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Abstract

Summary: One of the first steps in single-cell omics data analysis is visualization, which allows researchers to see
how well-separated cell-types are from each other. When visualizing multiple datasets at once, data integration/batch
correction methods are used to merge the datasets. While needed for downstream analyses, these methods modify
features space (e.g. gene expression)/PCA space in order to mix cell-types between batches as well as possible. This
obscures sample-specific features and breaks down local embedding structures that can be seen when a sample is
embedded alone. Therefore, in order to improve in visual comparisons between large numbers of samples (e.g., multiple
patients, omic modalities, different time points), we introduce Compound-SNE, which performs what we term a soft
alignment of samples in embedding space. We show that Compound-SNE is able to align cell-types in embedding space
across samples, while preserving local embedding structures from when samples are embedded independently.
Availability and Implementation: Python code for Compound-SNE is available for download at
https://github.com/HaghverdiLab/Compound-SNE.
Contact: colin.cess@mdc-berlin.de , laleh.haghverdi@mdc-berlin.de
Supplementary Information: Available online. Provides algorithmic details and additional tests.
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Introduction

Visualization of high-dimensional data is a key aspect when

examining single-cell omics (epigenomis, transcriptomics,

proteomics, etc.) data samples. Many different algorithms exist

for embedding high-dimensional data into two-dimensional

space, though t-SNE (t-distributed Stochastic Neighbours

Embedding) and UMAP (uniform manifold approximation and

projection) remain the most common [Van der Maaten and

Hinton, 2008, McInnes et al., 2018]. Besides visualizing a

single sample, it is important to be able to visually compare

multiple single-cell samples, e.g. scRNA-seq from different

patient samples or data modalities such as paired scRNA-seq

and scATAC-seq data [Kim et al., 2022] on the same sample or

same patient, (multi-view data) before moving on to further

analyses. If the dataset is complete (i.e., containing all cell

states of interest) the reference dataset can be first embedded

and other data sets projected onto it [Spitzer et al., 2015,

Angerer et al., 2016, Hao et al., 2023]. Otherwise, in current

approaches, data integration is performed to merge samples

together, which are then embedded all at once [Haghverdi

et al., 2018, Korsunsky et al., 2019, Hao et al., 2021]. While

this does achieve a good alignment of different samples, data

integration algorithms modify gene expression values in order to

best mix samples together, leading, in embedding space, to the

dissolution of unique local structures that are seen in original,

unintegrated embeddings. Although data integration is still

important for other analyses (e.g. such as cell type label transfer

tasks [Mölbert and Haghverdi, 2023]), we propose here an

alternative method for visualizing multiple single-cell samples.

Compound-SNE performs what we term a soft alignment,

aiming to maximize the alignment of multiple embeddings while

minimizing the local structural differences from the samples’

independent embeddings. This is done in a two-step process:

(1) alignment in PCA space via matrix transformation in order

to align embedding initializations, and (2) addition of a force

term to the embedding algorithm, which pulls clusters of cells

together based on annotations.

Alignment Overview

The complete workflow of Compound-SNE consists of five steps

as follows. Compound-SNE is designed to work with Scanpy

[Wolf et al., 2018] formatting, taking in an AnnData object.

1. Data processing Data should be processed via whatever

method the user deems suitable and transformed into

PCA (principal component analysis) space. Following
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Scanpy, this should be stored in the AnnData object as

.obsm[’X pca’]. While different samples and modalities may

contain different number of original features, they should

share the same number of features in PCA space, though

data integration should not be performed here.

Additionally, for alignment, Compound-SNE requires

cell annotations, ideally cell types, though other types

of annotations are acceptable. If this is not available,

Compound-SNE takes one sample as a reference, performs

k-means clustering, and, using the cells closest to each

cluster centroid, identifies corresponding centroids in the

other samples using mutual nearest neighbors [Haghverdi

et al., 2018] in PCA space. We note that this in not

preferred and that these clusters are only used for visual

alignment and not any type of functional identification.

Compound-SNE then integer encodes annotations. For the

rest of the paper, we will refer to annotations as cell types.

2. Reference selection

Compound-SNE requires at least one sample to use as a

reference. If not specified, Compound-SNE first chooses a

primary reference as the sample with the most unique cell

types. This sample is used for the primary alignment, as

described in the following section. Then, if the primary

does not contain all of the cell types, secondary references

are chosen in order to complete the set of cells.

3. Primary alignment Samples are first aligned in PCA

space via matrix transformations in order to align cell-

type centers. A cell-type center (only for shared cell types)

x components matrix is found for each sample, which is

then aligned to the primary reference, after scaling, via

a Procrustes transformation [Schönemann, 1966], which

scales and rotates a matrix to minimize the sum of

squared errors from a reference matrix. The obtained

transformation matrix is used to transform the full sample.

=This impacts the embedding initialization, but has no

further impact on the embedding process.

4. Embedding initialization

As [Kobak and Linderman, 2021] shows, initialising a

non-linear embedding optimization with PCA components

enhances preservation of global structures. The authors also

report that both t-SNE and UMAP equally preserve global

structures when using the same initialisation. We therefore

use the first two components of the transformed PCA space

in order to initialize the embedding for each sample.

5. Alignment via forces

To obtain better alignment between samples with minimal

disturbance to local embedding structure, we include an

additional force term to the embedding process that pulls

the centers of cell type clusters (that may deviate from

the primary alignment in the process of t-SNE iterations)

together for each sample. We first embed the reference

sample as normal, then find the centers of each type in

embedding space. When embedding the remaining samples,

during each embedding step, cell type centers are found

and the distance between embedding sample centers and

reference centers is found, with the goal of minimizing these

distances. The total loss function thus becomes

Ltotal = Ltsne + λi

K∑
i=1

di

di = (Yr,centeri
− Ys,centeri

)
2

where Ltsne is the standard t-SNE cost function

[Van der Maaten and Hinton, 2008], di is the squared

distance between embedded reference centers, Yr,centeri
,

and embedded sample centers, Ys,centeri
, for cell type

i, and K is the number of shared clusters between the

reference and the sample data. We expand upon the relation

between the alignment force exertion and minimization of

the loss function in the Supplementary Methods.

For practical implementation, we take advantage of the

computational speed of the openTSNE [Poličar et al., 2024]

Python library. Compound-SNE alternates between a t-

SNE iteration, via openTSNE, and minimizing the distance

between cell-type clusters.

Because not all samples may contain every cell type,

as described above, the primary reference is chosen as

the one with the most unique type. We then identify

secondary references, using the minimum needed to create

a set containing all of the present cell types. Secondary

references are then aligned sequentially to the primary,

using their embeddings to obtain embedding centers of

remaining types. This creates a complete reference of

embedding centers for each cell type present across all

samples.

Application

We apply Compound-SNE to datasets consisting of multiple

patients and modalities, demonstrating its utility for comparing

different but related datasets. One dataset consists of bone

marrow samples from six healthy patients, containing both

gene expression and surface markers [Triana et al., 2021]. The

second dataset consists of gene expression and ATAC-seq data

for kidney samples from the same patient [Muto et al., 2021]. A

subset of alignments is shown in Figure 1, with full alignments

in Figures S1 and S2. The third dataset consists of gene

expression of bone marrow hematopoetic cells for several time-

points following inflammatory stimulation [Bouman et al., 2024]

(shown in Figure S3).

In Figure 1a, using gene expression of patient B6 as a

reference, we show that Compound-SNE can be used to align

gene expression for several patients. The first column shows the

original, independent embeddings for each sample. The second

columns shows embedding following the primary alignment

and the third column shows embedding with the additional

force term. The final two columns shows embedding following

data integration using Harmony and Seurat, as a comparison

to our method. Visually, we see that even using only the

primary alignment offers a reasonable improvement over the

independent embeddings, with the full alignment providing a

much greater visual alignment. Notably, the full alignment

yields embeddings that retain much of the cluster shapes that

are seen in the independent embeddings. The two integration

methods, while clearly aligning all of the samples, visually

erase much of the structures unique to each patient in the

independent embeddings. This is because cells are forced to

mix well between batches.

In Figure 1c, we align scRNA and scATAC samples from

the same patient. While in comparison to Figure 1a, where the

independent embeddings look somewhat comparable between

patients (as well as between scRNA and surface markers in

Figure S1), the embeddings for scRNA and scATAC look

very different from each other initially, obscuring comparison.

Primary alignment achieves a modest improvement, while

the full alignment yields a much stronger improvement while

preserving original cluster shapes. We were unable to integrate
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Fig. 1. (a) Embeddings for the six patients from the bone marrow

dataset, using B6 as the primary reference. Each row corresponds to

a different alignment/integration method. All embeddings are on the

same spatial scale. (b) Metrics for the embeddings shown in A. Means

with error bars for standard deviation. Top: structure preservation,

calculated as the fraction of KNN for each point preserved from the

Independent embeddings. Bottom: alignment of the embeddings as the

distance between normalized cell type centers. (c) Alignment/integration

of scRNA and scATAC samples for K1 of the kidney dataset. Alignment

scores of scATAC to scRNA are shown on each scATAC subplot, labeled

as A. Structure preservation scores, labeld as P, for scATAC are shown

on the subplots, excluding the Independent embedding. This score is also

shown for integration methods on scRNA. All embeddings coordinates are

on the same scale. Cell-type legends for (a) and (c) are shown in Figure

S8

the two modalities using Harmony, while Seurat was able

to integrate them, again at the cost of dissolving structures

present in the independent embeddings.

Comparison statistics and evaluations

Beyond a visual comparison of embeddings, we calculate several

metrics to compare how well-aligned embeddings are to each

other and how well embedding structures are preserved between

aligned embeddings and the original embeddings.

1. Alignment score

Beyond visually comparing embeddings, we calculate a

metric to determine how well-aligned samples are. In

embedding space, we find the centers of each cell-type for

each sample and take the sum of squared errors between

points. This value, d, is then transformed via 1/(1 + d) so

that a value closer to 1 indicates a better alignment. We

see that (Figure 1b, top), as we progress from independent

embeddings to aligned initializations to aligned with center-

based force, we get better alignment, which is consistent

with the visual results. We do see that data integration

methods Harmony and Seurat yield the best alignment

between samples, which is expected based on the nature

of data integration. Alignment scores between scRNA and

scATAC for patient K1 are shown directly on the plots of

Figure 1c.

2. Locality preservation

While data integration yields the best alignment between

samples, we can visually see that this is at the cost of

the original embedding structure (Figure 1b, bottom). To

determine the preservation of local structures present in

each embedding, we calculate the k nearest neighbors for

each cell in the independent embedding and compare it to

the nearest neighbors in each alignment, taking the fraction

shared as a metric of structure preservation. We see that the

primary alignment obtains the best preservation of original

structure, with alignment with center-forces performing

only slightly worse. Data integration, on the other hand,

greatly disrupts these local structures. We therefore see

that there is a trade-off between structure preservation

and sample alignment. Preservation scores for scRNA and

scATAC for patient K1 are shown directly on the plots of

Figure 1c.

3. Alignment of data views with highly variable sizes

(cell numbers)

Furthermore, to demonstrate the alignment of samples with

highly different cell densities, we randomly subsample bone

marrow B2 to 696 cells (1/10 of the cells) and align it with

the full sample for B1 (9751 cells) (Figure S4). We see that

this still achieves a nice visual alignment.

4. Computational efficiency

In Figure S5, we compare the runtime for each

samples when embedded independently and embedded with

alignment forces. We find that, with a couple of outliers in

either direction, the addition of alignment forces does not

impact runtime.

5. Clustering for cell annotations We mentioned that

Compound-SNE is able to generate non-cell-type-specific

annotations for the sake of performing alignment. Applying

the full alignment to these generated annotations for the

bone-marrow scRNA samples is shown in Figure S6, which

shows a comparable alignment, in this case, to using the

original cell-type annotations.

Conclusion

With Compound-SNE, we demonstrate how we can perform

a soft alignment of embeddings for single-cell samples from

different patients and modalities. This aids a visual comparison

between many samples, with minimal disturbance to the unique

sample structures seen when embedding samples independently.

When using Compound-SNE, the usual limitations in

interpreting non-parametric data embedding (like standard t-

SNE) should be respected [Chari and Pachter, 2023]. Whereas

comparison of the overall structure, clusters composition and

features activities (e.g. gene expression) across the map are

correct and useful, over-interpretations such as comparison of

cell densities over the maps should be avoided.
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(a) Embeddings for the six patients from the bone marrow dataset, using B6 as the primary reference. Each
row corresponds to a different alignment/integration method. All embeddings are on the same spatial scale.

(b) Metrics for the embeddings shown in A. Means with error bars for standard deviation. Top: structure
preservation, calculated as the fraction of KNN for each point preserved from the Independent embeddings. 

Bottom: alignment of the embeddings as the distance between normalized cell type centers. (c) 
Alignment/integration of scRNA and scATAC samples for K1 of the kidney dataset. Alignment scores of 

scATAC to scRNA are shown on each scATAC subplot, labeled as A. Structure preservation scores, labeld as 
P, for scATAC are shown on the subplots, excluding the Independent embedding. This score is also shown 

for integration methods on scRNA. All embeddings coordinates are on the same scale. Cell-type legends for 
(a) and (c) are shown in Figure S8.
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