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Abstract
Summary: One of the first steps in single-cell omics data analysis is visualization, which allows researchers to see how well-separated cell- 
types are from each other. When visualizing multiple datasets at once, data integration/batch correction methods are used to merge the data
sets. While needed for downstream analyses, these methods modify features space (e.g. gene expression)/PCA space in order to mix 
cell-types between batches as well as possible. This obscures sample-specific features and breaks down local embedding structures that can 
be seen when a sample is embedded alone. Therefore, in order to improve in visual comparisons between large numbers of samples (e.g. multi
ple patients, omic modalities, different time points), we introduce Compound-SNE, which performs what we term a soft alignment of samples 
in embedding space. We show that Compound-SNE is able to align cell-types in embedding space across samples, while preserving local em
bedding structures from when samples are embedded independently.
Availability and implementation: Python code for Compound-SNE is available for download at https://github.com/HaghverdiLab/Compound-SNE.

1 Introduction
Visualization of high-dimensional data is a key aspect when 
examining single-cell omics (epigenomics, transcriptomics, 
proteomics, etc.) data samples. Many different algorithms ex
ist for embedding high-dimensional data into 2D space, 
though t-distributed Stochastic Neighbours Embedding 
(t-SNE) and uniform manifold approximation and projection 
(UMAP) remain the most common (Van der Maaten and 
Hinton 2008, McInnes et al. 2018). Besides visualizing a sin
gle sample, it is important to be able to visually compare mul
tiple single-cell samples, e.g. scRNA-seq from different 
patient samples or data modalities such as paired scRNA-seq 
and scATAC-seq data (Kim et al. 2022) on the same sample 
or same patient, (multi-view data) before moving on to fur
ther analyses. If the dataset is complete (i.e. containing all cell 
states of interest) the reference dataset can be first embedded 
and other datasets projected onto it (Spitzer et al. 2015, 
Angerer et al. 2016, Hao et al. 2023). Otherwise, in current 
approaches, data integration is performed to merge samples 
together, which are then embedded all at once (Haghverdi 
et al. 2018, Korsunsky et al. 2019, Hao et al. 2021). While 
this does achieve a good alignment of different samples, data 
integration algorithms modify gene expression values in or
der to best mix samples together, leading, in embedding 
space, to the dissolution of unique local structures that are 
seen in original, unintegrated embeddings. Although data in
tegration is still important for other analyses [e.g. such as cell 
type label transfer tasks (M€olbert and Haghverdi 2023)], we 
propose here an alternative method for visualizing multiple 

single-cell samples. Compound-SNE performs what we term 
a soft alignment, aiming to maximize the alignment of multi
ple embeddings while minimizing the local structural differ
ences from the samples’ independent embeddings. This is 
done in a two-step process: (i) alignment in PCA space via 
matrix transformation in order to align embedding initializa
tions, and (ii) addition of a force term to the embedding 
algorithm, which pulls clusters of cells together based on 
annotations.

2 Alignment overview
The complete workflow of Compound-SNE consists of five steps 
as follows. Compound-SNE is designed to work with Scanpy 
(Wolf et al. 2018) formatting, taking in an AnnData object.

1) Data processing: Data should be processed via whatever
method the user deems suitable and transformed into
PCA (principal component analysis) space. Following
Scanpy, this should be stored in the AnnData object as
.obsm[‘X_pca’]. While different samples and modalities
may contain different number of original features, they
should share the same number of features in PCA space,
though data integration should not be performed here.

In addition, for alignment, Compound-SNE requires cell
annotations, ideally cell types, though other types of
annotations are acceptable. If this is not available,
Compound-SNE takes one sample as a reference,
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performs k-means clustering, and, using the cells closest 
to each cluster centroid, identifies corresponding cent
roids in the other samples using mutual nearest neigh
bors (Haghverdi et al. 2018) in PCA space. We note that 
this in not preferred and that these clusters are only used 
for visual alignment and not any type of functional iden
tification. Compound-SNE then integer encodes annota
tions. For the rest of the paper, we will refer to 
annotations as cell types. 

2) Reference selection: Compound-SNE requires at least
one sample to use as a reference. If not specified,
Compound-SNE first chooses a primary reference as the
sample with the most unique cell types. This sample is
used for the primary alignment, as described in the fol
lowing section. Then, if the primary does not contain all
of the cell types, secondary references are chosen in or
der to complete the set of cells.

3) Primary alignment: Samples are first aligned in PCA
space via matrix transformations in order to align cell- 
type centers. A cell-type center (only for shared cell
types) x components matrix is found for each sample,
which is then aligned to the primary reference, after scal
ing, via a Procrustes transformation (Sch€onemann
1966), which scales and rotates a matrix to minimize the
sum of squared errors from a reference matrix. The
obtained transformation matrix is used to transform the
full sample. This impacts the embedding initialization,
but has no further impact on the embedding process.

4) Embedding initialization: As Kobak and Linderman
(2021) shows, initializing a nonlinear embedding opti
mization with PCA components enhances preservation
of global structures. The authors also report that both
t-SNE and UMAP equally preserve global structures
when using the same initialization. We therefore use the
first two components of the transformed PCA space in
order to initialize the embedding for each sample.

5) Alignment via forces: To obtain better alignment be
tween samples with minimal disturbance to local embed
ding structure, we include an additional force term to
the embedding process that pulls the centers of cell type
clusters (that may deviate from the primary alignment in
the process of t-SNE iterations) together for each sam
ple. We first embed the reference sample as normal, then
find the centers of each type in embedding space. When
embedding the remaining samples, during each embed
ding step, cell type centers are found and the distance be
tween embedding sample centers and reference centers is
found, with the goal of minimizing these distances. The
total loss function thus becomes

Ltotal ¼ Ltsneþ λi

XK

i¼1

di

di ¼ ðYr;centeri − Ys;centeriÞ
2 

where Ltsne is the standard t-SNE cost function (Van der 
Maaten and Hinton 2008), di is the squared distance be
tween embedded reference centers, Yr;centeri , and embed
ded sample centers, Ys;centeri , for cell type i, and K is the 
number of shared clusters between the reference and the 
sample data. We expand upon the relation between the 
alignment force exertion and minimization of the loss 
function in the Supplementary Methods. 

For practical implementation, we take advantage of the 
computational speed of the openTSNE (Poli�car et al. 2024) 
Python library. Compound-SNE alternates between a 
t-SNE iteration, via openTSNE, and minimizing the dis
tance between cell-type clusters.
Because not all samples may contain every cell type, as
described above, the primary reference is chosen as the
one with the most unique type. We then identify second
ary references, using the minimum needed to create a set
containing all of the present cell types. Secondary referen
ces are then aligned sequentially to the primary, using
their embeddings to obtain embedding centers of remain
ing types. This creates a complete reference of embedding
centers for each cell type present across all samples.

3 Application
We apply Compound-SNE to datasets consisting of multiple 
patients and modalities, demonstrating its utility for compar
ing different but related datasets. One dataset consists of 
bone marrow samples from six healthy patients, containing 
both gene expression and surface markers (Triana et al. 
2021). The second dataset consists of gene expression and 
ATAC-seq data for kidney samples from the same patient 
(Muto et al. 2021). A subset of alignments is shown in Fig. 1, 
with full alignments in Supplementary Figs S1 and S2. The 
third dataset consists of gene expression of bone marrow 
hematopoietic cells for several time-points following inflam
matory stimulation (Bouman et al. 2024) (shown in 
Supplementary Fig. S3).

In Fig. 1a, using gene expression of patient B6 as a refer
ence, we show that Compound-SNE can be used to align 
gene expression for several patients. The first column shows 
the original, independent embeddings for each sample. The 
second columns shows embedding following the primary 
alignment and the third column shows embedding with the 
additional force term. The final two columns shows embed
ding following data integration using Harmony and Seurat, 
as a comparison to our method. Visually, we see that even us
ing only the primary alignment offers a reasonable improve
ment over the independent embeddings, with the full 
alignment providing a much greater visual alignment. 
Notably, the full alignment yields embeddings that retain 
much of the cluster shapes that are seen in the independent 
embeddings. The two integration methods, while clearly 
aligning all of the samples, visually erase much of the struc
tures unique to each patient in the independent embeddings. 
This is because cells are forced to mix well between batches.

In Fig. 1c, we align scRNA and scATAC samples from the 
same patient. While in comparison to Fig. 1a, where the inde
pendent embeddings look somewhat comparable between 
patients (as well as between scRNA and surface markers in 
Supplementary Fig. S1), the embeddings for scRNA and 
scATAC look very different from each other initially, obscur
ing comparison. Primary alignment achieves a modest im
provement, while the full alignment yields a much stronger 
improvement while preserving original cluster shapes. We 
were unable to integrate the two modalities using Harmony, 
while Seurat was able to integrate them, again at the cost of 
dissolving structures present in the independent embeddings.
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3.1 Comparison statistics and evaluations
Beyond a visual comparison of embeddings, we calculate sev
eral metrics to compare how well-aligned embeddings are to 
each other and how well embedding structures are preserved 
between aligned embeddings and the original embeddings.

1) Alignment score: Beyond visually comparing embed
dings, we calculate a metric to determine how well- 
aligned samples are. In embedding space, we find the

centers of each cell-type for each sample and take the 
sum of squared errors between points. This value, d, is 
then transformed via 1/(1 þ d) so that a value closer to 1 
indicates a better alignment. We see that (Fig. 1b, top), 
as we progress from independent embeddings to aligned 
initializations to aligned with center-based force, we get 
better alignment, which is consistent with the visual 
results. We do see that data integration methods 
Harmony and Seurat yield the best alignment between 
samples, which is expected based on the nature of data 

Figure 1. (a) Embeddings for the six patients from the bone marrow dataset, using B6 as the primary reference. Each row corresponds to a different 
alignment/integration method. All embeddings are on the same spatial scale. (b) Metrics for the embeddings shown in A. Means with error bars for 
standard deviation. Top: structure preservation, calculated as the fraction of KNN for each point preserved from the Independent embeddings. Bottom: 
alignment of the embeddings as the distance between normalized cell type centers. (c) Alignment/integration of scRNA and scATAC samples for K1 of 
the kidney dataset. Alignment scores of scATAC to scRNA are shown on each scATAC subplot, labeled as A. Structure preservation scores, labeled as P, 
for scATAC are shown on the subplots, excluding the Independent embedding. This score is also shown for integration methods on scRNA. All 
embeddings coordinates are on the same scale. Cell-type legends for (a) and (c) are shown in Supplementary Fig. S8.
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integration. Alignment scores between scRNA and 
scATAC for patient K1 are shown directly on the plots 
of Fig. 1c. 

2) Locality preservation: While data integration yields the
best alignment between samples, we can visually see that
this is at the cost of the original embedding structure
(Fig. 1b, bottom). To determine the preservation of local
structures present in each embedding, we calculate the k
nearest neighbors for each cell in the independent embed
ding and compare it to the nearest neighbors in each
alignment, taking the fraction shared as a metric of struc
ture preservation. We see that the primary alignment
obtains the best preservation of original structure, with
alignment with center-forces performing only slightly
worse. Data integration, on the other hand, greatly dis
rupts these local structures. We therefore see that there is
a trade-off between structure preservation and sample
alignment. Preservation scores for scRNA and scATAC
for patient K1 are shown directly on the plots of Fig. 1c.

3) Alignment of data views with highly variable sizes (cell
numbers): Furthermore, to demonstrate the alignment
of samples with highly different cell densities, we ran
domly subsample bone marrow B2 to 696 cells (1/10 of
the cells) and align it with the full sample for B1 (9751
cells) (Supplementary Fig. S4). We see that this still
achieves a nice visual alignment.

4) Computational efficiency: In Supplementary Fig. S5, we
compare the runtime for each samples when embedded
independently and embedded with alignment forces. We
find that, with a couple of outliers in either direction, the
addition of alignment forces does not impact runtime.

5) Clustering for cell annotations: We mentioned that 
Compound-SNE is able to generate noncell-type-specific 
annotations for the sake of performing alignment. Applying 
the full alignment to these generated annotations for the 
bone-marrow scRNA samples is shown in Supplementary 
Fig. S6, which shows a comparable alignment, in this case, 
to using the original cell-type annotations. 

4 Conclusion
With Compound-SNE, we demonstrate how we can perform a 
soft alignment of embeddings for single-cell samples from differ
ent patients and modalities. This aids a visual comparison be
tween many samples, with minimal disturbance to the unique 
sample structures seen when embedding samples independently.

When using Compound-SNE, the usual limitations in inter
preting nonparametric data embedding (like standard t-SNE) 
should be respected (Chari and Pachter 2023). Whereas com
parison of the overall structure, clusters composition and fea
tures activities (e.g. gene expression) across the map are 
correct and useful, over-interpretations such as comparison 
of cell densities over the maps should be avoided.
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