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Proteomic signatures improve risk 
prediction for common and rare diseases

For many diseases there are delays in diagnosis due to a lack of objective 
biomarkers for disease onset. Here, in 41,931 individuals from the United 
Kingdom Biobank Pharma Proteomics Project, we integrated measurements 
of ~3,000 plasma proteins with clinical information to derive sparse 
prediction models for the 10-year incidence of 218 common and rare 
diseases (81–6,038 cases). We then compared prediction models developed 
using proteomic data with models developed using either basic clinical 
information alone or clinical information combined with data from 37 
clinical assays. The predictive performance of sparse models including 
as few as 5 to 20 proteins was superior to the performance of models 
developed using basic clinical information for 67 pathologically diverse 
diseases (median delta C-index = 0.07; range = 0.02–0.31). Sparse protein 
models further outperformed models developed using basic information 
combined with clinical assay data for 52 diseases, including multiple 
myeloma, non-Hodgkin lymphoma, motor neuron disease, pulmonary 
fibrosis and d il at ed c ar di om yo pathy. For multiple myeloma, single-cell RNA 
sequencing from bone marrow in newly diagnosed patients showed that 
four of the five predictor proteins were expressed specifically in plasma 
cells, consistent with the strong predictive power of these proteins. External 
replication of sparse protein models in the EPIC-Norfolk study showed good 
generalizability for prediction of the six diseases tested. These findings 
show that sparse plasma protein signatures, including both disease-specific 
proteins and protein predictors shared across several diseases, offer 
clinically useful prediction of common and rare diseases.

A central challenge in precision medicine is the development of clini-
cally useful tools for identifying individuals at high risk, which may 
enable timely diagnosis, early initiation of treatment and improved 
patient outcomes1. Clinically recommended tools for predicting the 
risk of onset of diseases are used widely for heart attack and stroke 
(for example, the American College of Cardiology/American Heart 
Association 10-year risk equation)2 but for very few other diseases. 
Across diverse disease pathologies, diagnostic delays of months or 
years are reported from the initial onset of symptoms3–5. Over the last 
decades, single plasma proteins have become established as specific, 

diagnostic assays for a small number of diseases, including B-type 
natriuretic peptide (BNP) for heart failure, troponins for acute coronary 
syndromes and ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial 
fibrillary acidic protein (GFAP) in traumatic brain injury6.

Broad capture plasma proteomics allows estimation of thousands 
of proteins and agnostic discovery studies not confined to a single 
disease of interest and represents a promising technology to acceler-
ate progress towards this challenge. Plasma proteomic signatures 
capture health behaviors and current health status7, and may integrate 
the risk of ‘static’ genetic8,9 and dynamic environmental determinants 
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0.04–0.16), LR = 4.38) (Fig. 2a). Across these 67 diseases, the median 
detection rate (at a 10% false positive rate (FPR), detection rate (DR)10) 
was 45.5% (range 10.8–80.8%), compared with 25% (range 9.5–51.2%) 
for the clinical model (Fig. 2b and Supplementary Table 5). The median 
LR was 4.55 (range 1.08–8.07) for these 67 diseases, representing 
improvements ranging from 0.12 to 6.92 over the clinical models 
(Fig. 2c). For example, applying a protein-informed test for celiac 
disease (LR = 8.08) would result in detecting 80.8% of cases, while 
retaining an acceptable proportion of 10% false positives (Extended 
Data Fig. 2). The mean category-free net reclassification improvement 
across these was 0.10 (25th–75th percentile = 0.03–0.15; Supplemen-
tary Table 6), and mean integrated discrimination improvement 4.79% 
(25th–75th percentile = 1.7–6.4%; Supplementary Table 7). Models 
additionally including blood assay results (Supplementary Table 8) 
showed significantly improved prediction over clinical models for only 
28 diseases (median delta C-index = 0.08, range = 0.01–0.28) (Fig. 3 
and Supplementary Table 9). For 52 of the 67 diseases, protein-based 
models achieved higher LRs (range 0.13–5.17) in comparison with clini-
cal models with blood assays (Fig. 3b,c and Supplementary Table 10). 
To accelerate the use and translational potential of our findings, we 
generated an open-access interactive web resource that enables the 
scientific community to easily visualize post-test probabilities15 based 
on derived LRs across all tested diseases (https://omicscience.org/
apps/protpred).

Compared with the single most informative protein, sparse pro-
tein signatures (5–20 proteins) had an average 5.4% improvement 
in C-index over clinical models, across diseases that achieved sig-
nificant improvements. For 64% of these, performance saturation was 
achieved by including a maximum of five to ten proteins. Among the 
67 diseases with significantly improved prediction by proteins, there 
was a more than eightfold enrichment for hematological or immuno-
logical diseases (odds ratio = 8.6; P = 0.004). Prediction models were 
on average improved more (by proteins) for less common diseases 
(Pearson r between N incident cases and change in C-index = −0.51; 
P value = 9.3 × 10−3) (Extended Data Fig. 3). However, this correla-
tion was not evident across all 218 diseases tested (Pearson r = −0.04, 
P value = 0.52) and downsampling of incident cases (for hypertension, 
for example) did not result in inflation of improvements in C-index 
(Supplementary Table 11). Selected proteins for the 67 improved 
diseases showed little evidence of being specifically enriched or 
under-represented among Olink panels, with the exception of the 
cardiometabolic panel (fold change, 1.58; P value = 0.001) and the 
oncology II panel (fold change, 0.64; P value = 0.007). A total of 19 of 
the 67 diseases showed enrichment for tissue-specific proteins (for 
example, lymphoid tissue for MM) or certain pathways, but only a few 
of these seemed directly related to known disease pathology, such as 
cholesterol metabolism being enriched among proteins predicting 
stable angina (fold change, 27.0; Q value = 2.4 × 10−4).

For MM, we were able to integrate single-cell RNA sequencing 
(scRNA-seq) data of the bone marrow (BM) immune microenviron-
ment of 11 newly diagnosed MM patients and three healthy controls16 
(Extended Data Fig. 4). Across 17 different BM cell types, we found 
that four (FCRLB, QPCT, SLAMF7 and TNFRSF17) of the five identified 
predictor proteins were expressed most abundantly in plasma cells 
(Extended Data Fig. 5 and Supplementary Table 12), suggesting these 
proteins may act as markers of plasma cell levels, which are elevated 
at primordial stages of MM development. Malignancy classification 
of BM plasma cells in the same dataset (Extended Data Fig. 4c), based 
on detected copy number aberrations using inferCNV17, showed that 
upregulation of FCRLB and QPCT expression in plasma cells from MM 
patients was driven by malignant plasma cells (Extended Data Fig. 6 
and Supplementary Table 13). We also observed slight upregulation 
of TNFSF13B expression in malignant plasma cells but, because of the 
nonspecific gene expression profile of TNFSF13B in BM, this increase 
contributed only minimally to its overall expression.

of disease. Translatable, parsimonious models have been described. 
For example, a sparse protein signature, containing as few as three 
proteins, improved identification of a high-risk group for diabetes that 
is currently missed by screening strategies10.

Whether plasma proteomics may offer clinically useful predictive 
or mechanistic information across a wide range of diseases, alone 
or in combination, is unknown for several reasons. First, previous 
proteomic studies have had too few participants to evaluate rare and 
common diseases. Second, previous studies of disease onset have 
focused on a narrow set of common diseases7,11–13, rather than taking 
an agnostic discovery approach. Third, previous studies have not 
reported screening metrics compared with clinical models (with-
out proteins), which may inform integration into health records and 
translational evaluation.

We used data from the United Kingdom (UK) Biobank Pharma Prot-
eomics Project (UKB-PPP)—the largest proteomic experiment to date—
to address the following objectives: (1) to systematically interrogate 
the 10-year predictive potential of the measurable plasma proteome 
across 218 pathologically diverse diseases, over and above models 
based on information obtained in usual care (without and with clinical 
assays) and polygenic risk scores; (2) to identify disease-specific protein 
predictors pointing to underlying etiological mechanisms, compared 
with those shared across diseases and (3) to determine whether the 
screening metrics of proteomic signatures for diseases meet, or exceed, 
those for blood assays used in current clinical practice.

Results
We carried out a cohort study in the UKB-PPP, where plasma proteomic 
profiling was done with the Olink Explore 1536 and Explore Expan-
sion platform, targeting 2,923 unique proteins by 2,941 assays. We 
developed prediction models for 218 diseases, with more than 80 
incident cases within 10 years of follow-up in the random subset of 
the UKB-PPP (N = 41,931; 193 diseases) (Fig. 1), or by including incident 
cases within the ‘consortium-selected’ subset (25 diseases out of the 
218) (Supplementary Tables 1 and 2 and Extended Data Fig. 1). Disease 
definitions were based on validated phenotypes previously described14 
by integrating data from primary care (available for only a subset of 
individuals), hospital episode statistics, cancer and death registries and 
from UKB health questionnaires including self-reported illnesses. We 
excluded prevalent cases (first occurrence before or up to the baseline 
assessment visit) or incident cases recorded within the first 6 months 
of follow-up (Methods).

Sparse protein signatures improved prediction 
over clinical models
Clinical models, including age, sex, body mass index (BMI), self-reported 
ethnicity, smoking status, alcohol consumption and self-reported 
paternal or maternal history for 15 diseases for which this was assessed 
at baseline, showed a median concordance index (C-index) = 0.64 (inter-
quartile range (IQR) = 0.58–0.72), with highest performance achieved 
for endocrine and cardiovascular diseases. For 163 diseases, five pro-
teins alone—not considering any other information—performed as 
well as the clinical model, and significantly better for an additional 30 
diseases (Supplementary Fig. 1 and Supplementary Table 3).

For 67 rare and common diseases, addition of 5 to 20 proteins sig-
nificantly improved clinical models (median increase in C-index = 0.07, 
range = 0.02–0.31) (Fig. 2a and Supplementary Table 4). Diseases for 
which proteins improved clinical models (95% confidence intervals 
(CI) of improvement in C-index (delta C-index) > 0) included multiple 
myeloma (MM) (delta C-index = 0.25 (95% CI 0.20–0.29, likelihood 
ratio (LR) = 6.55), non-Hodgkin lymphoma (delta C-index = 0.21 (0.14–
0.28), LR = 6.08), pulmonary fibrosis (delta C-index = 0.09 (0.03–
0.14), LR = 6.83), celiac disease (delta C-index = 0.31 (0.21–0.38), 
LR = 8.07), dilated cardiomyopathy (delta C-index = 0.17 (0.10–0.22), 
LR = 6.97) and motor neuron disease (delta C-index = 0.11 (95% CI 
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For 14 of 41 diseases tested (from the 67 that improved by proteins 
that had enough cases for stratified analyses; Methods), predictive 
performance differed significantly between men and women. For 28 
additional diseases, significant improvements in prediction by proteins 
were identified only in sex-stratified analyses (Supplementary Fig. 2a 
and Supplementary Table 14). For all other 79 diseases, performance 
was found to be similar between men and women (Pearson r between 
C-indices = 0.92, P value = <2.2 × 10−16) (Methods). In age-of-onset-
stratified analyses (<65 versus ≥65 years at onset), performance dif-
fered significantly for 39 of the 47 diseases tested, from the 67 that 
improved by proteins with enough cases (Methods). Predictive per-
formance was improved by proteins for another 75 diseases in age-of-
onset-stratified analyses only. For all other 20 diseases, performance 
was similar between younger and older disease onset (Pearson r = 0.94, 
P value = 3.85 × 10−10) (Supplementary Fig. 2b and Supplementary 
Table 15).

Although the breadth of our study and the scale and novelty of 
the UKB-PPP data did not enable external replication for most pro-
tein models, we were able to assess generalizability of results for 6 
of the 67 diseases for which proteins improved prediction over and 
above clinical models in the European Prospective Investigation into 
Cancer (EPIC)-Norfolk study (N = 295–1,116; N incident cases = 5–236; 
Supplementary Tables 16 and 17; Methods). Models trained using the 
UKB-PPP data achieved highly comparable C-indexes (Pearson r = 0.81; 
P value = 0.002; Extended Data Fig. 7a) and improvements in prediction 
by the proteins informed models over the clinical models (Pearson 

r = 0.97; P value = 0.001; Extended Data Fig. 7b) in the EPIC-Norfolk study. 
This indicates generalizability of the predictive proteins and models 
trained in UKB. While models trained in UKB were not explicitly trained 
for prediction of more than 10-year incidence, UKB-trained models 
retained substantial performance for prediction of 20-year incidence in 
EPIC-Norfolk over and above clinical models (Extended Data Fig. 7c). We 
further replicated significant improvements in predictive performance 
achieved by protein signatures over the clinical benchmarks for five of 
the six diseases tested (Extended Data Fig. 7c). For one of these diseases, 
chronic obstructive pulmonary disease (COPD), we were only able to 
replicate the improvement by testing prediction of 20-year incidence, 
most likely due to few incident cases within 10 years of follow-up.

Proteins predicting several diseases
The 67 prediction models with clinically relevant improvements, 
included a total of 501 protein targets, of which 147 were selected for 
two or more (range 2–16) diseases (Extended Data Fig. 8), most (~89%) 
of which were selected across two or more clinical specialties (range 
2–9) (Fig. 4a). On average, these had a relatively lower contribution for 
prediction of individual diseases, in comparison with highly specific 
proteins (Fig. 4b), and we further observed no enrichment of specific 
biological pathways. Age was the main correlate of four out of the five 
proteins that were predictive across more than ten diseases, and smok-
ing status was the main correlate for CXCL17 (Extended Data Fig. 9), 
but these proteins still provided improvements in prediction over and 
above these conventional risk factors.

10-year incidence of 218 diseases with
more than 80 incident cases by linkage

to EHRs

Clinical model +
PRS

UKB-PPP random subset
(N = 41,931)

Plasma proteome
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Fig. 1 | Study design. This cohort study is based on a random subset of UKB-
PPP individuals (N = 41,931). The cohort was divided into training (including 
feature selection and optimization steps) and validation sets to develop sparse 
protein-based predictors (including 5–20 proteins from the Olink Explore 1536 
and Explore Expansion panels) for 218 diseases defined using data from the UKB 

health-questionnaire, primary care, hospital episode statistics and cancer and 
death registries. Performance of models using protein signatures was compared 
with models using basic clinical information alone or using basic clinical 
information combined with clinical assay data or genome-wide PGS. Created with 
BioRender.com.
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Fig. 3 | Comparison of predictive performance between protein-based 
(clinical risk factors + proteins) and biomarker-based (clinical risk 
factors + blood assays) models. a, Comparison of C-index by the addition 
of protein-based (orange) or biomarker-based models (blue) onto clinical 
risk factors. We only show those diseases for which the C-index was improved 

significantly by addition of either proteins or clinical assays onto the clinical risk 
factors. We present the mean C-index and the 95% CI. b, Comparison of DRs (at a 
10% FPR) achieved by protein-based and biomarker-based models. c, Comparison 
of LRs for protein-based (orange) or biomarker-based models (gray).
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Proteins specifically predicting one disease
We identified proteins solely and strongly predictive for only one disease 
(Fig. 4c and Supplementary Table 18). Feature selection scores for these 
proteins across other diseases were, on average, 86% lower compared with 
the selection score for the specific disease (Supplementary Fig. 3). These 
proteins included TNF receptor superfamily member 17 (TNFRSF17 or 
B cell maturation antigen)—a specific predictor for MM—and TNFRSF13B—
a strong predictor of monoclonal gammopathy of undetermined 

significance (MGUS), a condition that precedes the development of MM 
(at a rate of ~1 in 100 MGUS cases developing MM per year18). Here, we 
provide evidence that increased plasma levels of these receptors (Sup-
plementary Table 19) are strongly predictive of future onset for these 
blood cancers. Previous studies have already suggested an association 
between plasma TNFRSF17 and progression from MGUS to MM19. Here 
we identified the added value of a five-protein protein signature, which 
improved discrimination by 7% over clinical risk factors + TNFRSF17 alone.

1
2
3
4
5
6
7
8
9

GDF15

HAVCR1

CXCL17
GAST

CDCP1
CHGA

LT
BP2

MMP7

PODXL2
AGER

CA14

CXCL13

EDA2R ELN
ENPEP

FG
F2

3
LR

RN1

MMP12
NEFL

NTp
ro

BNP

1

2

3

4

5

6

7

8

9

Proteins

N
um

er
 o

f s
pe

ci
al

tie
s 

fo
r

w
hi

ch
 it

 w
as

 s
el

ec
te

d 
as

 a
 p

re
di

ct
or

Benign neoplasm or carcinoma in situ
Cancers
Cardiovascular
Digestive
Ear
Endocrine
Eye
Genitourinary

Hematological or immunological
Infections
Musculoskeletal
Neurological
Perinatal
Psychiatric
Respiratory
Skin

a

GAST

CHGA

GDF15

PODXL2

HAVCR1

CDCP1

MMP7 LTBP2

CXCL17

1

3

5

7

9

0 0.25 0.50 0.75 1.00

Mean weight

N
um

be
r o

f s
pe

ci
al

tie
s 

fo
r w

hi
ch

 it
 w

as
 s

el
ec

te
d 

as
 a

 p
re

di
ct

or

b

BCHE

CD276
CDNF

CEACAM1

CNTN4

COL9A1

CYTL1

DEFB4A_DEFB4B

F10
FCRL2

FOS

FSHB

FUOM

GPRC5C

HLA_A
HSD11B1

IGFBP4

NT5C1A

PIGR

PLA2G1B

PTH

REG3A

RRM2

SCG3

SDC4

TCN1

TNFRSF13B

TNFRSF17

TRIM21

UMOD

Respiratory failure
Non-Hodgkin lymphoma

Diabetic ophthalmic complications
Primary or idiopathic thrombocytopenia

Nonrheumatic mitral valve disorders
Carpal tunnel syndrome

Gout
Diabetes type I

Rheumatic fever
Portal hypertension

Psoriasis
Diabetic neurological complications

Chronic kidney disease
Menorrhagia and polymenorrhea

Thrombophilia
Leukemia

Chronic sinusitis
Secondary or other thrombocytopenia

Sjogren disease
Hepatic failure

Hyperparathyroidism
Multiple myeloma and malignant plasma cell neoplasms

Peripheral neuropathies
Osteoarthritis

Monoclonal gammopathy of undetermined significance
Fatty liver

End stage renal disease
Liver fibrosis, sclerosis and cirrhosis

Vitamin B12 deficiency anemia
Agranulocytosis

0 0.2 0.4 0.6 0.8 1.0
Normalized weight

Platform 1536 Expansionc

Fig. 4 | Disease specificity of predictor proteins. a, Number of disease 
specialties for which a protein was selected as a predictor across the 67 diseases 
for which the C-index was significantly improved by a protein signature as 
compared with the clinical model. The box with the dashed lines provide a 
zoomed version of the plot for proteins that were selected across four or more 

clinical specialties. b, Mean model weights for each protein (normalized to the 
top predictor) across diseases for which it was selected as a predictor (out of the 
67 improved diseases). c, Disease-specific proteins are shown as those selected 
for only one disease with a normalized weight >0.6. Platform: Protein included in 
the Olink Explore 1536 panels or the Olink Explore Expansion panels.
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Polygenic risk scores compared with clinical 
models and protein models
For 23 diseases for which polygenic risk scores (PGS) were available 
in UKB, we found that PGS improved prediction significantly over 
clinical models (without blood assays) for only seven diseases, but 
with clinically negligible improvements (median delta C-index = 0.03, 
range = 0.01–0.14) (Supplementary Table 20) compared with those pro-
vided by proteins for those seven diseases (median delta C-index = 0.08, 
range = 0.02–0.30). Proteins outperformed PGS for all of these dis-
eases, except for breast cancer (Extended Data Fig. 10).

Screening metrics for protein and clinical models
We observed consistently superior screening metrics across all condi-
tions for a wide range of FPRs (5–40%; Fig. 5). At a 20% FPR, proteomic 
prediction identified individuals at high risk for pulmonary fibrosis 
(including CA4, CEACAM6, GDF15, SFTPD and WFDC2; DR = 80%) and 
dilated cardiomyopathy (including HRC, TNNI3, TPBGL, NPPB and 
NTproBNP; DR = 75%). At a low FPR (5%), proteomic prediction identi-
fied individuals at high risk for MM (FCRLB, QPCT, SLAMF7, TNFRSF17 
and TNFSF13B; DR = 50%), non-Hodgkin lymphoma (BCL2, CXCL13, 
IL10, PDCD1 and SCG3; DR = 55%) and motor neuron disease (including 
CST5, EGFLAM, NEFL, PODXL2 and TMED10; DR = 29%).

Sensitivity analyses
In sensitivity analyses, we found that adding a larger set of proteins 
included in Olink’s Explore Expansion panels (Methods) did not gen-
erally improve model performance compared with the first release of 
1,463 proteins (Supplementary Fig. 4 and Supplementary Table 4). How-
ever, improvements for selected diseases were obtained by including a 
specific predictive biomarker (captured only in the Expansion panels), 
such as TCN1 (a vitamin B12 binding protein) for vitamin B12 deficiency 
anemia, KLK3 (prostate-specific antigen) for prostate cancer or, F10 
(a coagulation factor that converts prothrombin into thrombin) and 
PROS1 (an anticoagulant protein) for thrombophilia (Supplementary 
Fig. 4). Protein-based models trained on 10-year incidence performed 
equally well when restricting the follow-up time to 5 years (Pearson 
r = 0.96; Supplementary Fig. 5a), although clinical models appeared to 
have systematically lower performances indices up to 5 years (Pearson 
r = 0.88; Supplementary Fig. 5b).

Discussion
We demonstrate the potential of sparse protein signatures to improve 
the prediction of disease onset across common and rare diseases. By 
integrating ~3,000 broad-capture plasma proteins with electronic 
health records (EHRs), we showed that for 52 of 218 diseases studied, 
adding proteins was the single best prediction model, not only superior 
to commonly used patient characteristics, but also to a large array of 
blood assays in clinical use and PGS (where available). For many dis-
eases, broad-capture proteomic technologies offer new possibilities 
to address delays in diagnosis, the first blood-based biomarkers and 
the first evidence of better prediction models compared with cur-
rent practice (Supplementary Table 21). Our results highlight where 
plasma proteomic signatures may inform the need for, and design of, 
therapeutic clinical trials.

The wide spectrum of diseases that we studied enabled discovery 
of disease-proteomic signatures with the strongest screening metrics. 
The proteomic signatures that we report have screening metrics that 
were comparable with, or exceeded, those of blood tests currently 
used as diagnostic tests (for other diseases). Previous studies in a small 
number of diseases have investigated the predictive7,11–13 or prognos-
tic20 potential of the circulating proteome. We found that for almost 
two-thirds (61%) of the superior protein models, a positive test, that 
is, a predicted risk above the risk cut-off, translated into a fourfold 
increased risk of developing the disease compared with a negative one. 
Specifically, for 14 diseases, the LR achieved by protein-based models 
was higher than for a signature including prostate-specific antigen 
(KLK3) for prostate cancer, which is used in currently implemented 
screening programs21. Sparse protein signatures (5–20 proteins) offer 
the opportunity to assess a limited set of proteins at a cost much below 
a broad-capture discovery proteomic assay. The fact that we identified 
strong predictive signatures in the nonfasting UKB samples further sug-
gested feasibility of measurement in clinical practice. Our development 
of ‘sparse’ signatures was designed to facilitate translation of findings, 
which will require absolute quantification of proteins by clinical grade 
assays, something that is more feasible and affordable for small panels 
or numbers of proteins. Furthermore, our extremely sparse signatures 
performed better or equally for most of the 22 diseases for which com-
plex deep learning models had been developed, in the same UKB-PPP 
study, including 1,536 proteins (Olink Explore 1536) and 54 clinical vari-
ables (including demographic, lifestyle, physical measures, medical and 
family history and blood clinical assays)22 (Supplementary Table 22). 
This demonstrates the advantage and robustness of our approach.

We identified specific and strongly predictive proteins, pointing 
to underlying pathways conferring disease risk. Here, we show that 
up to 10 years before diagnosis, higher plasma levels of TNFRSF17 and 
TNFRSF13B, receptors for BAFF and APRIL, were strong, specific predic-
tors of increased risk of MM and MGUS, respectively. These signaling 
pathways have been shown to promote MM growth23,24. In turn, decreased 
plasma TNFSF13B, was further shown to be predictive of higher risk for 
MM. Anti-TNFRSF17 agents, including antibody–drug conjugates, T cell 
engagers bispecific antibodies and cellular therapy with chimeric antigen 
receptor T cells, are approved for the treatment of refractory MM25–29. 
Clinical trials exploring earlier implementation have started providing 
evidence for the safety and effectiveness of anti-TNFRSF17 agents in early 
lines of treatment30. Our results demonstrated the potential for imple-
mentation of proteomic screening, in a preventative manner even years 
before the onset of overt MM, to identify the subgroup of individuals 
at highest risk, and highlight the possibility to test whether they repre-
sent those who would eventually benefit the most from assessment of 
anti-TNFRSF17 as earlier lines of treatment. Pulmonary fibrosis may be 
delayed due to misdiagnosis of other common respiratory or cardiovas-
cular diseases31. The proteomic signature should be evaluated to identify 
who might benefit from enhanced surveillance through lung function 
tests and lung imaging, potentially enabling early treatment to maximize 
preservation of lung function, now possible with anti-fibrotic therapies32. 
For dilated cardiomyopathy, proteomic signatures could be evaluated 
for their potential to inform electrocardiogram and echo surveillance in 
people without a known genetic cause (up to 60% of cases33,34).

Fig. 5 | DR curves. DRs across different FPR thresholds for selected disease 
examples, which were identified as those most likely to benefit from proteomic 
prediction over clinical risk factors, clinical assays and PGS. a, Celiac disease 
(protein signature: TGM2, NOS2, ITGB7, CD160, PPP1R14D, RBP2, CCL25, MLN, 
FGF19, HMOX1, CEND1, MILR1, CDH2, CKMT1A_CKMT1B, CPA2, GTF2IRD1, 
SEPTIN3, BCL2L15, FABP2, HSD17B14). b, Dilated cardiomyopathy (protein 
signature: HRC, TNNI3, TPBGL, NPPB, NTproBNP). c, Other interstitial pulmonary 
disease with fibrosis (protein signature: CA4, CEACAM6, GDF15, SFTPD and 
WFDC2); d, MM and malignant cell neoplasms (protein signature: FCRLB, 
QPCT, SLAMF7, TNFRSF17, TNFSF13B); e, non-Hodgkin lymphoma (protein 

signature: BCL2, CXCL13, IL10, PDCD1, SCG3); f, motor neuron disease (protein 
signature: CST5, EGFLAM, NEFL, PODXL2 and TMED10); g, leiomyoma of uterus 
(protein signature: BMP4, CDH3, CHRDL2, DNPEP, FGF23, GFRAL, LEFTY2, PAEP, 
SEZ6L2, TSPAN1); h, psoriasis (protein signature: DEFB4A_DEFB4B, IL19, KCTD5, 
PI3, PRKD2); i, primary pulmonary hypertension (protein signature: NPPB, 
NTproBNP, ROBO2, ENPEP, FGFBP2, LTBP2, SFRP1, ACP5, SPON1, CA4, SLC34A3, 
ACE2, AHSG, SERPINA7, SLC44A4, CDC123, SPINK8, LYPLA2, S100A3, MFAP4); j, 
primary malignancy prostate (protein signature: ADAMTS15, IL17A, INSL3, KLK3, 
LECT2, LTBP2, PRR5, SCARF2, SPINT3, TSPAN1).
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We found proteins predictive across several diseases and clinical 
specialties, consistent with shared etiologies, including adaptations 
to ageing. Gastrin, for example, is well known for its role in production 
of hydrochloric acid, gastric motility and associations with gastroin-
testinal cancers and digestive system diseases35. However, our results 
highlighted associations with a wider range of diseases, including 

vitamin deficiencies, osteoporosis, infections and acute kidney injury. 
Associations of proteins with ‘acute’ conditions such as infections 
might point to underlying susceptibility to an event through mecha-
nisms that may point to impaired immune response or generalized 
frailty among others. Proof-of-principle studies have suggested that a 
single ‘omics’ signature may predict risk of onset across several diseases 
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at once36. Although our results point to some proteins as possible mark-
ers of multimorbidity, the potential for leveraging pleiotropic proteins 
to develop a customized, small signature for prediction across several 
diseases remains to be explored.

We observed evidence that superior model performance using 
proteins was achieved more often for rarer diseases and diseases for 
which blood is an important compartment, such as hematological 
cancers, as discussed for MM. While the pathological connections 
of the blood plasma proteome to the latter categories of diseases is 
intriguing, the stronger improvement among rarer conditions might be 
explained by less phenotypic and molecular heterogeneity compared 
with common complex disorders like heart failure or type 2 diabetes 
(T2D). However, we currently lack systematic data-driven information 
on phenotypic risk factors for rare diseases. Future work should focus 
on exploring the improvement of protein biomarkers over systemati-
cally identified clinical risk factors for rarer conditions.

Substantial efforts have been made to improve genome-wide PGS 
and have led to arguments in favor of their potential utility for identi-
fication of individuals at high risk of disease onset8,9,37. However, our 
results highlighted their poor performance, compared with what can 
be achieved by up to 20 proteins only, in contrast to the information 
on millions of variants which are incorporated by PGS. This might be 
best explained by the dynamic nature of circulating protein signatures, 
which may in turn reflect changes in risk in response to environmental 
exposures38, as opposed to the ‘static’ nature of PGS. Future work might 
explore how proteomics compares with additional omics layers of 
information for prediction of future disease risk.

Our study has important limitations. First, our results require 
validation in external studies, in ethnically diverse populations and 
in cohorts with differing pre-test probabilities of disease (UKB has a 
healthy participant effect39). Second, although we report the largest 
proteomic experiment to date, larger sample sizes are required to 
estimate detection rates for rarer diseases, and over shorter clinically 
relevant time frames (for example, 1–5 years), depending on the under-
lying specific disease etiology. Third, evaluations against clinical diag-
nostic markers not available in UKB are required, including M-protein 
for MM, and IgA/IgG antibodies and anti-transglutaminase for celiac 
disease. Further, selected protein candidates might be early indica-
tors of asymptomatic or dormant diseases processes that otherwise 
are associated with a significant delay in the diagnosis and recording 
in EHRs. Fourth, clinical translation will require development and 
validation of absolute quantification protein assays as opposed to 
the relative quantification provided by current proteomic platforms. 
We also note that the preselection of proteins on the Olink Explore 
platform, as any targeted assay, restricts the discovery space of new 
biomarker candidates upfront and that emerging untargeted mass 
spectrometry-based assays will probably reveal additional markers. 
Finally, we observed evidence that plasma proteins are superior in 
the prediction of diseases belonging to certain clinical specialties, 
whereas other diseases, for example, infectious or highly compart-
mentalized (for example, eye diseases), will require other types of 
tissue samples or entirely different clinical information to be better 
predicted.

In conclusion, we demonstrate that sparse plasma protein signa-
tures when integrated with EHRs may offer new, improved prediction 
over standard clinical assays for common and rare diseases, through 
disease-specific proteins and protein predictors shared across several 
diseases.
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Methods
Study design
The UKB study is a population-based cohort of around half a million par-
ticipants from the UK aged between 40 and 59 years who were recruited 
between 2006 and 2010 (baseline assessment). Deep phenotype and 
genetic data are available for participants, including blood and urine 
biomarkers, whole-body imaging, lifestyle indicators, physical and 
anthropometric measurements, genome-wide genotyping, exome and 
genome sequencing. Follow-up is currently ongoing, and participants 
are further linked to routinely collected EHRs. Detailed information is 
available at https://biobank.ndph.ox.ac.uk/showcase/.

Proteomic profiling was performed in EDTA-plasma samples from 
~54,000 UKB participants as part of the UKB-PPP. Details of the sam-
ple selection and sample handling have been described previously40. 
Briefly, the study design included three elements: (1) a randomized sub-
set of 46,595 individuals; (2) 6,356 individuals selected by the UKB-PPP 
consortium members (‘consortium selected’), in which proteomic 
profiling was done on samples from the baseline assessment and (3) 
1,268 individuals who participated in a COVID-19 imaging study with 
repeated imaging at several visits.

We carried out a cohort study in the UKB-PPP to develop, validate 
and compare predictive models with and without proteins. While the 
randomized subset was representative of the entire UKB population, 
‘consortium selected’ participants had different baseline characteris-
tics for common risk factors (on average older, higher BMI and more 
smokers) and were enriched in cases for 122 different diseases40. There-
fore, we based analyses on individuals from the randomized subset 
excluding those with missing data for age, sex and BMI, or who failed 
quality control (QC) criteria for proteomic measurements (N = 41,931). 
For 25 less frequent diseases we further included incident cases occur-
ring within the ‘consortium-selected’ participants (Supplementary 
Table 1). UKB has approval from the North West Multi-Centre Research 
Ethics Committee as a Research tissue biobank (REC reference 11/
NW/0382). Participants provided written informed consent.

Clinical risk information
Clinical risk information (without blood assays) recommended as part 
of usual primary care, was obtained from UKB health questionnaires. 
This included: age at baseline, self-reported ethnicity, smoking status, 
alcohol consumption, paternal or maternal history for 15 individual 
diseases available (datafield IDs 20197 and 20110; Supplementary 
Table 1), and measured BMI. We further included 37 of the most widely 
performed blood assays (16 of these are based on proteins), which 
were assessed in all UKB participants. These included 28 blood assays 
(UKB Category 17518) and 9 blood cell traits (UKB Category 100081) 
(leukocyte, lymphocyte, monocyte, neutrophil, eosinophil, basophil, 
platelet count, hemoglobin concentration and hematocrit percentage), 
and refer to these 37 blood-based tests41 (Supplementary Table 8) as 
clinical assays. Estrogen and rheumatoid factor were not included in 
the analyses given these had more than 50% of missing values. For the 
n = 9 blood cell traits, we excluded blood cell measures from individuals 
with extreme values or relevant medical conditions as described previ-
ously42. Relevant medical conditions for exclusion included pregnancy 
at the time the complete blood count was performed, congenital or 
hereditary anemia, HIV, end-stage kidney disease, cirrhosis, blood can-
cer, BM transplant and splenectomy. Extreme measures were defined 
as leukocyte count >200 × 109 l−1 or >100 × 109 l−1 with 5% immature 
reticulocytes, hemoglobin concentration >20 g dl−1, hematocrit >60%, 
and platelet count >1,000 × 109 l−1. Quality control of these ‘clinical 
assays’ was done based on methods previously described41,42.

Proteomic profiling
Proteomic profiling was performed in EDTA-plasma samples from 
~54,000 UKB participants obtained at baseline as part of the UKB-PPP, 
using the Olink Explore 1536 and Explore Expansion platforms, which 

captured 2,923 unique proteins targeted by 2,941 assays. Assay details 
have been described previously40,43,44, including comparisons with seven 
overlapping clinical assays measured in UKB, yielding strong correlations 
for matching isoforms (r = 0.82)40. Briefly, Olink relies on proximity exten-
sion assays, which targets proteins by pairs of antibodies conjugated to 
complimentary oligonucleotides. Upon binding to their target protein, 
hybridization between probes enables amplification and subsequent 
relative quantification through next generation sequencing. Protein 
targeting assays are grouped across four 384-plex panels: inflammation, 
oncology, cardiometabolic and neurology. Olink’s internal controls 
involve an incubation (a nonhuman antigen with matching antibodies), 
extension (IgG conjugated with a matching oligonucleotide pair) and 
amplification controls (synthetic double-stranded DNA). Additional 
external controls are included in each plate, namely negative, plate and 
sample controls. Limit of detection values are calculated for each protein 
targeting assay per plate based on negative controls run in triplicate. Nor-
malized protein expression (NPX) values are generated by normalization 
to the extension control, log2 transformation and further normalization 
to the plate controls. Samples are flagged with a warning if NPX values 
from internal controls are not within ±0.3 NPX from the plate median 
across an abundance block, or if the mean assay count for a sample is 
less than 500. Assays are flagged with a warning if the median from the 
negative control triplicated deviate more than 5 s.d. from predefined 
values set by Olink. We excluded (1) participants that were removed from 
the study and (2) samples that were defined as outliers. Outliers included 
individuals for which standardized first or second principal component 
values were further than 5 s.d. from the mean or had a median NPX or IQR 
of NPX greater than 5 s.d. for the mean median or mean IQR. Individual 
datapoints with sample or assay warnings, or those belonging to 70 plates 
that failed to satisfy QC criteria were set to missing.

Incident disease definitions
We developed prediction models for 218 diseases, with more than 80 
incident cases within 10 years of follow-up (censoring date was the 31 
December 2020 or death date if this occurred first) in the random sub-
set (N = 41,931, 193 diseases), or by including incident cases within the 
‘consortium-selected’ subset (25 diseases) (Supplementary Table 1). The 
218 diseases include common and rare diseases, and diseases associated 
with high morbidity, high mortality or both. Disease definitions were 
based on validated phenotypes described by Kuan et al.14 by integrating 
data from primary care available only for a subset of participants (that 
is, not using any primary care data made available solely for COVID 
research), hospital episode statistics, cancer and death registries and 
from UKB health questionnaires, including self-reported illnesses. We 
excluded prevalent cases (first occurrence before or up to the baseline 
assessment visit) or incident cases recorded within the first 6 months of 
follow-up. We note that we did not exclude ‘controls’ (that is, individu-
als that did not develop the disease under study) with other prevalent 
conditions. This represents the scenario that is closest to the clinical 
reality were multimorbidity is increasingly common and the most use-
ful prediction models will be those that can discriminate the outcome 
of interest in the presence of other underlying diseases or conditions.

We performed a sensitivity analysis for 19 of the 25 diseases, for 
which incident cases among consortium-selected participants were 
included. For these 19 diseases, there were at least 60 incident cases 
within the random subset of UKB-PPP, enabling demonstrating good 
agreement in predictive performance from the main analyses and by 
excluding consortium-selected incident cases from the test set (Pear-
son r = 0.97). This showed no strong bias introduced from inclusion 
of participants who were selected based on specific characteristics or 
genetic risk of specific diseases.

Protein and biomarker imputation
After quality control, we imputed missing NPX values, using the 
missForest R package45, for all individuals from the randomized or 
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consortium-selected subsets who met the QC and inclusion criteria, 
had no missing data for age, sex and BMI, and had no more than 50% 
of missing values across all proteins (N = 48,054; 41,931 from the ran-
domized subset and 6,123 from ‘consortium-selected’ cases; Supple-
mentary Table 2). Imputation was done per panel (that is, separately 
for Cardiovascular, Cardiovascular II, Inflammation, Inflammation II, 
Neurology, Neurology II, Oncology and Oncology II panels), includ-
ing additional information on age and sex. Subsampling (that is, 
without replacement) was used to grow the number of trees in each 
forest, which, in turn, was set to 50 (‘ntree’ parameter). As a sensitiv-
ity analysis, we tested all optimized models in individuals from the 
validation set that had no missing values (for the proteins from the 
final model) to assess the quality of the imputation procedure. We 
observed good agreement between performance metrics derived 
in the test set, which included a small proportion of imputed pro-
tein values and those derived from individuals with no missing data 
(Pearson r = 0.94).

We further imputed missing values for clinical assays (UKB Cat-
egory 17518) and nine blood cell traits (leukocyte, lymphocyte, mono-
cyte, neutrophil, eosinophil, basophil, platelet count, hemoglobin 
concentration and hematocrit percentage) in the individuals who also 
had clinical assays available (N = 47,901).

Statistical analyses
We adapted a three-step machine learning framework including (1) 
feature selection, (2) hyperparameter tuning and optimization and 
(3) validation. Individuals were grouped as follows: 50% for feature 
selection, 25% for model optimization (training), and 25% for validation, 
for diseases with more than 800 cases; otherwise, into a 70% feature 
selection and model optimization set and 30% for validation. Valida-
tion sets included nonoverlapping individuals completely blinded to 
previous model development stages.

We used regularized Cox regression to derive a ‘benchmark’ clini-
cal model, by fivefold crossvalidation in the optimization or training 
set using the features described above. Validation was performed 
in the held-out test set, where we computed the C-index over 1,000 
bootstrap samples.

For each disease, we performed feature selection among 2,941 
protein targets, or among the 37 clinical assays by least absolute shrink-
age and selection operator (LASSO) regression over 200 subsamples 
of the feature selection set. While six proteins were measured across 
four Olink panels, we included all measurements, albeit for the same 
protein. This was to enable data-driven selection of the best perform-
ing set of measurements given our machine learning framework will 
shrink coefficients to zero for strongly correlated variables. This also 
allowed for previously proposed biomarkers to compete with all avail-
able proteins in a data-driven framework. In each iteration, we ran 
fivefold crossvalidation over three repeats using a grid search to tune 
the hyperparameter lambda, implemented with the caret R package. 
We used the ROSE R package46 to address case imbalance. Selection 
scores were computed as the absolute sum of weights from the model 
with the optimal lambda from each of the 200 iterations and were used 
to identify the top 20 proteins or clinical assays. The top 20 proteins 
or clinical assays with the highest feature selection scores were taken 
forward for optimization of a regularized Cox model including the clini-
cal risk factors, by fivefold crossvalidation (optimization set, or feature 
selection set for diseases with fewer than 800 cases), implemented 
through the glmnet R package. To further identify sparser predictor 
sets, the top five and top ten features were identified as those with 
the highest product of the weights from optimized models (clinical 
risk factors + top 20 features) and feature selection scores. Optimiza-
tion of a clinical model plus five or ten features was similarly done by 
regularized Cox regression by fivefold crossvalidation (optimization 
set). Performance was tested in the validation set, by computing the 
C-index over 1,000 bootstrap samples. Finally, models based on the 

top five proteins alone (without any clinical risk factors) were further 
trained and tested in the same manner.

We tested improvement in models by adding onto the clinical 
‘benchmark’ model: (1) 5–20 proteins, (2) 5–20 clinical assays or (3) 
genome-wide PGSs37 (UKB category 301) (Fig. 1). For these compari-
sons, we kept the best performing protein signature and clinical assay 
signature as the one that had the highest C-index in the validation set. 
Significant improvements between models were considered as those 
for which the 95% CI of the differences in the bootstrap C-index distri-
butions did not include zero.

We calculated the following screening metrics: DRs and LRs in the 
validation set at FPR ranging from 5% to 40%. The FPR was calculated as 
FPR = false positives (FP)/(true negatives (TN) + FP); and detection rates 
were calculated as DR = true positives (TP)/(false negatives (FN) + TP). 
LRs were computed as LR = DR/FPR. All analyses were performed in R 
software v.4.1.1.

We calculated category-free net reclassification improvements 
from addition of proteins to the clinical models using a 0.15 cut-off 
in risk difference to provide more conservative estimates, using the 
R package nricens. We further calculated integrated discrimination 
improvements from addition of proteins to the clinical models using 
the R package survIDINRI.

Age- and sex-stratified performance of prediction models
The performance of the clinical and clinical + protein models was 
tested by stratifying the validation set by sex (men versus women) and 
age at onset (<65 years versus ≥65 years at disease onset). We retained 
only 121 and 134 diseases for which sex-stratified and age-stratified 
validation sets had at least 20 incident disease cases, respectively. We 
computed the C-index over 1,000 bootstrap samples of the stratified 
validation sets. Significant differences between age- or sex-stratified 
performance were considered as those for which the 95% CI of the dif-
ferences in the bootstrap C-index distributions did not include zero. 
Similarly, significant differences between stratified performance of 
protein-informed models and clinical models were considered as 
those for which the 95% CI of the differences in the bootstrap C-index 
distributions did not include zero.

Performance of prediction models for 5-year incidence
The performance of the clinical and clinical + protein models trained 
to predict the risk of 10-year incidence, was tested for 5-year incidence 
(same validation sets). This was tested for diseases for which 10-year 
incidence prediction (C-index) was significantly improved or improved 
by more than 4%, and had at least 20 incident cases within 5 years of 
follow-up in the validation set (54 diseases).

Predictive performance of the Olink Explore 1536 versus 
Expansion panels
We further repeated the entire procedure (that is, feature selection, 
model optimization and testing) on the first subset of Olink Explore 
1536 proteins, using the exact same data splits for comparability (that 
is, the same individuals used in this analysis as those used in training/
testing for the main analyses done on 1536 + Expansion proteins).

Downsampling sensitivity analysis
We performed an additional analysis to rule out the possibility that 
a statistical artifact could lead to the observed inverse relationship 
between incident case numbers and the improvement in C-index 
achieved by proteins. We used hypertension (the disease with the 
highest number of incident cases) as an example to run this sensitiv-
ity analysis, in which we restricted selection of the number of incident 
cases to 80, 100, 150, 250, 500, 1,000 and 2,000. We repeated the entire 
framework, including, feature selection, model optimization and 
validation, in these different configurations including fewer incident 
cases. We showed there was no inflation in the improvements in C-index 
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achieved by adding proteins onto the clinical model, when restricting 
the analyses to fewer incident cases (Supplementary Table 13).

Proportion of variance explained in protein plasma levels
We used the variancePartition R package47 to estimate the proportion 
of variance explained in plasma levels of each of the proteins by a joint 
model including age, sex, BMI, smoking status and the Elixhauser 
comorbidity index48 as explanatory variables. Briefly, this method 
fits a linear mixed model and estimates the proportion of variance 
explained attributed to each of the explanatory variables. We used this 
framework to identify the main correlates for each of the five proteins. 
We compared the proportion of variance explained by each of the vari-
ables for these five proteins with the average proportion of variance 
explained across all other proteins.

Tissue mapping of proteins
To understand the possible tissue origin of plasma proteins, we pro-
grammatically downloaded tissue- and cell-type specificity data from 
the Human Protein Atlas (HPA)49 for the Olink proteins in JSON format 
(on 30 December 2022).

Before joining HPA data with Olink data, we split Olink IDs cor-
responding to several proteins (protein complexes) into their com-
ponents based on ENSEMBL gene IDs. Nine proteins (AKR7L, ANP32C, 
BTNL10, FHIP2A, HCG22, KIR2DL2, KIR2DS4, LILRA3, PNLIPRP2) 
assayed by Olink were not found on HPA, and NTproBNP was assigned 
to NPPB, leaving 2,918 unique protein targets.

To determine whether proteins that HPA reports as tissue specific 
were enriched among selected protein candidates, we performed a 
two-sided Fisher’s exact test for each tissue-specificity, with the num-
ber of selected/nonselected and specific/nonspecific proteins. We 
defined tissue specific as ‘enhanced,’ or ‘enriched’ according to HPA 
classification. Some proteins were hence ‘specific’ to several tissues.

Pathway enrichment
We performed pathway enrichment analysis using the R package 
gprofiler2 (v.0.2.1)50 restricting to KEGG and REACTOME database to 
maintain specificity. We used all protein coding genes covered by the 
Olink Explore platform as a background and tested for enrichment of 
(1) selected protein candidates per disease and (2) proteins selected 
for at least three diseases. We used the Benjamini–Hochberg (BH) 
procedure to account for multiple testing.

MM scRNA-seq analyses
The scRNA-seq data including UMAP representation, cell-type anno-
tation and plasma cell malignancy classification via inferCNV was 
taken from ref. 16. Differential gene expression between BM cell types 
and healthy versus malignant states was investigated by comparing 
the mean expression levels of the gene of interest per patient or con-
trol using Wilcoxon rank sum test. BH was used to adjust for multiple 
comparisons.

External validation
To provide evidence of generalizability of the models developed in UKB, 
we tested performance of the clinical and protein-informed models in 
the EPIC-Norfolk study. The EPIC-Norfolk study is a cohort of 25,639 
middle-aged individuals from the general population of Norfolk—a 
county in Eastern England51. The study was approved by the Norfolk 
Research Ethics Committee (reference no. 05/Q0101/191). Participants 
provided written informed consent.

Participants from the EPIC-Norfolk study51 were flagged for mor-
tality at the UK Office of National Statistics and vital status was ascer-
tained for the entire cohort. Death certificates, hospitalization data 
and cancer registry data was obtained using National Health Service 
(NHS) numbers through linkage with the NHS digital database. EHRs 
were coded by trained nosologists according to the International 

Statistical Classification of Diseases and Related Health Problems, 
ninth (ICD-9) or tenth Revision (ICD-10). Participants were identified 
as having experienced an event if the corresponding ICD-10 code was 
registered on the death certificate (as the underlying cause of death or 
as a contributing factor), cancer registry or as the cause of hospitaliza-
tion. Given that the long-term follow-up of EPIC-Norfolk included the 
ICD-9 and ICD-10 coding system, codes were consolidated.

Serum samples from the baseline assessment (1993–1997) that 
had been stored in liquid nitrogen were used for proteomic profiling 
of a randomly selected subcohort (N = 749; Supplementary Table 14) 
and a T2D case-cohort study (N = 1,173; Supplementary Table 14), using 
the Olink Explore 1536 and Olink Explore Expansion panels, targeting 
2,923 unique proteins by 2,941 assays. Participants were excluded 
due to failed proteomic QC, missing information on age, sex, BMI or 
smoking status.

Out of the 67 diseases for which proteins improved prediction over 
and above the clinical benchmark in UKB, we were able to test model 
replication in the EPIC-Norfolk study for T2D (in the T2D case-cohort), 
prostate cancer, heart failure, COPD, chronic kidney disease and cata-
racts (in the random subcohort) (Supplementary Tables 14 and 15). 
Because family history of the disease was not available in EPIC-Norfolk, 
we trained models in UKB without this variable. We used the weights 
from the models trained in UKB to evaluate their performance in 
EPIC-Norfolk. While the models developed in UKB were trained for 
prediction of 10-year incidence, we tested predictive performance for 
10-year and 20-year incidence in EPIC-Norfolk given the low sample size 
and design of this study. We excluded prevalent cases (for the disease 
being tested) and incident cases occurring within the first 6 months 
of follow-up. Performance was tested in EPIC-Norfolk, by comput-
ing the C-index over 1,000 bootstrap samples. As in UKB, significant 
improvements between models were considered as those for which 
the 95% CI of the differences in the bootstrap C-index distributions 
did not include zero.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All proteomic, phenotypic and EHR data used in this study are avail-
able from UKB upon application (https://www.ukbiobank.ac.uk). 
The EPIC-Norfolk data can be requested by bona fide researchers 
for specified scientific purposes via the study website (https://www.
mrc-epid.cam.ac.uk/research/studies/epic-norfolk/). Data will either 
be shared through an institutional data sharing agreement or arrange-
ments will be made for analyses to be conducted remotely without 
the need for data transfer. Data from the Human Protein Atlas is pub-
licly available (https://www.proteinatlas.org/). KEGG (https://www.
genome.jp/kegg/) and REACTOME (https://reactome.org/) path-
way data is also publicly available. scRNA-seq data are available at 
the European Genome-Phenome Archive under accession number 
EGAS00001006980. To accelerate the use and translational potential 
of our findings, we generated an open-access interactive web resource 
that enables the scientific community to easily visualize post-test prob-
abilities based on derived LRs across all diseases (https://omicscience.
org/apps/protpred).

Code availability
Associated code and scripts for the analysis can be found in the 
following GitHub repository: https://github.com/comp-med/
Sparse-proteomic-prediction-of-common-and-rare-diseases.git.
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Extended Data Fig. 1 | Overview of the study design in the context of the UK 
biobank Pharma Proteomics Project (UKB-PPP). a, Study design used for 193 
diseases for which only participants from the randomly selected subset were 

included in the analysis. b, Study design used for 25 less common diseases were 
incident cases within 10 years of follow-up for the specific disease under study 
were included in the analysis. Created with BioRender.com.

http://www.nature.com/naturemedicine
http://BioRender.com
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Extended Data Fig. 2 | Example of the improvement from proteomically 
informed screening strategies for coeliac disease. We present two scenarios, 
in which screening is performed in 1) the general population and 2) a high-risk 
population (individuals with other autoimmune conditions). According to their 
predicted risk, individuals are classified as ‘positive’ (those predicted to develop 
coeliac disease within the next 10 years) or ‘negatives’ (not predicted at risk of 

coeliac disease). We illustrate the number of true positives, false positives, true 
negative and false negative that would be obtained according to the detection 
rate we estimated for coeliac disease in UK biobank at a 10% false positive rate. 
We further represent the pre-test probability, likelihood ratio (LR) and post-test 
probability in the two different scenarios (general population and high-risk 
population). Created with BioRender.com.

http://www.nature.com/naturemedicine
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Extended Data Fig. 3 | Predictive performance is not related with the number 
of incident cases. a, Predictive performance (C-index) of protein-based 
models, across 67 diseases for which these outperformed clinical models, was 
not correlated with the number of incident cases within 10 years of follow-up. 
b, Predictive performance (C-index) of the clinical models was not correlated 
with the number of incident cases within 10 years of follow-up. c, Improvement 

in predictive performance (delta C-index) of protein-based models over clinical 
models appeared to be the largest for diseases less frequent among the UKB 
population. We present the mean C-index with a 95% confidence interval shown 
by the error bars. d, Improvement in predictive performance (delta C-index) of 
protein-based models was not correlated with baseline prediction of the clinical 
models.

http://www.nature.com/naturemedicine
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Extended Data Fig. 4 | Bone marrow (BM) immune microenvironment 
of multiple myeloma (MM) patients captured by scRNA-seq. a, UMAP 
representation of scRNA-seq data of 11 BM samples from MM patients at initial 
diagnosis and 3 healthy controls. Cell types are highlighted by color. b, UMAP 

from (A) split by clinical state (healthy, initial diagnosis). Cell density and 
distribution is illustrated by color. c, BM UMAP from (A) highlighting the plasma 
cell state healthy (green), malignant (red) and unclear (yellow) based on copy 
number aberrations detected by inferCNV.

http://www.nature.com/naturemedicine
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Extended Data Fig. 5 | Gene expression levels of predictor proteins within 
the bone marrow (BM) immune ecosystem. a, UMAP with highlighted gene 
expression of predictor proteins across all celltypes in the BM. b, Mean gene 

expression levels of predictor proteins within the BM split by cell type. Data are 
presented as median values; box edges are 1st and 3rd quartiles; and whiskers 
represent 1.5× interquartile range (N = 3 - 14).

http://www.nature.com/naturemedicine
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Extended Data Fig. 6 | Gene expression levels of predictor proteins between 
healthy and malignant state and cells in the bone marrow immune 
environment of multiple myeloma (MM) patients. a, Mean gene expression 
levels of predictor proteins within the BM split by cell type and clinical state 
(healthy, initital diagnosis). b, Box plots illustrating mean gene expression 

of predictor proteins within healthy versus malignant plasma cells of MM 
patients at initial diagnosis as characterized by inferCNV. Data are presented as 
median values; box edges are 1st and 3rd quartiles; and whiskers represent 1.5× 
interquartile range (N healthy = 8, N malignant = 11).

http://www.nature.com/naturemedicine
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Extended Data Fig. 7 | External validation in the EPIC-Norfolk study. a, 
Comparison of C-index achieved by UKB-trained models in the UKB validation set 
and in EPIC-Norfolk (for 10-year incidence). b, Comparison of the improvement 
in C-index of the protein-based models over the clinical model in UKB and in EPIC-
Norfolk (for 10-year incidence). c, Replication of the improvement provided by 

protein signatures identified in UKB, over clinical models, in the EPIC-Norfolk 
study. Predictive performance for 10- and 20-year incidence are shown. We 
present the median C-index with a 95% confidence interval N: Number of incident 
disease cases.

http://www.nature.com/naturemedicine
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Extended Data Fig. 8 | Disease specificity of predictor proteins. a, Number of 
individuals diseases for which a protein was selected as a predictor across the 67 
diseases. These were diseases for which the C-index was significantly improved 
or improved by more than 0.4 over the clinical model. b, Average contribution of 

proteins across diseases. Average weights (normalised to the top predictor) from 
the optimised prediction models for each protein (across diseases for which it 
was selected as a predictor).

http://www.nature.com/naturemedicine
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Extended Data Fig. 9 | Proportion of variance explained in plasma levels 
of proteins predictive across more than 10 diseases by demographic 
characteristics. Proportion of variance by age, sex, body mass index (BMI), 

smoking status and a comorbidity score (see Methods) in a joint model. This 
is compared the average variance explained by each of these characteristics in 
plasma levels of all other proteins.

http://www.nature.com/naturemedicine
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Extended Data Fig. 10 | Comparison of the predictive performance of proteins and PGS over clinical models. Comparison of the improvement in predictive 
performance over clinical models (delta C-index) provided by PGS and 5–20 proteins. Only 7 diseases for which the PGS provided a significant improvement in 
performance are shown.

http://www.nature.com/naturemedicine
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