibility of vision transformers comes at the cost
of requiring substantially larger amounts of training sam-
ples (Dosovitskiy et al., 2021), vision transformers seem
to surpass the CNN set benchmarks in various domains
of computer vision, including image classification (Doso-
vitskiy et al., 2021), semantic segmentation (Xie et al.,

2021), and object detection (Liu et al., 2022). Consider-
ing the success of vision transformers naturally prompts
the question: Can transformers be utilized to make brain
age predictions more accurate? And - since it is conceiv-
able that characterizing only a small subset of aging ef-
fects in the brain is sufficient for accurately predicting
age - do conceptually distinct deep architectures learn dif-
ferent “concepts of brain age” (see Section 3.1)? As the
mechanism by which CNNs and transformers process in-
put data fundamentally differs, CNNs for brain age pre-
dictions could learn to characterize one subset of brain
aging effects, while transformers could learn to character-
ize another.

If different deep learning model architectures attend to
different concepts of brain age, this would have profound
implications for the brain age research paradigm. First,
different model architectures could confound the results
of prior studies, because different concepts of brain age
could identify different disease-related patterns. Compar-
ing how informative BAGs are to diseases and health re-
lated factors would become challenging if different model
architectures are employed, even in similar cohorts. Sec-
ond, selecting a model architecture for brain age predic-
tion would become increasingly complicated. For in-
stance, one brain age concept could encompass a broad
range of disease-patterns, while others entail only few.
Hence, the selection of a model architecture would re-
quire measures of clinical utility rather than solely relying
on model accuracy, which is the current common practice
(Han et al., 2022; Baecker et al., 2021; Niu et al., 2020;
Kuo et al., 2021; Amoroso et al., 2019). Third, if dif-
ferent brain age concepts inform on specific diseases, the
role of BAGs as general brain health biomarkers, previ-
ously highlighted Cole and Franke (2017), would require
reevaluation. Practically, identifying which model archi-
tecture corresponds to which brain age concept would be
essential, as BAGs might indicate specific diseases rather
than general brain health.

To investigate whether different deep learning model
architectures learn different concepts of brain age and
whether a transformer can predict brain age with supe-
rior accuracy, we adapted the popular simple vision trans-
former (sViT) (Beyer et al., 2022) and shifted window
transformer (SwinT) (Liu et al., 2021) to predict age from
3D T1-weighted sMRI brain scans. For comparison, we
trained a ResNet He et al. (2016), which is one of the
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most widely used CNNs in brain age prediction (Fisch
et al., 2021; Jónsson et al., 2019; Kolbeinsson et al., 2020;
Ballester et al., 2021; Shah et al., 2022; Hu et al., 2023).
We systematically investigate whether ResNet, sViT, and
SwinT attend to different concepts of brain age by exam-
ining differences in their predictions and clinical utility
(ability to inform neurological and psychiatric diseases,
health-related factors; see Section 3.2) as proxies for dif-
ferences in how “brain age” is characterized by either
model architecture (see Section 3.3). Divergent predic-
tions and clinical utility across model architectures would
be indicative of variations in the model architectures’ con-
cepts of brain age. To measure clinical utility we concen-
trate on diseases commonly examined in brain age stud-
ies, namely PD (Eickhoff et al., 2021), MS (Cole et al.,
2020), epilepsy (Sone et al., 2021), alcohol use disor-
der (AUD) (Bøstrand et al., 2022), bipolar affective dis-
order (BAD) (Hajek et al., 2019), and psychotic disor-
ders (Ballester et al., 2022)), as well as factors associated
with brain health, specifically fluid intelligence, reaction
time, trailmaking interval (Smith et al., 2019), tobacco
consumption (Franke et al., 2013), mobile phone us-
age (Thomée, 2018), TV consumption (Dougherty et al.,
2022), systolic blood pressure (Smith et al., 2019), grip
strength (Carson, 2018), and body mass index (BMI)
(Ward et al., 2005). An overview of our workflow and
results is displayed in Figure 1.

2. Related work

Previous works have been concerned with technical
aspects of brain age prediction, such as bias correc-
tion (Beheshti et al., 2019; de Lange and Cole, 2020;
Zhang et al., 2023; Liang et al., 2019), performance
metrics (de Lange et al., 2022), and prediction accu-
racy of different ML models (Valizadeh et al., 2017;
Baecker et al., 2021; Lam et al., 2020). Other brain
age model comparisons additionally included reliability
measures (Bacas et al., 2023; Dörfel et al., 2023), aggre-
gate measures of clinical utility (Lee et al., 2021; More
et al., 2023; Xiong et al., 2023; Lee, 2023; Beheshti et al.,
2021), and general feature importance (Ball et al., 2021;
Han et al., 2022). Also, there are brain age studies that
have investigated general feature importance for CNNs
(Lee et al., 2022; Hepp et al., 2021; Levakov et al., 2020;
Hofmann et al., 2022).

To the best of our knowledge, no previous work explic-
itly considers the possibility that the fundamental “con-
cept of brain age” could mismatch between ML models,
nor do any of the studies include deep learning model ar-
chitectures that are conceptually different.

In addition, we believe to be the first to present cutting-
edge transformers for brain age prediction from sMRI
data. So far, transformers have solely been combined with
CNN-based feature encoders, to fuse information from
different image scales (He et al., 2021a) and modalities
(Zhao et al., 2024; Cai et al., 2022; He et al., 2021b), to
punctually add global information pathways (Hu et al.,
2022), or to refine CNN-extracted features from 2D im-
age slices (Jun et al., 2021).

3. Theory

To clarify our study, we introduce three key concepts.
First, we redefine the “concept of brain age”, suggesting
the existence of multiple brain ages, necessitating more
precise terminology. Second, we discuss the “clinical util-
ity” of these concepts, aiming to quantify their usefulness
in clinical settings. Third, we explore latent representa-
tions in brain age models that encode these varied con-
cepts and discuss methods to probe these representations.

3.1. Different concepts of brain age

In the past, brain age has generally been regarded as
a uniform concept, yet different models may accurately
predict age while relying on different brain aging effects.
Such aging effects may include loss of total brain volume,
enlargement of ventricles, cortical thinning (especially in
frontal areas) and shrinkage of subcortical gray matter
structures, with specific structures (e.g. hippocampus)
shrinking at increased rate (MacDonald and Pike, 2021).
To distinguish different combinations of brain aging ef-
fects, we introduce the term “concept of brain age”, re-
ferring to the features models use for age prediction (e.g.
ventricle size and frontal lobe thickness), and how these
features are combined (e.g. ventricle size prioritized over
frontal lobe thickness).

Brain age concepts may vary in the particular features
they consider as well as in the number of features they
consider, reflecting uncertainty about whether a broad or
narrow range of aging indicators is necessary for accurate
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Figure 1: Overview of workflow and results: a. We used 46.381 structural magnetic resonance imaging (sMRI) brain scans from the UK Biobank
to train and evaluate a convolutional neural network (CNN; 3D ResNet50) and two transformers (3D simple vision transformer; sViT; 3D shifted
window transformer; SwinT) for brain age prediction. Mean absolute errors (MAEs) for held-out healthy subjects were nearly identical for ResNet
(2.66 years) and SwinT (2.67 years). Extrapolating MAEs beyond the number of available brain images revealed that SwinT will most likely
become more accurate than ResNet with increased training samples. b. Effect sizes between prediction errors (brain age gaps; BAGs) of patients
and matched controls were similar for CNN and transformers across neurological- and psychiatric diseases, yielding no indication that different
model architectures rely on different brain aging effects for their predictions.

predictions. This uncertainty stems from the fact that dif-
ferent brain features carry redundant information on age.
For example, Bethlehem et al. (2022) have computed de-
tailed normative trajectories for various brain morpholog-
ical features across the human lifespan. Each of those tra-
jectories, or combinations, could, in theory, be learned by
(non-linear) models to predict age. Which particular brain
features are picked up by a given model may depend on
factors such as model architecture, initialization, amount
of training data, and model capacity - in addition to the
relationship between brain features and biological aging.

One might argue that different concepts of brain age
merely refer to different ways of measuring ”brain age”.
However, considering that disease and brain health-
related factors exhibit regional predilections (Geng et al.,
2006; Raz and Rodrigue, 2006; Dekker et al., 2021;
Gómez-Apo et al., 2021; Gallinat et al., 2006), it becomes
clear that brain age concepts really define brain age’s na-
ture. For example, hypertension appears to accelerate hip-
pocampus shrinkage (Raz et al., 2005), and hence, mod-
els with brain age concepts based on hippocampal vol-
ume will likely show increased brain age for hypertension.
In contrast, models based on brain features that are little
affected by hypertension may show no such effect. Ide-
ally, brain age concepts would cover holistic sets of brain
aging features, but due to brain features carrying redun-

dant information on aging (Bethlehem et al., 2022), it is
questionable whether current brain age models learn such
comprehensive brain age concepts.

3.2. Clinical utility

Evaluating the practical usefulness of brain age con-
cepts requires a benchmark measure. To that end, we de-
fine “clinical utility” as the ability of a brain age model
to inform on a broad range of diseases and health-related
phenotypes. Specifically, we evaluate “clinical utility” in
two ways: first, by examining the sensitivity of BAGs to
differences between healthy individuals and those with
neurological and mental disorders (Cole et al., 2020;
Bashyam et al., 2020; Kaufmann et al., 2019); second, by
evaluating how predictive BAGs are of health-related phe-
notypes (Cole, 2020; Steffener et al., 2016; Lee, 2023).

3.3. Probing differences in model architectures’ latent
concepts of brain age

We aim to determine if different deep learning model
architectures yield distinct brain age concepts. Due to the
complex, non-linear nature of these models, it is challeng-
ing to identify the features they use for predictions (Kin-
dermans et al., 2019; Adebayo et al., 2018; Sundarara-
jan et al., 2017; Hooker et al., 2019; Dombrowski et al.,
2019). Here, we propose using “clinical utility”, i.e.,
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the models’ predictions and prediction errors as proxies
for understanding potential differences in latent brain age
concepts.

Analyzing the sensitivity of prediction errors (BAGs)
for brain diseases and health-related phenotypes provides
insights into differences in brain age concepts, as these
conditions show a tendency to affect specific brain re-
gions. For example, hypertension has been linked to
accelerated hippocampus shrinkage (Raz et al., 2005),
PD patients have shown significant pallidum volume loss
Geng et al. (2006), tobacco use has appeared to reduce
gray matter volume and density in frontal, occipital, and
temporal lobes Gallinat et al. (2006), MS has been as-
sociated with cerebellar and thalamic atrophy alongside
white matter lesions (Dekker et al., 2021), and obesity
has been related to gray matter reduction in frontal and
temporal regions, basal nuclei, and cerebellum (Gómez-
Apo et al., 2021). Thus, one brain age concept might
address disease- or behavior related alterations, while an-
other may not.

4. Material and methods

4.1. Participants
Our study is based on the UK Biobank (UKBB), which

is an ongoing prospective biomedical data collection ini-
tiative (Sudlow et al., 2015). Specifically, we used data
from 46,381 individuals (53% female, age range 44-83,
age mean 64.26, age standard deviation 7.75), for whom
T1-weighted sMRI brain scans were available at the time
of writing. We divided subjects into a normative cohort
with no diagnoses in ICD-10 category F (mental and be-
havioral disorders) and G (diseases of the nervous sys-
tem), and a patient cohort including all diagnosis in cat-
egory F and G. To determine how sensitive BAGs are to
neurological and psychiatric disorders, we focus on disor-
ders that are frequently studied in the context of brain age
research, specifically patients with Parkinson’s disease
(PD) (Eickhoff et al., 2021), multiple sclerosis (MS) (Cole
et al., 2020), epilepsy (Sone et al., 2021), alcohol use dis-
order (AUD) (Bøstrand et al., 2022), bipolar affective dis-
order (BAD) (Hajek et al., 2019) and psychotic disorders1

1Psychotic disorders refer to schizophrenia, schizotypal and delu-
sional disorders (ICD-10 codes F20 to F29). They are treated as a sin-

(Ballester et al., 2022) in conjunction with controls from
the normative cohort. We selected controls by match-
ing normative subjects to the disease cohorts for each di-
agnosis using propensity score matching, while control-
ling for sex, age, education level, household income, the
Townsend deprivation index, and genetic principal com-
ponents, as described in (Schulz et al., 2024b). The re-
mainder of the normative cohort was used for model train-
ing. Patients who were not used to measure BAGs’ sen-
sitivity to diseases (patients were also not used for model
training) were used to validate the hyperparameters of the
model architectures, which led to the following set sizes:
ntrain = 27, 538, nval = 16, 499, ncontrol/test = 1, 172.

4.2. sMRI data

We used minimally preprocessed 1mm T1-weighted
sMRI brain scans provided by the UKBB. The images
were skull-stripped with the UKBB-provided brain mask,
linearly registered on MNI152 with the UKBB-provided
transformation matrices, and center-cropped, resulting in
a final resolution of 160x192x160. Preprocessing is in
line with literature defaults (Peng et al., 2021; Leonardsen
et al., 2022; Fisch et al., 2021; Kolbeinsson et al., 2020).

4.3. Target phenotypes

In addition to the sMRI data, we used phenotypic data
from the UKBB. Specifically, the UKBB provides infor-
mation on ICD-10 diagnosis in terms of first occurrence
dates, and we assigned disease labels if the first occur-
rence date was before the date on which the sMRI data
were collected. The mappings from diseases to UKBB
fields are shown in the Supplement Table S1. To analyze
the informativeness of the BAGs for various brain health-
associated factors, we used UKBB variables for cognitive
performance (fluid intelligence, reaction time, trailmak-
ing interval; Smith et al. 2019), lifestyle choices (tobacco
consumption; Franke et al. 2013, mobile phone usage;
Thomée 2018, TV consumption; Dougherty et al. 2022)
and biomedical condition (systolic blood pressure; Smith
et al. 2019, grip strength; Carson 2018, body mass index;
Ward et al. 2005). The mapping of each variable to the

gle group in our analysis due to the impractically small sample sizes
(n < 33) when treated separately.
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UKBB field number is provided in the Supplementary Ta-
ble S2.

4.4. Deep learning model architectures

4.4.1. 3D ResNet50
As CNN architecture, we used a ResNet50 (He et al.,

2016), adapted to 3D input (Hara et al., 2018). ResNet is a
well known standard architecture in computer vision and
is widely used in brain age prediction (Fisch et al., 2021;
Jónsson et al., 2019; Kolbeinsson et al., 2020; Ballester
et al., 2021; Shah et al., 2022; Hu et al., 2023). Conceptu-
ally, a simpler form of the ResNet is the VGG (Simonyan
and Zisserman, 2025) (or in its shallow form, the SFCN;
Peng et al. 2021), which some brain age studies employ,
too (Tanveer et al., 2023). In brief, the main component
of ResNet (and VGG) is the convolutional layer, which in-
corporates convolutional filters that slide across the input
image and combine local image information to create vi-
sual features such as edges or shapes. In our experiments,
we used a conventional PyTorch implementation2 of the
3D ResNet50 (Hara et al., 2018), with a total number of
46.2 million trainable parameters.

4.4.2. 3D simple vision transformer
In contrast to CNNs, which combine local image in-

formation using convolutional filters, vision transformers
(Dosovitskiy et al., 2021) process images through a dif-
ferent mechanism. Essentially, vision transformers divide
the input image into a sequence of image patches, and
then combine information across these patches to charac-
terize visual features. Since all image patches are con-
nected to each other through a so-called attention mecha-
nism (Vaswani et al., 2017), vision transformers can gen-
erate visual features composed of spatially unrelated in-
formation in the input image. In contrast, CNNs are lim-
ited to combining information from local image neighbor-
hoods to form visual features.

In this study, we adapted an sViT (Beyer et al., 2022)
to predict age from 3D sMRI scans. A brief description of
the specific modifications is given in Appendix A. The 3D
sViT implementation we used can be found in the GitHub
repository vit-pytorch3. Hyperparameters were kept at the

2https://github.com/kenshohara/3D-ResNets-PyTorch
3https://github.com/lucidrains/vit-pytorch

vit-pytorch defaults. The complete set of hyperparameters
is shown in the Appendix Table A1, resulting in a total of
42.0 million trainable parameters.

4.4.3. 3D shifted window transformer
The SwinT (Liu et al., 2021) is another modification of

the original vision transformer (Dosovitskiy et al., 2021),
which reintroduces core properties of CNNs to improve
performance on visual tasks. In brief, the SwinT di-
vides input images into image patches like the vision
transformer. However, it focuses on forming visual fea-
tures by combining information from locally related im-
age patches, while distant image patches are only con-
nected via indirect pathways. This modification means
that the SwinT loses some of the vision transformer’s flex-
ibility in creating visual features, but large images in par-
ticular can be processed more efficiently. In addition, the
SwinT fuses image patches at different levels of depth,
which makes the SwinT learn hierarchical image repre-
sentations, which have appeared to be crucial for biologi-
cal vision (Hubel and Wiesel, 1962), and are an essential
property of CNNs (LeCun et al., 2010).

Similar to the sViT, we adapted the SwinT to oper-
ate on 3D input (Appendix A). Our implementation and
hyperparameter choices regarding the number of atten-
tion heads, patch size, embedding dimension, and atten-
tion window size were based on the SwinUNETR model
(Hatamizadeh et al., 2021), which has been used for 3D
brain tumor segmentation. The hyperparameter choices
for the depths of the model and the expansion ration of
the multilayer perceptron (MLP) α were inspired by the
“Swin-T” model variant proposed by Liu et al. (2021).
The complete list of hyperparameters used for the SwinT
model is shown in the Appendix Table A2, which resulted
in a total of 10.1 million trainable parameters.

4.5. Model training

All model architectures were trained using the PyTorch
Lightning 1.8 interface for PyTorch 1.12 and a single
Nvidia A100 GPU with 80GB memory for ResNet and
sViT, and two A100s of the same type for the SwinT.
Each model was optimized using Adam (Kingma and Ba,
2014) on the mean squared error loss, with a one-cycle
learning rate policy (Smith and Topin, 2019; Fisch et al.,
2021; Schulz et al., 2022). The maximum learning rate
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for SwinT and sViT was set to 10−4 and to 10−2 for the
ResNet. The training duration was 150,000 gradient up-
date steps for each model architecture. The effective batch
size was 8 for ResNet and SwinT, and 16 for sViT. Each
model architecture was re-trained 6 times with different
random initialization and batch order.

4.6. Measuring clinical utility

We measured the clinical utility of BAGs by how sen-
sitive they were to neurological and mental diseases (AD,
PD, MS, depression, schizophrenia, BSD), as well as by
how predictive they were for health-related phenotypes
(fluid intelligence, reaction time, trail making interval, to-
bacco consumption, mobile phone usage, TV consump-
tion, systolic blood pressure, grip strength, and body mass
index). In detail, our analysis workflow proceeded as fol-
lows (see Figure 1 for an overview): We first trained mul-
tiple instances of sViT, SwinT and ResNet using the nor-
mative cohort. Next, we computed BAGs of held-out pa-
tients and controls by subtracting chronological age from
predicted age, for each of the models’ instances. Then,
we measured how sensitive the BAGs were to diseases
by calculating effect sizes (Cohen’s d) between the BAGs
of the patients and matched controls. In addition, we
estimated the uncertainties of effect sizes across patient-
control pairs via bootstrapping. Next, we analyzed how
predictive BAGs were for various health-related pheno-
types, by fitting linear models from BAGs and covariates
(age, sex, genetic principal components 1-3, years of ed-
ucation, income level) to the phenotypes. For each result-
ing linear model, we report the t-statistic for the BAG’s
β-coefficient, as a measure of how predictive BAG is for
the phenotype in question. Again, uncertainties were es-
timated via bootstrapping.

4.7. Measuring consistency of brain age concepts across
train runs

Varying brain age concepts could arise because of dif-
ferences in model architecture, but also due to different
random weight initialization and batch order during train-
ing. To investigate, we trained 6 instances of each model
architecture with varying initializations and batch orders.
We analyzed how correlated predictions of either model
architectures’ instances were for held-out patients and
controls using Pearson’s correlation coefficient, to gain an

Table 1: SwinT is competitive to ResNet in brain age prediction. Mean
absolute errors (MAEs) and coefficient of determination (R2) are dis-
played for the held-out set of healthy subjects (n=1172). The uncer-
tainty estimates indicate the standard deviation (SD) across different
randomly initialized model instances. 3D ResNet50 (ResNet) and 3D
shifted window transformer (SwinT) predict age with nearly identical
accuracy, both outperforming the 3D simple vision transformer (sViT).

Model Test MAE (years) Test R2

ResNet 2.66 ± 0.05 0.81 ± 0.01
SwinT 2.67 ± 0.02 0.81 ± 0
sVit 3.02 ± 0.08 0.76 ± 0.01

understanding of potential differences in brain age con-
cepts across train runs, following the same logic as de-
scribed in Section 3.3.

5. Results

5.1. SwinT is competitive and will likely outperform
ResNet with increasing sample sizes

To investigate whether transformers may outperform
CNNs in accurately predicting brain age, we compared
mean absolute errors (MAEs) for held-out healthy sub-
jects between SwinT, sViT, and ResNet. SwinT (MAE of
2.67 ± 0.02, mean and SD over different train runs) and
ResNet (MAE of 2.66 ± 0.05) performed on par (Table 1).
sViT performed noticeably worse, with an averaged MAE
of 3.02 ± 0.08 years.

In addition, we analyzed how each model architecture’s
accuracy scales with the number of training samples. In
short, we trained instances of each model architecture
with stepwise reduced training samples, and assumed a
power-law relation between accuracy and the amount of
data (Schulz et al., 2024a). This enabled us to extrapolate
each model architecture’s accuracy beyond the amount of
training samples available to us. We found that the SwinT
can be expected to outperform the ResNet starting from
approximately n = 25, 000 samples (Figure A1), with the
ResNet marginally benefitting from more training sam-
ples. The sViT’s performance can be expected to ben-
efit from increasing training samples, though it may not
be able to achieve accuracies comparable to SwinT and
ResNet in its current form.
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Figure 2: Different brain age model architectures encode similar disease
patterns. The figure shows effect sizes (Cohen’s d) measured between
BAGs of patients and matched controls. Effect sizes between model
architectures were within one σ from each other for any disease, with
no indication of differences. Error bars indicate the standard error of the
mean estimate derived by bootstrapping patient-control pairs.

5.2. No evidence that sViT, SwinT and ResNet attend to
different concepts of brain age

To investigate whether SwinT, sViT and ResNet may
attend to different concepts of brain age, we analyzed
differences in predictions and prediction errors as prox-
ies of differences in the underlying aging characteriza-
tions (see Section 3.3). In a first analysis, we computed
the Pearson correlation for held-out-set predictions be-
tween model architectures. Predictions from all three
model architectures were highly correlated (average cor-
relation with SD between predictions of differently initial-
ized SwinT and ResNet instances: r = 0.94 ± 0, SwinT-
sViT: r = 0.91 ± 0.03, ResNet-sViT: r = 0.91 ± 0.1),
suggesting that each model architecture follows a similar
concept of brain age.

In a second analysis, we compared the clinical utility
(Section 3.2) of each model architectures’ BAGs. De-
viations in clinical utility between model architectures
would hint to differences in the concepts of brain age (see
Section 3.3). We found that the sensitivity of BAGs for
the investigated disorders were comparable across model
architectures. Patients’ BAGs were elevated for each
model architecture and disease (Figure 2). We observed
(in Cohen’s terminology; Cohen, 2013) small effects for
epilepsy, small to medium effects for PD, AUD, BAD and

psychotic disorders, and medium to large effects for MS.
Effect sizes between model architectures were within one
σ from each other for any disease, with no indication
of differences. The association of BAG and cognitive,
lifestyle, and biomedical phenotypes was also compara-
ble across model architectures. Again, the measured ef-
fects were within approximately one σ from each other,
again with no indication of a difference (Figure 3).

The size and directionality of effects was compatible
with literature expectations: Weak results on cognitive
tests, unhealthy habits, and markers of poor physical con-
dition were associated with elevated BAG, while good
results on cognitive tests and markers of good physical
condition were associated with a decreased BAG (Smith
et al., 2019). In sum, our results suggest that sViT, SwinT
and ResNet most likely do not attend to meaningfully dif-
ferent concepts of brain age; we found that predictions
of each model architecture were highly correlated, that
BAGs were similarly sensitive to neurological and psychi-
atric diseases, as well as comparably predictive for cogni-
tive, lifestyle, and biomedical phenotypes.

5.3. Concepts of brain age appear consistent across train
runs

To assess the consistency of either model architec-
ture’s brain age concept across random initializations and
batch orders, we computed correlations between held-out-
subject predictions within each model architecture and
found no indication of varying brain age concepts. Over
six different train runs, SwinT averaged a Pearson cor-
relation of r = 0.98 ± 0.01 (SD) (r = 0.96 ± 0.02 for
ResNet; r = 0.94 ± 0.03 for sViT), suggesting that brain
age concepts are mostly unaffected by random initializa-
tions and batch order. In comparison to sViT and ResNet,
the SwinT appears to converge to more uniform brain age
concepts.

6. Discussion

In the present study, we make three central contribu-
tions. First, we adapt and evaluate the recently popu-
larized transformer architecture for brain age prediction.
Using one of the largest brain imaging datasets currently
available, we found that the novel SwinT and the widely
used ResNet predict age with nearly identical accuracy.
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Figure 3: Association of BAG and cognitive, lifestyle and biomedical phenotypes seems not to depend on the model architecture. We fitted linear
models from BAG and confounds to phenotype and report the t-statistic for whether the BAG is a significant predictor. Error bars indicate the
t-statistic’s standard error of the mean estimate, derived by bootstrapping. BAGs of different model architectures were similarly predictive for the
analyzed phenotypes.

Our results indicate that both evaluated transformer archi-
tectures will benefit from growing sMRI datasets, while
the accuracy of ResNet appeared to be saturated. Sec-
ond, we identify that “brain age” might not refer to a uni-
form concept and outline why “concepts of brain age”
may differ between brain age models. Third, we inves-
tigate whether conceptually different deep learning model
architectures attend to different concepts of brain age. We
probed the model architectures for structural differences
in their brain age predictions under a range of neurologi-
cal and psychiatric disorders and with regard to biomed-
ical, cognitive, and behavioral phenotypes, but found no
indication that SwinT, ResNet, and sViT may attend to
different concepts of brain age.

6.1. Transformers for accurate brain age prediction

A common belief in the brain age community is that
models need to accurately predict age, in order to provide
useful biomarkers (Hahn et al., 2021; Peng et al., 2021;
Cole, 2020; Tanveer et al., 2023; Niu et al., 2020). Thus,
research on more accurate brain age models has been a
dominant topic in the brain age literature, and best accu-
racies were achieved by CNNs (Peng et al., 2021; Gong
et al., 2021; Leonardsen et al., 2022). A more recently
popularized deep learning model architecture is the vi-
sion transformer, which apparently surpasses benchmarks

set by CNNs in various tasks of computer vision (Doso-
vitskiy et al., 2021; Xie et al., 2021; Tu et al., 2022).
Consequently, the question arises whether transformers
can be leveraged to obtain more accurate brain age pre-
dictions. We applied two of the most popular vision
transformers to brain age prediction, and found that the
SwinT matches, and for larger sample sizes likely outper-
forms (Figure A1) the widely used ResNet CNN in brain
age prediction accuracy (ResNet MAE 2.66 years, SwinT
MAE 2.67). Other works that trained CNNs on UKBB
data report MAEs in the range of 2.14 to 2.86 years (Tan-
veer et al., 2023), thus our models lay in the competitive
range. The difference between our results and the lowest
reported MAE (2.14; Peng et al., 2021) is largely due to
the use of performance-enhancing measures such as en-
sembling, data augmentation, and label binning, which
we omitted in order not to jeopardize the generalizability
of our model architecture comparison. As the number of
available sMRI images in large databases like the UKBB
continuous to grow, the SwinT, given its scaling perfor-
mance in Figure A1, is likely to replace the ResNet as the
de facto default deep learning model architecture for brain
age prediction.
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6.2. Potentially different concepts of brain age between
model architectures

It would be problematic for brain age research if dif-
ferent model architectures produce different biomarkers,
because previous brain age studies’ results regarding clin-
ical utility of BAGs would be confounded by the model
architecture. Thus, a critical question remains: do distinct
model architectures focus on different concepts of brain
age, potentially leading to different biomarkers? Reassur-
ingly, we found no evidence that model architectures con-
sider different concepts of brain age (Section 5.2), miti-
gating concerns about model architecture confounding in
deep brain age studies. Given the conceptually distinct
model architectures analyzed, which we consider the most
plausible cause of potential variations in brain age con-
cepts, we believe that our results should generalize to re-
lated model architectures, such as various CNNs used in
previous brain age studies (Peng et al., 2021; Huang et al.,
2017; Kolbeinsson et al., 2020).

Beyond that, our results suggest that the clinical util-
ity of BAGs is independent of the deep learning model
architecture. Hence, our study provides no reason to con-
sider clinical utility when selecting a model architecture
for predicting brain age.

6.3. Potentially different concepts of brain age across
train runs

Another cause of concern is that random influences
such as weight initialization and batch order in training
could affect concepts of brain, since many brain age stud-
ies’ results base on a single model instance (Bashyam
et al., 2020; Cole et al., 2017; Jónsson et al., 2019). Our
results alleviate such concern, as the brain age concepts
of sViT, ResNet, and SwinT appeared stable across dif-
ferent training runs. Compared to model architecture po-
tentially confounding brain age studies, issues related to
random influences are less problematic, because ensem-
bling could be used to account for any variance within a
model architecture.

6.4. Relation between deep learning model architecture’s
accuracy and clinical utility

Our results suggest that clinical utility and deep learn-
ing model architecture are unrelated, however, we also
found that the noticeably less accurate sViT generated

BAGs with very similar clinical utility to BAGs of the
more accurate SwinT and sViT, which contrasts with the
common belief that more accurate models lead to more
useful biomarkers (Hahn et al., 2021; Peng et al., 2021;
Cole, 2020; Tanveer et al., 2023; Niu et al., 2020). Along
the same lines, previous work has questioned the rela-
tion between accuracy and clinical utility: Bashyam et al.
(2020) have reported that stopping CNNs’ training before
convergence increases biomarker utility; Jirsaraie et al.
(2023) have reviewed multimodal brain age studies, in-
cluding deep and traditional ML models, and have not
found a relation between accuracy and clinical utility;
Schulz et al. (2024b) have shown that simple linear mod-
els, yielded more useful biomarkers than their more accu-
rate deep counterparts. Together, the mentioned evidence
in conjunction with our work indicates that optimizing
how accurately model architectures predict brain age, is
not the right way to fully exploit their potential for gen-
erating useful biomarkers. Instead, research in altering
the training protocol such as Bashyam et al. (2020) (early
stopping) and Schulz et al. (2024b) (overregularization)
appears to be more promising.

6.5. Questionable construct validity of brain age

In the present study we found no evidence of inter-
action between model architecture, weight initialization,
and batch order and a models’ concepts of brain age.
However, Schulz et al. (2024b) reported that reducing
a model’s expressivity via overregularisation can indeed
yield different concepts of brain age. Such models, while
sacrificing age prediction accuracy, seem to provide su-
perior clinical utility. Other work questions whether in-
dividual differences in brain age relate to aging effects
at all: Vidal-Pineiro et al. (2021) argue that birth-weight
and genetic factors have greater impact on BAGs than ac-
tual longitudinal brain change. These findings challenge
the construct validity of the brain-age gap itself, leading
to an increased urgency to develop clearer terminology
and methodology to investigate the underlying concepts
of brain age learned by machine learning algorithms.

6.6. Limitations

We would like to highlight the three important limita-
tions of our study: First, we did not optimize the trans-
formers for prediction accuracy, due to computational
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constraints. Training a single instance of either trans-
former model architecture required multiple days on the
available GPUs, and the hyperparameter configuration
space is vast, making thorough optimization impractical.
As a result, the reported accuracies should be viewed as
promising lower bounds to optimized accuracies rather
than precise estimates. We encourage further work to
deep dive in optimizing especially the SwinT’s accuracy
in predicting brain age.

Second, we argue that there is most likely no differ-
ence in concepts of brain age between different model ar-
chitectures, however, we are aware that proving such ab-
sence of a difference is conceptually hard. That is, it is
nearly impossible to cover all conditions (architectures,
hyperparameters, demographic factors) for which predic-
tions and prediction errors could indicate differences in
concepts of brain age. Nevertheless, we believe that the
presented absence of a difference in brain age concepts
between model architectures is instructive, because we
carefully chose deep learning model architectures based
on differences in fundamental design principles, which we
consider the most plausible cause of differences in brain
age concepts. Also, we did cover a broad set of demo-
graphic factors with various neural correlates (Raz et al.,
2005; Geng et al., 2006; Gallinat et al., 2006; Dekker
et al., 2021; Gómez-Apo et al., 2021), which in its en-
tirety is most likely sensitive to meaningful differences in
brain age concepts.

Third, we analyzed predictions and prediction errors as
proxies to the underlying concepts of brain age, due to
lack of more precise methods, such as reliable explainable
artificial intelligence (XAI) methods (Sundararajan et al.,
2017; Hooker et al., 2019; Adebayo et al., 2018; Ghorbani
et al., 2019; Kindermans et al., 2019; Dombrowski et al.,
2019). Such XAI methods (Bach et al., 2015; Selvaraju
et al., 2017; Chefer et al., 2021; Ali et al., 2022; Lundberg
and Lee, 2017) provide heatmaps indicating which parts
of the input have been relevant for ML models’ predic-
tions, which, in theory, seems appropriate to investigate in
whether different model architectures learn different brain
age concepts. However, in practice, common XAI meth-
ods have failed to meet fundamental axioms (Sundarara-
jan et al., 2017), have not been able to beat random rele-
vance assignments (Hooker et al., 2019), have generated
heatmaps independent of model parameters and training
data (Adebayo et al., 2018), and are susceptible to im-

perceptible changes in input (Ghorbani et al., 2019; Kin-
dermans et al., 2019; Dombrowski et al., 2019). In light
of the mentioned concerns, we believe that it is crucial to
validate that XAI methods can reliably explain deep archi-
tectures’ predictions in the neuroimaging domain, before
their application. To our knowledge, however, explana-
tion methods have not been validated on brain data. This
is, because validation of XAI methods often defaults to
visual inspection (Doshi-Velez and Kim, 2017), but ex-
pectations on explanations in the brain imaging domain
are often apriori unknown, or highly difficult to character-
ize.

6.7. Conclusion
In this work, we highlight the possibility of heterogene-

ity in “concepts of brain age” learned by modern machine
learning algorithms.

Reassuringly, we found no indications that deep learn-
ing model architectures attend to different concepts of
brain age, and hence, it appears unlikely that previous
deep brain age studies’ results, for example regarding the
clinical utility of BAGs, have been confounded by the
model architecture used.

Appendices
A. Adapting vision transformers to predict age from

3D sMRI scans

We adapted both SwinT and sViT to operate on 3D in-
put, by dividing input images into 3D image cubes, in-
stead of 2D image patches. Also, we used sinusoidal po-
sitional encodings (Vaswani et al., 2017) in the SwinT, in
addition to the relative position bias present by default.
Sinusoidal positional encodings provide information on
an image cubes’ absolute positions in the input image.
We anticipated that information on absolute cube posi-
tion would benefit the model architectures, given that we
linearly registered input images to the MNI152 reference
space, which leads to image cubes displaying very similar
brain regions across subjects. Similarly, sinusoidal posi-
tional encodings were employed in the sViT as part of its
default setting. Finally, we applied linear regression lay-
ers after the transformer-based encoders, to obtain scalar
age predictions.
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Table A1: Hyperparameters for the 3D sViT.

Layers 6
Heads per layer 8
Patch size 16, 16, 16
Embedding size 1024
MLP size 2048

Table A2: Hyperparameters for the 3D SwinT.

SwinT blocks per stage 2, 2, 6, 2
Attention heads in blocks of each stage 3, 6, 12, 24
Patch size 2, 2, 2
Attention window size 4, 4, 4
Initial embedding size 48
MLP expansion factor (α) 4

B. Probing how model architectures’ accuracies scale
with sample sizes

We investigated how each model architectures’ accu-
racies relate to the number of training samples, by train-
ing 3 instances of sViT, SwinT, and ResNet on different
fractions of the training samples (0.2, n = 5507; 0.4,
n =11015; 0.6, n =16522; 0.8, n =22030). The reduced
train sets were generated by iteratively removing the last
participants from the original train set. To extrapolate
each model architecture’s accuracy beyond our available
training sample size, we adopted a power-law relationship
between accuracy and the number of training samples,
as suggested by Schulz et al. (2024a) (Figure A1). Our
analysis indicates that SwinT and sViT will see substan-
tial accuracy improvements with more training samples,
whereas the ResNet will experience only marginal gains;
the SwinT is expected to surpass ResNet in accuracy at
around 25,000 training samples.
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Supplementary Material

Table S1: Mappings from diseases (first occurrence dates) to UK Biobank field numbers.

Disease Field number Instance Array index
Parkinson’s disease 131022 0 0
Multiple sclerosis 131042 0 0
Epilepsy 131048 0 0
Alcohol use disorder 130854 0 0
Bipolar affective disorder 130892 0 0
Schizophrenia 130874 0 0
Schizotypal disorder 130876 0 0
Persistent delusional disorders 130878 0 0
Acute and transient psychotic disorders 130880 0 0
Induced delusional disorder 130882 0 0
Schizoaffective disorder 130884 0 0
Other nonorganic psychotic disorders 130886 0 0
Unspecified nonorganic psychosis 130888 0 0
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Table S2: Mappings from variable names to UK Biobank field numbers.

Variable name Field number Instance Array index
Age 21003 2 0
Sex 31 0 0
Fluid intelligence 20016 2 0
Reaction time 20023 2 0
Train making interval 6773 2 0
Tobacco consumption 1249 2 0
Usage of mobile phone 1120 2 0
TV consumption 1070 2 0
Systolic blood pressure 4080 2 0
Grip strength 47 2 0
Body mass index 21001 2 0
Genetic principal component 1 22009 0 1
Genetic principal component 2 22009 0 2
Genetic principal component 3 22009 0 3
Qualifications 0 6138 2 0
Qualifications 1 6138 2 1
Qualifications 2 6138 2 2
Qualifications 3 6138 2 3
Qualifications 4 6138 2 4
Qualifications 5 6138 2 5
Income level 738 2 0
Townsend deprivation index 22189 2 0
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