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ABSTRACT ARTICLE HISTORY
Introduction: There is an ongoing scientific discussion, that anti-cancer effects induced by radiofrequency Received 16 February 2024
(RF)-hyperthermia might not be solely attributable to subsequent temperature elevations at the tumor Revised 26 June 2024

site but also to non-temperature-induced effects. The exact molecular mechanisms behind said potential ~ Accepted 10 July 2024
norT-thgrmaI RF effects remair? largely elusjve, however, Ii.miting their therapeutigal targetability. . KEYWORDS
Objective: Therefore, we aim to provide an overview of the current literature on potential Radiofrequency;
non-temperature-induced molecular effects within cancer cells in response to RF-electromagnetic fields hyperthermia;
(RF-EMF). electromagnetic fields;

Material and Methods: This literature review was conducted following the PRISMA guidelines. For this cancer; therapy
purpose, a MeSH-term-defined literature search on MEDLINE (PubMed) and Scopus (Elsevier) was
conducted on March 23, 2024. Essential criteria herein included the continuous wave RF-EMF nature
(3kHz — 300GHz) of the source, the securing of temperature-controlled circumstances within the trials,
and the preclinical nature of the trials.

Results: Analysis of the data processed in this review suggests that RF-EMF radiation of various
frequencies seems to be able to induce significant non-temperature-induced anti-cancer effects. These
effects span from mitotic arrest and growth inhibition to cancer cell death in the form of autophagy
and apoptosis and appear to be mostly exclusive to cancer cells. Several cellular mechanisms were
identified through which RF-EMF radiation potentially imposes its anti-cancer effects. Among those, by
reviewing the included publications, we identified RF-EMF-induced ion channel activation, altered gene
expression, altered membrane potentials, membrane oscillations, and blebbing, as well as changes in
cytoskeletal structure and cell morphology.

Conclusion: The existent literature points toward a yet untapped therapeutic potential of RF-EMF
treatment, which might aid in damaging cancer cells through bio-electrical and electro-mechanical
molecular mechanisms while minimizing adverse effects on healthy tissue cells. Further research is
imperative to definitively confirm non-thermal EMF effects as well as to determine optimal cancer-type-
specific RF-EMF frequencies, field intensities, and exposure intervals.

1. Introduction temperature rises at the tumor site and the subsequent
effects thereof, i.e., resulting in enhanced perfusion of tumor
tissue, inhibition of DNA damage repair in tumor cells and
immunomodulation, among others [4]. However, recently, a
growing body of research is pointing to the existence of
RF-EMF-induced tumor-damaging effects beyond local tem-

Heating of solid tumors to temperatures of 39 - 44° C
(hyperthermia-therapy) by non-ionizing radiofrequency elec-
tromagnetic fields (RF-EMF) has been proposed as an addi-
tive cancer treatment to established therapy regimes, such as
conventional irradiation and chemotherapy [1, 2]. However, . . o
there are technical limitations to reaching the required tem- perature e.levatlon [5, 6l. .There is more and more Cl'f"cal
peratures deep within the body in clinical practice. Especially ~data. for instance, emerging for the tumor-treating fields
patients’ thermoregulation, thus perfusion-related heat dissi- Method (Novocure, Switzerland) using intermediate-frequency
pation from the targeted areas, still poses a significant limita- low-intensity RF-EMF at reported intra-tumoral temperatures
tion to efficient hyperthermia [3]. below 38°C [7, 8] as well as reports of negligibly small tem-

Anti-cancer effects of RF-EMF sensitizing to chemo- and perature elevations (+ 1.58°C) in cancer cells treated with
radiation therapy have thus far been attributed to induced RF-EMF of the GHz spectrum achieving significant cancer cell
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death [9-11], pointing toward the clinical relevance of
non-temperature-induced effects.

While the exact mechanisms by which RF-EMF might
impose non-temperature-induced anti-cancer effects remain
largely elusive, there is consensus within the scientific com-
munity regarding the existence of cancer cell-specific features
exclusive to tumor cells that cannot be found in healthy tis-
sue cells [12-16]. Besides altered oncogene-, tumor pro-
moter- and suppressor gene expression presented
ubiquitously in cancer cells, these special cancer features are
reported to lie in their distinct bio-electrical characteristics,
such as their display of aberrant ion channel expression lev-
els and membrane potentials, as well as their specific
mechanical characteristics, i.e., altered cell membrane elastic-
ity and aberrant cytoskeletal organization [12-18].

Recently, it was proposed these cancer-specific character-
istics might lay the ground for RF-EMF-induced cancer cell
damage. Wust et al. [6], for instance, hypothesize the overex-
pression of oncochannels in cancer cells, the specific tumor
microenvironment (i.e., enhanced contact area between cells,
due to higher cell density) [6], as well as altered membrane
elasticities [5], might contribute to the enhancement of a
potentially stimulative RF-EMF effect on ion channels and the
cancer cell's membranes. These phenomena may then result
in potentially cancer cell fatal membrane oscillations, sug-
gesting electro-mechanical consequences to cancer cells spe-
cifically [6], as observed by i.e, Lin et al. [19].

Electrical stimulation physiologically plays a vital role in
regulating many cellular processes, such as i.e, metabolic
and intracellular signaling pathways, osmotic regulation, dif-
ferentiation, gene expression, migration, proliferation, and
programmed cell death [20, 21]. Exogenous electrical stimu-
lation is already established in medical fields like ophthalmol-
ogy and otolaryngology (retinal and cochlear implants) [22],
cardiology (cardioversion, cardiogenic defibrillation), and neu-
rology (electrical neuronal stimulation, e.g.,, for treatment of
depression, Parkinson’s, Epilepsy) [23].

Albeit being an established therapeutic approach across
many medical disciplines, targeted electrical stimulation of
cancer tissue has not yet been explored as a potential addi-
tion to the established treatment regimens (as RF-EMF treat-
ments of cancer patients so far solely rely on electrically
induced tumor tissue heating, not the electrical stimulation
of distinct cancer cell features).

However, due to their aberrant ion channel expression,
altered membrane potentials, and distinct mechanical prop-
erties, such as altered membrane elasticities and cell mor-
phology, the question arises whether the abovementioned
features may render cancer cells particularly susceptible to
the electrical effects of RF-EMF radiation, as proposed by i.e.,
Wust et al. [5, 6].

The precise nature of molecular mechanisms activated
upon RF-EMF exposure, more precisely the mode of action
with which RF-EMF might induce the observed non-
temperature induced anticancer effects needs to yet be
examined and established. This review, therefore, aims to
comprehensively gather and analyze the existing preclinical
data on non-temperature induced molecular effects of
RF-EMF on cancer cells to encourage scientific discussion and
further examination of the RF-EMF treatment modality for
cancer beyond its thermal use.

To ensure the non-temperature-induced nature of the
RF-EMF effects analyzed throughout this review, temperature

control was maintained across all trials in this review. This
involved either the maintenance of isothermal conditions or
RF exposure with direct comparison to traditional hyperther-
mia modalities, notably water-bath hyperthermia (WB-HT). It
is well-established that hyperthermia monotherapies necessi-
tate intra-tumoral temperatures exceeding 43°C to invoke
significant cancer cell death, encompassing cancer cell apop-
tosis and a general reduction in cell survival rates, as corrob-
orated by Wust [3]. Below this thermal threshold, cells are
likely to exhibit thermotolerance, a phenomenon whereby a
cell adapts to temperature elevations of up to 42.5°C, thereby
mitigating the occurrence of cell death and diminishing the
likelihood of significant heat-induced anti-cancer effects inde-
pendent of the heating duration [3, 24].

However, combination therapies, integrating hyperthermia
with other modalities such as chemotherapy or radiotherapy,
have demonstrated enhanced tumor-damaging effects even
at lower temperature increments, as demonstrated by Oleson
et al. [25] showing that soft tissue sarcoma cells subjected to
combined RF hyperthermia (RF-HT) show significant
anti-cancer effects (marked by necrosis) when intra-tumoral
temperatures of at least 40.6°C are reached during treatment.
Recently, it has been shown that even mild hyperthermia
starting at intratumoral temperatures of 39°C (up to 41°C)
proves beneficial to treatment outcomes when HT+RT com-
bination therapy is applied. Mild hyperthermia seems to con-
tribute efficiently to increasing tumor perfusion, thus
enhancing radiosensitization by overcoming tumor-related
hypoxia [26, 27]. Whilst combination therapies seem to show
beneficial effects at mild temperature increases, it becomes
evident [3, 24], however, that hyperthermia, if applied as a
mono-therapeutic approach, requires much higher tempera-
ture elevations up to approx. > 42.5°C to achieve significant
cancer cell death.

Thus, to secure thermally insignificant conditions within
the review for valid examination of non-temperature induced
RF-EMF effects on cancer cells, the studies included herein
(except Wust et al. [5]) show a maximum temperature
increase of 1.58°C (from baseline value 37°C) (see Table 1),
thus deeming exclusively thermal causes of the effects
observed highly unlikely, as elaborated on above.

Frequency determines the depth of RF energy penetra-
tion, with higher frequencies resulting in more surface heat-
ing due to their tendency to penetrate less deeply [28]. At
the same time, intensity governs the energy delivered per
unit area, leading to increased heating during RF exposure
[28]. In addition to considering frequency and intensity, accu-
rate temperature calculation requires considering multiple
factors, including intensity, frequency, applicator placement,
exposure duration, tissue conductivity, -permittivity, and
-density [28]. Thus, due to the complexity of reliable thermal
calculations, direct temperature monitoring or control, which
is integral to ensuring non-thermal treatment conditions, as
seen in Table 1, is essential. By fulfilling these requirements,
the molecular mechanisms described in this review’s trials are
considered non-temperature-induced.

This literature review thus aims to comprehensively exam-
ine non-temperature-induced molecular effects in cancer
cells across the entire RF-EMF spectrum (3kHz — 300GHz).
Additionally, it will assess the identified molecular effects of
RF-EMF radiation regarding their potential as therapeutic tar-
gets in cancer treatment. It is our main goal to encourage
further research in the field of RF-EMF cancer treatments and
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further the scientific discussion on the potential RF-EMF ther-
apy might hold beyond its heating abilities.

2. Methods

Inclusion and Exclusion criteria: This literature review was was
conducted following the PRISMA guidelines (https://www.
prisma-statement.org). It solely incorporates preclinical trials
reporting on the molecular effects of continuous wave
RF-EMF radiation on human and animal cancer cells, tumor
biopsies, and cancer animal models. Preclinical studies com-
paring the effects of RF-EMF on nonmalignant cells com-
pared to malignant cells were also included. Most importantly,
the trials herein must focus on cancer cells, cancerous tissues,
or utilize animal models of cancer as their objects of investi-
gation as this review aims to collect and analyze the poten-
tial biological effects of RF-EMFs on cancer specifically.

All studies reporting effects induced by frequencies out-
side the RF spectrum were excluded. Studies lacking tem-
perature control (i.e, temperature measurement of the
experimental populations exposed to RF or comparison to
traditional hyperthermia as a control, i.e., using a water bath)
or those trials applying RF-EMFs inducing significant tem-
perature rise within the cells (Temp. > 40.5°C) were excluded
as well, as it is our goal to investigate the non-temperature
induced effects of RF-EMF exclusively.

2.1. Search strategy

In the search for relevant sources reporting on RF-induced
molecular effects on cancer cells, a systematic search-term-
defined literature search was conducted across different data-
banks, specifically PubMed (MEDLINE) as well as Scopus
(Elsevier). Additionally, further literature was identified by
examining the sources from papers previously gathered and
selected for inclusion. To ensure the inclusion of relevant
publications labeled under slightly different keywords than
the original search terms used, the MeSH (Medical Subjects
Headings) system was utilized. The literature search was con-
ducted on the 23" of March 2024, as described in more
detail in Supplementary Document 1.

2.2. Data extraction

All selected sources were thoroughly examined regarding
their fulfillment of inclusion and exclusion criteria as described
above (Figure 1). To provide a systematic sorting system for
the relevant data extracted from the included sources, tables
with predefined data categories were developed, in which all
extracted information was registered (Table 1). This allowed
for better observation of relevant data trends and facilitated
comparability and contextual organization.

A risk of bias assessment was not performed as it was
deemed unfitting for a preclinical review.

3. Results

Among the 32 preclinical studies incorporated in this review,
a multitude of molecular effects within cancer cells induced
by exposure to RF-EMF radiation were identified. Table 1

INTERNATIONAL JOURNAL OF HYPERTHERMIA 1

provides an overview of the molecular effects observed
within RF-EMF irradiated cancer cells and, if available, pro-
vides further information on the response of RF-EMF irradi-
ated healthy tissue cells for comparing purposes. Specific
information on the identified electro-mechanical effects and
subsequent effects on cell viability, proliferation, and migra-
tion induced by varying time intervals, duration, and irradia-
tion frequencies within the RF-EMF spectrum are also
provided (Table 1).

The data extracted from the preclinical trials included in
this review and summarized in Table 1 allow for the observa-
tion of trends pointing to RF-EMF-specific non-temperature-in-
duced effects that seem to be evoked within cancer cells upon
irradiation. These effects will be described in the following.

3.1. Dosimetry & conditions of exposition

As stated previously, the circumstances surrounding expo-
sure, including frequency, intensity, duration, and applicator
design, as well as the probes subjected to RF exposure (such
as (cancer) cell lines, tumor biopsies, or animal cancer mod-
els), exhibit notable variability. This variability precluded the
possibility of conducting comprehensive statistical dosimetric
comparisons. However, to equip the reader with a valuable
tool for better comprehension of the specific dosimetric con-
ditions, we allocated each preclinical trial referenced in the
subsequent results section and listed within Table 1 to a dis-
tinct dosimetry group. Each group was delineated based on
preclinical trials employing analogous frequency, intensity,
and SAR range. Within Table 1, dosimetry groups are arranged
in ascending order of frequency, starting from the lowest fre-
quency and ending with the highest frequency. Within each
frequency group, further elaboration is provided on the
applied intensities within the group (Table 1). This approach
facilitates a rudimentary dosimetric comparison and enhances
the interpretation of the ensuing effects described herein.

Group 1: The ‘TTF' category, characterized by intermediate
frequency and low intensity, encompasses trials applying a
frequency range predominantly spanning 100-300kHz, with
two exceptions made by Karkabounas et al. [29] who studied
multi-frequency exposure at 10kHz — 120kHz, as well as
600kHz exposure, performed Mamaghaniyeh et al. [30].
Intensity applied by all Group 1 trials varies from 0.5-3V/cm,
for all but two trials (Smother et al. [31] apply 1-6V/cm;
Chang et al. [32] applying 4V/cm).

Group 2: ‘Therabionic/AutEMDev’ approaches fall into the
High Frequency, Low-Intensity treatments category. The
incorporated trials mentioned herein focus on frequencies
between 27.12MHz and 147 MHz, with SAR values ranging
from 0.01 to 0.4W/kg. Notably, this group is characterized by
consistent amplitude modulation with a specifically high
modulation index of 80-85%.

Group 3: ‘Millimeter wave (MMW) + Microwave RF’ fall into
the Extremely High Frequency, Low-Intensity category, fre-
quencies span from 900 MHz to 105 GHz, with incident power
densities (IPD) ranging from 0.001 to 0.2mW/cm? [11, 33], as
well as low SAR (0.0038—-1W/kg) [10, 34] levels and field
intensities 0.2898V/cm [9] indicated by those authors not
providing the reader with specific IPD values.

Group 4: ‘Others’”:

This category incorporates two treatment approaches with
noteworthy results that however differ from the abovementioned
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Figure 1. Schematic depiction of the systematic literature selection. *Publications with titles already revealing a conflict with predetermined inclusion and exclu-
sion criteria (i.e. non-RF-nature of EMFs applied (i.e. ELF-EMFs), or the examination of strictly non-cancerous tissues only, application of non-continuous waves,
combination therapies, invasive RF-approaches etc.) were excluded before abstract and full text screening.

groups in their treatment approaches, namely: 1) ‘Capacitive
Hyperthermia’ (HT) applications, typified by intermediate fre-
quency and high intensity, consistently operate at 13.56MHz,

with emitted power set at 10Watt. 2) ‘Cold Atmospheric Plasma’

(CAP), a partially ionized gas composed of various reactive spe-
cies emitting RF at multiple frequencies: 12.5kHz, multiple micro-
wave emission at GHz, and photon emission in the UV-VIS range
and an emitted power of 10V/cm.

Additionally, special mention is attributed to further stud-
ies employing multi-frequency exposure [19, 29] or wide-band
frequency sweeps [11, 33], as they introduce unique com-
plexities in dosimetric analysis, which will be elaborated
upon in the discussion section.

The distribution of sources across treatment groups in our
analysis reveals notable disparities, which could potentially
introduce biases in our data interpretation. Group 1 (TTF)
appears overrepresented with 20 sources, likely due to its
low-intensity profile and widespread clinical acceptance and
availability. This popularity has led to intensified research efforts,

contributing to the abundance of literature available for this
treatment modality. Conversely, Group 2 (Therabionic/
AutEMDev) with only four sources as well as Group 3 (Millimeter
wave +Microwave-RF) with 6 sources are notably underrepre-
sented when compared to the abundance of preclinical trials
available for Group 1 (TTF). Especially underrepresentation of
Group 3 (millimeter wave-/microwave-RF) might additionally
stem from its limited clinical applicability in oncology due to its
comparably low penetration depth, leading to a smaller body
of available preclinical literature on this treatment modality.

Furthermore, it is important to note that the preclinical
trial conducted by Wust et al. [5] exhibits significant tempera-
ture increases during exposure to capacitive HT, reaching up
to 42°C. Despite these temperature elevations, comparisons
with control groups treated using traditional water baths at
similar temperatures (42°) suggest that the effects identified
within the experimental group that go beyond what was
observed in or lacked in the control group altogether can be
viewed as non-temperature-induced effects.



3.2. RF-EMF radiation decreases cancer cell
proliferation, viability, and metastasis

Of the 32 preclinical trials analyzed, 26 directly reported
reduced cancer cell proliferation, viability, or migration in
vitro and in vivo in animal tumors upon RF-EMF treatment.
Six trials [30, 32, 35-38] do not directly address viability, pro-
liferation, or migratory behavior of exposed cell or animal
populations; however, they do report significant alterations in
gene expression, cellular morphology, and ionic concentra-
tions, suggesting potential anti-tumor effects. The absence of
direct measurements on viability, proliferation, or migration
in the abovementioned studies may be due to one of two
causes. One: the authors did not observe any significant
effect upon cancer cell exposure to RF-EMF which might be
the cause why data in this regard does not appear in the
abovementioned studies, as seems to be the case for the
studies conducted by Jeong et al. [38] and Chang et al. [32].
Or two: the lack of data does not necessarily suggest a lack
of significant impact on cancer cells but instead simply
underscores a gap in the assessment of these parameters, as
there is no mention to be found of exploration of these
parameters for the remaining four publications [30, 35-37].
Overall, the vast majority of preclinical trials thus demon-
strated a significant reduction in proliferation, migration, or
cell viability following RF-EMF application. The mechanisms
underlying these effects are diverse and potent RF-EMF fre-
quencies for inducing such effects span a wide range of the
RF-EMF spectrum.

3.2.1. Cell proliferation

Several authors in this review report significantly reduced cell
proliferation following RF-EMF treatment. Within the interme-
diate RF-EMF spectrum between 100-300kHz applied through
TTF or TTF-like applicators (generating an alternating electric
field that is applied to the patient’s body via pairs of insu-
lated wires), a reduction in cell proliferation within a multi-
tude of different cancer cell lines in vitro as well as reduced
tumor growth in animal models in vivo could be identified,
when compared to untreated sham controls, demonstrated
by the works of, i.e, Lei et al. [39] (p<0.001, human cervical
adenocarcinoma, hepatocellular carcinoma cell lines), Kirson
et al. [40] (p<0.05, human melanoma, glioma, lung, prostate,
and breast cancer cell lines as well as mouse melanoma, rat
glioma, and mouse adenocarcinoma cell lines), Karkabounas
et al. [29] (p<0.05, Leiomyosarcoma cells and smooth muscle
cells extracted from Wistar rats) and Kim et al. [41] (reduced
clonogenic efficiency p<0.001, human glioblastoma cells.
Furthermore, Smothers et al. [31] highlight the dependence
of anti-proliferative effect achievement on tumor-specific
dosimetry (here: correct choice of intensity). Uniform TTFields
exposure at 1.5V/cm for 24 h significantly impedes the prolif-
erative rate of triple-negative breast cancer (TNBC) cells,
resulting in a notable decrease in cell count (p<0.0001) [31].
However, TNBC cells display rapid recovery after 48h of
TTFields treatment, reaching nearly full confluence by 72h
(p=0.0015), thus also indicating the reversibility of the
observed effects when treatments like TTF are not applied
continuously. Notably, at 4.4V/cm, TTFields demonstrate no
discernible impact on either cell line (p=0.408) [31], thus
indicating that application of higher intensities seems to not
always necessarily result in more substantial effect
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achievement (here: reduction of cell count). Zimmerman
et al. [42] on the other hand focus on the importance of
cancer-type specific modulation, indicating a notable reduc-
tion in proliferation among specific cancer cell lines, particu-
larly HepG2 and Huh7, with respective decreases of 60%
(p=0.00993) and 14% (p=0.018) after exposure to modula-
tion frequencies tailored to hepatocellular carcinoma (HCC),
as also supported by the findings of Jimenez et al. [43],
Sharma et al. [44], and Dutta et al. [35]. Furthermore,
Zimmerman et al. [42] found that THLE-2 cells, representing
healthy liver cells, show no significant response to the same
HCC-specific modulation frequencies (p=0.6550) [42].
Additionally, MCF-7 cells exhibited a 30% growth inhibition
(Gl) (p=0.0230) when exposed to breast tumor-specific mod-
ulation frequencies, while MCF-10A cells, another healthy cell
line, demonstrated negligible growth inhibition (GI)
(p=0.8579) under similar conditions [42]. Notably, MCF-7 cells
exposed to HCC-specific modulation frequencies exhibit only
a 3.99% growth inhibition (GI) (p=0.8815), thus further high-
lighting the importance of tailored amplitude modulation for
eliciting significant effects. These findings, in conjunction
with the results reported by Smothers et al. [31], suggest that
optimizing treatment through tumor type-specific settings,
such as intensity and modulation frequencies, may enhance
the efficacy of inhibiting cancer cell proliferation.

Furthermore, cell proliferation inhibitory effects were
observed after high-frequency RF-EMF. Jimenez et al. [43]
observe significant proliferation inhibition after 27.12MHz
amplitude-modulated RF-EMF treatment with Therabionics
(spoon-shaped applicator emitting AM-RF-EMF at 27.12MHz
with tumor-specific amplitude-modulation) for mice xeno-
grafts with implanted human hepatocellular carcinoma cells
(reduced tumor size p=0.019 after six weeks of treatment)
and Sharma et al. [44] for several human breast carcinoma
cell lines (reduced cancer cell proliferation p <0.05) respectively.

Beneduci et al. [33] similarly report growth inhibitory
effects after RF-EMF application of the microwave spectrum
at 53-78GHz in MCF-7 human breast cancer cells (reduced
cell growth by 60%). These findings suggest that a broad
range of specific frequencies, rather than a singular narrow
RF-EMF range, can induce significant anti-proliferative effects
in cancer cells.

3.2.2. Cancer cell viability

Among the incorporated literature, 14 preclinical trials consis-
tently report a substantial reduction in cancer cell viability
following RF-EMF radiation. The molecular mechanisms
inducing cancer cell death manifest through various fatal
pathways. Silginer et al. [45] observe significant levels of can-
cer cell autophagy (p<0.05) after TTF exposure in human
long-time glioma cell lines. Kim et al. [46] report a reduction
in viability (p<0.05) in human glioblastoma (GBM) cell lines,
while [28] mitotic cell death is reported by Giladi et al. [47]
and Gera et al. [48], further adding to the spectrum of
responses. Apoptosis induction is demonstrated by Lee et al.
[49] in human liposarcoma cell lines (p<0.01), Wust et al. [5]
in human colorectal cancer cell lines (p<0.00005), Gokcen
et al. [9] in human colonic adenocarcinoma cells (p<0.05),
and Xu et al. [50] in human GBM cell lines (p<0.001). The
varied time intervals and durations of RF-EMF radiation
applied across different frequency ranges, as detailed in Table
1, highlight the variability in effective radiation duration for
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different treatment settings and approaches, ranging from a
brief 5min to several days of continuous radiation [40, 51].

3.2.3. Cancer cell invasiveness, migration, and metastasis

Several authors report anti-migratory and metastasis-inhibitory
effects within cancer cells post RF-EMF exposure. Kirson et al.
[52] confirm a reduction in metastasis in melanoma-inoculated
mice and VX2 rabbit liver tumors upon TTF at 100kHz (mice)
and 200kHz (rabbits). After continuous TTF treatment for
seven consecutive days, tumor-bearing mice showed a signif-
icant decrease in the number and weight of lung metastasis
compared to untreated controls (p<0.01) [52]. Kim et al. fur-
thermore report the inhibition of epithelial-mesenchymal
transition and reduced invasion of glioma cell lines treated
with TTF (p<0.001) [41], while Lee et al. [49] show reduced
migration of liposarcoma cells after application of TTF
(p<0.001). Furthermore, Xiang et al. show an inhibition of
cell migration by 80% (200kHz TTF) p<0.0001, with migra-
tion decreasing inversely as the intensity rises from 0.5-2V/
cm in glioblastoma cells U87-MG as well as Smothers et al.
reporting significantly reduced migration (p=0.0004) after
24h 1.5V/cm 150kHz (TTF) treatment. Sharma et al. [44] pres-
ent similar inhibitory effects on metastatic behavior after the
application of high RF (27.12 MHz) on brain metastasis, which
were significantly reduced after RF-EMF treatment (p <0.05).

Karkabounas et al’s study [29] introduces divergent find-
ings, reporting an unchanged metastatic potential in leio-
myosarcoma cells after RF-EMF exposure in the intermediate
frequency spectrum. This conclusion is based on their mea-
surement of the ability for platelet aggregation, a crucial fac-
tor for successful metastasis. However, the absence of data
on the metastatic state of in vivo animal models prompts the
need for further confirmation of these results.

Overall, several authors presented strong evidence for the
reduction of metastasis and invasiveness of cancer cells in
vitro and in vivo following RF-EMF treatment [31, 41, 44, 49,
52, 53] one preclinical trial reported an unchanged meta-
static potential upon RF-EMF treatment [29]. The remaining
trials [9, 19, 29, 33-35, 39, 40, 43, 45-48, 50, 51, 54-59] do
not present any data on metastatic behavior in regards to
RF-EMF exposure.

3.2.4. RF-EMF effects on healthy cells
To validate the selectivity of RF-EMF-induced cell damage,
several authors compare the effects of RF-EMF radiation on
cell viability and proliferation within cancer cells to those in
healthy tissue cells [11, 29, 31, 39, 40, 42, 43, 51]. Karkabounas
et al. [29] demonstrate a 98% reduction in viable leiomyosar-
coma cells isolated from tumor-bearing Wistar rats after 48h
of intermediate-frequency, low-intensity RF-EMF (10KHz
-120KHz) treatment (p<0.0001), while smooth muscle cells
isolated from the Wistar rat’s aorta show no significant reduc-
tion in cell viability after the same duration, frequency, and
intensity of RF-EMF radiation (p<0.4). Branter et al. [51]
observe a selective reduction in cell viability in rapidly prolif-
erating brain tumor cells (GBM) (p<0.0001) as well as in
healthy neural stem cells (p<0.0024) after
intermediate-frequency RF-EMF (TTF). In contrast, healthy
astrocytes’ cell viability, considered non-proliferating cells,
remains unaffected by the same TTF treatment schedule [51].
These findings are supported by Kirson et al. [40] (BHK
cells: changes in cell viability and proliferation, p=0.97),

Komoshvili et al. [11] (no significant effect on cell mortality in
healthy breast epithelial cells (MCF-10A) after exposure to
wide-band millimeter waves for up to 16 min), Lei at al [39].
(slight proliferation stimulation instead of arrest in fibroblasts
after TTF exposure), and Jimenez at al [43]. who did not mea-
sure any significant changes in cell viability or proliferation
upon RF-EMF (Therabionics) radiation of healthy tissue cells.
Zimmerman et al. [42] similarly examined the impact of
Therabionics RF on cell proliferation, reporting that healthy
THLE-2 liver cells showed no significant proliferation changes
(p=0.6550). In contrast, HepG2 and Huh7 HCC cells exhibited
reduced proliferation (60% reduction with p=0.00993 for
HepG2 and 14% reduction with p=0.018 for Huh7) with
HCC-specific modulation. Nonetheless, while THLE cell prolif-
eration remained unaffected by Therabionics treatment,
THLE-2 cells displayed a significant upregulation of PLP2
expression following exposure to HCC-specific modulation
frequencies (p=0.00055). Smothers et al. [31] found that TTF
induced significant cell death in triple-negative breast cancer
(TNBQ) cells at 1.5-3V/cm (p<0.0001), while healthy breast
epithelial cells showed negligible effects. However, at 6V/cm,
healthy breast epithelial cells showed even higher cell death
rates than TNBCs (p=0.0017) [31]. Branter et al. [51] similarly
displayed significantly reduced cell counts for several GBM
cell lines at their respective tumor-specific optimal frequency
(100, 200, 300, and 400kHz), while non-dividing astrocytes
remained unaffected. However, a significant reduction of
human neural stem cell counts following TTFields treatment
of 41% and 37% (p=0.0018 and p=0.0024; t-test) after TTF at
200kHz and 400kHz for 72h [51], suggesting potential
adverse effects on healthy rapidly dividing cells.

These results illustrate the complexity of RF-EMF interac-
tions with healthy cells and underscore the need for further
research to gain a more comprehensive understanding and
establish safe and efficient exposure regimens.

3.3. Bio-Electrical effects

Several preclinical trials incorporated in this review report of
electrical stimulation of cancer cells upon RF-EMF exposure.
Said electrical stimulation seems to predominantly occur in
the form of RF-stimulated ion movements, subsequently
potentially triggering changes in protein expression patterns
as will be elaborated on below. All potential bio-electric
effects reported within the analyzed literature are presented
in the following:

3.3.1. RF-EMF stimulates cancer cells electrically and
induces potential cancer-damaging electrical changes
Four publications included in this review [35, 43, 44, 57] con-
firm significant ion fluxes across cancer cell membranes.
Neuhaus et al’s [57] findings identify the L-type calcium
channel CACNA1C as a potential RF-stimulation target. They
measure a substantial increase in free Ca2+ within GBM cells
after 20min of TTF stimulation (p<0.01). Applying benidip-
ine, a calcium channel blocker, abolishes the TTF-induced
Ca2+ rise, confirming Ca2+ channel opening rather than gen-
eral membrane damage. Neuhaus et al. [57] also show a sig-
nificant rise in free cytoplasmic Ca2+ with increasing intensity.
Applying 2.5V/cm induces significantly higher Ca2+ influxes
than TTF at 0.25V/cm (p<0.05). Furthermore, a significant



potassium efflux occurs in GBM cells upon TTF stimulation
(p<0.01), caused by the opening of BK K+channels [57].

Neuhaus et al. [57] also report the dissipation of the mito-
chondrial membrane potential in GBM cells after TTF stimu-
lation (p<0.01), potentially causing apoptosis. As BK
K+channels (Big Conductance - Calcium-activated Potassium
channels) respond to elevated Ca2+ levels and are not
directly voltage-gated, they may activate through CACNA1C
opening. BK K+channels, found in the mitochondrial mem-
brane, regulate the mitochondrial membrane potential [60],
suggesting they might mediate the observed changes in
mitochondrial potential by Neuhaus et al. [57].

Jimenez et al. [43] and Sharma et al. [44] identify the
T-type calcium channel CACNA1H as a potential RF-EMF tar-
get. Both report significant Ca2+ influx into human breast
cancer cells (p<0.01) and hepatocellular carcinoma cells
(p=0.0016), respectively. Sharma et al. [44] link RF-EMF-
induced calcium influx into breast cancer cells to subsequent
anti-proliferative  effects. RF-EMF radiation significantly
reduced cancer cell proliferation via CACNA1TH opening
(p<0.05) compared to cells receiving Ca2+ channel blockers
(Ethosuximide). Sharma et al. [44] present a model for the
molecular mechanisms underlying the correlation between
Ca2+ influx and the observed anti-proliferative effects.
RF-EMF-induced calcium influx may modulate gene expres-
sion via intracellular calcium elevation, influencing Ca2+-
sensitive cytosolic enzymes that modulate intrinsic pathways
regulating proliferation, metastasis, and apoptosis. Sharma
et al. detected a significant downregulation of HMGA2 and
miR1246 expression levels (p<0.05) in breast carcinoma cells
after RF-EMF exposure compared to sham-treated controls.
They elaborate that CAMKII, activated via Ca2+ accumulation,
induces B-catenin degradation. As 3-catenin usually positively
influences HGMA2 and miR1246 expression, reduced levels
due to Ca2+-induced B-catenin degradation lead to
anti-proliferative and metastasis inhibitory effects. As HGMA2
and miR1246 are known to control metastasis and cancer cell
proliferation [44], the authors thus deliver an explanatory
approach for Ca2+-induced anti-proliferative and metastasis
inhibitory effects following RF-EMF treatment.

Aberrant gene expression in cancer cells post-RF-EMF
exposure is detected by several preclinical trials [9, 34, 41, 46,
50, 51, 59]. Survivin and miR-29b, anti-apoptotic factors, are
downregulated, while pro-apoptotic factors, including p53,
p21/WAF1, p73, bax, and caspase-3, show upregulation after
RF-EMF treatment. Specific intracellular signaling pathways
are activated or repressed, negatively affecting cancer cell
proliferation and viability.

Caraglia et al. [10] suggest that MW-EMF exposure reduces
proliferative genes through heat shock protein (HSP)-
dependent mechanisms. They found that 3h of MW exposure
decreased HSP90 expression by 5-fold while upregulating
HSP20 and HSP70 expression. Additionally, MW-EMFs induced
2-fold ubiquitination of Ras and Raf-1, leading to their reduced
expression and activation of the proteasome-dependent deg-
radation pathway [10]. This indicates a potential mechanism
for MW-EMF-induced apoptosis by inactivating the HSP90/
multi-chaperone complex and degrading key proteins essen-
tial for cell proliferation and survival signaling [10]. Interestingly,
overexpression of HSP90 counteracted MW-EMF-induced
apoptosis, highlighting its protective role [10].

Whether the differential expression of genes involved in
cell fatal cascades is directly activated by RF-EMF induced ion
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signaling as described by Sharma et al. [44], caused by pro-
tein instability due to reduced concentration of chaperones
as proposed by Caraglia et al. [10] or rather is a result of
otherwise induced RF-EMF related cell damage, which in turn
might activate said cell fatal pathways is not fully understood
yet and needs further research.

3.3.2. RF-EMF-induced electro-mechanical stimulation
causes aberrant cancer cell morphology and potential
cancer cell damage through disturbance of cellular
mechanical processes

The influence of RF-EMF on cellular dynamics extends beyond
mere electrical effects, provoking an intricate interplay of
electro-mechanical stimulation that subsequently shapes can-
cer cell morphology and may potentially cause damage by
disrupting fundamental cellular mechanical processes within
cancer cells. Thus, it can be observed throughout the litera-
ture that RF-EMFs seem to induce morphological changes by
targeting various cellular structures, as described in the
following:

3.3.2.1. Cytoskeletal  organization and  mitotic
processes. Treatments like TTF are believed to hinder specific
intracellular processes by electrically polarizing certain
particles vital for the formation of, for instance, the spindle
apparatus and cleavage furrow during mitosis, thus imposing
anti-proliferative effects [40]. This suggests that RF-EMF may
target cancer cells in an electro-mechanical manner (electrical
polarization (via RF-EMF) seemingly leading to a mechanical
consequence, i.e,, disturbance of spindle apparatus formation).
This phenomenon becomes evident when analyzing data on
mitotic and cytokinetic disturbance following RF-EMF
exposure, as extensively examined and described by various
authors in this review [30, 34, 36, 38, 40, 42, 47, 48, 51, 53].
The literature herein suggests RF-EMF interferes with the
specific arrangement of highly polarized, spatially oriented
proteins in mitotic cells, such as tubulin and Septin 7. Kirson
et al. for instance, propose that RF-EMFs polarize tubulin
protein dimers, forcing their alignment with the electric field
[40]. This inhibits tubulin-(de-)polymerization, crucial for
correct spindle apparatus formation, leading to increasing
incidences of multi-spindled cells [38], suppressing
chromosome segregation, as well as proper chromosome
alignment [36], and ultimately inducing mitotic disturbance,
and inhibiting cancer cell proliferation. Giladi et al. [47] report
increased depolymerized tubulin after intermediate-frequency
RF-EMF exposure (p=0.011). They observe increased cells
with multiple nuclei after RF treatment (p<0.001), consistent
with Gera et al’s findings of abnormal nuclei in RF-irradiated
cells (p<0.0003). Notably, Le et al. [36] reported the presence
of multinucleated cancer cells after TTF treatment, thus
reinforcing the observation of aberrant nuclear morphology
upon TTF exposure. Gera et al. [48] report a significant
decrease in correct Septin 7 localization within the cleavage
furrow after RF-EMF exposure (p<0.0003). This may lead to
genomic instability, evidenced by increased cells with
divergent chromosome counts, potentially followed by
mitotic catastrophe and cell death [47]. Disturbance of mitosis
and cytokinesis provides an explanatory approach for
selective cancer cell damage induced by electrical RF-EMF
stimulation, attributed to the cancer cell’s highly proliferative
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state compared to resting healthy tissue cells.

Concomitantly with mitotic and cytokinetic disruption
caused by TTF-induced disturbance of cytoskeletal mitotic
organization, most of the preclinical trials mentioned above
provide data on subsequent cell cycle disruption as a poten-
tial consequence of the abovementioned morphological phe-
nomena. Le et al. [36] demonstrated a significant increase in
the duration of mitosis and cytokinesis in Hela cells follow-
ing TTFields treatment, with notable p-values (< 0.001).
Similarly, Giladi et al. [47] observed a prolongation of mitotic
duration in cancer cells induced by TTFields, leading to
mitotic cell death, with significant p-values (< 0.001)., sup-
ported by Kirson et al. [40] showing a significant prolonga-
tion of mitosis upon TTFields treatment (p<0.01). These
observations highlight the molecular effects of TTFields on
mitotic processes, suggesting a mechanism by which TTFields
disrupt cancer cell division and proliferation.

Furthermore, Jeong et al. [38] reported that TTFields
induce cell cycle arrest at the G2/M phase transition in U373
cells, as evidenced by an increased percentage of cells in the
G2/M phase. Branter et al. [51] supported these findings,
demonstrating G2/M-phase accumulation in pediatric brain
tumor cell lines following TTFields treatment, with significant
p-values indicating a predominantly cytostatic effect on cell
cycle progression. Interestingly, Buttiglione et al. [34] observed
RF-induced apoptosis accompanied by cell cycle arrest and
accumulation in the G2/M phase, coupled with a decrease in
the proportion of cells in the GO-G1 phase. Notably,
Buttiglione is the only author to observe cell cycle-relevant
effects in a frequency range different from TTFields, utilizing
900 MHz high-frequency low-intensity fields.

3.3.2.2. Cancer cell morphology. Interestingly, several
authors describe significant morphological changes upon RF-
EMF exposure that might be indicative of anti-migratory,
anti-proliferative, and cell-damaging effects [11, 29, 32, 33,
36, 38, 42, 47]. RF-EMF-treated cancer cells exhibit increasing
nuclear and cell membrane blebs [53], smoothing cell
membranes by losing pseudopodia and microvilli alongside
highly condensed DNA (heterochromatin) and multinucleation.
Komoshvili et al. [11] observed distinct morphological
changes in cellular shape and size that appear directly related
to cancer cell progression into an altered (inactive or non-
viable) state. The authors describe distinct morphological
changes in H1299 lung cancer cells following exposure to
millimeter waves (MMW). Under the 4-min MMW regime,
H1299 cells exhibited increased nuclear size, irregular shape,
and prominent nucleoli, indicative of apoptosis [11].
Additionally, the study noted that following exposure to
MMW, H1299 lung cancer cells exhibited morphological
changes associated with senescence. These changes included
an increase in cell and nuclei sizes, as well as flattened forms
with kidney-like nuclei shapes. The temporal kinetics of
senescence differed from apoptosis, with senescence peaking
on Day 14 for 2 and 4-min exposures. This suggests that a
subset of MMW-exposed H1299 cells underwent senescence
as an alternative fate to apoptosis [11]. Thus, it becomes
evident that morphological changes may likewise indicate
cell fate post-RF-treatment.

3.3.2.3. Genomic structures. Karanam et al. [37] propose the
concept of TTF-induced mechanical damage extending to the

genomic level. However, instead of targeting the distribution
of genetic material within the cytoplasm during mitosis, as
Kirson et al. [40] and others described, the authors herein
report direct alterations of genomic structures intra-nuclearly.
Exposure to Tumor Treating Fields (TTFields) leads to increased
y-H2AX foci and decreased expression of replication initiation
and elongation genes (MCM10 and MCM6), resulting in
replication stress and DNA damage [37]. Moreover, TTField
exposure induces significant reductions in DNA fiber length
(p<0.05) and increases R-loop formation (p<0.05), thereby
exacerbating genomic instability in cancer cells [37]. These
findings underscore the multifaceted impact of TTFields on
cellular processes, including DNA replication and mitotic
regulation, suggesting RF-induced cell death might occur
through genomic instability.

3.3.2.4. Cellular membranes. Wust et al. [5] propose that
cancer cell membranes, with heightened membrane elasticity
compared to healthy tissue counterparts, as observed by the
authors, may serve as significant targets for RF-EMF-induced
cancer cell damage. They show a significant increase in
colorectal cancer cell membrane elasticity with increasing
malignancy grade when compared to membranes of healthy
fibroblasts and hepatocytes (p<0.005) (healthy cells: E=10-
25kPa; CRC cells: E=2.3kPa). RF-EMF treatment thus
potentially induces significant membrane oscillations in phase
with externally applied RF-EMF if the external source meets
the cancer cells’ specific resonant frequencies, possibly
leading to membrane rupture and cancer cell damage [5].
Recent work by Lin et al. [19] supports this hypothesis,
observing marked cell membrane oscillations within cancer
cells in phase with externally applied RF across various fre-
quencies. Lin et al. hypothesize that external alternating-current
RF-EMF electrically stimulates the ion cloud surrounding the
cell membrane, creating significant oscillations if the exter-
nally applied radio frequencies match the natural frequency. If
RF-EMF of matching frequency hits the cell membrane per-
pendicularly, transverse sound waves across the membrane
interface are produced, leading to significant membrane oscil-
lations. Lin et al. measure time-dependent height changes in
cell membranes in response to three different frequency spec-
tra: 1) 12.5kHz by traditional paired electrode RF, 2) 8-18GHz
emitted by a microwave horn antenna, 3) cold atmospheric
plasma (CAP) discharge tube emitting three major wavelength
groups: 12.5kHz, multiple microwave emission at GHz, and
photon emission in the UV-VIS range. Both the plate elec-
trodes at 12.5kHz and the multiple frequency emissions pro-
duced by the CAP discharge tube show marked correlations
between RF-EMF and subsequent cell membrane oscillations,
appearing in phase. Lin et al. emphasize the importance of
meeting the natural frequency of the targetable cell mem-
brane, which is tightly connected to the membrane’s reso-
nance capacity. The authors measure the natural frequencies
of three cancer cell lines and corresponding healthy cell lines,
finding a significant difference in natural frequencies within
most cell line pairs. While two cancer cell lines (U87 gliomas,
A59 lung carcinoma epithelial cells) tended to resonate at
higher frequencies within the kHz spectrum (ca. 4-6 kHz), their
corresponding healthy tissue cells (normal astrocytes, normal
lung tissue cells) exhibited natural frequencies well below
1kHz. The third pair shows an opposite correlation, with the
melanoma cell (B16F10) exhibiting a much lower natural res-
onance frequency than the corresponding healthy fibroblast



[19]. A clear distinction in membrane resonance of cancer
cells vs. healthy cells is achieved for all three cell line pairs,
yet a final tendency regarding the divergence of cancer cell
membrane resonance from healthy cells resonance by
increased or decreased resonance frequency cannot be deter-
mined yet. While all three RF-emission sources create a signif-
icant decrease in cell viability (plate electrodes: p=0.04,
MW-antenna p<0.01, CAP discharge tube p<0.0001), CAP dis-
charge emission causes the most significant decrease in cell
viability, despite traditional two-plate RF at 12.5kHz reflecting
the natural frequency of cancer cell membranes well [19]. The
authors propose that the multifrequency approach from the
CAP discharge tube might be superior in its cell viability-
reducing function, targeting the natural frequencies of several
cellular structures and states, thereby potentiating RF-EMF
effects within cancer cells.

Chang et al. [32] similarly report significant membrane
changes observed upon exposure of glioblastoma and astro-
cytoma cell lines to 200kHz TTFields. The authors detected
significantly increased Ethidium D uptake in U87-MG/
eGFP-fLuc cells (p<0.0001), indicating enhanced plasma mem-
brane permeability. Moreover, TTField exposure notably aug-
mented the uptake of 5-ALA (photodynamic substance) into
these cells within 6h (p=0.047), maintaining the increase for
up to 24h (p=0.011) as well as increased dextran FITC4 (fluo-
rescent dextran) uptake (p<0.01 for 20kDa) [32]. Furthermore,
scanning electron microscopy (SEM) analysis demonstrated a
substantial rise in the number and size of membrane holes
induced by TTFields (p=0.0002 and p=0.0005, respectively),
which were reversible after 24h without exposure (p=0.007
and p=0.0007, respectively) [32], again indicating the need
for continuous TTF exposure as described earlier [31]. The
authors furthermore found that TTF exposure in their trial
induces structural changes in cancer cell membranes, transi-
tioning from densely matted extensions to shorter, bulbous
structures. In contrast, the membrane morphology of normal
human PCS-201 cells seemed to remain unaffected [32], thus
rendering interactions of TTF with membraneous or submem-
branous (cytoskeletal) elements as possibly responsible for
this effect. Lastly, the increase in hole size and number might
be of clinical use, as they seem to increase chemotherapeutic
drug uptake significantly.

Conclusively, these findings suggest the ability of RF-EMF
treatment to disrupt various cellular structures, including the
plasma membrane, spindle apparatus, and DNA replication
machinery, leading to anti-proliferative effects.

4, Discussion

Analysis of the literature above provides a first overview of
the manifold non-temperature-induced molecular effects
observable upon RF-EMF radiation on cancer cells and sug-
gests that specifically ion channels and cell mechanics seem
to be targeted via RF-EMF treatment.

While most of the analyzed pre-clinical trials offer evi-
dence of cancer-damaging treatment outcomes (i.e., prolifer-
ation inhibition, metastasis reduction, cancer cell death) in
addition to the described molecular effects, not all of the
trials offer evidence that the molecular effect described upon
RF stimulation are directly linked and causal to the subse-
quently observed cancer cell damage. This means that whilst
in some cases the reported molecular effect might indeed be
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responsible for the observed cancer cell death, in other cases
this correlation was not evidenced by the authors. This has to
be kept in mind in order to understand that not all of the
above-described molecular effects have been evidenced to
directly influence cancer cells negatively.

Nevertheless, notably, none of the studies reviewed,
observed any cancer cell proliferation or migratory stimula-
tion of cancer cells upon RF-EMF treatment. This is especially
noteworthy as the observed RF-EMF effects on cancer cells
thus seem to contrast with the reported positively stimula-
tory effects of EMF on healthy tissue cells. There, RF-EMF
treatment is utilized to reduce inflammation and increase cell
proliferation, applied therapeutically for i.e., wound healing,
bone growth, and neurological stimulation (transcranial mag-
netic and electrical stimulation for depression, Parkinson’s,
Alzheimer’s) [21, 61-63].

However, careful dosimetry is crucial for safe and effec-
tive RF therapy. Preclinical trials analyzed here offer insights
into optimal intensity and frequencies for therapeutic appli-
cation. Silginer et al. [45], Xiang et al. [53], Branter et al.
[51], Karkabounas et al. [29], Kim et al. [46], Jeong et al. [38]
and Kirson et al. [40] all report on the importance of opti-
mal frequency choice for TTF application in each different
cancer cell line. They report each cancer cell line to exhibit
a specific frequency optimum at which its anticancer effects
are highest. Applying frequencies outside this optimum
leads to either reduced magnitude or a complete lack of
significant cancer-damaging effects. Zimmerman et al. [42],
Jimenez et al. [43], Sharma et al. [44] and Dutta et al. [35]
highlight a significant increase in treatment efficacy when
applying cancer-type-specific modulation frequencies at a
comparably high modulation index of (80-85%) with carrier
frequencies within the low-moderate MHz spectrum.
Similarly, these authors report reduced magnitude or lack of
significant cancer-damaging effects when other random
modulation frequencies are applied instead of resonant
cancer-type specific amplitude modulation frequencies.
Similar, if not more severe effects could be observed con-
cerning the choice of applied electric field intensities. While
some authors report a rise in treatment efficiency (rates of
cancer cell death) with increasing treatment intensity, i.e.,
Silginer et al. [45], Kirson et al. [40], Neuhaus et al. [57], two
authors within this review, Smothers et al. [31] Branter et al.
[51] observed a significant reduction in breast epithelial cell
count when significantly rising treatment intensity from the
commonly applied TTF 1-3V/cm to 6V/cm) [31] as well as a
reduction in highly proliferating neural stem cells when
exposed to an in vitro applicator modeling the commonly
applied TTF Optune device (1-3V/cm) [51] While the large
majority of the trials included in this review show no
adverse effects within healthy cells upon RF-EMF exposure,
the findings of Branter et al. [51] and Smothers et al. [31]
nevertheless underscore the importance of carefully titrat-
ing RF intensity to avoid unintended consequences on
healthy cells yet achieving significant cancer cell damage
and highlight the need for further examination of RF-EMF
effects on healthy cells within therapeutic ranges.

Thus, precise dosimetry is essential to avoid adverse health
effects, as highlighted by the International Commission on
Non-lonizing Radiation Protection (ICNIRP) [64]. The ICNIRP
emphasizes the importance of limiting RF exposure to pre-
vent whole-body heat stress and excessive localized heating
to a maximum specific absorption rate (SAR) level of 2W/kg
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for the general public [64]. Notably, all preclinical trials
included in this review, indicating SAR values, applied SARs <
1W/kg, thus well below the recommended SAR threshold of
2W/kg. The rest of the trials indicated field intensity instead
of SAR values. They reported the use of EMFs marked by very
low intensities < 3V/cm (except for Lin et al. [19] and
Smothers et al. [31] as elaborated on above) thus securing
the potential for significant anti-cancer effects at seemingly
safe exposure levels. The evaluation of RF electromagnetic
fields (EMF) as a potential carcinogenic factor, as evidenced
by the International Agency for Research on Cancer (IRAC)
[65] classification that was established based on the out-
comes of the INTERPHONE study as well as the ‘Pooled anal-
ysis of case-control studies on malignant brain tumors and
the use of mobile and cordless phones’ conducted by Hardell
et al. [66], suggests careful consideration of RF-EMF applica-
tion nevertheless [64]. While the IRAC classifies RF-EMF as
‘possibly carcinogenic to humans’ (Group 2B) based on what
the IRAC labels as ‘limited evidence) other studies [67] includ-
ing the large-scale prospective cohort COSMOS study [68],
on the other hand, suggest that long-term mobile phone use
and thus the exposure to RF-EMF frequencies in the mobile
phone range is not associated with an increased risk of
developing glioma, meningioma, or acoustic neuroma.
Furthermore, the ICNIRP emphasizes that RF exposure below
the thermal threshold is unlikely to be associated with
adverse health effects. This is consistent with the findings of
preclinical studies included in the review, which apply low
intensities of RF therapy well below the recommended
SAR levels.

This being said, nevertheless, the literature suggests that
RF-EMF holds significant therapeutic potential for inducing
substantial damage selective to cancer cells. However, as
elaborated above, correct dosimetry of the applied EMFs is
vitally important and must be secured to facilitate efficient
and safe treatment outcomes.

The distinctive response of cancer cells toward RF-EMF
stimulation, in terms of proliferative and migratory inhibition
as well as enhancement of cancer cell death, seems to not
be reproducible in non-rapidly dividing healthy cells [11, 29,
39, 40, 43, 51]. This opens up the question of where this
seemingly selective targeting of cancer cells during RF-EMF
exposure might be rooted. One explanatory approach might
be that cancer cells may be more susceptible to RF-EMF-
induced damage due to their unique bio-electrical and
mechanical characteristics. Cancer cells showcase elevated
base depolarization in the electrochemical potential across
their plasma membranes compared to normal cells [69, 70].
This deviation influences the behavior of ion channels, partic-
ularly voltage-gated ion channels (VGICs), which exhibit high
sensitivity to changes in membrane potential [71]. Additionally,
cancer cells often upregulate VGICs, which can present as
several-fold significant increases in channel density and num-
ber [14-16, 72-74], thus offering a possible potentiation of
the RF-EMF effect on ion movement due to a significantly
higher number of possible targets (here ion channels) as pro-
posed by Wust et al. [6].

Furthermore, cancer cells also possess distinct mechani-
cal properties, notably altered plasma membrane elasticity
compared to healthy cells [5, 12, 13, 17, 18, 75, 76]. This
affects their natural resonance frequency, clearly differenti-
ating the resonance spectrum of cancer cells from the res-
onance spectra found in healthy tissue cells [19] which

provides a valid explanation for the selective induction of
damaging cell membrane oscillations in cancer cells via
RF-EMF radiation as described by Lin et al. [19]. The varia-
tions in observations regarding cancer cell membrane elas-
ticity can be attributed to the complex and heterogeneous
nature of cancer [77]. Multiple factors contribute to the
mechanical properties of cancer cell membranes, including
alterations in lipid composition, changes in cytoskeletal pro-
teins, and modifications in membrane-associated receptors
[77]. Additionally, the specific type and stage of cancer, as
well as the genetic makeup of individual tumors, can influ-
ence membrane elasticity differently [77]. Moreover, differ-
ences in experimental techniques and methodologies across
studies can also contribute to discrepancies in findings [78].
Therefore, the observed increases or decreases in cancer
cell membrane elasticity may reflect the diversity of cancer
biology and underscore the need for further research to
elucidate the underlying mechanisms.

The specific cell lines examined by Lin et al. are generally
considered to exhibit higher elasticities and softer properties
than their healthy tissue correlates [79-81]. Thus, one would
expect the natural resonance frequencies of cancer cell mem-
branes examined by Lin et al. to be significantly lower than
the resonance frequencies observed in healthy tissue cells
exhibiting a higher Young’s modulus and thus possessing
higher levels of stiffness [5, 12, 13, 17]. There is an ongoing
discussion about the specific resonance frequencies of cancer
cells. While some authors like Jaganathan et al. [82] (model-
ing the resonance behavior of healthy breast tissue cells vs.
breast cancer cells (MCF-7) as spherical bodies) find the res-
onance frequency of healthy cells to be significantly higher
than the resonance frequencies measured for breast cancer
cells (p<0.05), other authors like Lin et al. [19] or Heyden
et al. [83] measure higher natural resonance frequencies for
cancer cell’s plasma as well as nuclear membranes compared
to healthy cells of similar origin. Thus, the search for the cor-
rect cancer resonance frequencies is ongoing and a topic of
current scientific discussion, although it can be expected that
different cancer types will exhibit somewhat different reso-
nance frequencies, which will have to be determined individ-
ually, as mechanical and morphological properties, despite
showing clear trends that allow the distinguishment between
healthy and cancerous cells, still show slight variations among
different cancer cell lines.

Assuming a linear elastic model, one would expect cancer
cells with heightened membrane elasticity to exhibit lower
natural frequencies than healthy cells with more rigid mem-
branes. We point out that cells form a viscoelastic system
exhibiting a broader range of behaviors. Adair [84], for
instance, considers the occurrence of membrane oscillations
upon RF-EMF radiation unlikely as, due to the embedment of
all membranes in a viscous surrounding, the ‘viscous imped-
ance’ would significantly dampen and ultimately prevent any
oscillating behavior theoretically occurring in isolated mem-
branes. Frohlich [85] on the other hand, proposes that under
particular circumstances, when the imposed RF-EMF precisely
matches the natural resonance frequency of a biological
membrane, oscillation behavior of the membrane may indeed
occur. Thus, it becomes evident, when measuring membrane
resonance, other factors besides membrane elasticity influ-
ence resonance behavior as well, such as the cancer cell’s
environment (i.e., extracellular matrix) as well as the cytosol
(which is a non-Newtonian fluid) and their mechanical



attachment to and grouping with neighboring cells as well as
intracellularly located shape-determining features, such as
the cytoskeleton.

Cancer cells are known to exhibit a highly rigid extracellu-
lar matrix and a morphologically altered cytoskeleton [76,
86], which might influence cancer cell’s resonance behavior
significantly. For instance, the actin skeleton in breast cancer
cells is characterized by a thinned-out, disorganized actin
layer localized intracellularly directly underneath the cell
membrane, which is usually prominently built and well orga-
nized in parallel bundles in healthy cells, supporting their
membrane resilience [76]. Due to this cytoskeletal change,
some cancerous cell membranes seem less supported by
their underlying actin skeleton, possibly leading to their
heightened elastic properties and proneness to RF-EMF-
induced membrane damage such as membrane blebbing
[19, 48].

RF-EMF treatment induces various morphological alter-
ations in cancer cells, including membrane smoothing, aber-
rant nuclei structures, chromosome counts, blebbing of
intracellular vesicles, and altered intracellular morphology
[29, 33]. This so-called ‘membrane-smoothing’ might be of
particular importance as said cell protuberances are vitally
important for the migratory activity of all cells, including can-
cer cells [33, 87]. Thus, RF-EMF-induced eradication of cell
protuberances might contribute to reduced migration in the
treated cancer cells, as described above (section 3.2). Whether
the protuberances on cancer cells disappear upon RF-EMF
treatment due to direct mechanical damage induced by
RF-EMF or whether the formation of protuberances might be
inhibited by, i.e, forced polarization of the actin filaments
along the EMF and thus inhibition of their correct polymer-
ization, a process vital for the formation of protuberances in
the first place (in the same manner tubulin is forcibly polar-
ized during mitosis during TTF treatment [40], is unclear and
needs further investigation.

Besides the abovementioned RF-EMF-induced electro-
mechanical effects in cancer cells, another observation that
currently still lacks understanding is the fact that the simul-
taneous application of multiple frequencies, as described by
Lin et al. [19] seems to deliver superior anti-cancer results
compared to traditional two-plate electrode emitting a single
MHz-RF or single GHz-RF. The absence of a singular optimal
frequency for targeting cancer cells via RF-EMF is suggested
by the fact that multiple specific frequencies seem to be able
to induce potent anti-cancer effects in the same cell line. For
instance, MCF-7 breast cancer cells respond to both 150kHz
TFF RF [47] and GHz spectrum RF (53.57-78.33) [33]. This pat-
tern extends across various cancer cell lines in this review,
highlighting the effectiveness of multiple frequencies across
the RF-EMF spectrum for inducing significant anti-cancer
effects. An explanation for this observation might be that dif-
ferent frequencies target different specific cellular compo-
nents, such as microtubules, vesicles, DNA structures, and
mitochondrial membranes, as each cellular component is
known to exhibit a distinct elastic modulus due to morpho-
logical and compositional differences at which resonance can
be achieved [19]. These cell component-specific elastic mod-
uli and natural frequencies, in turn, might explain the broad
array of cancer-type-specific RF-EMF frequencies yielding sig-
nificant anti-cancer effects [5, 88, 891.

It has to be mentioned that the reviewed preclinical trials
significantly vary in treatment parameters, such as frequency
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ranges, intensities, exposure times, and cancer cell lines,
which might present as the biggest weakness of this work.
Since examining the non-temperature-induced effects of
RF-EMF therapy on cancer cells presents a novel research
field, the number of sources available covering this specific
topic is somewhat scarce. This moved us to include papers
covering a wide variety of different radio frequencies and
applicator programming, as it is our goal to provide a broad
overview of the majority of the so far discovered non-
temperature induced effects upon RF-EMF radiation to pro-
vide new impulses for future research serving to improve
RF-EMF therapy for cancer patients. Thus, it can be said that
while the treatment parameters of the analyzed RF-EMF ther-
apies within the preclinical works differ to a certain degree,
limiting their comparability, all molecular effects observed
upon RF-EMF radiation presented as significant non-
temperature induced effects that were tumor-damaging and
reoccurring within the papers cited.

Determining optimal dosimetry for the observed bio-
electrical effects of RF-EMF treatment remains an ongoing
challenge. However, early trends are detectable, indicating
specific effects tied to distinct stimulatory frequency ranges.
Notably, the TTF low intensity, intermediate frequency range
of approximately 120-300kHz (Group 1, Table 1) emerges as
a critical zone for mitotic inhibition, leading to cell cycle dis-
turbance and inhibition, particularly at the G2/M phase. This
inhibition appears linked to the stimulation of polar particles
such as tubulin proteins or septin 7, integral to the formation
of intermediate filaments that constitute the spindle appara-
tus during mitosis and cleavage furrow formation during
cytokinesis [40, 45, 47, 48, 51].

Moreover, electrical RF-EMF stimulation resulting in ion
channel opening, especially VGICs, predominantly occurred in
the low MHz (27.12MHz — 147MHz), low-intensity range
(Group 2, Table 1) with three instances documented in the
literature [35, 43, 44]. Interestingly, a similar effect is observed
within the TTF range at 200kHz [57], indicating a versatile
impact on cellular calcium fluxes. It is important to note that
calcium channel opening in the MHz spectrum, explicitly
involving the CACNA1TH channel, occurred upon amplitude
modulation. Studies by Jimenez et al. Sharma et al. and Dutta
et al. utilized cancer-specific amplitude modulation frequen-
cies, ranging from low Hz to low kHz frequencies, implying a
sensitivity of calcium channel opening to low-intermediate
RF-EMF ranges [35, 43, 44, 90]. Within the low-intensity GHz
treated (Group 3, Table 1) cancer cells, four publications
report significant alterations of RNA and protein expression
levels upon RF treatment. This might indicate a possible
direct effect of extremely high-frequency low-intensity
RF-EMF on the stability of gene products such as mRNA and
proteins, i.e., described by Caraglia et al. [10] (HSP induced
destabilization of Ras and Raf-1 protein folding).

These findings are mostly congruent with the findings of
Xiang et al. [53] who report electric field lines to predomi-
nantly surround cells when confronted with low frequencies
(20kHz), indicating minimal penetration into the cell cyto-
plasm, due to the capacitive properties of the membrane
providing a conductive pathway for displacement currents,
leading to a reduction in its resistance. However, as frequen-
cies increase to intermediate (200kHz) and higher radio fre-
quencies (2MHz), electric field lines penetrate the cell
cytoplasm, increasing intracellular electric field strength.
Additionally, the authors observed a consistent increase in
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the electric field intensity at both the plasma and nuclear
membrane, with the frequency rising from 200kHz to 2 MHz.
These findings underscore the distribution of effect sites for
the varying frequency spectrum observed throughout most
preclinical trials presented herein. At intermediate frequen-
cies (TTF-range) described by the authors, the cell membrane
is perturbed, and field energy within the cytoplasm increases
starkly, thus offering a potential explanation for the effects
observed regarding changes in cytoskeletal organization and
mitotic processes upon intermediate frequency RF radiation.
In contrast, within increasing and higher frequency ranges,
the observed RF effects seem to shift more to the genetic
cascades, significantly influencing mRNA and protein levels,
as higher frequencies allow for RF to significantly stimulate
and possibly perturb the nuclear membrane as described by
Xiang et al. [53]. This correlation is not applicable continu-
ously to all trials incorporated in a specific group that was
allocated a frequency-dependent effect but may offer first
insights into a possible dose-effect relationship or RF-EMF
and their impact observed within cancer cells.

While observing initial trends in dose-effect relationships,
it becomes evident that optimization of applicator parame-
ters (intensity, frequency, modulation, and duration) must
likely be tailored individually to diverse cancer types. Thus,
further research is urgently needed to determine the proper
dosimetry adjusted to each cancer type for achieving the
desired anti-cancer bio-electrical effect and securing safe
treatment conditions, ultimately enhancing RF-EMF treatment
efficiency for maximal success in cancer patients.

5. Conclusion

The existent literature points toward a yet untapped thera-
peutic potential of RF-EMF treatment, which might aid in
damaging cancer cells through bio-electrical and electro-
mechanical molecular mechanisms while minimizing adverse
effects on healthy tissue cells if appropriate and careful
dosimetry is applied. Further research is imperative to deter-
mine optimal cancer-type-specific RF-EMF frequencies, field
intensities, and exposure intervals, correlating them with
underlying molecular mechanisms to maximize the therapeu-
tic potential of RF-EMF therapy, thus ultimately providing
cancer patients with the best possible treatment outcomes.
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