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Abstract
Accurate decision making in precision oncology depends on integration of multimodal
molecular information, such as the genetic data, gene expression, protein abundance,
and epigenetic measurements. Deep learning methods facilitate integration of
heterogeneous datasets. However, almost all published deep learning-based bulk
multi-omics integration methods have constrained usability. They suffer from lack of
transparency, modularity, deployability, and are applicable exclusively to narrow tasks.
To address these limitations, we introduce Flexynesis, a versatile tool designed with
usability, and adaptability in mind. Flexynesis streamlines data processing, enforces
structured data splitting, and ensures rigorous model evaluation. It offers unsupervised
feature selection, different omics layer fusion options, and hyperparameter tuning.
Users can choose from distinct architectures – fully connected networks, variational
autoencoders, multi-triplet networks, graph neural networks, and cross-modality
encoding networks. Each model is complemented with a straightforward input interface
and standardized training, evaluation, and feature importance quantification methods,
enabling easy incorporation into data integration pipelines. For improved user
experience, Flexynesis supports features such as on-the-fly task determination and
compatibility with regression, classification, and survival modeling. It accommodates
multi-task prediction of a mixture of numerical/categorical outcome variables with a
tolerance for missing labels. We also developed an extensive benchmarking pipeline,
showcasing the tool's capability across diverse real-life datasets. This toolset should
make deep-learning based bulk multi-omics data integration in the context of
clinical/pre-clinical data analysis and marker discovery more accessible to a wider
audience with or without experience in deep-learning development. Flexynesis is
available at https://github.com/BIMSBbioinfo/flexynesis and can be installed from
https://pypi.org/project/flexynesis/.
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Introduction
Cancer is a complex disease primarily resulting from genomic aberrations. The disease
is marked by abnormal cell growth, invasive proliferation, and tissue malfunction,
impacting twenty million individuals and causing ten million yearly deaths worldwide [1].
To bypass protective mechanisms, cancer cells must acquire several key
characteristics, such as resistance to cell death, immune evasion, tissue invasion,
growth suppressor evasion, and sustained proliferative signaling [2]. Unlike rare genetic
disorders, caused by few genetic variations, complex diseases, like cancer, require a
comprehensive understanding of interactions between various cellular regulatory layers.
This entails data integration from various omics layers, such as the transcriptome,
epigenome, proteome, genome, metabolome, and microbiome [3]. In clinical settings,
genome-informed diagnostics to identify disease-causing variants are already in use [4].
However, capturing the complexity of most cancers requires more than a panel of
genomic markers. Multi-omics profiling is a vital step toward understanding not only
cancer but other complex diseases like cardiovascular and neurological disorders [5–7].
Proof-of-concept studies have shown the benefits of multi-omics patient profiling for
health monitoring, treatment decisions, and knowledge discovery [8]. Recent
longitudinal clinical studies in cancer are evaluating the effects of multi-omics-informed
clinical decisions compared to standard of care [9]. Addressing this need for multi-omic
profiling to improve the understanding of complex diseases, major international
initiatives have developed multi-omic databases such as The Cancer Genome Atlas
(TCGA), the Cancer Cell Line Encyclopedia (CCLE) [10] to enhance molecular profiling
of tumors and disease models.

While cell regulation at the molecular level is highly interconnected, redundant, and has
non-linear relationships between components, the information about these intricate
relationships is usually isolated in different molecular data modalities. Each molecular
profile is measured one assay at a time (as in assays developed for profiling the
transcriptome, the genome, the methylome etc), however, all the different layers of
molecular information are in actuality in a cross-talk with one another. Therefore, it is
important to capture the non-linear relationships, and impacts of disruptions of the
different components of the cellular machinery by combining the disparate data
modalities into a more meaningful synthesis. However, the high dimensionality of
molecular assays and heterogeneity of the studied diseases create computational
challenges.

The challenges of multi-omics data integration prompted development of various
machine learning algorithms, including deep learning approaches [11,12]. Available
benchmarking studies that compared different deep-learning-based methods for
multi-omics integration for classification and regression tasks [13,14] have shown that
none of the methods clearly outperformed others in all the tasks at hand. This
necessitates a flexible and reproducible approach that provides adaptable architectures
for solving each computational task.
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Before setting out to develop yet another deep learning-based multi-omics integration
method, despite the availability of the myriad of published studies [11], we collated a
survey of available bulk multi-omics data integration methods to see which tools can be
easily adapted for our own translational research projects (Supplementary Table 1).
Such projects usually include heterogeneous cohorts of cancer patients and pre-clinical
disease models with multi-omics profiles. A primary issue we observed with existing
methods is their limited reusability or adaptability to different datasets and contexts. The
majority of published approaches do not provide accompanying code, severely limiting
their accessibility and applicability. Even when the code is available, it often exists as an
unpackaged collection of scripts or notebooks. Such a disorganized format makes these
methods difficult, if not impossible, to install, reuse, and incorporate into existing
bioinformatics pipelines. Out of the 80 studies collated, 29 studies provide no codebase.
45 studies provide collections of scripts/notebooks, with the goal of reproducing the
findings in the published study rather than serving as a generic tool for multi-omics
integration. While these methods (Supplementary Table 1) are valuable contributions to
the scientific community, they still require extensive customization to make them usable
for different datasets and tasks.

Besides lacking readily available code, published methods suffer from one or more of
the criteria that are crucial for ensuring the reliability and reproducibility of machine
learning applications. Standard operating procedures such as training/validation/test
splits, hyperparameter optimization, feature selection, and marker discovery are
frequently overlooked or manually defined, without any accompanying documentation
again underscoring the arduous amount of work needed to adapt these approaches for
custom problems.

Another limitation of current deep learning methods is their narrow task specificity. Many
tools are designed exclusively for specific applications, such as regression, survival
modeling, or classification. Comprehensive multi-omics data analysis frequently
requires a mixture of such tasks, however, the specialization of already existing tools
restricts their applicability.

While deep learning methods are sometimes considered as superior, classical machine
learning algorithms frequently outperform them [15–17]. This performance differential is
not immediately apparent, and often not tested with the currently existing tools, requiring
users to undertake extensive benchmarking to uncover the most effective solution to
their specific problem.

Addressing these challenges, we introduce Flexynesis, a novel deep learning
framework designed to overcome the above-mentioned limitations. We demonstrate the
versatility of Flexynesis through various use cases, including drug response prediction,
cancer subtype modeling, survival analysis, and biomarker discovery. We demonstrate
how to handle multiple tasks simultaneously, supporting a combination of regression,
classification, and survival tasks. We show use-cases where the flexibility of neural
networks can be utilized in different prediction tasks by building models of both
unsupervised and supervised tasks, with one or more supervision heads, and
symmetric (auto-encoders) and asymmetric (cross-modality) encoders.
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To further enhance its utility, we provide an accessory pipeline and a collection of
datasets for benchmarking different flavors of Flexynesis. This benchmarking includes a
comparison to classical machine learning methods (Random Forests, Support Vector
Machines, and Random Survival Forests).

In summary, the landscape of published deep learning methods for bulk multi-omics
data integration is fraught with challenges that hinder their effective reuse and
integration into broader bioinformatics workflows. This manuscript addresses these
challenges and introduces Flexynesis, a comprehensive solution designed to enhance
the utility and applicability of deep learning in multi-omics data analysis.
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Results
We designed Flexynesis for automated construction of predictive models of one or more
outcome variables. For each outcome variable, a supervisor multi-layer-perceptron
(MLP) is attached onto the encoder networks (a selection of fully connected or
graph-convolutional encoders) to perform the modeling task. Clinically relevant
machine learning tasks such as drug response prediction (regression), disease subtype
prediction (classification), and survival modeling (right-censored regression) tasks are
all possible as individual variables or as a mixture of variables, such that each outcome
variable has an impact on the low-dimensional sample embeddings (latent variables)
derived from the encoding networks.

Single-task modeling : Predicting only one outcome variable
In Figure 1, we demonstrate the different kinds of modeling tasks that are possible with
Flexynesis using a single outcome variable (single MLP) as regression (Figure 1A),
classification (Figure 1B), and survival models (Figure 1C). For the regression task, we
trained Flexynesis on multi-omics (gene expression and copy-number-variation) data
from cell lines from the CCLE database [10] to predict the cell line sensitivity levels to
the drugs Lapatinib, a tyrosine kinase inhibitor, and Selumetinib, a MEK inhibitor. We
evaluated the performance of the trained model on the cell lines from the GDSC2
database [18] which were also treated with the same drugs, where we observed a high
correlation between the known drug response values and the predicted response values
for both drugs (Figure 1A).

For the single-variable classification task, we chose a single-cell multi-omics dataset
(CITE-Seq) of PBMCs [19], where we built a cell type label prediction model on 5000
cells using gene expression and antibody-derived tags (ADT) as the input data
modalities and evaluated the model performance on the hold-out dataset of 5000 cells,
which resulted in a high accuracy cell type label classifier as reflected by the sample
embeddings of the cells from the holdout dataset and the confusion-matrix of known
and predicted cell type labels (Figure 1B).

As the third type of modeling task, we demonstrate survival modeling using Flexynesis
on a combined cohort of lower grade glioma (LGG) and glioblastoma multiforme (GBM)
patient samples [20]. For survival modeling, a supervisor MLP with Cox Proportional
Hazards loss function is used to guide the network to learn patient-specific risk scores
based on the input overall survival endpoints as has been demonstrated previously [21].
After training the model on 70% of the samples, we predicted the risk scores of the
remaining test samples (30%) and split the risk scores by the median risk value in the
cohort. The embeddings visualized based on the median risk score stratification shows
that the test samples are clearly separable in the sample embedding space, which is
also confirmed by the Kaplan-Meier survival plot, which shows a significant separation
of patients in terms of predicted risk scores (Figure 1C).
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Multi-task Modeling: Joint prediction of multiple outcome
variables
While being able to build deep learning models with any of the
regression/classification/survival tasks individually offers an improved user experience,
this is also usually possible with classical machine learning methods. The actual
flexibility of deep learning is more evident in a multi-task setting where more than one
MLPs are attached on top of the sample encoding networks, thus the embedding space
can be shaped by multiple clinically relevant variables. This flexibility is even more
pronounced in the presence of missing labels for one or more of the variables, which is
tolerated by Flexynesis.

To demonstrate the use of multi-task modeling, we trained models on 70% of the
METABRIC dataset (a metastatic breast cancer cohort with multi-omics profiles of 2509
patients) [22] and obtained the embeddings for the 30% of the samples. In order to
compare and contrast the effect of multi-task modeling with single-task modeling, we
chose two clinically relevant variables for this cohort: subtype labels
(CLAUDIN_SUBTYPE) and chemotherapy treatment status (CHEMOTHERAPY). We
built three different models: a single-task model using only the subtype labels (Figure
2A), a single-task model using only the chemotherapy status of the patients (Figure 2B),
and finally a multi-task model using both subtype labels and chemotherapy status as
outcome variables (Figure 2C). Coloring the test samples by the subtype labels and
chemotherapy status, we can observe that the sample embeddings obtained exclusively
for the subtype modeling reflect a clear clustering of samples by subtype, but not by the
chemotherapy status (Figure 2A). Similarly, the sample embeddings obtained from the
model trained exclusively with the chemotherapy status as outcome variable shows a
clear separation of samples by treatment status, however the separation by subtypes is
not as evident anymore (Figure 2B). In the multi-task setting where the model had two
MLPs (one for subtype labels and one for chemotherapy status), the sample
embeddings show a clear separation of both by the subtype labels and also the
chemotherapy status (Figure 2C).

We also analyzed the LGG and GBM cohort (from Figure 1C) in a multi-task setting
where we attached three separate MLPs on the encoder layers: a regressor to predict
the patient’s age (AGE), a classifier to predict the histological subtype (HISTOLOGICAL
DIAGNOSIS), and another survival head to model the survival outcomes of the patients
(OS_STATUS). Concurrently training the model with three different tasks at the same
time, we inspected the sample embeddings and observed that older patients with high
risk scores have the glioblastoma subtype, while younger patients with lower risk scores
have the other subtypes, where low risk young patients can still be distinguished mainly
by histological subtype (Figure 3A). Thus, training the model on three clinically relevant
variables helps us obtain sample embeddings that reflect all three variables in a
hierarchical manner. Inspecting the top markers for each of these variables, we observe
common genes for all three variables such as IDH1, IDH2, ATRX, PIK3CA, and EGFR
(Figure 3B), which could be explained by the fact that the clinical variables such as age
and histological subtype are correlated with the survival outcomes of the patients,
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underpinning the importance of these genes in the etiology of the gliomas, which have
been extensively studied and reported before [23].

Unsupervised learning: finding groups and general patterns
One of the main architectures provided in Flexynesis is the variational auto-encoders
(VAE) with maximum mean discrepancy (MMD) loss [24]. While VAEs are usually
employed in unsupervised training tasks, in Flexynesis they can be used for both
supervised and unsupervised tasks. In the absence of any target outcome variables (in
other words, without any additional MLP modules attached on top of the encoders), the
network behaves as a VAE-MMD where the sole goal is to reconstruct the input data
matrices, while generating embeddings that follow a Gaussian distribution due to the
MMD loss.

As a proof of principle experiment, we trained a VAE-MMD model without any attached
supervisor MLPs, to test the unsupervised dimension reduction capabilities on 21
cancer types from the TCGA resource using gene expression and methylation as input
modalities. Applying k-means clustering (k from 18 to 24), we obtained a clustering of
the samples based on the trained sample embeddings. The tSNE representation of the
resulting sample embeddings shows a clear separation of unsupervised clusters (Figure
4A) and the known sample labels (Figure 4B) with a good correspondence between
unsupervised clusters and known sample labels (adjusted mutual information: 0.78)
(Figure 4C).

Cross-modality learning: Transferring knowledge between
different omic data types
While variational autoencoders are designed to reconstruct the initial input data, this can
be formulated in a different fashion such that the goal of the reconstruction is a set of
matrices different from the inputs. Thus, it is possible to build models where the input
data modalities differ from the output data modalities. For instance, a gene expression
data matrix could be used to reconstruct a mutation data matrix, thus learning how to
translate between these modalities, while simultaneously learning the low-dimensional
embeddings that reflect this translation. Due to the modular structure of the Flexynesis,
we can attach an MLP for one or more target variables as supervisors for regression,
classification, or survival tasks.

In order to demonstrate this feature, we designed an experiment using the
genome-wide gene essentiality scores measured for more than 1000 cell lines as part of
the DepMap project [25]. The DepMap database contains measurements of cellular
proliferation after perturbation of all protein coding genes. It has been previously shown
that for a given cell line, the gene expression profiles of the cell lines can be used to
predict the gene essentiality scores [26,27]. Here, we carried out a similar approach,
where gene expression profiles of genes across cell lines were used as input with a
goal to reconstruct the cancer cell line dependency scores of the same genes. We
expanded this approach to a multi-modal setup, where we used two additional data
modalities besides the gene expression: 1) we used pre-trained large language models
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to generate protein sequence embeddings for the same genes using Prot-Trans [28]
and obtained sequence embedding vectors for each gene (using the canonical protein
sequences) 2) we used the structural and functional features of proteins (such as
disorder profiles, evolutionary sequence conservation, secondary structures,
post-translational modification sites) computed in the DescribePROT database [29].
Thus, each gene was represented by three data modalities: gene expression profiles
across cell lines, protein sequence embeddings, and describeProt features. We used
these modalities to reconstruct the gene-essentiality scores for each of the cell lines in
the DepMap database. In addition, we attached a supervisor MLP to guide the network
to predict the hubness-score of each gene in the genetic interaction networks obtained
from the STRING database [30] assuming that the centrality of a gene in biological
interaction networks could be a contributing factor in its essentiality for cell survival.
Thus, the model is trained concurrently to predict both the gene essentiality score in a
particular cell line (as a matrix), along with the gene hubness (as a vector). We trained
the model on 70% of the genes and evaluated the model on the remaining 30% of the
genes, by computing the average correlation of each cell line’s predicted gene
dependency scores with the measured scores. Adding the protein sequence
embeddings from the language models had a significant improvement on the
performance of the model, while addition of DescribeProt features did not make an
additional improvement over the protein language embeddings (Figure 5A), which
suggests that LLM-based protein embeddings might be already capturing similar
information to the features from describePROT. Using protein sequence embeddings
also had a significant improvement on the prediction of the hubness scores of genes,
while this time using DescribeProt features also had added benefit as well (Figure 5B).

Improving model performance via model fine-tuning
One of the conveniences offered by neural networks compared to classical machine
learning approaches is that the neural networks trained on a source dataset can be
fine-tuned on a small portion of the target dataset. This feature offers a possibility to
tune the trained model on the potentially shifted distribution of the target dataset
compared to the source [31]. We implemented an optional fine-tuning procedure, which
uses a portion of the test dataset to modify the model parameters (following a
combination of model parameter freezing strategies and different learning rates). The
fine-tuned model is then evaluated on the remaining test dataset samples. In the first
experiment, we trained a supervised-VAE model on seven different drug response
profiles of the CCLE database and fine-tuned the trained model on different numbers of
samples (100, 200, and 300 samples) from the test dataset (GDSC database). We
observed that, while fine-tuning does not guarantee an improvement in model
performance it can provide a boost in accuracy (Figure 6A).

As the CCLE and GDSC databases have a relatively similar origin, resulting in good
concordance with similar distributions, we tested fine-tuning in a separate experiment
where the source (training) dataset and target (test) datasets come from completely
different sources. We built models to predict the MYCN amplification status in human
neuroblastoma samples from the TARGET study and use the trained model to predict
the MYCN amplification status in the neuroblastoma cell lines from the DepMap
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database. We observed that our model performed very poorly without fine-tuning, with
an F1 score of 0.3. We have verified this by evaluating the performance of a Random
Forest and a Support Vector classifiers (Figure 6B). fine-tuning the model using only 10
neuroblastoma cell line samples made a significant difference in model performance, by
boosting the F1 score from 0.3 to 0.75 (Figure 6B).

Marker discovery
All model architectures, implemented in Flexynesis, are equipped with a marker
discovery module based on Integrated Gradients [32,33]. In order to evaluate whether
the trained Flexynesis models can capture known/expected markers, we constructed
models predicting drug response, for eight drugs with known molecular targets. The
models were trained on drug response data from CCLE and evaluated on the
corresponding features from the GDSC dataset. We trained both a fully connected
network (DirectPred) and a supervised variational auto-encoder (supervised-vae) using
various data type combinations (mutations, mutations + RNA expression, and mutations
+ RNA expression + copy number variants). The top ten markers per drug were
extracted from the best performing model among all the experiments (Figure 7A). We
labeled the top markers by data type and also by the presence of the marker in civicDB
[34], a database of clinically actionable genetic biomarkers of drug response. For 6 out
of 8 drugs, we could find at least one known marker, present in civicDB (Figure 7B). In
addition, we observe that the best performing models are never trained on
single-modalities. Top markers for each of the drugs are dominated by single nucleotide
variants, however, we also observe that the best performing models (Figure 7A) are the
ones where the mutation data is complemented with at least the “RNA” layer, which is in
line with previous findings, we and others have demonstrated before, that using the
gene expression data on top of the mutation features significantly improves drug
response prediction performance [35,36].

Benchmarking Pipeline
Previous benchmarking of different neural network architectures [13,14,37], showed
that none of the methods outperform in all tested scenarios. It is challenging to choose
the best performing neural network architecture along with the type of multi-omic
modalities best suited for a given task ahead of time. Additionally, it is perfectly possible
that the accuracy of the classical machine learning methods, like a random forest
classifier, is sufficient for a given prediction task. Therefore, to attain the best performing
model, we have to execute multiple experiments with different data type combinations,
different fusion approaches, and different neural network architectures. Moreover, some
tasks might benefit from building multi-task training, while others might perform better
for the target variable of interest in a single-task setting.

To accommodate such combinatorial experimentations, we setup a benchmarking
pipeline which can be configured to run different flavors of Flexynesis on different
combinations of data modalities, different fusion options, fine-tuning options, along with
a baseline performance evaluation random forests, support vector machines and
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random survival forests. The pipeline then builds a dashboard with rankings of different
experiments in terms of prediction performances for different tasks.

We ran the benchmarking pipeline on datasets with clinically relevant outcome variables
and built a dashboard of rankings of the different experiments (See dashboard and
Supplementary Table 2). We designed 13 different tasks across 4 different datasets in a
total of 480 different experiments, where we tested different tools, tool flavors, omics
data type combinations, data fusion and fine-tuning options. Immediate observation
confirms previous findings that no single neural network model outperforms others in all
tasks. Of the 13 tasks, the top ranking method was usually a deep learning model
(Figure 8A-B) however classical machine learning models SVMs and Random Forests
also often perform comparably well (Supplementary Table 2). Furthermore, we
compared the deep learning models in terms of omics data modality fusion options (see
Methods: Data modality fusion options). Among the best performing models, the
intermediate fusion shows a slightly better result than the early fusion approach,
however the difference doesn’t seem significant (Figure 8C). Similarly, fine tuned deep
learning models show a slight but insignificant improvement over the counterparts with
no fine-tuning (Figure 8D). Finally, among the GNN models, the choice of SAGE
convolution method yields slightly better results in our experiments (Figure 8E). These
experiments suggest that the intermediate fusion option with fine-tuning is likely to yield
better results, however, it is probably not possible to generalize to all possible situations.
The value of different approaches is task specific, therefore we advise running multiple
experiments to obtain the best model for the dataset at hand. This accessory pipeline
ameliorates the execution of such experiments. The pipeline is available at
https://github.com/BIMSBbioinfo/flexynesis-benchmarks.
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Discussion
In this paper, we presented Flexynesis, a deep learning based bulk multi-omics
integration suite with a focus on (pre-)clinical variable prediction. Despite the availability
of many published deep learning-based methods, the main reason for developing this
package was to provide an improved user experience when adapting deep learning for
multi-omic data analysis. Existing methods lack one or more of the important
components, where the absence of any of these components creates significant
overhead for the users when adapting deep learning applications in their experiments.
We provide a package that is easily installable, supported with good documentation,
real-life benchmarking datasets with example applications, and automates data cleanup
and harmonization, feature selection, hyperparameter optimisation, model evaluation,
and feature importance ranking. The package is designed in a way that the user can
easily switch different kinds of model architectures, can easily decide which data types
to use in modeling by simply providing a list of files, experiment with modeling different
kinds of clinical variables in single-task or multi-task settings and build models for
supervised (regression, classification, survival), unsupervised, or cross-modality tasks
without having any in-depth experience in building deep learning architectures. Thus,
the user can focus on the biological context of the study and come up with interesting
questions to solve with this diverse toolkit.

It has been previously shown that deep learning may struggle to outperform classical
machine learning methods [15–17], which we have also observed in a subset of our
benchmarking experiments. Even though classical machine learning methods might
perform as good as a neural network in certain situations, the decision to use deep
learning is not guided solely by the prediction performance for a given task. Deep
learning offers a broader level of flexibility such as tolerance for missing labels, support
for multi-task modeling, enables both supervised/unsupervised/and matrix-to-matrix
predictions while simultaneously allowing dimension reduction. Furthermore, pre-trained
deep learning models can be fine-tuned on a separate dataset enabling transfer
learning. Finally, deep learning gains a competitive advantage with increasing amounts
of data [37,38], which should be more commonplace in clinical research as multi-omic
profiling becomes easier and cheaper over time.

By easily adapting Flexynesis into a bioinformatics pipeline, we have assessed both the
relative performance of different flavors of deep learning architectures, along with other
parametric choices one can make in multi-omics integration such as the combination of
data modalities, different fusion options, and fine-tuning options. The benchmarking
pipeline we built with various real-life datasets should allow both the developers in
assessing the strengths and weaknesses of the novel features contributed to the
package, but also guide the users to make choices based on the nature of the modeling
task.

For future development of the toolkit, each of the multiple components will be easily
expanded by implementing alternative methods. Currently we offer multiple alternative
models, but not so many alternative algorithms for feature selection, hyperparameter
optimisation, or marker discovery. We plan to implement alternative hyperparameter
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optimization algorithms provided by libraries such as Ray Tune [39] or Optuna [40], and
expand the marker discovery, using various ranking algorithms available within the
Captum library. Feature selection can be extended using unsupervised feature
selection methods such as Fractal Autoencoders [41].

As a final remark, it is important to note that what we developed here is not a set of
novel deep learning algorithms. None of the components we built are novel, however
the innovation comes from how these components are brought together into a usable
package. Flexynesis improves user experience and makes multi-omic deep learning
accessible to a broader audience.
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Methods
Flexynesis is a pytorch-lightning based deep learning framework designed for bulk
multi-omics data integration with a focus on precision oncology applications, however it
is possible to use it for any tabular multi-modal datasets. Flexynesis workflow consists
of the following main steps: importing the multi-omics data and metadata for training
and testing samples, running a bayesian sequential hyperparameter optimisation
routine using scikit-optimize package [42] on the training dataset and choosing the best
model parameters in terms of validation metrics, evaluating the best performing model
on the test (holdout) dataset, and computing the ranking of the input features in terms of
importance using the Captum package [33]. If the user opts for a fine-tuning procedure,
the trained model is fine-tuned on a subsample of the testing set and the fine-tuned
model is evaluated on the remaining test samples.

Importing the training and test datasets
Flexynesis expects a path to a data folder which contains training and testing data. Both
training and testing data folders should contain at least one matching data modality (e.g.
omics1.csv, omics2.csv … ) as a data matrix and a meta-data file that contains sample
labels for each sample (clin.csv). The omics data files contain omic profiles of samples
where the column names represent unique sample/patient ids and row names represent
the profiled omic features. The sample metadata file (clin.csv) contains the unique
sample names in rows and clinical features (outcome variables) as column names.

During the data import, Flexynesis checks for common file format errors and
cross-checks information available in omics data files and metadata files to make sure
that both training and testing datasets are ready for downstream analysis. After the
sanity checks, the training data is further processed. Common issues with tabular data
such as missing values are imputed, features with low variance are removed, samples
with no available features are dropped. After the data cleanup, depending on the user’s
requirements, a feature selection is implemented to keep the top most informative
features based on the Laplacian Scoring method [43]. Among the top most informative
features, highly redundant features are also dropped to keep unique and informative
features. The feature selection is done for each data modality separately. The user can
choose to keep a minimum number of features per data modality.

In case the user opted to use a graph convolutional network, the genetic interaction
networks are downloaded from the STRING database (according to the requested
organism id) and the training data modalities are filtered to keep only the features that
are found in the interaction networks.

After feature selection, the training data is scaled and centered and optionally
log-transformed. Once the modifications to the training data are finished, testing data is
harmonized with the training data to make it compatible with the final model. To avoid
data leakage, testing data is only scaled/centered using the scaling factors learned from
the training data and the features selected for training data are kept in the testing data.
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Thus the testing data does not influence feature selection or data normalization. All
omic data and sample labels are finally converted into pytorch tensors.

Hyperparameter optimisation
In the current implementation of the Flexynesis package, a Bayesian sequential
hyperparameter optimization procedure is followed. Initially a random set of model
specific hyperparameters are assigned and scikit-optimize package [42] is used to
suggest different parameters after each hyperparameter optimization iteration. The user
decides on how many iterations to carry out. The commonly optimized hyperparameters
are “latent_dim”: the number of units to use for the encoding (the number of dimensions
to aim for the sample embeddings) per data modality, “hidden_dim_factor”: the size of
the hidden layer units in relation to the size of the previous network layer. Instead of
setting this to absolute value terms, we decided to make it into relative values so that
the parameter search behaves similarly depending on different input sizes, as different
data modalities may have different number of features, thus having different input layer
sizes in the network. “Supervisor_hidden_dim”: represents the number of units to use in
the hidden layer of the MLP heads. The input layer size of this MLP is the total size of
the latent factors (number of modalities x latent dim parameter). “lr”: the learning rate
for the ADAM optimiser [44], “epochs”: the max number of epochs to continue the
training. We use the ‘early_stop_patience’ callback so that the training is stopped if the
validation loss values aren’t improving after a set number of epochs. Using the early
stop patience significantly improves training speed and also avoids overfitting on the
training data, thus improving model generalization on test data.

Model/network/encoding options
Flexynesis currently contains a selection of architectures which can be used to train the
models.

● DirectPred: A multi-task fully connected neural network for direct prediction of
one or more target variables

● GNN: A graph neural network that by default uses the STRING database as
interaction networks. Different graph convolution options are available:
GraphConv [45], GCNConv [46], and SAGEConv [47]. Currently supports only
early-fusion of data modalities.

● supervised_vae: A variational autoencoder model architecture with MMD loss.

● MultiTripletNetwork: A fully connected neural network implemented with a triplet
loss-based contrastive learning

● CrossModalPred: A cross-modality encoder/predictor, which is a special
implementation of the variational auto-encoders, in which the input data
modalities and output data modalities can be set to different subsets of the
available data modalities.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2024. ; https://doi.org/10.1101/2024.07.16.603606doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.16.603606
http://creativecommons.org/licenses/by-nc-nd/4.0/


All of these networks can be augmented with one or more Multi-Layered-Perceptrons
(MLPs) depending on the number of target variables the user wants to build a prediction
model for. The user can select one or more target variables for regression/classification
tasks. On top of these regression/classification heads, a survival MLP can be added for
which the user needs to provide two variables, where time represents the time since last
followup, and event a binary value (0 or 1) which represents whether an event has
occurred since the last follow up. An event can be any clinically relevant event such as
disease progression or a death event.

Data modality fusion options
Flexynesis supports two kinds of data modality fusion options for fusing the omics
layers. With “early fusion”, all input omic matrices are concatenated prior to training.
With intermediate fusion, the input omic matrices are individually propagated through
dedicated encoding networks. The output layer of the encoding networks (or the latent
layer in the auto-encoder architectures) are concatenated and used as input to the MLP
heads for each target/survival variable.

Model training and loss functions
During model training, the training data is split by default into 80/20 portions for training
and validation. The user can also select to do a k-fold cross-validation, in which the
training data will be split into k-folds. For each MLP head dedicated to the
corresponding outcome variable, a loss function is computed according to the variable
types. If the variable is a continuous/numeric variable, a mean-squared-error loss is
computed. If the variable is a categorical variable, a cross-entropy loss value is
computed. If the variable is a survival variable, the cox-proportional hazards loss
function is computed. The VAE models have an additional loss value: Maximum Mean
Discrepancy (MMD) Loss [24]. The MultiTripletNetwork models use a triplet loss for
contrastive learning, where the similarity between the anchor sample and positive
examples are maximized, while the similarity between the anchor sample and the
negative examples are minimized [48].

Depending on the model architecture and the number of MLP heads, there may be
multiple loss values computed for a training task. The total loss is computed by
summing up the individual loss values. However, as different loss functions can have
different scales, it may be beneficial or even necessary to have a weighting schema to
avoid one of the loss values to dominate the training. For this, we implemented the
uncertainty weighting method [49], which can be disabled.

The total validation loss guides the training process. The final validation loss obtained
from the training run is used to inform the hyperparameter optimiser to set the next set
of hyperparameters for the next run.

Model fine-tuning
When the user opts for a fine-tuning procedure, a portion of the test samples (user
defined) are used to fine-tune the trained model parameters. The fine-tuning can be
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beneficial in cases of dramatic shifts in dataset distributions between training and test
datasets. The fine-tuning procedure consists of a five-fold cross-validation scheme on a
grid searching a combination of different learning rates and different model parameter
freezing strategies (freeze the encoders, freeze the MLP heads or freeze none). Again
an early stop callback is used with a low patience (3 epochs) to avoid overfitting to the
testing dataset. The best model from this cross-validation scheme is chosen as the fine
tuned model to be evaluated on the remaining test samples.

Model performance evaluation metrics
Once a model is optimized on the training/validation sets, the model is evaluated on the
testing dataset. For regression tasks, we compute the mean squared error, R-squared,
and the Pearson correlation coefficients to evaluate the performance of a model. For
classification tasks, we compute the balanced accuracy, F1 score, and kappa statistic.
For survival tasks, we compute the Harrel’s C-index as the model evolution metric.

Feature importance calculation for marker detection
After model training, most important features for each target variable and for each factor
within the target variable are calculated using the Integrated Gradients method [32].

Assessment of baseline performance
Flexynesis also contains functions to evaluate the prediction performance of classical
machine learning algorithms on the same task. For regression and classification tasks,
random forests [50] and support vector machines [51], and for survival tasks, random
survival forests [52] are trained using a 5-fold cross-validation scheme where
hyperparameter optimisation is carried out on the training data and best performing
model is evaluated on the test dataset with the same metrics as we use for the neural
network models. Scikit-learn library was extensively utilized for these methods and
computing the evaluation metrics [53].

Network Analysis
Human genetic interaction networks were downloaded from the STRING database [30]
and network centrality measure (hubness score) was calculated using the igraph R
package [54].

Datasets
CCLE

Multi-omic and drug response data for the cell lines from the CCLE [10] was
downloaded from https://zenodo.org/records/3905462 and processed using the
PharmacoGx R package [55].
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GDSC2

Multi-omic and drug response data for the cell lines from the GDSC was downloaded
from https://zenodo.org/record/3905481 and processed using the PharmacoGx R
package [55].

Lower Grade Glioma (LGG) and Glioblastoma Multiforme (GBM) Merged Cohorts

The merged cohorts for LGG and GBM dataset [20] were downloaded from Cbioportal:

https://www.cbioportal.org/study/summary?id=lgggbm_tcga_pub.

METABRIC

Multi-omic data for the metastatic breast cancer cohort from the METABRIC study [22]
was downloaded from Cbioportal:

https://www.cbioportal.org/study/summary?id=brca_metabric

Single-cell CITE-Seq of Bone Marrow

Single-cell CITE-Seq dataset [19] was downloaded and processed using Seurat (v5.1.0)
[56]. 5000 cells were randomly sampled for training and 5000 cells were sampled for
testing.

DepMap

The omics data, CRISPR screens and PRISM drug screening data for cell lines from the
DepMap project [25] was downloaded from the DepMap Portal
(https://DepMap.org/portal).

TARGET Neuroblastoma

Neuroblastoma patient cohort from the TARGET study was downloaded from the
Cbioportal (https://www.cbioportal.org/study/summary?id=nbl_target_2018_pub).

TCGA Data

The TCGA datasets were downloaded using the TCGABiolinks package [57].

Prot-Trans Sequence Embeddings

Protein sequence embeddings for each gene was obtained using the
prot_t5_xl_uniref50 transformer model (available at
https://huggingface.co/Rostlab/prot_t5_xl_uniref50) [28]. The canonical protein
sequences of the human proteome were downloaded from the UniProt database [58].
For each protein sequence, the transformer model outputs a numeric matrix of the
dimensions 1024 x N where N is the number of amino-acids in the protein sequence.
For each protein sequence, the row-wise averages were calculated to obtain
protein-level 1024 dimensional vector embeddings.
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describePROT

Structural/functional features of human protein sequences were downloaded from the
describePROT database [29]:

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/download_database_value/9606_v
alue.csv.

Data visualization
Data visualization methods implemented in the Flexynesis package uses Matplotlib [59]
and Seaborn [60] and lifelines [61] python libraries.

We used icons from www.flaticon.com in the graphical abstract of this manuscript.

Clustering
Flexynesis is equipped with utility functions to cluster a given matrix and choose optimal
clusters. Currently two clustering methods are supported: Louvain clustering from the
community package [62] and k-means algorithm from the scikit-learn package [53],
where the clustering can be done for different values of k and the optimal clustering
result can be selected by Silhouette score rankings.

Data and code availability
Flexynesis software package is available at:

https://github.com/BIMSBbioinfo/flexynesis and https://pypi.org/project/flexynesis/.

The accessory benchmarking pipeline utilizing Flexynesis is available at:

https://github.com/BIMSBbioinfo/flexynesis-benchmarks.
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Figure Legends
Graphical Abstract: Summary of the Flexynesis data integration and analysis
workflow.

Figure 1: Flexynesis supports single-task modeling for regression (panel A),
classification (panel B), and survival (panel C). For all three tasks, both a
fully-connected-network and a supervised variational auto-encoder was trained and
best-performing model’s results were presented. A) performance evaluation of
Flexynesis on drug response prediction of a model trained on 1051 cell lines from CCLE
(using RNA and CNV profiles) and evaluated on 1075 cell lines from GDSC2 for the
drugs Lapatinib and Selumetinib. The x-axis depicts observed drug response values
(AAC-recomputed as in Pharmacogx package [55]) and the y-axis depicts the predicted
drug response values for the test samples. B) evaluation of Flexynesis on a cell type
classification problem, where the model is trained on 5000 bone marrow cells with
CITE-seq data (using RNA and ADT profiles) and evaluated on 5000 cells from the
same dataset. The t-SNE plot represents the sample embeddings obtained from the
model encoder and the heatmap represents the confusion matrix for the known and
predicted cell type labels for the test samples. C) evaluation of Flexynesis on a survival
modeling task on a merged cohort of LGG and GBM patient samples (using mutations
and copy-number-alteration profiles). The model is trained on 557 samples and
evaluated on 239 test samples. The tSNE plot depicts the sample embeddings obtained
from the model encoder for the test samples colored by the predicted Cox proportional
hazard risk scores stratified into “high-risk” and “low-risk” based on the median risk
score. The Kaplan-Meier-Plot represents the survival stratification of the test samples
based on this risk stratification (p-value < 0.0001, log-rank test).

Figure 2: t-SNE plots representing sample embeddings from 561 test samples of
metastatic breast cancer from the METABRIC study. These plots compare the impact of
single-task and multi-task modeling on the clustering of samples by clinical variables.
Plots on the left are colored by the breast cancer subtype and the plots on the right are
colored by the treatment status. A) Single-Task Model – Breast Cancer Subtypes: t-SNE
visualization of test sample embeddings obtained from a single-task model trained
exclusively to predict breast cancer subtypes. B) Single-Task Model – Chemotherapy
Status: t-SNE plot visualization of test sample embeddings from a model trained only to
predict the chemotherapy status of patients, showing the segregation capability of the
single-task model with respect to treatment status. C) Multi-Task Model – Subtypes and
Chemotherapy Status: t-SNE plot of test sample embeddings from a multi-task model
trained with dual supervisor heads: one for breast cancer subtypes and another for
chemotherapy status. The plot shows how multi-task learning influences the embedding
space, enhancing the separation of samples based on both clinical variables
simultaneously.

Figure 3: Flexynesis can be trained concurrently for all three types of tasks: regression,
classification, and survival at a single run. The model was trained on 557 training
samples from the merged cohort of the LGG and GBM patient samples with three
supervisor heads: a regressor for the patient age (AGE), a classifier for the histological
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diagnosis, and a survival head for the overall survival status of the patient
(OS_STATUS). Panel A) displays the tSNE visualization of the sample embeddings for
239 test samples, where the size of the points reflect the age of the patient, the colors
represent the histological diagnosis, and the samples were stratified into high-risk and
low-risk groups based on the predicted risk scores for each patient. The sample
embeddings reflect the impact of all three clinical variables concurrently. Panel B)
displays the top 10 most important features discovered for each supervisor head for the
patient’s age, histological subtype, and survival status.

Figure 4: Flexynesis can be used for unsupervised training and clustering. The figure
displays the unsupervised analysis of 21 cancer types from the TCGA study for 1600
samples (80 samples per cancer type were randomly selected). Panel A) displays the
tSNE plot of the training sample embeddings colored by the best performing clustering
scheme using the k-means algorithm for values of 18<=k<=24, where best clustering
was selected by the best silhouette score (k = 24). Panel B) the same tSNE plot as in A)
but colored by the known cancer type labels. Panel C) The river plot displays the
concordance between the cluster labels from panel A) and known cancer type labels
from panel B), where the adjusted mutual information score is 0.78.

Figure 5: Multi-modal cross-modality prediction of gene knock-out dependency
probabilities of cell lines. A cross-modal encoder-decoder model was used that takes as
input a combination of input data modalities and reconstructs the CRISPR-based gene
knock-out dependency probability scores of cell lines from the DepMap project. Each
gene is represented with a combination of feature sets including the expression profile
of the gene across cancer cell lines, Prot-Trans large language model embeddings of
the gene’s canonical protein sequence, and functional/structural sequence features of
the gene’s canonical protein sequence from the describePROT database. The
cross-modality encoder was trained with an attached supervisor that predicts the
hubness score of the gene according to its centrality in the STRING database. Panel A)
displays the distribution of the correlation scores for each cell line’s measured gene
knock-out dependency scores and the predicted scores based on different input data
modality combinations: “gex_only” represents the prediction performance when using
only gene expression profiles of the genes in the cell lines; “gex + protein embeddings”
represents the prediction performance when using both the gene expression profiles
and protein sequence embeddings from Prot-Trans; “gex + protein embeddings +
describeProt” represents the prediction performance when using all three feature sets
including gene expression, protein embeddings, and describeProt features. The facets
in panel A represent prediction performance for the genes seen during training (N =
13729 genes) and the genes from the test set (N = 3433 genes). Panel B) displays the
prediction performance of the hubness scores from the supervisor head that is attached
to the cross-modality encoder, again using the same feature set combinations from
panel A.

Figure 6: Model fine-tuning can improve prediction performance. A) A supervised
variational auto-encoder was trained on the CCLE dataset for 7 different drug response
scores and evaluated on the GDSC2 dataset. One model was trained without
fine-tuning (fine-tuning = 0) and 3 different models were trained using 100, 200, and 300
samples respectively from GDSC2 for fine-tuning and the models were evaluated on the
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remaining unseen test samples from the GDSC2 dataset. B) A supervised variational
autoencoder was trained on 144 Neuroblastoma patient samples from the TARGET
study (using gene-expression data) to predict the MYCN gene’s amplification status.
The model was evaluated on 32 neuroblastoma cell lines from the DepMap dataset for
its performance in predicting the MYCN status. In the absence of fine-tuning (red bars)
both the supervised variational auto-encoder and Support Vector Classifier / Random
Forest Classifier predict as good as random. Using fine-tuning on 10 cell lines, the
supervised variational autoencoder achieves an accuracy of 0.74 on the remaining 22
cell lines.

Figure 7: Top markers discovered using the feature importance modules of Flexynesis
in predicting the drug response values (trained on the CCLE dataset and evaluated on
the GDSC2 dataset). Both a fully connected network (DirectPred) and a supervised
variational autoencoder (supervised vae) was trained on three combinations of data
modalities: using only mutations; using mutations and RNA expression; using
mutations, RNA expression, and copy number alterations. A) Best performing
model+data type combination for each drug is displayed. B) The top 10 markers (in the
y-axis) discovered for each drug (based on the best performing model + data type
combination depicted in panel A). The markers are both labeled and colored by the
corresponding data modality (dark blue: RNA expression, light blue: Mutation). The
markers that are already known to be indicator markers for the corresponding drug
according to the CIViC (Clinical Interpretation of Variants in Cancer) database are
labeled as “civic”. The x-axis displays the relative importance of the top markers, where
the best marker has a value of 1. While most drugs have dominantly mutation markers
in the top 10, the best performing models always have RNA expression as an additional
data modality.

Figure 8: Summary of benchmarking results using different tools and data integration
options with the Flexynesis benchmarking pipeline (See Supplementary Table 2 for full
table of results). The “score” in the y-axis for panels B-E are scaled to 100 (where the
best model gets a score of 100) in order to enable comparison of different scoring
metrics. A) Best performing model setup for each of 13 different tasks. B) Comparison
of the best result of among any deep learning method with the best result of the
classical machine learning approaches. C) Comparison of the best performing data
fusion strategies for the deep learning models in experiments where there were at least
2 data modalities. D) Comparison of the best performing model with/without the
fine-tuning option. E) Comparison of the best performing GNN models in terms of
different convolution options.
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