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Methods

Reconstruction loss functions in scMaui
Here, we assume that the input assay (vector)  is comprised of  features, 𝑌 𝑁
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(vector), with  features. In the loss functions using the binomial 𝑌 =  [𝑦
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distribution, we specifically applied the sigmoid function  to the output logit of the 𝑆(𝑥)
decoder as an activation function. The sigmoid function is defined as:

 .𝑆(𝑥) =  1/(1 + 𝑒−𝑥)

Poisson loss
Poisson distribution, which originally models the probability that an event occurs a given 
number of times, is broadly used for omics data based on read counts. scMaui uses the 
negative log-likelihood of Poisson distribution to calculate the Poisson reconstruction loss as 
follows:
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Negative binomial and negative multinomial distribution losses
Due to the greater value of variance than the mean value, the negative binomial distribution 
is considered a better model for overdispersion than the Poisson distribution. For this 
reason, it is commonly used for explaining overdispersion in gene expression count data1,2. 
Thus, scMaui supports the negative log-likelihood of negative binomial distribution with 
parameters  and , as a reconstruction loss:𝑟 𝑝
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Since , which refers to the probability of success in the binomial distribution, is assumed to 𝑝
be between 0 and 1 in a negative binomial distribution, we converted the logit value 
outputted from the decoder with the sigmoid function

On the other hand, in our previous work, negative multinomial distribution reconstruction loss 
outperformed negative binomial distribution loss with binarised single-cell ATAC-seq assay 3. 
Therefore, we included it in the scMaui package following the implementation in the previous 
work:
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multinomial distribution from the output of decoder .  reflects each feature of the input 𝑦
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assay  as follows:𝑦
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 is used for explaining the dispersion in the data as below:𝑃
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Binary loss
Some single-cell omic assays, such as BS-seq or binarised ATAC-seq, resemble a bimodal 
distribution, so scMaui provides the binary loss function to reconstruct this kind of assays. It 
is based on binomial distribution which models the number of successes in a sample size. 
The loss function again uses the negative log-likelihood of binomial distribution with a 
parameter , the number of total trials, defined as:𝑛
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Due to the same reason as explained in negative binomial loss, we converted the output 
logit with the sigmoid function. 

MSE and MAE
Mean squared error (MSE) and mean absolute error (MAE) calculate the error between the 
ground truth and the reconstruction directly without any distribution:
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Subpopulation Population Subpopulation Population

Naive CD20+ B IGKC+

B

ILC1
ILC

Naive CD20+ B IGKC- ILC

B1 B IGKC+ Plasma cell IGKC+
Plasma

B1 B IGKC- Plasma cell IGKC-

Transitional B CD4+ T naive

T

CD14+ Mono
Mono

CD4+ T activated

CD16+ Mono CD4+ T activated integrinB7+

HSC HSC CD4+ T CD314+ CD45RA+

Reticulocyte Reticulocyte CD8+ T naive

Normoblast

Blast

CD8+ T CD49f+

Erythroblast CD8+ T TIGIT+ CD45RO+

Plasmablast IGKC+ CD8+ T CD57+ CD45RA+

Plasmablast IGKC- CD8+ T CD69+ CD45RO+

Proerythroblast CD8+ T TIGIT+ CD45RA+

NK CD158e1
NK

CD8+ T CD69+ CD45RA+

NK CD8+ T naive CD127+ CD26- CD101-

pDC

Dendritic

CD8+ T CD57+ CD45RO+

cDC2 MAIT

cDC1 T reg

Lymph prog

Prog

gdT TCRVD2+

G/M prog gdT CD158b+

MK/E prog dnT

T prog cycling

Supplementary Table 1. Cell-type labels (subpopulation) and newly annotated population labels in 
GSE194122 single-cell gene and protein expression multiomics dataset



Supplementary Table 2. Cell-type labels (subpopulation) and newly annotated population labels in 
GSE194122 single-cell gene expression and ATAC-seq multiomics dataset

Baseline model
Available multiomics modality

Gene 
expression

Chromatin 
accessibility

Protein 
expression

Methylation

MOFA Variational inference ✓ ✓ ✓ ✓

Seurat CCA or WNN1 ✓ ✓ ✓ ✓

totalVI VAE2 ✓ ✓

MultiVI VAE ✓ ✓ ✓

scMM VAE ✓ ✓ ✓

sciPENN FNN and RNN3 ✓ ✓

Mowgli NMF4 ✓ ✓ ✓

scMaui VAE ✓ ✓ ✓ ✓

Supplementary Table 3. Available multiomics modalities for each benchmarked single-cell 
multiomics integration method

4 Non-negative matrix factorisation
3 Feed-forward neural network and Recurrent neural network
2 Variational Autoencoder
1 Canonical Correlation Analysis or Weighted-nearest Neighbour 

Subpopulation Population Subpopulation Population

Naive CD20+ B

B

CD8+ T

T
B1 B CD8+ T Naive

Transitional B CD4+ T naive

CD14+ Mono
Mono

CD4+ T activated

CD16+ Mono Lymph prog

Prog
Erythroblast

Blast

G/M prog

Normoblast MK/E prog

Proerythroblast ID2-hi myeloid prog

NK NK pDC
Dendritic

ILC ILC cDC2

HSC HSC Plasma Plasma



Subpopulation Best performing 
method

Subpopulation Best performing 
method

B1 B scMaui ILC scMM

CD14+ Mono scMM Lymph prog GEX+PCA

CD16+ Mono GEX+PCA MK/E prog GEX+PCA

CD4+ T activated scMaui NK MOFA

CD4+ T naive GEX+PCA Naive CD20+ B scMaui

CD8+ T Seurat Normoblast MOFA

CD8+ T naive GEX+PCA Plasma cell scMM

Erythroblast MOFA Proerythroblast Seurat

G/M prog MOFA Transitional B MOFA

HSC Seurat cDC2 scMaui

ID2-hi myeloid prog scMaui pDC MOFA

Supplementary Table 4. Best performing method for each subpopulation classification in 
GSE194122 single-cell gene expression and ATAC-seq multiomics dataset 

Batch effect 
handling

Population 
classification 

mean AUC
Population 

silhouette score
Batch silhouette 

score

Without batch effect 
handling 0.985 0.131 0.022

Only adversaries 0.992 0.258 -0.036

Only covariates 0.989 0.132 -0.030

Both 0.993 0.253 -0.050
Supplementary Table 5. scMaui population classification and batch handling performances for 
different batch handling strategies. 



Model Silhouette 
score

AMI ARI Best 
resolution

Clustering 
purity

# Clusters

GEX+PCA 0.061 0.626 0.458 0.8 0.738 15

ATAC+PCA 0.012 0.516 0.356 0.7 0.588 15

scMaui 0.056 0.605 0.389 1.5 0.738 24

MOFA 0.006 0.532 0.375 0.4 0.619 12

Seurat_cca 0.040 0.604 0.392 1.7 0.730 24

Seurat_wnn 0.195 0.666 0.467 0.1 0.788 20

MultiVI 0.109 0.571 0.333 0.9 0.678 27

scMM 0.074 0.562 0.347 0.8 0.681 24

Mowgli 0.009 0.417 0.222 1.4 0.563 26

Supplementary Table 6. Performance comparison with respect to clustering and dimensionality 
reduction for mouse skin SHARE-seq data set. Louvain clustering algorithm was applied to the 
low-dimensional latent factors/features extracted by each method. The best value and the second 
best value of each score are highlighted in bold and underlined, respectively.



Supplementary Figure 1.  Cell subpopulation classification results. A. Cell subpopulation ROC 
curves and mean AUC. B. Classification AUC value for each subpopulation and each method.

Supplementary Figure 2. ATAC pseudotime order representation on UMAP plots and inferred PAGA 
graphs of MOFA (top) and Seurat (bottom).



Supplementary Figure 3. UMAP plot of 20 principal components extracted from mouse embryo gene 
expression assay. A. UMAP coloured by embryo samples B. UMAP coloured by embryo stages C. 
UMAP coloured by cell-types

Supplementary Figure 4. scMaui latent values normalised between 0 and 1 and ordered by the 
embryo development stage.



Supplementary Figure 5. UMAP plot of MOFA factors (A) and Seurat PCs (B) coloured by embryo 
stage and population



Supplementary Figure 6. Correlation between methylation level in promoter/enhancer regions and 
scMaui latent factors. Based on the correlation, we grouped regions into six clusters using the 
agglomerative hierarchical clustering method.



Supplementary Figure 7. Gene expression modality imputation results. Correlation (top) and RMSE 
(bottom) values were calculated between the ground truth and the estimated expression levels. 

Supplementary Figure 8. scMaui imputation performance when both gene and protein expression 
modalities were masked.  Correlation (top) and RMSE (bottom) values were calculated between the 
ground truth and the estimated expression levels. The grey number at each box indicates the median 
value. 



Supplementary Figure 9. Cell subpopulation classification ROC curves and mean AUC values for 
single-cell gene expression and ATAC-seq integration.

Supplementary Figure 10. UMAP representation of scMaui latent factors calculated with different 
batch handling strategies. For each strategy, the UMAP plots are coloured by two batch effect factors 
(donors and sites) and cell population labels. 



Supplementary Figure 11.  Cell-type classification results for mouse skin SHARE-seq data set. A. 
Cell-type ROC curves and mean AUC. B. Classification AUC value for each cell type and each 
method.



Supplementary Figure 12.   UMAP representation of scMaui latent factors for mouse skin 
SHARE-seq data set. Cells are coloured by A. ground-truth cell-type labels and B. Louvain clustering 
results. 



Supplementary Figure 13.  Cell-type clustering performance comparison over different resolution 
values for the Louvain clustering algorithm. A. Number of detected clusters. B. Adjusted mutual 
information. C. Clustering purity. D. Adjusted random index.


