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Gut microbiota dysbiosis is associated
with altered tryptophan metabolism and
dysregulated inflammatory response in
COVID-19
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The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that
disease progression and inflammatory responses associate with alterations in the microbiome and
metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of
repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged
clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a
depletion of beneficial intestinalmicrobes,whereasoropharyngealmicrobiota disturbancewasmainly
linked to antibiotic use. COVID-19 severitywas also associatedwith enhancedplasma concentrations
of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines,
and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were
associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase
were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies
correlated microbiome and metabolome alterations as a potential contributor to inflammatory
dysregulation in severe COVID-19.

TheCoronavirus disease 2019 (COVID-19) pandemic, caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected over
700 million individuals and resulted in more than 7 million deaths world-
wide by early March 2024 (https://data.who.int/dashboards/covid19/). The
infection typically starts withmild tomoderate respiratory symptoms. After
approximately one week, a minority of infected individuals develop pneu-
monia which may be complicated by acute respiratory distress syndrome
(ARDS), coagulopathy, and multiorgan failure1,2. The common kinetics of
disease progression together with recent observational studies suggest that
COVID-19 severity is primarily driven by a dysregulated, not adequate and
often excessive immune response. Several studies found high levels of
proinflammatory cytokines, such as interleukin (IL)-6, tumor necrosis
factor (TNF)α, and interferon (IFN)γ, as well as T cell lymphopenia,

decrease of non-classical (CD14loCD16hi) monocytes, and occurrence of
neutrophil precursors in the peripheral blood of severe COVID-19
patients3–7. Older age, male sex, chronic lung and cardiovascular diseases,
diabetes mellitus, obesity, host genetics, and IFN autoantibodies have also
been associated with severe disease and death8–11, but these factors alone do
not appear to explain the wide variability in the clinical course of
COVID-19.

Mucosal surfaces of the upper respiratory tract and gut are physiolo-
gically colonizedwith amicrobiota that consists of trillions ofmicrobial cells
and whose diversity and composition vary widely among individuals12. The
microbiota constantly generates thousands of unique metabolites that can
influence many aspects of human biology13. Animal studies have revealed
that the microbiota calibrates immune responses during pulmonary and
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systemic infections, e.g., through production of short-chain fatty acids
(SCFAs) and tryptophan catabolites, and by deconjugation of primary to
secondary bile acids14–17. Interindividual gut microbiota differences in
humans have been associated with variation in cytokine production capa-
cities of peripheral blood cells18, and enrichment of the lungmicrobiotawith
oral taxahasbeen linked to e.g., an enhancedexpressionofproinflammatory
cytokines19. Previous studies have also indicated an association between
COVID-19 status and/or severity and a reduced gut bacterial diversity with
enrichment of opportunistic pathogens, as well as elevated levels of
inflammatory cytokines (e.g., IL-1β, IL-6, and CXC chemokine ligand
(CXCL)8)20–22. Moreover, a reduced abundance of upper respiratory tract
commensals in severe COVID-19 patients has been described23–25.

To characterize the interplay between the microbiome, metabolome,
and immune system during the infection, we collected and deeply pheno-
typed repeated samples from COVID-19 patients with varying disease
severity as well as from uninfected controls. Using a systematic approach to
account for clinical and host factors wherever possible, various features of
the gut microbiome, immune response, and plasma metabolome were
revealed to be robustly associated with SARS-CoV-2 infection, and/or
COVID-19 severity.

Results
The present work includes a subset of patients enrolled between
March and June 2020 in the Pa-COVID-19 cohort, a prospective
observational cohort study of patients with COVID-19 at Charité
Universitätsmedizin Berlin26. Plasma, stool, urine, and orophar-
yngeal (OP) swabs from a total of 30 laboratory-confirmed, hos-
pitalized COVID-19 patients with varying degrees of disease
severity, as well as 15 uninfected, age- and sex-matched controls
were collected (Fig. 1). In parallel, comprehensive clinical infor-
mation including underlying diseases, medication before and dur-
ing hospitalization, and the development of secondary infections
was obtained (Table 1 and Supplementary Table 1). Patient samples
were classified into early or late observation groups based on the
number of days since symptom onset (≤10 days or >10 days,
respectively). According to the WHO ordinal scale of clinical
improvement (OSCI, www.who.int/publications/i/item/covid-19-
therapeutic-trial-synopsis), 22 patients (73.3%) had ambulatory to
moderate disease (i.e., mild, maximum OSCI score 1–4), and 8
(26.7%) had a severe or critical disease course (i.e., severe, max-
imum OSCI score 5–8), 3 of whom died in the hospital. The median
duration of hospitalization was 8.5 days (range 3–132 days)
excluding the patients who died. Peripheral blood mononuclear
cells (PBMCs) were obtained from 14 patients at an early phase of
infection as well as 11 controls, and tracheobronchial secretions
(TBS) were collected from 4 ventilated COVID-19 patients. Whole
metagenome sequencing of stool, OP and TBS samples, metabo-
lomics of plasma and urine, single-cell RNA sequencing (scRNA-
seq) of PBMCs, multiplex cytokine ELISA of plasma, and IFN qRT-
PCRs of OP samples were performed. Our integrated statistical
approach enabled us to analyze -omics and clinical data individu-
ally and in conjunction with one another while considering a range
of potential confounders.

Airway and intestinal microbiota disturbance in mild and severe
COVID-19
To characterize the microbiota of our cohorts, we conducted
shotgun metagenomic sequencing on a total of 94 OP swabs, 18
TBS, and 81 stool samples, as proxies for the throat, pulmonary,
and gut microbiota, respectively. After quality control, 75 OP and
72 stool samples remained viable for downstream analysis (see
Supplementary Fig. 1a, b). The gut microbiota of COVID-19
patients exhibited significantly decreased alpha diversity compared
to uninfected controls (Kruskal-Wallis P < 0.001, see Fig. 2a), in line
with previous observations27,28. Beta diversity analysis appeared to

reflect both disease status and severity as well as antibiotic intake
(Fig. 2b). Indeed, several bacterial taxa were strongly associated
with disease, especially when comparing patients with mild disease
to controls, some of which were concurrently associated with the
number of days patients were hospitalized (Fig. 2c). Mild courses of
COVID-19 most robustly associated with lower abundances of
Lachnospiraceae, Clostridium, Faecalibacterium spp. and Egger-
thellaceae in the gut relative to controls, whereas severe cases had
decreased Intestinimonas, Eubacteriaceae, and Turicibacter com-
pared to mild cases (Fig. 2c). Depletion of various other gut com-
mensals such as Firmicutes, Romboutsia, Coprococcus, and
Roseburia were additionally associated with longer hospitalization
and/or antibiotics. Antibiotic therapy was also associated with an
enrichment of Enterococcus and Lactobacillus in patients with mild
or severe COVID-19. Moreover, Hungatella abundances were
positively correlated with existing comorbidities in mild cases and
length of hospital stay and hospital-acquired pneumonia (HAP,
referring to all types of nosocomial pneumonia in both ventilated
and non-ventilated patients) in severe cases.

In contrast to the intestinal microbiota, compositional differ-
ences observed in the oropharyngeal microbiota appeared to be
primarily associated with antibiotic intake, rather than disease
status or severity (Supplementary Fig. 1c), which can also be
observed in the beta diversity analysis (Fig. 2b). Similar to previous
findings29, the alpha diversity of the oropharyngeal microbiota was
lower in COVID-19 patients as compared to uninfected controls,
with samples from severe cases showing the most variability among
all the groups (Fig. 2a). In addition, a positive correlation between
the abundances of Prevotellaceae and Slackia and the development
of HAP was observed (Supplementary Fig. 1c). Collectively, our
results indicate a direct association between intestinal microbiota
composition and COVID-19, whereas oropharyngeal microbiota
disturbance appeared to be mainly driven by antibiotic use in our
patients.

Immune dysregulation in severe COVID-19
To characterize the systemic immune response in our cohort, we mea-
sured cytokines in plasma samples from all patients and uninfected
controls. In line with previous studies29,30, type I, II and III IFNs as well as
several inflammatory cytokines including TNFα, interferon-gamma
induced protein (IP)-10/CXCL10, C–C motif chemokine ligand (CCL)
2, and IL-10 were increased in early plasma samples of COVID-19
patients when compared to uninfected controls (Fig. 3a–h). While IFN
levels mostly decreased in the later phase of the infection, production of
the inflammatory cytokines remained high in severe COVID-19 patients.
Next, PBMCs from a subset of patients at an early infection time point
and uninfected controls were characterized (see Fig. 1) by droplet-based
scRNAseq. Since we aimed to focus primarily on the innate immune
cells, PBMCs were depleted of T and B lymphocytes before measure-
ments. UMAP and cell type classification identified various cell types and
subtypes expected in the mononuclear compartment of blood (Fig. 3i, j).
Further analyses revealed an increase of classical monocytes in severe
COVID-19 patients as compared to uninfected individuals and patients
with mild infection (Fig. 3k), and a depletion of non-classical monocytes
and cDCs in early COVID-19. NK cells were only depleted in patients
with severe COVID-19. IFN-stimulated genes (ISGs) were highly
expressed in PBMCs (Supplementary Fig. 2a, b), their expression posi-
tively correlated with systemic levels of both type I and II IFNs (Sup-
plementary Fig. 2c), and they were enhanced in mild and severe COVID-
19 patients (Supplementary Fig. 2d). Moreover, expression of type I and
III IFN genes in our oropharyngeal samples were measured, and
increased IFNL2 mRNA levels in mild COVID-19 patients as compared
to uninfected controls were found (Supplementary Fig. 2e). Overall, our
results indicate that the systemic inflammatory response is dysregulated
and excessive in patients with severe COVID-19.
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Alterations in tryptophan, bile acid, lipid, and amino acid meta-
bolism in severe COVID-19
To identify potential microbiota- and/or host-derived factors underlying
COVID-19 phenotypes, we performed metabolomic analyses on a total of
96 plasma and 77 urine samples from COVID-19 patients and uninfected
controls. Our analysis highlighted significant differences in the plasma
metabolome of COVID-19 patients when compared to uninfected controls,
as well as direct associations between various metabolites and disease

severity. In COVID-19 patients, lower plasma levels of several tryptophan
metabolites including the primarily dietary-derived tryptophan itself
(ρ =−0.68, FDR-adjusted P < 0.0001), the serotonin precursor
5-hydroxytryptophan (ρ =−0.38, FDR-adjusted P = 0.0003), and the
microbial metabolites tryptamine, indole-3-propionic acid, and indole-3-
acetic acidwere observed31 (Fig. 4, Supplementary Fig. 3a), indicating severe
disturbance of host-dependent kynurenine and serotonin pathways and the
microbiota-dependent indole metabolic pathway. Many of the altered

P01

P06

P14

P15

P16

P20

P24

P25

P12

P19

P21

P26

P09

P07

P04

P05

P10

P22

P17

P28

P18

P11

P13

P27

†P29

P23 †

OP swab
TBS
Stool

Plasma
Urine

PBMCs

Death

Recent abx
Current abx

†

C01

C02

C03

C04

C05

C06

C07

C08

C09

C10

C11

C12

C13

C14

C15

Un
in
fe
ct
ed
co
nt
ro
ls

Days sampled
3-71

Days since onset of symptoms
5-7 8-10 11-13 14-160 17-19 20-22 23-25 26-31 32-37 38-43 44-49

M
ild

Se
ve
re

P02

P30

P08

P03 †

Fig. 1 | Cohort description and sampling timepoints. Uninfected controls
(C1–C15) and enrolled patients (P1–P30) classified by maximum OSCI score. We
refer to scores between 1 and 4 asmild and scores between 5 and 8 as severe disease in
further discussion. Sampling timepoints are represented according to the days after
symptom onset for patients. For uninfected controls, sampling was performed two
times, on day 1 and then again 3–7 days after the first sampling. The observation and

hospitalization period is marked with a solid line, or a dashed black line when
prolonged. Sample materials included oropharyngeal (OP) swabs, plasma, periph-
eralmononuclear blood cells (PBMCs), urine, stool, and tracheobronchial secretions
(TBS). The use of antibiotics shortly before (i.e., recent abx) or during the sampling
period (i.e., current abx) is marked for each participant. All control subjects were
antibiotic-free for at least 3 months before and during the sampling period.
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tryptophan metabolites are ligands for the immunoregulatory aryl hydro-
carbon receptor (AhR) and/or pregnane X receptor (PXR)32,33. In line with
previous studies34,35, the host-derived tryptophan catabolites kynurenine,
which is also an AhR ligand, and the potentially neurotoxic
3-hydroxykynurenine36 were strongly enriched in COVID-19 patients, with
kynurenine levels showing a robust positive association with severity
(ρ = 0.7, FDR-adjusted P < 0.0001; Fig. 4), in both early and late samples
(Supplementary Fig. 3a). Moreover, severe COVID-19 was robustly asso-
ciated with lower plasma concentrations of the microbiota-produced sec-
ondary bile acid glycodeoxycholic acid (ρ =−0.42, FDR-adjusted
P = 0.0006), and with higher levels of the primary bile acid taurocholic acid
(Fig. 4). SARS-CoV-2 infection and COVID-19 disease severity were also
associated with depletion of various lysophosphatidylcholines at all sam-
pling timepoints and phosphatidylcholines in the early samples

(Supplementary Fig. 3a, b). Lysophosphatidylcholines are a group of
bioactive lipids with potent proinflammatory and immunoregulatory
roles37. Taken together, these results demonstrate that tryptophan, bile acid,
lipid, and other amino acid metabolism is dysregulated in severe
COVID-19.

Integrated analysis reveals associations between altered levels
of tryptophan metabolites and enhanced production of proin-
flammatory cytokines
Finally, we integrated our various -omics data into our mixed-models
analysis framework in order to establish associations between the micro-
biome, metabolome, and immune response parameters. First, we sum-
marized the extent to which features from the different -omics spaces were
robustly associated with SARS-CoV-2 infection and/or disease severity, or
confounded by different clinical factors such as previous or current anti-
biotic use, other medications, comorbidities, and days of hospitalization.
This analysis revealed that several features of the gut microbiome, immune
response, and metabolome were robustly associated with COVID-19
severity, whereas almost all features of the oropharyngeal microbiome were
only indirectly (i.e., confounded) or not significantly associated with
COVID-19 severity (Fig. 5a, b). Many associations of the oropharyngeal
microbiome were rendered non-significant (i.e., were confounded) by
recent antibiotic therapies (Fig. 5b). Therewere hardly any associationswith
demographic factors such as age, sex, or BMI (also demonstrated in Fig. 2c,
Supplementary Fig. 1c). To identify associations between features from
different -omics spaces, the robust infection- and severity-associated subsets
from the gut microbiome, plasmametabolome, and host immune response
were then used in further modeling steps (see “Methods”). This analysis
uncovered 84 associations between the gut microbiome and the plasma
metabolome, 2 between the gutmicrobiome and the immune response, and
30 between the plasma metabolome and the immune response (Fig. 5c).
Notably, Faecalibacterium was strongly positively correlated with trypto-
phan and several of its metabolites including 5-hydroxytryptophan, tryp-
tamine, and indole-3-propionic acid, many of which have
immunomodulatory activities through their effects onAhR and/or PXR32,33.
Depletion of Faecalibacteriummight thus be at least partly responsible for
the reduced levels of these tryptophan metabolites. At the same time, this
taxon was strongly positively correlated with several phosphatidylcholines
and other plasma lipids, as well as histidine and threonine. Plasma kynur-
enine was strongly positively correlated with several proinflammatory
cytokines, whereas tryptophan was negatively correlated with those same
cytokines, including IFNγ, TNFα, IP-10, and/or CCL2.Bifidobacteriumwas
positively correlated with several phosphatidylcholines and negatively
correlated with carnitine. Lower alpha diversity (measured by the Shannon
entropy) was associated with lower levels of plasma 5-hydroxytryptophan
and formylkynurenine and higher levels of CCL2. Moreover, IFNγ pro-
duction was positively correlated with phenylalanine. Taken together, our
analysis indicates that alterations in both the microbiota- and host-
dependent tryptophan metabolism, as well as potentially other metabolic
pathways, may contribute to the dysregulated inflammatory immune
reaction in severe COVID-19.

Discussion
While several excellent microbiomics20,24,27,38,39, metabolomics34, and multi-
omics studies35,40–46 of COVID-19 have been published, our work is unique
in simultaneously measuring and analyzing a particularly large number of
different -omics features, and, in this, to integrate gut and oropharyngeal
metagenome sequencing,metabolomics, host transcriptomics, and cytokine
profiling. Our analyses using linear mixed-effect models and exhaustive
confounder testing revealed the plasma metabolome to be the -omics
domain most affected by SARS-CoV-2 infection. Consistent with previous
observations34,40,47, plasma levels of various host- and microbiota-derived
tryptophan metabolites and lysophosphatidylcholines robustly correlated
with COVID-19 severity, as did secondary bile acids in our study. In
addition, enhanced inflammatory cytokine production and gut microbiota

Table 1 | Clinical characteristics

Characteristics Controls Mild
patients

Severe
patients

n 15 22 8

Average age, y (SD) 52.80 (19.37) 56.09 (18.64) 63.88 (16.47)

Female, % (n) 40.0 (6) 45.5 (10) 37.5 (3)

Average BMI, (SD) 23.94 (3.52) 26.8 (5.74) 26.9 (3.53)

Active smokers, % (n) 6.7 (1) 4.5 (1) 25.0 (2)

Comorbidities

Diabetes mellitus, % (n) 6.7 (1) 18.2 (4) 25.0 (2)

Cardiovascular disease,
% (n)

26.7 (4) 50.0 (11) 62.5 (5)

Chronic lung disease, % (n) 0 (0) 31.8 (7) 25.0 (2)

Chronic kidney disease,
% (n)

0 (0) 22.7 (5) 62.5 (5)

Chronic liver disease, % (n) 6.7 (1) 9.0 (2) 37.5 (3)

IBD, % (n) 0 (0) 4.5 (1) 0 (0)

Dyslipidemia, % (n) 13.3 (2) 13.6 (3) 25.0 (2)

Active neoplasia, % (n) 0 (0) 0 (0) 12.5 (1)

Altered thyroid hormones,
% (n)

6.7 (1) 18.2 (4) 37.5 (3)

Charlson Comorbidity Index,
median (IQR)

1.0 (3.25) 2.0 (4.0) 3.5 (6.8)

OSCI, median (IQR) 0 (0) 3.5 (1.0) 7.0 (1.0)

Gastrointestinal symptoms at
admission, % (n)

0 (0) 22.7 (5) 25.0 (2)

Medication, median (IQR) 0 (2.0) 2.0 (3.0) 1.5 (4.75)

Antibiotic therapy

During sampling period, % (n) 0 (0) 18.2 (4) 62.5 (5)

Beta-lactams, %a (n) 0 (0) 42.9 (3) 73.3 (11)

Glycopeptides, % (n) 0 (0) 0 (0) 20 (3)

Macrolides, % (n) 0 (0) 28.6 (2) 0 (0)

Others, % (n) 0 (0) 28.6 (2) 6.7 (1)

Evidence of antibiotics at up
to 3 months prior, % (n)

0 (0) 54.5 (12) 37.5 (3)

Beta-lactams, % (n) 0 (0) 26.7 (4) 60.0 (3)

Quinolones, % (n) 0 (0) 26.7 (4) 0 (0)

Macrolides, % (n) 0 (0) 13.3 (2) 40.0 (2)

Others, % (n) 0 (0) 13.3 (2) 0 (0)

Not specified, % (n) 0 (0) 20.0 (3) 0 (0)

SD standard deviation,BMI bodymass index, IQR interquartile range,OSCI ordinal scale for clinical
improvement, IBD inflammatory bowel disease.
aCalculation as % of total of the antibiotics taken (also several per patient).
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perturbations were strongly associated with the infection. For example,
taxonomic diversity in the gut was diminished in COVID-19 patients, and
several potentially beneficial commensals (mainly belonging to the Clos-
tridiales order) were depleted, which is consistent with previous reports20,21.
While depletion of some gut commensals (e.g., Lachnospiraceae, Clos-
tridium spp., Faecalibacterium spp., Eggerthellaceae, Intestinimonas,
Eubacteriaceae, andTuricibacter) was directly associated with disease status

or severity, changes in the abundance of others (e.g., Romboutsia, Copro-
coccus., Bifidobacterium spp.) were additionally linked to length of hospi-
talization and/or intake of antibiotics.

In addition to identifying potential microbial and clinical biomarkers
of SARS-CoV-2 infection, we propose mechanistic hypotheses into the
dysregulated immune response considered causative of severe COVID-19.
For example, we related the depletion of Faecalibacterium to decreased

2

3

4

5

Control Mild

Gut Throat Gut Throat

Severe

S
ha
nn
on

E
nt
ro
py

1

2

3

4

Control Mild Severe

S
hannon

E
ntropy

−0.2

0.0

0.2

0.4

−0.25 0.00 0.25 0.50

PCo 1 [16.55%]

P
C
o
2
[7
.5
9%

]

−0.25

0.00

0.25

0.50

−0.25 0.00 0.25 0.50

PCo 1 [16.60%]

P
C
o
2
[12.43%

]

Abx not recorded
Severe Abx+
Severe Abx-
Mild Abx+
Mild Abx-
Control Abx-

a

c

b
Kruskal−Wallis
P < 0.001

Kruskal−Wallis
P = 0.05

***

**

***
**

**

** *

** *****
***

***

*

***

***

**

***

***

***

* ***

****
*

**

*

***

**

**

***

** ***

* *
***

** *****

** ***

*

** *

* *** **
***

**
******

*

*

*
*

* *

** ****

*

*

*

**** **

**

** **

*
*

*
*

**
***

*

* *

***

*

**

*

***

*
**

Infection and HospitalizationGut Taxa Demographic and Clinical

C
ontrols

vs
M
ild

C
O
V
ID
-19

M
ild

vs
S
evere

C
O
V
ID
-19

Severity

Days in
Hospital

Antibiotics

HAP/VAP

CCI
M
edication

Sex
Age

BM
I

CRP
IL-6

Alpha diversity
Romboutsia

Eggerthellaceae
Faecalibacterium

Coprococcus
Butyricicoccus

Roseburia
Lachnospiraceae

Anaerostipes
Firmicutes

Eubacterium
Clostridium
Collinsella

Verrucomicrobia
Desulfovibrio
Acinetobacter

Dorea
Parasutterella

Dialister
Methanobrevibacter

Clostridia
Eubacteriaceae

Bacteroides
Erysipelatoclostridium

Christensenella
Holdemania

Rothia
Flavonifractor

Ruthenibacterium
Intestinimonas
Lactobacillus
Hungatella

Propionibacterium
Faecalicatena
Enterococcus
Streptococcus

Alpha diversity
Bifidobacterium
Actinomyces

Rothia
Intestinimonas
Anaerostipes

Eubacteriaceae
Roseburia

Eubacterium
Actinobacteria
Coprococcus
Streptococcus

Dorea
Turicibacter
Lactococcus
Holdemania

Fusicatenibacter
Propionibacterium

Peptostreptococcaceae
Paraprevotella

Clostridia
Lactobacillus

Ruthenibacterium
Hungatella

Enterococcus

0.40.4

0

-0.4

Effect Size

FDR≤0.01
FDR≤0.001

FDR≤0.05*
**
***

https://doi.org/10.1038/s41522-024-00538-0 Article

npj Biofilms and Microbiomes |           (2024) 10:66 5



levels of various tryptophan metabolites, many of which are known as
immunoregulatory and as ligands of AhR and/or PXR32. The association
between Faecalibacterium and tryptophanmetabolisms has been described
before in the context of other conditions48,49. Moreover, decrease in tryp-
tophan and increase in kynurenine levels, which is commonly linked to the
activity of the enzyme IDO133, were associatedwith enhanced production of
several proinflammatory cytokines. The correlation between decreased
tryptophan, increased kynurenine levels and higher concentrations of
proinflammatory cytokines such as IFNγ in COVID-19 patients has also
been described in other studies34,50–52. In hospitalized patients, we estimated
these mechanisms to further involve a vicious cycle, as critical illness, pro-
longed hospitalization, and high concentrations of inflammatorymediators
further exacerbate the disruption of the microbiome andmetabolome. Still,
we speculate that several of our findings, e.g., hypotheses describing how
certain intestinal commensals are associated with specific metabolites, or
how tryptophan catabolites may regulate systemic cytokine production, are
also relevant for other types of severe infections and perhaps non-infectious
inflammatory diseases.

In accordance with previous studies34,35, levels of the host-
derived tryptophan catabolite kynurenine were strongly elevated in
severe COVID-19 patients. In contrast, tryptamine, indole-3-acetic
acid, and other microbiota-derived tryptophan catabolites were
depleted in these patients. All of these metabolites are known to
activate AhR and/or PXR, which controls the differentiation and
inflammatory potential of various innate and adaptive immune
cells31,33,53. It is likely that, in aggregate, the markedly altered levels
of these AhR and PXR ligands observed in our cohort contributed
to the dysregulation of the immune response in severe COVID-19;
however, further studies are needed to understand the cumulative
impact of oppositely altered tryptophan catabolites (which pre-
sumably also differ with respect to their AhR and PXR binding
affinities) on individual immune cells. Moreover, more research is
also required to characterize the impact of these metabolites in
different phases of COVID-19, such as the acute inflammatory
phase, resolution, or the subsequent period of tissue repair.

From our integrated statistical modeling, it is possible to
consider that the depletion of 5-hydroxytryptophan was potentially
mediated by low intestinal abundances of Faecalibacterium spp.,
which is consistent with previous findings about the role of the
microbiota in controlling the production of 5-hydroxytryptophan
by colonic enterochromaffin cells54. 5-hydroxytryptophan has also
recently been described to activate AhR and to mediate CD8+ T
cell exhaustion in antitumor immunity55. Thus, it appears reason-
able to speculate that 5-hydroxytryptophan contributes to AhR-
mediated calibration of inflammatory cytokine production during
COVID-19, as well as to T cell exhaustion characteristic of severe
SARS-CoV2 infection56,57. Moreover, reduced levels of indole-3-
propionic acid, previously shown to be produced by Clostridium
sporogenes58,59, correlated with Faecalibacterium spp. depletion.
Interestingly, indole-3-propionic has recently been implicated in
protection against influenza infection in mice60.

We observed reduced levels of lysophosphatidylcholines in severe
COVID-19 patients, which is in line with previous studies40,47,61, and strong
associations with enhanced IFNγ. Lysophosphatidylcholines are a group of
bioactive lipids that are produced from phosphatidylcholine by the enzyme
phospholipase A2, and shown to have effects on e.g., endothelial cells and
immune cells62. Low plasma levels of lysophosphatidylcholine have been
associated with unfavorable outcomes in several chronic diseases37 and
sepsis63. Moreover, lysophosphatidylcholine treatment was protective in
mouse models of sepsis64.

Another interesting group of metabolites whose production we found
to decrease with severe COVID-19 was the secondary bile acids. Secondary
bile acids, which are converted from liver-derived primary bile acids by the
microbiota, are known for their ability to influence various immune cells,
e.g., via the receptors TGR5 and FXR65–68. Indeed, a previous study uncov-
ered how secondary acids control immunity against Chikungunya virus by
enhancing type I IFN production by pDCs65. Moreover, decreased con-
centrations of secondary bile acids in fecal samples of patients with severe
COVID-19 have previously been associated with mortality69. Some studies
also indicated that treatmentwith secondary bile acids could be protective in
COVID-19, whereas others did not observe such beneficial effect70–73. Fur-
ther studies are required to evaluate the impact of secondary bile acids and
other microbiota-derived metabolites on the immune response during
COVID-19.

Our multi-omics study explored alterations in the microbiome,
metabolome, and immune response observed in severe COVID-19, and
generated several testable hypotheses, but is not without limitations. First,
only a relatively small numberofpatients froma single centerwere included,
which mandates future validation in larger cohorts of patients. Second, for
practical reasons and similar to probably all previously published work, we
were unable to collect samples during the first days of infection, making it
impossible to draw conclusions about mechanisms in the early phase of
COVID-19. Moreover, we did not have information regarding dietary
habits of thepatients aswell as nutritional information fromtheir time in the
hospital, both of which have been shown to play a role in the gutmicrobiota
composition. Fourth, we lacked an intensive care control group that may
have enabled us to better disentangle critical disease and hospitalization-
associated factors from COVID-19 specifically. Finally, analyses of the
immune response in the lung as the epicenter of the infectious event in
COVID-19 were not performed, which would be important for future
studies, and many of our respiratory (TBS and some OP) microbiota
samples contained too few reads for downstream analysis (Supplementary
Fig. S1). Future work pursuing more translational aims (e.g., to predict or
possibly treat severe COVID-19) would need to address these limitations,
for example via animal experiments to mechanistically explore the
microbiome-metabolite-immune networks in COVID-19, and perhaps
other infectious and inflammatory diseases. Despite the limitations
regarding our study design, we were able to perform deep phenotyping
using various state-of-the-art -omics techniques and clinical metadata,
allowing us insight into interactions between themicrobiome,metabolome,
and immune systemnetwork in general, and into the pathogenesis of severe
COVID-19 in particular. The disrupted microbiome-tryptophan

Fig. 2 | Microbiota compositional changes are associated with COVID-19
severity, hospitalization, and/or antibiotics. a Alpha diversity (measured as
Shannon entropy) of stool and oropharyngeal samples remaining after rarefaction
(see “Methods” and Supplementary Figure 1a, b), separated by disease status and
severity (measured by OSCI). Box plots display the median (center line), inter-
quartile range (box bounds), and 1.5 times the interquartile range (whiskers). b Beta
diversity (principal coordinates analysis, PCoA) on rarefied species abundances,
colored to denote disease status and severity as well as any recent or current anti-
biotic (Abx) intake. c Subset of significant results from our differential abundance
and confounder testing of the gut microbiota, comparing uninfected controls to
mild disease (i.e., status) and mild to severe disease (i.e., severity; see “Methods”,
Supplementary Fig. 1c for the throat microbiota, and Supplementary Table 6 for the
full results). Standardized, non-parametric effect sizes were calculated between

bacterial abundances and clinical covariates (Spearman for continuous or Cliff’s
delta/Wilcoxon for binary variables), and tested for significance. Nested linear
models and likelihood ratio tests were then used to disentangle the potentially
confounding effects of clinical variables from the disease status or severity (on
“naively” disease-associated bacterial taxa from the first step), if possible (see
“Methods”). Taxa in bold showed a unique association to the group (control,mild or
severe COVID-19) which could be disentangled from covariates. “Antibiotics”
refers to any recent or current use and “Medication” is a sum of current medications
excluding antibiotics. OSCI ordinal scale for clinical improvement, HAP hospital-
acquired pneumonia, VAP ventilator-associated pneumonia, CCI Charlson
Comorbidity Index, CRPC-reactive protein, IL-6 interleukin 6, FDR false discovery
rate (adjusted).
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Fig. 3 | The immune response is dysregulated in severe COVID-19 patients.
a–h Plasma levels of IFNs and inflammatory cytokines in healthy controls, mild and
severeCOVID-19 patientsweremeasured at two different timepoints after symptom
onset (5–10 days and ≥10 days after symptom onset). Box plots display the median
(center line), interquartile range (box bounds), and 1.5 times the interquartile range
(whiskers). i PBMCs from 11 healthy controls and 14 COVID-19 patients (at an
early infection phase, i.e., <10 days since symptomonset) were collected, andT and B
cells were depleted. UMAP representation of all merged scRNA-seq profiles are
shown. 13 cell types were identified by cluster gene signatures. jViolin plots showing
topmarker genes for the cell types shown in (i). kRelative abundance ofmajor innate

immune cells were compared. Their distribution varies between controls and
COVID-19 patients and between mild and severe disease. Significant pairwise
comparisons are denoted in panels (a–h) and (k) (Mann–Whitney U test). See also
Supplementary Figure 2. IFNα interferon alpha, IFNγ interferon gamma, IFNλ2
interferon lambda 2, IP-10 interferon gamma-induced protein 10, TNFα tumor
necrosis factor alpha, IL-5 interleukin-5, CCL2 CC-chemokin-ligand-2, IL-10
interleukin-10, n.m. not measured; scRNAseq single-cell RNA sequencing, PBMCs
peripheral mononuclear blood cells, cMono classical monocytes, ncMono non-
classicalmonocytes,mDCmyeloid dendritic cells, pDCplasmacytoid dendritic cells,
NK natural killer cells, NKT natural killer T cells, MK megakaryocytes.
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Fig. 4 | Severe COVID-19 is associatedwith tryptophan andbile acidmetabolites.
Tryptophan and bile acid metabolite concentrations (given in ng/mL and µM,
respectively) from all plasma and urine samples, annotated with adjusted pairwise
Spearman test significance and post hoc identified confounders from early or late
slices of the data. Box plots display the median (center line), interquartile range (box
bounds), and 1.5 times the interquartile range (whiskers). Some co-associated

clinical variables were rationally grouped and relabeled here for annotation pur-
poses, i.e., hospitalization and infection reflects confounding by one or more of the
following: HAP, number of days hospitalized, bacteremia and/or sepsis. The
kynurenine and serotonin pathways are host-associated, while indole and part of
the bile acid metabolism are carried out by gut microbes. See also Supplementary
Figure 3. CCI Charlson comorbidity index, HAP hospital-acquired pneumonia.
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metabolism-immune network described here might represent a potential
target for intervention strategies to protect patients from severe COVID-19.

Methods
Study design and patient inclusion criteria
In the framework of the Pa-COVID-19, a prospective observational cohort
study of patients with confirmed SARS-CoV-2 infection treated at Charité-
Universitätsmedizin Berlin, we collected repeated stool, urine, TBS, and
blood samples as well as oropharyngeal swabs from hospitalized patients
with COVID-1926. All patients with SARS-CoV-2 infection, as determined
by positive PCR from respiratory specimens, who were hospitalized at the
Charité-UniversitätsmedizinBerlin betweenMarch and June2020 andwere
willing to provide written informed consent were eligible for inclusion.
Exclusion criteria included refusal to participate in the clinical study by
patient or legal representative or clinical conditions that did not allow for
blood sampling. The patients included in this study were enrolled between
March 21 and June 15, 2020, before vaccinations or variants of concern.
COVID-19disease severitywas classified tomildor severe disease according
to the WHO clinical ordinal scale (https://www.who.int/publications/i/
item/clinical-management-of-covid-19). The Pa-COVID-19 and COV-
IMMUN studies are carried out according to the Declaration of Helsinki
andwere approved by the ethics committee of Charité-Universitätsmedizin
Berlin (EA2/066/20, EA1/068/20). All patients or their legal representatives

as well as the healthy individuals provided written informed consent for
participation in the study.

PBMCs isolation and scRNA sequencing
PBMCs were isolated from heparinized whole blood by density cen-
trifugation over Pancoll and cryopreserved in liquid nitrogen until further
analysis. FrozenPBMCwere recoveredby rapidly thawing, andTandBcells
were depleted by using CD19 and CD3 MicroBeads (Miltenyi Biotec
Cat#130-097-055 and #130-097-043) to enrich for myeloid cells. Subse-
quently, the PBMC samples were hash-tagged with TotalSeq-ATM anti-
bodies (Biolegend) and scRNAseq was performed by using a droplet-based
single-cell platform (10xGenomics) as described recently4.

ScRNAseq data analysis
The 10xGenomics CellRanger pipeline (v4.0.0) was used to pre-process the
sequencing data. In brief, BCL files from each library were converted to
FASTQ reads using bcl2fastq Conversion Software (Illumina) using the
respective sample sheet with the 10x barcodes and TotalSeq antibodies
utilized. Then, the reads were further aligned to the reference genome
provided by 10× Genomics (Human reference dataset refdata-cellranger-
GRCh38-3.0.0) and adigital gene expressionmatrixwas generated to record
the number of UMIs for each gene in each cell. Next, the expression matrix
from each library was loaded into R/Seurat packages74 (v4.0.1) for

Fig. 5 | Integration of severity associations across -omics spaces identifies cor-
related features of the gut microbiome, metabolome, and immune response in
(severe) COVID-19. a Summary of association classifications with SARS-CoV-2
infection (from comparison between mild COVID-19 and controls) or disease
severity (from comparison between mild and severe COVID-19) across all -omics
features after confounder analysis. Plasmametabolites had the highest percentage of
total features which were robustly associated with SARS-CoV-2 infection and/or

COVID-19 severity. bMain confounding clinical variables for all significant disease
or severity associations are shown (i.e., cumulative area of non-gray bars from (a)), as
well as an estimate of the percentage of those which were confounded, and if so by
what. c Robust associations (FDR ≤ 0.05) between the gut microbiome, plasma
metabolome, and host immune response from the subset of features associated with
SARS-CoV-2 infection or COVID-19 severity in (a). Bolded features had more than
three robust associations with features from another -omics space.
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downstream analysis. To control the data quality, we further excluded low-
quality cells with >15% mitochondrial reads, <100 or >3000 expressed
genes, or <500 UMI counts. In addition, genes expressed in less than three
cells were also excluded from further analysis. After QC, we normalized the
gene counts from each cell, where original gene counts were divided by total
UMI counts, multiplied by 10,000 (TP10K), and then log-transformed by
log10(TP10k+ 1).We then scaled the data, regressing for totalUMI counts,
and performed principal component analysis (PCA) based on the 2000
most-variable features identified using the vst method implemented in
Seurat. Cells were then clustered using the Louvain algorithm based on the
first 20 PC dimensionswith a resolution of 0.3. For visualization, we applied
UMAP based on the first 20 PC dimensions. The obtained clusters were
annotated by the expression of PBMC marker genes. The expression of
selected genes was visualized by violin plots.

Quantitative reverse transcription PCR
For measuring expression of type I and II IFNs in the upper airways, total
RNAwas isolated from oropharyngeal swab fluid using mirVana™miRNA
Isolation Kit (Cat# AM1561). The RNA was reverse-transcribed using the
high capacity reverse transcription kit (Applied Biosystems, Darmstadt,
Germany), and quantitative PCR was performed using TaqMan assays
(GAPDH: Hs02786624_g1, IFNL2: Hs04193048_gH, IFNB:
Hs01077958_s1 Life Technologies, Darmstadt, Germany) on an ABI 7300
instrument (Applied Biosystems, Darmstadt, Germany). The input was
normalized to the average expression of GAPDH and relative expression
(relative quantity, RQ) of the respective gene in the healthy control indivi-
duals was set as 1.

Cytokine ELISA
Plasma concentrations of IL-10, IL-12p70, IL-17A, IL-1α, IL-1β, IL-4, IL-22,
IP-10, MCP-1, TNFα, and IFNγ were measured by using MSDMeso Scale
V-Plex assay kits (Meso Scale Diagnostics). Plasma concentrations of IFNα
and IL-28A were quantified by using Simoa® Technology (Quanterix
Corporation). Sampleswere diluted1:2 (IFNγ, IL-10, IL12p70, IL-1α, IL-1β,
TNFα, IL-4) or 1:4 (IP-10, MCP-1, IL-17, IL-22) prior to analysis and
processed according to the manufacturer’s instructions.

Viral load measurements
SARS-CoV-2 RNA detection and quantification in respiratory swabs and
stool samples was done as described before75,76 and by using either the
cobas® SARS-CoV-2 test on the cobas® 6800/8800 system or the SARS-
CoV-2 E-gene assay from TibMolbiol on a Roche MagNApure 96/Light-
Cycler 480er workflow. Viral RNA concentrations were calculated by using
the CT-Value of the E-gen target, oligo binding site within the E gene and
corresponding PCR fragment was described in Corman et al.76 and by
applying calibration curves of quantified reference samples and in vitro
transcribed RNA77,78.

Plasma and urine metabolomic sample pre-processing
Plasma and urine samples were prepared in four different ways depending
on themetabolite of interest. Urine samples were treated with urease before
Biocrates and CCM analyses. A broad metabolite analysis was conducted
using a Biocrates MxP Quant 500 kit. For safety reasons, samples were
measured after adding 100% ethanol (LC-MS grade; Fisher Scientific) to the
plasma and urine samples. For the analysis of tryptophan derivatives, an
extraction solvent (89.9% Methanol in 0.2% FA and 0.02% ascorbic acid)
was added to the plasma and urine samples. The preparation of the plasma
and urine samples for CCM GC-MS analysis consisted of adding 100%
Methanol (LC-MS grade; Fisher Scientific).

Biocrates MxP Quant 500 assay and measurement
Plasma or urine was added in a 1:2 dilution to ethanol (EtOH, Fisher
Scientific, New Hampshire, USA; 50 µL to 100 µL EtOH) and vortexed for
20 s. Samples were stored at−80 °C until use. TheMxPQuant 500 kit from
Biocrates Life Science AG is a fully automated assay based on

phenylisothiocyanate (PITC) derivatization of the target analytes using
internal standards for quantitation. Plate preparationwas done according to
the manufacturer’s protocol. Briefly, 30 µL of the diluted plasma or urine
was transferred to the upper 96-well plate and dried under a nitrogen
stream. Thereafter, 50 µL of a 5% PITC solution was added. After incuba-
tion, the filter spots were dried again before the metabolites were extracted
using5mMammoniumacetate inmethanol (MeOH,Fisher Scientific,New
Hampshire, US) into the lower 96-well plate for analysis after further
dilutionusing theMSrunning solventA.Quality control (QC) sampleswere
prepared by pooling plasma or urine from each sample.

Evaluation of the instrument performance prior to sample analysiswas
assessed by the system suitability test (SST) according to themanufacturer’s
protocol. The LC-MS system consisted of a 1290 Infinity UHPLC-system
(Agilent, Santa Clara, CA, USA) coupled to a QTrap 5500 (AB Sciex Ger-
many GmbH, Darmstadt, Germany) with a TurboV source. Quality
assurance and control were reported using the recommended standards by
mQACC (Supplementary Table 8). Acquisition method parameters and
UHPLCgradient for LC and FIAmode are shown in Supplementary Tables
9–11. All compounds were identified and quantified using isotopically-
labeled internal standards andmultiple reactionmonitoring (MRM) for LC
and fullMS for FIA as optimized and raw data was computed inMetIDQTM

version Oxygen (Biocrates Life Science AG, Innsbruck, Austria). A script
developed in-house (MetaQUAC) was used for data quality analysis and
preprocessing79.

Gas chromatography mass spectrometry (GC-MS) measure-
ment of key central carbon pathway metabolites
MeOH containing 2 µg/mL cinnamic acid as internal standard (Sigma
Aldrich, St. Louis, Missouri, USA) was aliquoted (112.5 µL) and stored on
ice. 25 µL of plasmawas added to theMeOH followed by addition of 329 µL
MeOH, 658 µL chloroform (CHCl3, Sigma Aldrich, St. Louis, Missouri,
USA), and 382.5 µL water (H2O, Fisher Scientific, New Hampshire, USA).
Samples were vortexed and left on ice for 10min to separate into a biphasic
mixture. The samples were centrifuged at 2560 × g for 20min at 4 °C and
then left to equilibrate at room temperature for 20min. 300 µL of the upper
polar phase was then collected and dried in a rotational vacuum con-
centrator (Martin Christ, Osterode, Germany). To the urine samples
(150 µL), 200 µLof 1mg/mLurease solution inwaterwas added, sonificated
for 15min and left on ice for 45min. Ice cold MeOH (800 µL containing
2 µg/mL cinnamic acid as internal standard) was added, vortexed and
centrifuged atmaximumspeed for 10min at 4 °C.The supernatant (750 µL)
was transferred to a new vial and stored at−80 °C until use. Urine samples
were normalized to the according osmolarity and dried in a rotational
vacuum concentrator (Martin Christ, Osterode, Germany). Quality control
(QC) sampleswere prepared bypooling the extracts of plasmaor urine from
each sample.

Forderivatization the extractswere removed fromthe freezer anddried
in a rotational vacuum concentrator (Martin Christ, Osterode, Germany)
for 60min before further processing to ensure there was no residual water
which may influence the derivatization efficiency. The dried extracts were
dissolved in 15 µL or 20 µL of methoxyamine hydrochloride solution
(40mg/mL in pyridine, both Sigma Aldrich, St. Louis, Missouri, U) and
incubated for 90min at 30 °C with constant shaking, followed by the
addition of 50 µL or 80 µL of N-methyl-N-[trimethylsilyl]tri-
fluoroacetamide (MSTFA, Macherey-Nagel, Düren, Germany) and incu-
bated at 37 °C for 60min for plasma and urine, respectively. The extracts
were centrifuged for 10min at 18,213 × g, and aliquots of 25 µL (plasma) or
30 µL (urine) were transferred into glass vials for GC-MS measurements.
QC samples were prepared in the same way. An identification mixture for
reliable compound identification was prepared and derivatized in the same
way, and an alkane mixture for a reliable retention index calculation was
included (10.3390/metabo10110457). The metabolite analysis was per-
formed on a Pegasus 4D GCxGC TOFMS-System (LECO Corporation)
complemented with an auto-sampler (Gerstel MPS DualHead with CAS4
injector). The samples were injected in split mode (split 1:5, injection
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volume 1 µL) in a temperature-controlled injector with a baffled glass liner
(Gerstel). The following temperature program was applied during the
sample injection: for 2min, the column was allowed to equilibrate at 68 °C,
then the temperature was increased by 5 °C/min until 120 °C, then by 7 °C/
min up to 200 °C, then by 12 °C/min up to a maximum temperature of
320 °C, which was then held for 7.5min. The gas chromatographic
separation was performed on an Agilent 7890 (Agilent Technologies),
equipped with a VF-5 ms column (Agilent Technologies) of 30m length,
250 µm inner diameter, and 0.25 µm film thickness. Heliumwas used as the
carrier gas with a flow rate of 1.2 mL/min. The spectra were recorded in a
mass range of 60 to 600m/z with 10 spectra/second. Each sample was
measured twice (technical replicates). The GC-MS chromatograms were
processed with the ChromaTOF software (LECO Corporation) including
baseline assessment, peak picking, and computation of the area and height
of peaks without a calibration by using an in-house created reference and
library containing the top 3 masses by intensity for 42 metabolites (55
intermediates; Supplementary Table 12) related to the central carbon
metabolism.

The datawere exported andmerged using an in-housewrittenR script.
The peak area of each metabolite was calculated by normalization to the
internal standard cinnamic acid. Relative quantities were used. CCM and
tryptophan data were batch corrected using the cubic80 spline drift correc-
tion from notame (v0.0.5, in R v4.0.1) followed by QC-sample median
normalization. Urine tryptophan data was only QC-sample median nor-
malized. Quality assurance and control were reported using the recom-
mended standards by mQACC (Supplementary Table 8).

Tryptophan metabolite analysis using UPLC-MS
For the tryptophan analysis, liquid chromatography – mass spectrometry
(LC-MS) analysis was performed with a 1290 Infinity 2D HPLC system
(Agilent Technologies, USA) combined with a TSQ Quantiva triple quad-
rupole mass spectrometer with a heated ESI source (Thermo Scientific,
USA). Before starting, an extracting solvent was prepared comprising 90%
methanol, 0.15 µg/mL mixed internal standards, 0.02% ascorbic acid, and
0.2% formic acid. This was placed at−20 °C to cool. For urine samples a 1:5
(v/v) dilution was prepared in water prior to a urease digestion at 37 °C for
40min with 10U urease (Sigma Aldrich). For each sample, 280 µL pre-
chilled extracting solvent was added to 140 µl of plasma or urease digested
urine. Samples were held at 4 °C and shaken for 10min at 1000 rpm
(Eppendorf ThermoMixerC), incubated at−20 °Cbefore being centrifuged
for 15min at 11,000 × g and 4 °C. The supernatant was transferred to a dark
LC-MS vial for LC-MS/MS analysis. 20 µl of each plasma sample was
pooled, and the pooled plasma was also extracted to make quality control
(QC) samples. TheseQC sampleswere run every 6 samples. LC-MSanalysis
of 5 µl injection was combined with a triple quadrupole mass spectrometer
using a10-mingradient.A reversed-phase columnwasused (VisionHTC18
Basic; L × I.D. 150mm× 4.6mm, 3 μmparticle size, DrMaisch, Germany)
and held at a constant temperature of 30 °C. The mobile phase consisted of
0.2% formic acid in H2O (solvent A) and 0.2% formic acid in methanol
(solvent B). The following gradient was run with a constant flow rate of
0.4mlmin−1: A/B 97/3 (0min), 70/30 (from 1.2min), 40/60 (from 2.7 to
3.75min), 5/95 (from 4.5 to 6.6 min), and 97/3 (from 6.75 to 10min). The
molecular ion and at least two transitions were monitored for the 15
metabolites that are part of the tryptophan pathway.

Data was exported into Skyline (v.19.1, 64-bit) to identify and quantify
peak intensity and area. Transition settings in the Skyline search were:
isotopic peaks included: count; precursor mass analyzer: QIT; acquisition
method: targeted; product mass analyzer: QIT. Method match searching
tolerance was 0.6m/z, and data was manually checked to ensure the correct
peakswere selected. Cubic spline drift correctionwas appliedpermetabolite
and to all sample types using the pooled quality control (QC) samples as
references to fit the splines. The first and the last QC samples used to fit the
cubic splines are the most critical to the resulting fit. In this case, the last
conditioning pooledQC sample and the first of two pooledQC replicates at
the end of the analytical runwere used as the first and lastQC respectively in

the batch correction. Standard samples of increasing concentration were
used to construct calibration curves using linearfits permetabolite in ng/ml.
Concentration values less or equal to zero were declared as missing. In this
study, several study groups featuredmeasurements systematically outside of
the calibration range for somemetabolites (i.e., below or above the smallest
or largest standard sample applied for a metabolites calibration curve,
respectively). Further, calibration of QC standard samples resulted in
insufficient accuracy. However, precision (%RSD in either standard or
pooledQCsamples)was adequate formost compounds.Hence,metabolites
cannot be considered as absolutely but as relatively quantified in this study.
In-house R scripts were used for internal standard normalization, calibra-
tion, statistics, and plotting. Quality assurance and control were reported
using the recommended standards by mQACC (Supplementary Table 8).

Metagenomic sample pre-processing, DNA extraction, and
sequencing
Oropharyngeal swabs and stool samples were collected in collection tubes
containing DNA/RNA shield (Zymo Research Cat# R1107-E and Cat#
R1101) and frozen at −80 °C until further analysis was performed. DNA
was isolated from the oropharyngeal swabs and stool samples using the
ZymoBIOMICS™DNAMiniprepKit (Cat#D4300). ForDNA isolation lysis
of microbes was performed by mechanical disruption using a Mini-
BeadBeater-96 (BioSpec) two times for 2min. Librarieswere prepared using
250 ngDNAas input for theNEBNextUltra IIDNALibrary PrepKit (NEB
Biolabs) according to manufacturer’s instructions. Sequencing was per-
formed on the Illumina NovaSeq platform (PE150) at an average sequen-
cing depth of 5.6 Gbp.

Taxonomic microbiome profiling
Whole genome shotgun sequencing reads were analyzed using the NGLess
pipeline (v1.3.0). Sequences were quality controlled, trimmed (Phred <25),
filtered (length <45 bp) and merged using NGLess defaults and subse-
quently filtered for human reads (reference GRCh38; low complexity
regions and regions mapping to the progenomes 2 gene catalog were
masked using bbtools; minimum match size = 45 bp, minimum identity =
90%). One stool sample and two TBS samples were of insufficient quality
and removed from further analysis. Taxonomic assignment was performed
using the mOTUs profiler (v2.6).

Taxonomic profile pre-processing, normalization, and diversity
analyses
For alpha and beta diversity analysis, stool and oropharyngeal sample
mOTUs were first rarefied to correct for sequencing depth variation (10 K
reads/sample for stool and 600 reads/sample for oropharyngeal samples),
resulting in 75 and72 samples, respectively. Sequencingdepthswere too low
to proceed for TBS samples (see Supplementary Fig. 1). The vegan (v2.5.7)
and stats packages were used for alpha and beta diversity calculations on
these mOTU counts. For differential abundance and confounder testing
with linear models, as stated where results are referenced, manually-binned
genus-level mOTU counts were used to increase the strength of the signal
given the small sample size, which the integration analysis included an
additional filtering step to further refine (more detail in that section, below).
Rarefied counts were binned, transformed to relative abundances, then
filtered to exclude features which were (a) nonzero in less than 20% of
samples, (b) with a mean relative abundance less than 10e−4, or (c) with
zero variance, and finally (d) log-transformed before linear modeling81.

Statistical testing of -omics data and post hoc confounder ana-
lysis with clinical variables
All statistical analysis was performed with R (v4.0.3) using the targets
workflow manager (v0.12.1) and renv environment manager (v0.12.5) to
enhance reproducibility. All figures were generated using ggplot2 (v3.3.3)
and patchwork (v1.1.1). Testingwas performed using themetadeconfoundR
package (v0.2.7) as described in Forslund et al.82 (especially Extended Data
Fig. 1 for a graphical overview) and briefly described here.
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To first identify which clinical variables associated with -omics fea-
tures, standardized, non-parametric effect sizes (Cliff’s delta and the
Spearman correlation for binary and continuous variables, respectively)
were calculated and tested for significance. The full set of clinical variables
and per-individual values are given in Supplementary Table 1; variables
which had less than three nonzero observations in both groups being
compared (i.e., 6 total between uninfected controls andmild COVID-19, or
mild and severe COVID-19) were not tested.

In a second step, significant clinical variables from the first step were
used in an iterative, nested regression procedure to assess post-hoc
confounding potential. Single -omics feature abundances were rank-
transformed and regressed onto a binary disease status label, both (1)
with and (2) without a potentially confounding variable identified from
the first step, followed by a likelihood ratio test (LRT) between nested
models 1 and 2. Linear mixed-effect models were used to account for
repeated sampling (i.e., the formula included a + (1|PatientID) term).
This was repeated combinatorially across all post-processed -omics fea-
ture abundances and clinical variables, and integrated to yield a single
status for each feature-clinical variable association (including disease
status and severity): robust (not confounded by any naively significant
covariates), confounded (and if so by what/which), or not significant
(summary of results shown in Fig. 5a). The Benjamini-Hochberg pro-
cedure was used to correct for multiple testing in both the naive statistical
tests and likelihood ratio tests.

Concretely, our software produces a table of results in which each row
contains the statistical summary for a single -omics feature and clinical
variable pair (e.g., alpha diversity and OSCI score, respectively). There are
identifier columns for each of these (“Y_dep.var” and “X_ind.var” for
dependent Y and independent X variables in the models, respectively), and
columns for naive effect size and adjusted p-values (XY_eff.size and
XY_p.adj, respectively). The final column (“AssocStatus”) is either a status
(D for “deconfounded” or NS for “not significant”), or, if “confounded”, a
list of other clinical variables which resulted in a no-longer-significant
association between X and Y in the given row when modeled as second
independent variable. In our example, the gut alpha diversity was “decon-
founded” (i.e., robustly associated with the OSCI score), while the oro-
pharyngeal alpha diversity was confounded by antibiotic use, which was
listed (see Supplementary Fig. 1). Our combined results from analysis with
eachof thepost-processed -omicsdata tables and clinicalmetadata are given
in Supplementary Table 6.

Cross-omics associations and integrated statistical analysis
As described above, all individual -omics features were tested for associa-
tionswith the same set of clinical factors including disease status (in the case
of uninfected controls vs mild COVID-19) and severity (in the case of mild
vs severe COVID-19), revealing a subset of features from each space which
was robustly correlated with the OSCI score (Fig. 5a, b). To examine asso-
ciations and generate hypotheses between different -omics spaces, we
reconfigured our statistical framework to include robust subsets of severity-
associated “cross-omics” features as additional independent variables,
analogous to the way clinical variables were previously treated. This pro-
ducednaive correlations between e.g., disease-associatedmicrobial taxa and
metabolites or immune parameters, and further expanded our ability to
classify their robustness via iterative nested model testing.

As a concrete example of a single step in this extended framework:
plasma kynurenine and IFNγwere both robustly associatedwith severity, so
kynurenine was included as an additional independent variable when re-
testing IFNγ against disease status or severity. Three models were built:

osci_model: rank(IFNγ) ~ disease_status
kyn_model: rank(IFNγ) ~ kynurenine
full_model: rank(IFNγ) ~ disease_status + kynurenine
Then two likelihood ratio tests (LRTs) were performed with different

nested model comparisons, and their results were used to classify the
association between IFNγ and the disease status:

Test 1: likelihood ratio test between full_model and osci_model
Test 2: likelihood ratio test between full_model and kyn_model
Test 1 checks whether kynurenine explains significant variation in

IFNγmeasurements beyond thatwhich is already explainedby the presence
or severity of disease (again depending on the comparison being carried
out), while test 2 checks the converse. If only test 1 is significant, then, it can
be concluded that the disease-IFNγ association is statistically reducible to
the kynurenine-IFNγ association, and therefore the disease-IFNγ associa-
tion may be considered “confounded” by kynurenine. If only test 2 or both
tests are significant, the disease-IFNγ association is at least partially statis-
tically independent of kynurenine, andmay be considered robust (so long as
it remains statistically independent from the other clinical and cross-omics
variables tested). Our combined results needed to generate Fig. 5c are given
in Supplementary Table 7.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Raw sequencing data have been deposited under BioProject accession
number PRJNA909223 (www.ncbi.nlm.nih.gov/bioproject/PRJNA909223)
and will be made publicly available before publication. The metabolomics
data are available on MetaboLights with the unique identifier MTBLS6600
(www.ebi.ac.uk/metabolights/MTBLS6600). All supplemental, processed
data tables are uploaded separately.

Code availability
The code to perform the confounder and integrated statistical analyses are
hosted at https://github.com/sxmorgan/pa-covid-multi-omics. Any further
information required to reanalyze the data in this manuscript is available
from the corresponding authors upon request.
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