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Introduction
Recent progress in high-throughput sequencing technology made it possible to profile 
different omics modalities from the same cells [1], so-called single-cell multiomics. For 
instance, CITE-Seq enables joint profiling of transcriptomes and proteomes [2], while 
single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) simul-
taneously yield chromatin accessibility, methylome, and transcriptome from the same 
cell [3].
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Single-cell multiomics analysis broadens our perspective on cellular diversity which 
is important for numerous biological processes including embryonic development and 
ageing. The cellular diversity, which refers to different cell populations and subpopula-
tions, has direct clinical implications for both diagnosis and treatment of diseases. Dif-
ferent distributions of cell subpopulations within the tumour microenvironment, for 
instance, are key components for the prediction of immunotherapy response and gene 
discovery [4–6]. The increasing quantity of spatial omics data emphasises the impor-
tance of single-cell multiomics analysis especially in cancer research [7].

In order to handle this complexity, various computational tools have been developed 
to integrate single-cell multiomics data and analyse cellular heterogeneity based on the 
integration of omics modalities [8–10]. These analyses can address many unanswered 
questions in biology and medicine, such as novel cell-type detection or relationships 
between different cells [11]. Seurat, one of the broadly used multiomics analysis R tool-
kits, contributed to revealing renal cell carcinoma regulatory programmes, as well as 
new cellular states in type I diabetes via single-cell multiomics analyses [12, 13]. Integra-
tion of single-cell gene expression, DNA methylation, and chromatin accessibility using 
MOFA unveiled the epigenetic landscapes during gametogenesis [14].

A variational autoencoder (VAE) is a deep generative model for mapping large input 
data to a low-dimensional latent space [15]. With the growing availability of single-cell 
multiomics data, VAEs have become a promising approach to summarise extremely 
complex and sparse datasets using interpretable latent factors [9, 16, 17]. VAE-based 
single-cell multiomics integration models differ according to the integrating approaches 
of multi-modalities. There are two common strategies of integration: product-of-experts 
(PoE) and mixture-of-experts (MoE). The PoE approach multiplies the density func-
tion of all modalities to build a joint distribution, whereas the MoE approach explains 
the joint posteriors as a summation of weighted density functions. Both of those have 
been applied to multiomics data integration [18–21]. Compared to the MoE approach, 
the PoE approach is able to generate a better joint posterior distribution from incom-
plete multi-modal data and has shown higher performance in predicting the mortality 
and drug sensitivity from the Cancer Genome Atlas (TCGA) dataset [20]. According to 
the benchmarking by Brombacher et al., the PoE-based method Cobolt performed bet-
ter than MoE-based scMM in both biological preservation and trajectory conservation 
especially when the dataset contains a high number of cells [22].

Although VAEs are frequently used in single-cell multiomics integration, methods 
published thus far have significant limitations when applied in real experimental set-
tings. Other VAE-based single-cell multiomics integration methods are often applica-
ble only for a specific experimental setup (Supplementary Table 3). For instance, totalVI 
is designed particularly for CITE-Seq and employs a negative binomial distribution for 
read counts [9], while scMVAE and cobolt use a zero-inflated negative binomial distri-
bution, which is only suitable for the combination of RNA-seq and ATAC-seq data [17, 
19].

Multiomics datasets often suffer from strong batch effects that impede appropri-
ate downstream analyses. Unfortunately, batch effect removal is often overlooked 
in VAE-based single-cell multiomics integration models. For instance, Cobolt and 
scMM do not provide clear guidance as to how technical variations can be removed 
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through the neural networks, but rather assume that the input data is already pro-
cessed by another batch effect removal method or comes from a single batch [18, 19]. 
However, batch correction methods are not available for every assay type. In the case 
that a model deals with the batch effect problem, the most common approach is to 
assign a single vector for addressing the full batch provenance of all the experimental 
data [9, 23]. These model designs may not cover realistic experimental setups that 
involve more than one batch effect factor and restrict the usability of the models.

Here, we present a new single-cell multiomics integration method based on varia-
tional PoE autoencoders, Single-cell Multiomics Autoencoder Integration (scMaui) to 
address the aforementioned limitations in VAE-based single-cell multiomics integra-
tion models (Fig. 1). scMaui can model all possible kinds of modalities with a flexible 
reconstruction loss function that supports varied probabilistic distributions including 
not only negative binomial but also Poisson, negative multinomial distributions, and 
many others. We also extended the batch-adversarial learning approach, which was 
introduced in our previous work [24], into the scope of multiomics data. Combin-
ing it with covariates reinforced the batch effect correction in scMaui algorithm. This 
new approach of batch effect handling allows users to flexibly assign batch labels and 
enables analyses of more complicated and realistic experimental designs.

We thoroughly assessed scMaui compared with other single-cell multiomics inte-
gration tools and conducted further biological analyses using various single-cell mul-
tiomics datasets including different assays. We show that scMaui outperforms other 
methods in many benchmarks, and is capable of cellular heterogeneity analysis across 
different biological samples. We also demonstrate the broad utility of scMaui through 
the analyses of diverse datasets and modalities.

Fig. 1 Illustration of scMaui model overview and the training process. Each single-cell multiomics assay 
is given to an encoder and batch effect factors are independently handled by covariates and adversary 
networks. Latent factors created by scMaui can be used for downstream analyses to find cellular 
heterogeneity (e.g. sub/population clustering) and reconstructed assays by the decoders can be used for 
imputation
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Results
scMaui outperforms other methods in our systematic evaluation

We compared scMaui to other previously published methods in terms of cell popula-
tion and subpopulation identification. Each of the integration methods produces a low-
dimensional latent space representation of the data. We used a human bone marrow 
single-cell RNA-seq and antibody-derived tags (ADTs) dataset (GSE194122 [25]) as our 
main benchmarking dataset. Moreover, additional benchmarking was performed with 
SHARE-seq data including single-cell RNA-seq and ATAC-seq profiles from mouse skin 
cells [26]. Via this benchmarking, we show scMaui is not bound to a specific sequencing 
technology.

Cell population and subpopulation prediction

For the first benchmark, we sought to evaluate to what extent the cell-type heterogene-
ity is preserved in the low dimensional representation (cell population and subpopula-
tion prediction). scMaui created 50 latent factors in this task. To that end, we trained 
classifiers to predict the cell population from the latent space representation, and calcu-
lated the area under the receiver operating characteristic curve (AUC-ROC) to measure 
classification performance. We used a support vector machine with tenfold cross vali-
dation and calculated average performance over all cell populations. Regarding average 
area under the curve (AUC), scMaui outperformed all alternative methods (Fig. 2A). The 
performance difference was most striking for the innate lymphocyte cell (ILC) popula-
tion as shown in Fig. 2B. ILC population was particularly difficult to distinguish from T 
cells, because ILC and T cells share many molecular signals and regulate several simi-
lar immune functions [27]. However, ILCs do not have an adaptive T cell receptor and 
belong to the innate immune system [28], making them a distinct population which 
scMaui identified with better AUC than the other methods. We proceeded with the 
same analysis, but on the cell subpopulation labels (Supplementary Fig. 1). MOFA, both 
with and without the group option provided within the method itself, outperformed 
other methods showing high performance in the classical dendritic cell 1 (cDC1) sub-
population, but scMaui still achieved a better mean AUC score than Seurat and totalVI.

Clustering analysis

In practice, ground-truth cell-type labels are often not available for single-cell multiom-
ics analysis. Therefore we also evaluated all methods in terms of clustering, rather than 
supervised classification. Louvain clustering was applied to the latent factors extracted 
by each method. After running Louvain clustering, we measured the clustering perfor-
mance with adjusted mutual information (AMI), adjusted random index (ARI), and clus-
tering purity (Table 1). To find the best clustering result for each method, 20 different 
resolution values (increased by 0.1 from 0.1 to 2.0) were tried (Supplementary Fig. 13), 
and the value recording the best AMI score was selected. scMaui achieved the highest 
score in all these clustering performance measurements. Figure  2C shows the UMAP 
plot of scMaui latent factors with Louvain clustering results, ground-truth population, 
and subpopulation respectively. In total, 18 clusters were detected via the Louvain clus-
tering algorithm, which is between the number of populations and subpopulations. The 
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detected clusters covered most ground-truth populations and some subpopulations. In 
particular, for subpopulations, individual clusters represent reticulocytes, three subpop-
ulations of blasts, and two monocyte subpopulations most distinctly.

Fig. 2 Benchmarking results of single-cell multiomics integration methods. A Cell population classification 
AUC-ROC curves and mean AUC. B Classification AUC value for each population and each method. C 
UMAP representation of scMaui latent factor coloured by clustering result, ground-truth population, and 
subpopulation labels. D Batch effect silhouette score in each subpopulation. E Subpopulation silhouette 
score in each population. F Protein expression (antibody-derived tags, ADT) modality imputation task dataset 
overview (left) and correlation results between predicted and ground-truth values. All boxplots present the 
median value as a middle bar in the box and both extremes are referred to as the first and the third quantiles
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The silhouette score measures how well-separated given sets of labels are within 
the feature space. We calculated the silhouette score for batch labels and population 
labels in the latent space created by each method. For batch labels, the score was com-
puted within each subpopulation (Table 1 and Fig. 2D). While a high silhouette score 
is expected for well-separated populations, ideally batch-corrected latent space should 
record a low silhouette score with respect to the batch labels. Regarding population and 
batch silhouette scores, Seurat performed best, but scMaui showed relatively high per-
formance compared to MOFA and PCA applied for each assay. We also confirmed that 
using both covariates and adversaries improves the batch correction while preserving 
the cell population prediction via an ablation study (Supplementary Table 5 and Fig. 10). 
We furthermore calculated silhouette scores of subpopulations within each population 
in order to investigate how well-distributed subpopulations are in their population clus-
ter (Fig. 2E). scMaui achieved the third highest median subpopulation silhouette score 
following totalVI and Seurat.

Imputation

We also assessed scMaui and other methods in a missing data imputation task (Fig. 2F). 
Here, new test data was introduced from the same GEO database, but data from the 
protein expression modality was partially masked with different rates. For comparison, 
we included only MOFA and totalVI, which had a clear tutorial of protein expression 
imputation. scMaui imputed masked protein expression values most accurately show-
ing the highest correlation and the lowest root mean squared error (RMSE) with respect 
to the ground-truth protein expression value, regardless of the missing rate. We per-
formed the same imputation experiments on the gene expression modality and scMaui 
again achieved the best score for both the RMSE and the correlation regardless of the 
missing rate (Supplementary Fig.  7). When both gene expression and protein expres-
sion values were missing, scMaui could still estimate accurate values of both expression 

Table 1 Performance comparison with respect to clustering and dimensionality reduction

Louvain clustering algorithm was applied to the low‑dimensional latent factors/features extracted by each method. 
Clustering results were assessed with AMI, ARI, and clustering purity score, while the population silhouette score indicates 
how well‑separated populations are in the extracted latent factors/features. The best value of each score is highlighted in 
bold.

Best 
resolution

AMI ARI Clustering purity # Detected 
cluster

Population 
silhouette 
score

GEX+PCA 0.4 0.709 0.603 0.584 16 0.255

ADT+PCA 2.0 0.623 0.268 0.656 53 0.139

scMaui 0.7 0.795 0.737 0.722 18 0.274

MOFA 1.3 0.683 0.345 0.714 40 0.183

MOFA_group 0.4 0.752 0.703 0.658 18 0.157

Seurat 0.3 0.759 0.713 0.617 16 0.312
totalVI 0.9 0.772 0.542 0.710 25 0.296

scMM 0.9 0.649 0.315 0.647 29 0.151

sciPENN 0.7 0.266 0.228 0.362 10 0.008

Mowgli 0.3 0.743 0.559 0.656 15 0.212
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modalities (Supplementary Fig. 8). In this experiment, we set a missing rate of 30% for 
both modalities.

Application to SHARE‑seq data

Simultaneous profiling of RNA-seq and ATAC-seq from the same cells elucidates inter-
actions between transcriptome and epigenome at a single-cell level. Many technologies 
have been developed for the multiomic profiling of RNA-seq and ATAC-seq from the 
same cells (e.g., SHARE-seq, SNARE-seq, and scCAT-seq) [29]. Here, we showcase the 
broad applicability of scMaui together with competitive performances by conducting 
additional comparisons to other methods using mouse skin SHARE-seq data (Meth-
ods). Please, note that we replaced totalVI in the previous benchmarking with MultiVI 
[30] due to the inapplicability to RNA-seq and ATAC-seq integration. sciPENN is not 
included for the same reason. We also used different versions of Seurat [31, 32] for this 
benchmarking. The details are explained in Methods.

In the cell-type classification result (Supplementary Fig. 11), scMaui achieved the high-
est mean AUC value. scMaui latent factors made an accurate classification of cell types 
which were not accurately classified by other methods, such as macrophages or Schwann 
cells. When it comes to the Louvain clustering results (Supplementary Table 6), scMaui 
achieved the second-best clustering purity. The highest AMI and ARI clustering scores 
of GEX+PCA can be explained by the cell-type annotations assigned to clusters created 
using the RNA-seq modality according to the authors [26]. Supplementary Fig. 12 pre-
sents that the Louvain clusters detected with scMaui latent factors represent the major-
ity of cell types with the exception of bulge cells and transit-amplifying cells (TACs). 
Overall, scMaui shows its competitive performance in cell-type identification using the 
integrated profile of RNA-seq and ATAC-seq, proving its broad applicability across mul-
tiomics technologies.

scMaui is capable of trajectory inference and subpopulation examination in human bone 

marrow samples

Subpopulation examination and trajectory inference (e.g. for normal or diseased cell dif-
ferentiation and maturation) are among the most frequent use cases of single-cell mul-
tiomics analysis [33–35]. Cell populations and subpopulations can be annotated based 
on marker gene expression referring to already published single-cell atlases, but incon-
sistent definitions of cell states and subpopulations between different reference datasets 
make it challenging to interpret single-cell multiomics data [36]. Another major chal-
lenge comes from the cells in transition between states. Transcriptomic signal change is 
continuous rather than discrete and cell fates can be decided stochastically [37]. These 
alterations need to be thoroughly described for further analyses such as trajectory infer-
ence, also known as pseudo-time ordering, which tracks the dynamic cell differentiation 
among single cells. Therefore, single-cell multiomics integration tools should be able 
to deal with the change of expression levels accordingly and extract features which can 
explain the transition of cell states based on multiple assays. We validated the usability 
of scMaui in these regards using single-cell RNA-seq and ATAC-seq from healthy bone 
marrow samples (GSE194122 [25]). Here, we used 63,138 cells provided by 9 donors 
and processed in 4 different sites. 10 populations including 22 subpopulations were 
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annotated in the dataset. scMaui was set up to generate 50 latent factors as in the previ-
ous task.

First, we calculated the correlation between latent value and some T cell marker gene 
expression (Fig. 3A). We selected CD3D as a marker for general T cells, GNLY, CCL5, 
NKG7 as markers for CD8+T cells, and CD4, SELL, CCR7 as makers for CD4+ cells 
based on previous studies [10, 25]. These 3 groups of markers resulted in the same 3 
clusters based on the correlation, via hierarchical clustering, and the 3 CD8+T cell 
markers notably showed similar patterns of correlation values. Moreover, CD8+  cells 
had higher values for the latent factors 38 and 36 (Fig.  3B) which are also highly cor-
related with the CD8+T cell marker genes. On the other hand, CD4+T cells showed 
higher values than CD8+T cells at latent factors 32 and 16, which the CD4+T cell mark-
ers are highly correlated with. These results demonstrate that scMaui is capable of sum-
marising cell-type-specific signals into its latent factors without prior knowledge about 
markers or cell types.

Figure  3C displays ATAC pseudo-time of hematopoietic stem cell (HSC), megakar-
yocytic-erythroid progenitors (MK/E prog), and blast cells on UMAP plots calculated 
on principal components (PCs) of ATAC-seq assay and on scMaui latent factors. In this 
dataset, the pseudo-time order of cells was generated in each modality using diffusion 
pseudo-time [38]. Compared to the UMAP computed directly from PCs, scMaui latent 
factors made a better distribution of single-cell data accordingly with ATAC pseudo-
time order. A partition-based graph abstraction (PAGA) map generated from scMaui 
latent factors also reflects the order of cell development from HSC to normoblast [39] 
as a consistent result with the pseudo-time order (Fig.  3D). PAGA was developed to 
graph a topological structure in single-cell data points based on partition connectivity, 

Fig. 3 Subpopulation examination and cell-trajectory analyses using scMaui. A Correlation between 50 
scMaui latent factors and T cell marker genes. B Distribution of latent values over CD4+ and CD8+T cells. 
Only latent factors highly correlated with their marker genes were chosen. C UMAP plot of PCA derived from 
ATAC-seq assay (left) and scMaui latent factors (right) coloured by ATAC-seq pseudo-time order. D PAGA 
graph applied to scMaui latent factor of HSC, MK/E progenitor, and blast subpopulations. E UMAP plot of 
scMaui latent factor coloured by dendritic subpopulations (left) and Louvain clusters (right). F Dendritic 
subpopulation marker gene expression analysis in the detected Louvain clusters
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and has been used for precise identification of biological trajectories [40]. We performed 
the same cell-trajectory analysis with MOFA and Seurat (Supplementary Fig. 2). While 
Seurat made a consistent result with scMaui, MOFA factors could not distinguish HSC, 
proerythroblasts, and normoblasts as clearly as scMaui did and created weak connec-
tions between HSC and two blast subpopulations.

In further analysis, scMaui detected 3 clusters (using Louvain clustering as described 
above) in plasmacytoid dendritic (pDC) cells, which are a subpopulation of dendritic 
cells (Fig. 3E). To explore the discrepancy between the detected 2 clusters in pDC, we 
investigated the expression level of some dendritic marker genes in all 3 clusters found 
in the dendritic population (Fig. 3F). Cluster 0 mostly belongs to cDC2 cells according 
to both UMAP plots and expression analysis. However, clusters 1 and 2 show a differ-
ence mainly in ID2 and CST3 genes, which are considered as cDC1 cell markers rather 
than pDC cell markers according to Lin et al. and Schlitzer et al. [41, 42]. ID2 and CST3 
genes are generally hyper-expressed in cDC1 cells. Therefore, we presume that pDC cells 
in this dataset might include cDC1-like cells in cluster 2, although the dataset does not 
contain cDC1 in their cell-type labels. This provides further evidence of scMaui’s supe-
rior ability to differentiate between subtle cell subtypes without prior knowledge.

scMaui can explain both mouse embryo development and cellular heterogeneity based 

on DNA methylation and gene expression

 DNA methylation dynamics  during embryonic development leads to the emergence 
of cell-type-specific DNA methylation patterns [43]. In mammal genomes, cell-type-
specific methylation profiles are shown especially at CpG sites. Due to its stability and 
inheritability, DNA methylation has been one of the most widely studied epigenetic 
modifications. Many computational methods have been published for DNA methyla-
tion analysis based on bisulfite sequencing (BS-seq) data [44]. However, data sparsity is 
particularly severe in single-cell methylation assays compared to other assays and can 
bias statistical models. In addition, methylation is also affected by gender, age, and envi-
ronmental influences. Thus, single-cell multiomics integration should ideally be able to 
distinguish signatures derived from different factors, so that the desired variations under 
the relevant conditions for a study do not get mixed with technical and other biological 
sources of variation.

During the development of the mouse embryo, each embryonic stage and cell differ-
entiation state differ in their transcriptomic and epigenetic landscapes. Hence, we ana-
lysed both transcriptomic and epigenetic assays of mouse embryo development using 
scMaui. The single-cell multiomics dataset was collected from GSE121708 [45]. After 
removing cells based on quality control (QC) results, we used 939 cells from 8 cell popu-
lations in the analyses. The cells were acquired from 28 different embryos in 4 different 
stages. When only the RNA-seq assay was analysed with PCA, strong batch effects were 
shown as epiblast and primitive streak cells tend to be clustered by samples rather than 
cell populations (Supplementary Fig. 3A and C). The UMAP of PCs coloured by embryo 
stage also poorly recapitulates the change of embryo stage (Supplementary Fig. 3B).

On the other hand, scMaui could alleviate these issues and make a more meaningful 
organisation of cell populations (Fig. 4A right). scMaui created a latent space with 50 
factors and could precisely distribute mouse embryo cells according to biological cell 
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lineages [45–47] in Fig. 4C. We also found that scMaui latent factors could be used to 
detect embryo developmental stages (4.5, 5.5, 6.5 and 7.5) within respective cell pop-
ulations (Fig.  4A left). For instance, the epiblast population includes all four differ-
ent stages, and the cells were aligned along the UMAP2 axis accordingly. We did the 
same analyses with MOFA and Seurat (Supplementary Fig. 5) but neither could make 
a clear representation of embryo development stage changes as scMaui did. MOFA 
factors clearly distinguished between different stages but did not organise the clusters 
along the stage change. Seurat PCs could better arrange the cells according to the 
stage, but E4.5 cells are distributed together with other cells and are not very distinct.

Among the fifty latent factors extracted by scMaui, latent factor 24 explicitly 
reflects the mouse embryo development stages (Fig. 4B left). Although some epiblast 
cells present lower values than others in latent factor 24 (Fig. 4D), there is still a clear 
increase in the latent value from stage E4.5 to E5.5, and from E5.5 to E6.5 (Fig.  4B 
right). Latent factor 42 shows much higher values in the stage E4.5 cells than in the 
other stages of cells (Fig. 4B middle), and primitive and some visceral endoderm cells, 
which are in the E4.5 stage, also present very high values in latent factor 42 (Fig. 4D).

Fig. 4 Mouse embryo single-cell gene expression and methylation multiomics data analysis results. A UMAP 
plot of scMaui latent factor extracted from the entire dataset. The plots are coloured by embryo stages and 
populations each. B Latent values in different stages of embryo cells. Latent factors 24 and 42 are presented 
at the left and the middle. The right boxplot shows the latent factor 24 values by embryo stage only in 
epiblast cells. C Diagram of embryonic cell developmental lineage. D Latent values normalised between 0 
and 1 and ordered by population. E Median correlation between each latent factor and methylation level of 
each region group. The groups were decided based on clustering methylation levels. F Gene expression of 
Rex2 and Susd2 over all single-cell samples
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In order to evaluate whether scMaui can detect methylation signals according to cel-
lular heterogeneity, we calculated the correlation between all latent values and meth-
ylation beta values in the promoter/enhancer regions selected as explained in Methods. 
We clustered the methylation regions into six groups using agglomerative clustering 
(Supplementary Fig.  6) and analysed genes assigned to the regions in groups 2 and 3. 
These groups were chosen due to the strong positive correlation with latent factor 24 
and negative correlation with latent factor 42 (Fig. 4E). Figure 4F depicts the expression 
of the Rex2 gene (assigned to chr4:147019856-147023856 region in group 2) and Susd2 
(assigned to chr10:75642008-75646008 region in group 3). Both are highly expressed in 
E4.5 cells (primitive endoderm and early epiblast populations). To sum up, cells  with 
high expression of Rex2 and Susd2 have high values in latent factor 42 and methyla-
tion levels in promoter/enhancer regions present a strong negative correlation with 
latent factor 42, which means these regions are hypomethylated, reflecting the well-
established inverse dependency between gene expression and methylation state of cor-
responding promoter and enhancer regions. Therefore, scMaui is capable of detecting a 
pair of relevant genes and methylation signals in terms of both mouse embryo develop-
ment stages and cell-type heterogeneity.

Discussion
 The number of studies using single-cell multiomics is rapidly growing due to the ben-
efits of matched omics profiles from the same cells. However, the high complexity of sin-
gle-cell multiomics data requires sophisticated computational tools to integrate assays 
into more comprehensive data representations, where cellular heterogeneity is clearly 
revealed and different sources of variation are disentangled. Different kinds of machine 
learning algorithms have been applied to this problem delivering better comprehension 
of molecular interactions between cells. Nonetheless, many of the methods are limited 
to specific assays or not designed to handle multiple batch effect factors.

In this study, we presented scMaui, a variational PoE autoencoders-based single-cell 
multiomics integration model available for unrestricted types of assay and batch effect 
factors. The PoE approach factorises the joint distribution into the product of marginal 
distributions from respective assays and has a strength in multi-modal modelling with 
incomplete data. In order to reflect the distribution of the different assays, scMaui sup-
ports multiple types of reconstruction errors. With regards to batch effect correction, 
scMaui handles multiple factors independently via separate feed-forward networks 
and adversarial learning. Considering that different batch effect factors (e.g. patients, 
pipelines) introduce independent and irrelevant variations to data, alleviating different 
sources of variation separately in single-cell multiomics data, as scMaui does, is statisti-
cally more coherent.

We assessed scMaui compared to several previously published methods. Single-
cell RNA-seq and protein expression data collected from human bone marrow sam-
ples were used for the evaluation. A summary of the evaluation is presented in Fig. 5. 
scMaui outperformed other methods in population classification, population cluster-
ing, and protein expression imputation tasks. Through the classification AUC values for 
each population, we showed that scMaui performs particularly well for cell populations 
sharing similar expression signals. For the cell population clustering analysis, scMaui 
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recorded the best AMI, ARI, and clustering purity scores. Finally, due to the advantage 
of the PoE approach, scMaui greatly outperformed all other methods in the imputation 
task, predicting much more accurate protein expression data regardless of how much of 
the data the model was shown.

We conducted further downstream analyses of two more single-cell multiomics data-
sets with scMaui. Latent factors extracted from bone marrow single-cell RNA-seq and 
ATAC-seq dataset captured constant patterns of expression within CD4+ and CD8+T 
cell marker gene groups respectively. Also, we were able to identify latent factors highly 
correlated with marker genes that presented higher values only in the corresponding cell 
type. These results indicate that scMaui can create its latent space corresponding to cell-
type heterogeneity. scMaui latent space also showed a better organisation of HSC, MK/E 
progenitor, and blast cells according to ATAC-seq pseudotime compared to MOFA 
factors and made a clear cell trajectory inference result. Lastly, based on the clustering 
result on scMaui latent factors, we found a new potential subpopulation in dendritic 
cells showing expression levels more similar to cDC1 cell type which is not annotated in 
the metadata.

Analysis of the DNA methylome provides an insightful perspective of epigenomic phe-
nomena which induce different levels of gene expression. scMaui was able to create latent 

Fig. 5 Summary of evaluation results conducted in our study. The darker the colour is, the better the method 
performed in each task. Performance scores are normalised by dividing with the standard deviation in each 
task
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factors summarising relevant features in gene expression and methylation assays together, 
with a single-cell mouse embryo multiomics dataset. Compared to other previous methods, 
the UMAP representation of scMaui latent factors arranged cells appropriately for both 
embryo development stages and cell populations. Also, we discovered that some scMaui 
latent factors can reflect the nature of molecular  interactions between DNA methylation 
and gene expression, such as gene silencing in response to hyper-methylation at CpG sites 
within promoter or enhancer regions.

In conclusion, scMaui not only achieved better performance in many different analyses 
compared to other single-cell multiomics integration methods, but also revealed cellular 
heterogeneity and subpopulations that had been hidden in individual omics layers. From 
the technical standpoint, high flexibility supporting different types of reconstruction loss 
functions, separated batch effect handling and missing feature indicator are distinct ben-
efits of scMaui. Thanks to this flexibility, scMaui covers more varied datasets produced via 
different workflows than other methods designed for specific assays. Last but not least, 
scMaui provides a user-friendly and modern API relying on standard data structures. Con-
sequently, we believe that the usability and accessibility of scMaui will extend its usage to a 
broader range of researchers.

Although scMaui has shown outstanding performance and the ability to analyse cellu-
lar heterogeneity, some scenarios still need to be optimised. Because of the high cost of 
multi-assay measurements and numerous single-cell data already processed and stored 
in biobanks, Campbell et  al. and Amodio et  al. attempted to integrate multiple layers of 
omics data collected from similar yet different cells [48, 49]. This task mainly tries to create 
an integrated embedding space covering multiple assays and match clinically related cells 
between different assays. Since scMaui can process multiple modalities simultaneously and 
integrate those into a common embedding space, it might be possible to extend scMaui to 
multiomics data collected from unmatched cells or samples.

Methods
scMaui model description

Variational product‑of‑experts autoencoders

scMaui assigns a pair of encoder and decoder to each modality as illustrated in Fig. 1, so 
that assay-specific features can be extracted. In order to create a joint embedding space for 
all modalities, scMaui deploys additional layers calculating the joint mean and standard 
deviation of encoded features from all assays based on the PoE approach. We assume that 
the embedding representation of each assay follows a Gaussian distribution, thus the joint 
representation calculated as the production of marginal distributions will also be a Gauss-
ian distribution. Building on the approximation of true joint posterior introduced by Wu 
et al. [50], the joint standard deviation ( σjoint ) and joint mean ( µjoint ) for N  assays are calcu-
lated as below:

σjoint = (σ0
−1+

∑N

i=1
σi

−1)−1

µjoint = (µ0σ0
−1+

∑N

i=1
µiσi

−1)(σ0
−1+

∑N

i=1
σi

−1)−1
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µ0 and σ0 are two parameters of the prior Gaussian distribution explaining the joint 
embedding space, and we set it to a standard Gaussian distribution, N (0, I).

Flexible batch effects removal using adversarial learning and covariates

scMaui excludes sources of variations introduced by batch effects using two different 
techniques. Firstly, vectors storing batch effect factors are fed into the encoders and 
decoders individually as covariates. Secondly, scMaui uses adversarial learning via addi-
tional feed-forward networks and gradient reversal layers [51]. The decoders reconstruct 
the input assays only from the joint latent factors and batch effect factor information 
conveyed by adversaries and covariates respectively.

Flexibility in batch effect correction is one of the strengths of scMaui. Batch effect fac-
tors can be both categorical and continuous values. Although varied statistical meth-
ods for batch effect correction have been proposed [52, 53], these commonly allow only 
categorical batch effect factor values or even require further preprocessing such as sep-
aration of input dataset by batches. scMaui supports automatic and simultaneous cor-
rection of multiple batch effects [24].

Deep neural networks are optimised in a direction towards decreasing the given loss 
function value over multiple steps. scMaui has a loss function which consists of three 
terms:

where each assay Y i ∈ R
batch_size×N has N  features. In scMaui, varied types of recon-

struction loss ( Lrecon ) functions are supported depending on the assay type and the 
distribution of expression levels. For instance, a negative binomial loss function is rea-
sonable to read count assays whereas methylation data can be better reconstructed by a 
binary loss function owing to the bimodal distribution of methylation beta values. A full 
list of supported reconstruction losses is available in Supplementary Methods.

For each VAE assigned to an assay i , KL-divergence loss ( Lkl ) is calculated as generally 
done in VAE training [54]:

where K  is the dimension of latent space and wkl is the weight of KL-divergence loss 
given as a hyperparameter.

In addition, an adversarial loss term ( Ladv ) is incorporated into the total loss function 
to correct batch effects inherent in the input data. Adversarial learning [55] is a tech-
nique to force model training towards increasing certain loss term values on purpose. 
Since the latent space should ideally contain cellular heterogeneity information correct-
ing all batch effects, the ground-truth batch effect vectors should not be predictable 
from the embedded latent factors. This idea is applied to scMaui loss function in a way 
of increasing cross-entropy loss between ground-truth and predicted batch effect values. 
According to Eq.  (1), the model tries to decrease Ltotal by increasing Ladv . When total 
J  different batch effect factors are assigned, a cross-entropy loss Ladv is calculated for 
each of those and summed up together at the end. This approach was proven to improve 
batch effect correction by VAE-based models in our previous work [24].

(1)Ltotal = Lkl(µjoint , σjoint)+�
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Furthermore, different types of batch effect factors are handled in parallel as separate 
input vectors of covariates and adversaries. Continuous variables are also supported for 
batch effect handling in the scMaui algorithm. These provide high flexibility in scMaui 
downstream analysis for single-cell multiomics data, while users have to preprocess the 
batch effect information fitting to the required format (e.g. one category of all integrated 
batch effect factors) when using the majority of other single-cell multiomics integration 
tools. If a one-hot encoded categorical batch effect factor bj containing K  labels is given, 
the adversarial learning uses a categorical cross-entropy loss function:

where aj(·) is the adversarial network assigned to the batch effect factor. We note that 
outputs of the adversarial network are softmax-normalised for the categorical cross-
entropy loss. If the batch effect factor bj has continuous values, we use the squared error 
loss:

where all notations are the same as the categorical cross-entropy loss function above.

Seamless handling of missing data

scMaui includes the unique benefit of handling missing data as well. Mosaic data where 
not all samples have complete modalities can be still modelled by scMaui using the 
“missingness” indicator. scMaui supports a “mask” layer where users can indicate which 
modalities or features are absent for each sample, so that loss can be calculated only with 
measured assays and the robust embedding space can be created despite of incomplete 
data, using the PoE-based calculation.

Data preprocessing

Four different single-cell multiomics datasets in various biological scenarios were used 
to assess scMaui performance. From GEO accession number GSE194122 [25], we down-
loaded two single-cell bone marrow datasets: one was comprised of RNA-seq and ADTs 
data, whereas the other included RNA-seq and ATAC-seq. Mouse skin cell SHARE-seq 
data was downloaded from GEO accession number GSE140203 [26]. The skin cell data 
set contains RNA-seq and ATAC-seq profiles. Mouse embryo single-cell multiomics 
data, which consists of RNA-seq and BS-seq, was also collected with GEO accession 
number GSE121708 [45].

Since each assay has its own properties, different preprocessing pipelines were applied 
accordingly. For RNA-seq and ATAC-seq assays, sequencing read counts were normal-
ised and log1p-transformed using scran [56] and scanpy [57]. Then, only for ATAC-seq 
assay, which is more sparse than RNA-seq, we excluded features covering less than 5% 
of the entire cells. ADTs were also normalised with the centred log-ratio transformation.

However, for the mouse skin SHARE-seq data, we mainly followed the preprocessing 
described by scMM paper [18]: choosing the top 5,000 genes and 25% peaks for RNA-
seq and ATAC-seq, respectively. Features expressed in less than 10 cells were excluded 
before choosing the top features.

Ladv(b
j) = −�k=1...Kb

j
k log(softmax(ajk(µjoint))),

Ladv(b
j) = �k=1...K (b

j
k − ajk(µjoint))

2,
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Only for ATAC-seq  in the human bone marrow dataset (GSE194122) and BS-seq 
assays, we filtered out features included neither in promoters nor in enhancer regions. 
hg38 and mm10 genomes were used for finding promoter and enhancer regions, as a 
human and mouse reference genome each. Promoters were collected from UCSC data-
set, while enhancers were downloaded from FANTOM5 (https:// slide base. binf. ku. dk/ 
human_ enhan cers/, [58]). After the filtering, we selected only 5,000 most variable fea-
tures from the assay.

The human bone marrow dataset (GSE194122) provides very detailed cell-type labels 
(45 labels for RNA-seq and ADTs data, 22 labels for RNA-seq and ATAC-seq data). Thus, 
we further coarsely annotated each cell by grouping given cell-type labels. In this study, 
the provided cell-type labels and the new group annotations are referred to as subpopu-
lation and population, respectively. Supplementary Tables 1 and 2 show the annotation 
matches of population and subpopulation in individual datasets. For the benchmarking, 
we used 84,677 cells in total including 11 populations which comprise 45 subpopula-
tions. These were collected from 8 different donors and processed in 4 sites, creating a 
multiple batch effect landscape representative of many real-world scenarios.

Experimental setup

Assignment of batch effect factors

Depending on the single-cell multiomics data collection pipeline, different factors can 
introduce additional sources of variation within the dataset. For the human bone mar-
row dataset, two different factors were considered to cause batch effects: donor and site. 
On the other hand, in the mouse embryo development analysis, only different embryos 
were regarded as a batch effect factor. All the single-cell multiomics integration methods 
with the exception of scMaui and sciPENN took one merged vector of batches including 
both donor and site batch factors, because those accept only a single type of factor for 
batch effect correction.

scMaui

Although scMaui requires many different hyperparameters regarding VAE setup, we 
kept a consistent setup for most of those in all analyses. We gave 20 layers with 512 units 
to the encoder and 1 layer with 20 units to the decoder each. The adversary network was 
established with 2 layers consisting of 128 units. Only in the input layer, dropout was 
applied with the rate 0.1. We used 512 as batch size in all model training.

The number of latent factors and training epochs were chosen depending on the num-
ber of features within the dataset in each analysis. While the human bone marrow gene 
expression and protein expression analyses used only 28 latent factors due to a much 
lower number of protein expression features, the other 2 analyses were done with 
scMaui trained for 50 latent factors. All models were trained over 1500 epochs with the 
exception of the human bone marrow RNA-seq and ATAC-seq analysis whose training 
was 2000 epochs owing to the larger number of features and less sparsity in ATAC-seq 
data compared to the methylation data. Regarding the reconstrufction loss, we gave neg-
ative binomial loss to respective assays except for the BS-seq assay in the mouse embryo 
development analysis. Since methylation data generally presents distinct binary signals, 
methylated or unmethylated, in single-cell data, we utilised binary reconstruction error.

https://slidebase.binf.ku.dk/human_enhancers/
https://slidebase.binf.ku.dk/human_enhancers/
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PCA

Principal component analysis (PCA) is a linear dimensionality reduction algorithm 
which extracts principal components that explain the most variance. We conducted 
PCA on each assay independently and extracted 20 components.

MOFA

MOFA [8] is an R package which can dissect multiomics datasets into integrated fac-
tors and provide a low dimensional reconstruction. In this study, MOFA2 version 1.6.0 
was used and hyperparameters were chosen based on get_default_model_options, 
get_default_data_options and get_defalut_training_options functions provided by the 
package. MOFA also has the option to explain variations across different groups of 
samples, thus we did 2 separate analyses, with and without the group option, to com-
pare the results in terms of batch effect correction.

Seurat

Seurat v3 [10] was mainly developed for integrating single-cell datasets generated via 
different experiments, but we used it in this study focusing more on its capacity to 
find associations between different assays. We applied sctransform only to the RNA-
seq assay in all analyses. In order to handle the batch effect, the Seurat object was split 
into different batches. Then, we selected integration features with 3000 features, and 
found integration anchors between different assays. For finding integration anchors, 
we assigned 100 to the minimum number of neighbours as filtering threshold, ‘rann’ 
(it refers to as fast nearest neighbour search) to the neighbouring method. Ultimately, 
we ran PCA on the integrated data and extracted 20 components in each analysis.

In the mouse skin SHARE-seq benchmarking, more recently published versions of 
Seurat were applied. Seurat v4 introduced weighted-nearest neighbour (WNN) to find 
a joint distribution of multiple modalities of omics data to define cellular state [31], 
whereas a new pipeline to integrate scRNA-seq and scATAC-seq data was revealed in 
Seurat v5 tutorials [32]. In the Seurat v5 tutorial, Signac [59] is used to estimate the 
transcriptional activity based on ATAC-seq counts and the integration is done using 
canonical correlation analysis (CCA). For the benchmarking, we integrated the RNA-
seq and ATAC-seq data from the mouse skin data set following these two pipelines in 
their tutorials (https:// satij alab. org/ seurat/ archi ve/ v4.3/ weigh ted_ neare st_ neigh bor_ 
analy sis and https:// satij alab. org/ seurat/ artic les/ seura t5_ atacs eq_ integ ration_ vigne 
tte), separately. The results are annotated as Seurat_wnn and Seurat_cca, respectively.

totalVI and MultiVI

totalVI [9] is a VAE-based method for integrating specifically CITE-seq data, which is 
comprised of transcriptomes and epitopes, so it was only tested with the human bone 
marrow RNA-seq and ADTs data. We used totalVI included in python package scvi 
version 0.17.1. Batch label was given as the combination of donor and site. We set up 
batch size as 256, the ratio of training samples as 0.8 and the learning rate as 4 × 10−3 . 
The training was done over 300 epochs, and afterwards, we ran the posterior mod-
elling with batch size 32. Otherwise, we followed up on all default hyperparameter 

https://satijalab.org/seurat/archive/v4.3/weighted_nearest_neighbor_analysis
https://satijalab.org/seurat/archive/v4.3/weighted_nearest_neighbor_analysis
https://satijalab.org/seurat/articles/seurat5_atacseq_integration_vignette
https://satijalab.org/seurat/articles/seurat5_atacseq_integration_vignette
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setups described in the scvi-tools package tutorial (https:// docs. scvi- tools. org/ en/0. 
6.6/ index. html).

MultiVI [30] is another VAE-based single-cell multiomcs integration method pro-
vided in the scvi-tools package. Since the targeted data types for the mouse SHARE-
seq benchmarking (RNA-seq and ATAC-seq) are not supported by totalVI, we replaced 
totalVI with MultiVI. When it comes to hyperparameters and pipelines, we followed 
the tutorial provided by the authors (docs. scvi- tools. org/ en/ stable/ tutor ials/ noteb ooks/ 
multi modal/ Multi VI_ tutor ial. html).

scMM

scMM [18] adopts the mixture-of-experts VAEs to integrate either RNA-seq and ATAC-
seq or two modalities of CITE-seq. We downloaded the source code from the GitHub 
repository (https:// github. com/ kodai m1115/ scMM) and used the main.py file for our 
benchmarking experiments. 30 and 40 latent factors were used for human bone marrow 
CITE-seq data and mouse skin SHARE-seq data each.

sciPENN

sciPENN [60] integrates CITE-seq data and imputes the missing values by primarily 
using feed-forward neural networks and recurrent neural networks. Since the method 
is specifically designed for the CITE-seq technology, we added sciPENN only in the 
human bone marrow CITE-seq data benchmarking. The baseline tutorial provided by 
the authors (https:// github. com/ jlakk is/ sciPE NN) was followed to run sciPENN for the 
benchmarking.

Mowgli

Mowgli [61] is a non-negative matrix factorisation (NMF) model combined with optimal 
transport for single-cell multiomics integration. Since Mowgli only performed reason-
ably with a lower number of features during the experiments, we selected the top 500 
highly variable genes for RNA-seq in the human bone marrow CITE-seq data. For the 
mouse skin SHARE-seq data, we chose the top 800 features for each modality. The num-
ber of latent factors was 25 and 40 for the human bone marrow data and mouse skin 
SHARE-seq data integrations each.

Performance measures

Louvain clustering

The Louvain community detection algorithm identifies clusters based on the relative 
density of connections between the inside and the outside of each cluster [62]. This 
method has been applied to a broad range of single-cell analyses [63]. We clustered 
latent factors with the Louvain clustering algorithm and assessed the performance of 
respective methods.

Adjusted mutual information

Mutual information (MI) measures the similarity between ground-truth clusters and 
predicted clusters. Given n ground-truth clusters U = {U1,U2, ...,Un} and m predicted 
clusters V = {V1,V2, ...,Vm} , MI between two clusters is given as:

https://docs.scvi-tools.org/en/0.6.6/index.html
https://docs.scvi-tools.org/en/0.6.6/index.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/multimodal/MultiVI_tutorial.html
https://docs.scvi-tools.org/en/stable/tutorials/notebooks/multimodal/MultiVI_tutorial.html
https://github.com/kodaim1115/scMM
https://github.com/jlakkis/sciPENN
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However, MI value tends to be higher when the number of clusters is larger. Therefore, we 
used adjusted mutual information (AMI) in our evaluation, which takes account of chance 
as follows:

Adjusted rand index

Rand index (RI) is a statistic measuring the similarity between two different clusters. In our 
analysis, it was used for comparing predicted clusters and ground-truth clusters. RI is cal-
culated as follows:

where TP,TN , FP, FN  refer to true positive, true negative, false positive, and false nega-
tive, respectively. Adjusted rand index (ARI) is the corrected version of RI for chance 
and makes the measurement independent of the number of clusters. ARI equation is 
defined as:

Clustering purity

We also calculated the purity of the most dominant class in each cluster. When C differ-
ent ground-truth classes are grouped into one cluster, the clustering purity is calculated as 
follows:

ni means the number of elements from the class i.

Silhouette score

For silhouette score values, we used the silhouette coefficient which measures the similarity 
of each element to the cluster where it belongs, compared to the closest neighbouring clus-
ter. In single-cell analysis, it often represents the separation of clusters meaning that higher 
value indicates better separation. For each cell ci , the silhouette score is calculated as below:

where b(ci) refers to the mean distance between the given cell ci and the nearest neigh-
bouring cluster, and, a(ci) is the mean distance between the given cell ci and all other 
cells within the same cluster.

MI(U ,V ) =
∑n

i=1

∑m

j=1

∣∣Ui∩Vj

∣∣
n+m

log
(n+m)

∣∣Ui∩Vj

∣∣
|Ui|

∣∣Vj

] ; |Xt | := Number of elements in clusterXt .

AMI(U ,V ) =
MI(U ,V )− E(MI(U ,V ))

max(MI(U ,V ))− E(MI(U ,V ))
;E(x) = Expectation of x.

RI =
TP + TN

TP + FP + FN + TN

ARI =
RI − E(RI)

max(RI)− E(RI)
;E(x) = Expectation of x.

Clustering Purity =
max(ni)∏C

i=1ni
; i = 1, 2, ...,C .

SilhouetteScore =
b(ci)− a(ci)

max(b(ci), a(ci))
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