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Abstract
Coelopidae (Diptera), known as kelp flies, exhibit an ecological association with beached kelp and other rotting seaweeds. 
This unique trophic specialization necessitates significant adaptations to overcome the limitations of an algal diet. We aimed 
to investigate whether the flies’ microbiome could be one of these adaptive mechanisms. Our analysis focused on assessing 
composition and diversity of adult and larval microbiota of the kelp fly Coelopa frigida. Feeding habits of the larvae of this 
species have been subject of numerous studies, with debates whether they directly consume kelp or primarily feed on associ-
ated bacteria. By using a 16S rRNA metabarcoding approach, we found that the larval microbiota displayed considerably less 
diversity than adults, heavily dominated by only four operational taxonomic units (OTUs). Phylogenetic placement recovered 
the most dominant OTU of the larval microbiome, which is the source of more than half of all metabarcoding sequence 
reads, as an undescribed genus of Orbaceae (Gammaproteobacteria). Interestingly, this OTU is barely found among the 15 
most abundant taxa of the adult microbiome, where it is responsible for less than 2% of the metabarcoding sequence reads. 
The other three OTUs dominating the larval microbiome have been assigned as Psychrobacter (Gammaproteobacteria), 
Wohlfahrtiimonas (Gammaproteobacteria), and Cetobacterium (Fusobacteriota). Moreover, we also uncovered a distinct 
shift in the functional composition between the larval and adult stages, where our taxonomic profiling suggests a significant 
decrease in functional diversity in larval samples. Our study offers insights into the microbiome dynamics and functional 
composition of Coelopa frigida.

Keywords  Coelopa frigida · Kelp flies · Metabarcoding

Paul S. P. Bischof and Theda U. P. Bartolomaeus contributed 
equally to this work.

 *	 Christoph Bleidorn 
	 christoph.bleidorn@biologie.uni-goettingen.de

1	 Department for Animal Evolution and Biodiversity, Georg-
August-Universität Göttingen, Göttingen, Germany

2	 Charité-Universitätsmedizin Berlin, Corporate Member 
of Freie Universität Berlin, Humboldt-Universität Zu Berlin, 
and Berlin Institute of Health, Berlin, Germany

3	 Experimental and Clinical Research Center, A Cooperation 
of Charité-Universitätsmedizin Berlin and Max Delbrück 
Center for Molecular Medicine, Berlin, Germany

4	 Max Delbrück Center for Molecular Medicine 
in the Helmholtz Association, Berlin, Germany

5	 German Centre for Cardiovascular Research, Berlin, 
Germany

6	 Departamento de Biodiversidad y Biología Evolutiva, Museo 
Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 
Spain

7	 Biologische Anstalt Helgoland, Alfred Wegener Institute, 
Helgoland, Germany

Introduction

Novel insights into the broad range of animal–bacterial 
interactions have fundamentally transformed our under-
standing of animal biology and evolution [1]. The micro-
biome expands the genetic repertoire of the host and influ-
ences the heritability of its traits, which means it can be 
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regarded as an extended phenotype sensu Dawkins [2]. In 
the case of insects, bacterial symbionts and other microbes 
that live inside them play critical roles in host physiology, 
development, immunity, behavior, and nutrition [3, 4]. Not 
surprisingly, bacterial symbiosis often enables highly spe-
cialized lifestyles of insects [5]. Prominent examples are 
known from blood-feeding bedbugs [6], plant sap-feeding 
aphids [7], or wood-feeding termites [8]. Kelp flies (Diptera, 
Coelopidae), a globally distributed taxon of Diptera con-
taining only 29 species [9], have a rather unique ecological 
association with unattached seaweeds, primarily residing on 
wrack beds of marine beaches [10]. They deposit their eggs 
on beached kelp or other seaweeds, and their larvae feed 
inside the algae while adults reside and copulate under and 
on top of the wrack beds [11]. Kelp flies can reach large 
population sizes and thereby also be utilized as an important 
food source for a variety of sea birds [12]. The evolution-
ary significance of these flies lies in their ability to utilize 
washed-up seaweed as a resource despite its low utilization 
by other fauna [13, 14]. Kelp and similar seaweeds present 
challenges due to their physical and chemical properties, 
such as hard-to-digest polysaccharides, potentially toxic 
secondary metabolites, and high concentrations of heavy 
metals [15–19]. However, these wrack beds are known to 
constitute biogeochemical hotspots due to high metabolic 
activity by bacteria [20, 21]. Bacterial decomposers thrive 
within the kelp wrack beds, creating an ideal environment 
for kelp fly larvae and adults, where the larvae graze on the 
surrounding kelp [11]. In contrast, adults imbibe fluid from 
the kelp surface [11].

The best-investigated kelp fly species is Coelopa frigida, 
which occurs on most shorelines in the temperate Northern 
Hemisphere [9]. Earlier studies on Coelopa frigida mainly 
focused on its mating behavior, genetics, and the inversion 
polymorphism on chromosome 1, which is responsible for 
large size differences among adults [22–25]. The chromo-
somal inversion polymorphism in Coelopa frigida results 
in a threefold size difference in males, while female size 
is less affected. A reciprocal transplant study demonstrated 
that the phenotypic size effect in males can be further modu-
lated by environmental variation [26]. Interestingly, the three 
different inversion karyotypes also seem to have adaptive 
advantages in different microhabitats, which could explain 
how this diversity of phenotypes is maintained by balancing 
selection [27].

As typical for kelp flies, Coelopa frigida depends on 
wrack-beds throughout its life history [28]. It is well adapted 
to the harsh conditions occurring in this dynamic habitat 
[28]. The whole life cycle follows the formation and deple-
tion of wrack beds and can be completed in roughly 2 weeks 
[29]. The females are attracted to freshly deposited seaweed 
and lay batches of up to 80 eggs into the deeper layers of 
the wrack bed [30]. The larvae’s feeding habits have also 

been subject of numerous studies, with debates regarding 
their preference for specific seaweed species and whether 
they directly consume kelp or primarily feed on associated 
bacteria [11, 31–33]. The most thorough investigation of 
the dietary requirements of Coelopa frigida was conducted 
by Cullen et al., who confirmed the need for microbial colo-
nization of the larval gut and isolated around 20 species of 
bacteria [11]. Additionally, this study demonstrated that the 
larvae actively filter bacteria from their environment and can 
be reared on a medium composed of seaweed and only one 
bacterial species. This study got additional support from a 
metabarcoding analysis comparing the microbiome of the 
larvae with the environmental wrack bed microbiome along 
selected sampling sites in the North and Baltic Seas [31]. 
Larval microbiome changes across the investigated gradient 
correlated with a shift in the microbial community across the 
sampling sites. Moreover, functional analyses revealed that 
polysaccharide degraders dominate the larval microbiome 
[31]. However, Biancarosa et al. showed the limitations of 
the algal food source for some essential amino acids (e.g., 
histidine and methionine), which is also reflected by the 
lower amount of these amino acids in the larvae [34], a defi-
cit often coped with by taking advantage of bacterial symbi-
onts in other insects [35]. The adult diet is not as thoroughly 
understood, but observations suggest fluid intake from kelp 
surfaces and nectar intake from visiting flowers [36]. To our 
knowledge, no studies on the adult microbiome have been 
published. As typical for all Diptera, a taxon belonging to 
the holometabolous insects, in Coelopidae, complete meta-
morphosis occurs during their life cycle, consisting of egg, 
larva, pupa, and adult stages [36]. In holometabolous insects, 
due to the renewal of the gut epithelium of their host, the 
associated microorganisms have to face difficult conditions 
during metamorphosis, as well as new conditions in the adult 
insect [37], which is often accompanied by a complete shift 
of the microbiome community [38]. Simultaneously, this 
allows symbiotic associations to be decoupled over devel-
opment [39].

This study focuses on the microbiome shift occurring 
during the transition from larva to adult in Coelopa frigida, 
hypothesizing that a shift in taxonomic and functional prop-
erties of the microbiome accompanies this process. The 
main objective of this research is to investigate the pres-
ence of dietary symbionts in coelopids, using a Coelopa 
frigida population from Helgoland (Germany) as a model. 
This will serve as a foundation for further investigations into 
the insect-bacteria relationship and provide insights into the 
nature of this relationship during the transformation from 
larva to adult. Studying the microbiome of the kelp fly can 
provide insights into their unique adaptations for utiliz-
ing washed-up kelp as a resource and help understand the 
complex interactions between insects and their microbial 
symbionts.
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Methods

Sample Collection

Samples were collected from the northern beach (Nord-
strand) of the North Sea island of Helgoland (Germany) 
on March 22nd and 23rd, 2022. The beach featured large 
amounts of unrooted kelp, predominantly from the genus 
Laminaria. Adult kelp flies were primarily collected by 
hand (using gloves) from the top and bottom of kelp 
stacks, as their mobility was limited under the low spring 
temperatures. In contrast, larvae were collected from the 
deeper, moister layers of the wrack beds. Adults and larvae 
were transferred to separate collection tubes on site and 
later stored in a refrigerator at + 5 °C. On-site storage did 
not exceed 3 h, and refrigerated storage before fixation did 
not exceed 60 h. No flies died during the storage period. 
The sex of adult flies was determined by examining genital 
structures before fixation. Then, 48 larvae, 26 adult males, 
and 23 adult females were collected.

To best preserve the flies’ microbiome, larvae and 
adults were submerged in PBS buffer, briefly placed on 
a laboratory wipe to dry, and then individually placed in 
Eppendorf tubes containing 1 ml of DNA/RNA Shield™ 
(Zymo Research). Due to their limited mobility, larvae 
could be processed alive, while adult flies were immo-
bilized by placing tubes of small batches of flies in the 
freezer for no longer than 10 min. Flies and larvae were 
sorted according to their size, with small, medium, and 
large larvae likely corresponding to the 1st, 2nd, and 3rd 
instars, respectively. Adults of each sex were also grouped 
into three sizes. Females showed considerably less varia-
tion regarding size, especially towards the higher end of 
the spectrum. On the contrary, males made up both the 
largest and smallest, as well as a range of intermediate-
sized individuals. This phenomenon led earlier researchers 
to describe them as three different species [40]. Sizes were 
sorted relative to each other, meaning large individuals 
correspond to the upper third of observed sizes among 
larvae, adult males, and adult females.

DNA Extraction and 16S rRNA Gene Sequencing

All laboratory procedures were conducted under a laminar 
flow hood (LabGard ES Energy Saver Class II Laminar 
Flow, NuAire Inc., Plymouth, MN, USA) to minimize 
environmental contamination. Total DNA was extracted 
using the ZymoBIOMICS DNA Miniprep Kit (Zymo 
Research) following the manufacturer’s instructions. To 
obtain sufficient microbial DNA, samples were pooled: 
small flies, 3 per tube; medium larvae, 3 per tube; and 

small larvae, 4 per tube. Large individuals and medium 
adults were extracted individually. Adult wings were 
removed before processing to facilitate tissue breakdown.

The DNA extraction protocol was modified to include 
an extra bead-beating step using silica beads for efficient 
insect tissue breakdown. Additionally, blank samples were 
included during plain water samples’ collection, extraction, 
and 16S rRNA gene sequencing to identify potential kit con-
taminants (Fig. S1) [41, 42]. DNA yields were determined 
using NanoDrop (Thermo Fisher) and stored at – 20 °C 
before shipping to LGC Genomics Berlin (https://​www.​lgcgr​
oup.​com) for 16S rRNA gene amplification and sequenc-
ing. Samples were shipped on dry ice, and vials were pseu-
donymized before shipping.

The V3–V4 hypervariable region of the 16S rRNA gene 
was PCR amplified using 16S rRNA-specific primers 341F 
“Klindworth” (CCT​ACG​GGNGGC​WGC​AG) and 785R 
“Klindworth” (GAC​TAC​HVGGG​TAT​CTAAKCC). Unique 
10-nucleotide barcodes were incorporated into the forward 
primer for each sample. PCRs were carried out for 30 cycles, 
and amplicon DNA concentrations were assessed by gel 
electrophoresis. Approximately 20 ng of amplicon DNA 
from each sample was pooled and purified using Agencourt 
AMPure XP beads (Beckman Coulter, Inc., IN, USA) and 
MinElute columns (Qiagen GmbH, Hilden, Germany).

Illumina libraries were constructed using the Ovation 
Rapid DR multiplex system 1–96 (NuGEN Technologies, 
Inc., CA, USA) with approximately 100 ng of purified 
amplicon pool DNA. Libraries were pooled, size-selected 
by preparative gel electrophoresis, and sequenced on the 
Illumina MiSeq platform targeting the V3–V4 region (300-
bp read length, paired-end protocol). A total of 50 samples 
were sequenced, including 18 larval samples, 14 adult males, 
13 adult females, and five blind samples.

Sample Preparation and Human Contamination Removal

The raw sequences were first processed to eliminate 
potential host and human contamination following the 
method described by Kayongo et  al. [43]. Briefly, the 
kelp fly genome (GCA_017309665.1) and human genome 
(GCF_000001405.39) were masked using the proGenomes2 
microbial genome database [44]. Raw reads were mapped 
to the reference genomes using BBMap (minimum identity 
of 0.95, maximum indel of 3, bandwidth rate of 0.16, band-
width of 12, quick match, fast processing, and minimum 
hits of 2), while read mapping the references was discarded.

Sequence Processing and Taxonomic Assignment

After removing putative off-target amplicons, the remaining 
raw reads were processed using LotuS2 (version 2.16) [45]. 
A Poisson binomial model–based read filtering was applied 
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[46]. Operational taxonomic unit (OTU) clustering was per-
formed using UPARSE, based on a 97% sequence similarity 
threshold [47]. The SILVA database v138 used Lambda for 
taxonomic assignment [48].

Phylogenetic Analysis

Our phylogenetic analysis focused on two of the most preva-
lent OTUs (OTU1 unknown genera and OTU3 unknown 
genera) in the larval samples. The OTUs were not classified 
beyond the family level by the LotuS2 pipeline, where OTU1 
was classified as Orbaceae and OTU3 as Wohlfahrtiimona-
daceae. We included the respective sequences in recently 
published 16S rRNA gene datasets dealing with the phylog-
eny of Orbaceae and Wohlfahrtiimonadaceae [49, 50]. The 
alignments were performed with MAFFT version 7 using the 
FFT-NS-i iterative refinement method [51]. Maximum likeli-
hood analysis was conducted using IQ-TREE 1.6.12 using 
ModelFinder and 1000 ultrafast bootstrap replicates [52–54].

Statistical Analysis

Normalization and computation of alpha diversity measures 
were performed using the rarefaction tool kit (RTK 0.93.1) 
with default settings [55]. To standardize for differences 
in sequencing depth in counts of OTUs in the Coelopidae 
microbiota, we first removed all blank samples. Subse-
quently, we normalized the remaining samples by rarefying 
them to the minimum observed read count of 14,515.

Three samples were removed and did not pass the read 
count threshold (Fig. S5). Due to the non-normal data distri-
bution, only non-parametric statistical tests were utilized for 
association analyses. Significance levels were established at 
a p-value < 0.05 or a q-value (FDR-corrected p-value) < 0.1 
for multiple testing scenarios. Bray–Curtis dissimilarities 
for beta diversity were calculated using the vegan R pack-
age (version 2.5–7) [56]. Permutational multivariate analysis 
of variance (PERMANOVA) was employed to evaluate the 
influence of life stages (adults and larvae), sexes (male and 
female), and size categories (small, medium, and large) on 
the Coelopidae microbiome composition using Bray–Curtis 
distances.

To assess the homogeneity of multivariate dispersions, 
a prerequisite for PERMANOVA, we applied the betadine 
function from the vegan package in R and evaluated the 
spread of multivariate data within groups. Upon detecting 
significant dispersion differences among life stage groups, 
we adjusted our PERMANOVA model to include distances 
to group centroids as a covariate, using the adonis function 
from the same package.

To evaluate whether the differences in unique taxa across 
life stages, sexes, and size categories were significant, we per-
formed a permutation test in R. We set a seed for reproducibility, 

executed 10,000 permutations by shuffling group labels, and 
generated a null distribution (see Supplementary Figure S3). 
The significance was determined by calculating a p-value from 
the observed differences compared to this distribution.

The ANCOMBC package in R (version 1.4.0) was uti-
lized to assess the differential abundance of microbial taxa 
across insect life stages and within-group characteristics. 
This method accounts for the compositional nature of micro-
biome data and includes bias correction [57, 58]. We com-
pared microbial abundances using variables such as “type,” 
“sex,” and “size,” with the Benjamini–Hochberg procedure 
applied to adjust for multiple testing. Data filtering was 
based on non-zero count proportions and library sizes. The 
analysis yielded beta coefficients and q-values, indicating 
the relative abundance changes and their significance, which 
were compiled for comparative analysis.

Functional profiling of the Coelopidae microbiota, 
derived from 16S rRNA gene sequence data, was conducted 
using PICRUSt2 (phylogenetic investigation of communities 
by reconstructing unobserved states) version 2.2.3 [59]. This 
method leveraged marker gene data and a reference genome 
database with 16S rRNA gene sequences to infer functional 
profiles. The same analytical approach was consistently 
applied across all Coelopidae samples.

Results

Microbiome Composition Variation Across Life 
Stages, Sexes, and Sizes

A comparative analysis of Shannon diversity indices was 
conducted to examine differences in microbiome compo-
sition between life stages (adult and larva). The results 
revealed a highly significant dissimilarity in microbiome 
composition (Wilcox p < 0.0001, BH-FDR) (Fig. 1A). How-
ever, contrasting the sexes (male and female) within adults 
(Fig. 1C) and examining size differences (large, medium, 
and small) within adults and larvae did not yield statistically 
significant results (Fig. S2), suggesting that the microbial 
diversity and composition are consistent across different 
sizes within each life stage.

To comprehensively assess microbiome composition, 
intersample Bray–Curtis dissimilarities were determined, 
reducing the high-dimensional data into a more concise 
dimensional space. Principal coordinate analysis (PCoA) 
was employed to visualize the Bray–Curtis dissimilarity 
between different groups (Fig. 1B: different life stages; 
Fig. 1C: different sexes within adult animals). Multivariate 
tests utilizing the Bray–Curtis distance confirmed signifi-
cant differences in composition across life stages (PER-
MANOVA p < 0.001) and sexes (PERMANOVA p < 0.05). 
Notably, the analysis of variance revealed that 34% of the 
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variance could be attributed to life stage (larva vs. adult), 
while 4% was explained by sex (Fig. 1C, D). Additionally, 
the difference in microbial composition was significant 
concerning size (large, medium, and small) among adult 
and larval animals (Fig. S2).

The abundance of bacterial phyla in the dataset between 
the two life stages, larvae and adults, predominantly com-
prises Proteobacteria (Fig. 2). The larval samples comprise 
three dominant phyla: Proteobacteria, Bacteroidota, and 
Fusobacteria (Table S1). The adult samples, on the other 

Fig. 1   Comparison of diver-
sity indices and dissimilarities 
between life stages and sexes. A 
Shannon diversity indices show 
a significant difference between 
life stages (larva and adult) 
(Wilcoxon test, q < 0.0001, BH-
FDR corrected). B Intersample 
Bray–Curtis dissimilarities 
reveal significant differences 
between life stages (PER-
MANOVA, p < 0.001). C Shan-
non diversity indices between 
sexes show no significant differ-
ence (Wilcoxon test, BH-FDR 
corrected). D Intersample Bray–
Curtis dissimilarities between 
sexes indicate significant 
differences (PERMANOVA, 
p < 0.05). Black-bordered points 
indicate the centroids of the 
displayed groups

Fig. 2   Microbial community 
composition across different 
samples. Barplots display the 
percent abundance of various 
taxonomic groups across a 
range of samples, differentiated 
by life stage (larva and adult) 
and further categorized by type 
and sex within the adult sam-
ples. The color key indicates the 
specific phyla, and the shading 
intensity reflects their relative 
abundance in each sample

Phylum

type

sex

female

larva samples adult male samples adult female samples



	 P. S. P. Bischof et al.   91   Page 6 of 14

hand, are composed of six dominant phyla, with Proteobac-
teria and Actinobacteria being particularly abundant, fol-
lowed by Campylobacter (Table S1).

When analyzing the abundance of phyla for a subset of 
adult insects categorized by sex and size and a subset of 
larvae categorized by size, effects of sex and size on the 
distribution of phyla were observed (Fig. S4, Table S1).

Visualizing the 15 most abundant taxa in our dataset, 
the larva samples are predominated by four taxa (OTU1 
unknown genus, OTU3 unknown genus, OTU11 Psychro-
bacter, OTU4 Cetobacterium), with half of the reads stem-
ming from OTU1 unknown genus (Fig. 3A). In contrast, the 
adult samples exhibit a more even distribution of the top 15 
genera (Table S2). Analyzing the same genera for a subset 
of adult animals categorized by sex and size and a subset of 
larvae categorized by size also showed a fewer skews in the 
distribution of the microbiome compared to the effect of life 
stage (Fig. S5, Table S2).

In our study, we utilized ANCOMBC on non-rarefied 
data to draw inferences regarding taxon abundance across 
different life stages (adult and larva), as well as among dif-
ferent sexes and sizes within adult and larval insects. The 
ANCOMBC approach was chosen due to its robustness and 
sensitivity, particularly with non-rarefied data and small 
sample sizes.

The ANCOMBC analysis revealed significant differ-
ences in the microbial communities between larval and 
adult insects (Fig. 3B). Specifically, we identified signifi-
cant increases in the abundance of Proteobacteria unknown 
genera OTU1 (q-value < 0.01, beta estimate = 1.63), Pro-
teobacteria unknown genera OTU3 (q-value < 0.001, 
beta estimate = 5.74), and Fusobacteriota Cetobacterium 
(q-value < 0.001, beta estimate = 6.95) between larva and 
adult insects. Notably, adult male flies exhibited an increase 
in Actinobacteriota Corynebacterium (q-value < 0.001, beta 
estimate = 3.02).

Our exploration into distinct taxa across life stages, sexes, 
and sizes revealed intriguing findings. While 120 genera 
were shared between life stages, adult animals exhibited 
256 unique genera, with only one unique genus found in 
larvae (Fig. 3C).

Permutation testing substantiated a non-random dis-
tinction in unique genera between larvae and adults 
(p-value < 0.0001). Comparison of sexes and sizes among 
adult organisms revealed an overlap of 301 genera, with 18 
exclusive to females and 57 to males (Fig. 3C). Evaluation 
of the distinction between adult males and females yielded 
a p-value < 0.05, suggesting a significant difference in the 
number of unique genera between sexes, thus indicating that 

Fig. 3   Taxonomic composi-
tion analysis and unique taxa 
across life stages, sexes, and 
sizes. A Barplots illustrat-
ing the distribution of the 15 
most abundant taxa for two 
life stages (larva and adult). 
B ANCOMBC analysis of the 
15 most abundant taxa, with 
shape, size, direction, and color 
indicating effect size (Cliff’s 
delta) for different comparisons 
(life stage, sex, and size). Stars 
represent significance (BH-FDR 
corrected). C Venn diagram 
illustrates shared and unique 
taxa between life stages, sizes, 
and sexes. Permutation testing 
suggests non-random differ-
ences in the number of unique 
genera between life stages and 
sizes, except for the sex com-
parison among adult insects
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the observed variances are highly improbable to have arisen 
by chance (Fig. S3).

Lastly, we investigated the abundance of these unique 
genera. While the single unique genus in the larvae 
(OTU783 unknown genus) exhibited minimal abundance, 
the unique genus Bacteroidota Barnesiella, Firmicutes 
Irregularibacter, and Proteobacteria uncultured rhizobia 
bacterium constituted together with 15 other a substantial 
portion of the lowest abundance unique genera in the adult 
insects (Fig. S6, Table S3).

Functional Profiling and Diversity Analysis 
of Microbiota Across Life Stages and Sexes

To gain insights into the functional profiles of the insect 
microbiota using 16S rRNA gene data, we employed PIC-
RUSt2. This tool infers the functional composition of bac-
terial communities based on their taxonomic composition. 
We assessed the Shannon diversity of the functional pro-
files across life stages and sexes (Fig. 4A, C). The results 
demonstrated a significant decrease in functional diver-
sity in the larva samples compared to the adult samples 
(q < 0.001, FDR corrected). However, no significant differ-
ence in functional diversity was observed when comparing 
the sexes within the adult subset (Fig. 4C). Additionally, 
we observed significant differences in functional composi-
tion across life stages (PERMANOVA p < 0.001) and sexes 
(PERMANOVA p < 0.05), as indicated by intersample 
Bray–Curtis dissimilarities (Fig. 4B, D).

Analysis of Functional Modules and Unique 
Functions in Microbiota Across Life Stages and Sizes

Among the 15 most associated KEGG and GMM (Gene 
Ontology Molecular Function) modules, we investigated the 
differences in their abundance across different life stages 
(Fig. 5A, Table S4). The iron complex transport system and 
ABC type 2 transporter system were found to be the most 
abundant modules in both life stages. Additionally, we exam-
ined unique functions specific to each life stage among the 
250 KEGG and GMM modules. We identified three mod-
ules uniquely present in adult animals: xylene degradation, 
archaeal proteasome, and MrpB-MrpA system. Further anal-
ysis explored size and sex within the adult insects, revealing 
no unique modules. Finally, we investigated differences in 
module abundance among different sizes of the larva. Like-
wise, for the adult insect, the top 15 modules were the ABC2 
transporter and iron complex transporter. Interestingly, 
small-sized larvae exhibited a module for lactosylceramide 
biosynthesis and bacterial proteasome, while middle-sized 
larvae showed a unique module for tyrosine degradation in 
the phenol pathway (Fig. 5B, Table S4).

Phylogenetic Placement of Unassigned OTU1

The maximum likelihood phylogeny generated by IQ-
TREE placed the unknown genus OTU1 as a sister taxon 
of all other Orbaceae included in this analysis (Fig. S7), 
a clade which is altogether supported by 100% bootstrap 

Fig. 4   Analysis of functional 
modules and unique func-
tions in the microbiome using 
PICRUSt2. A Shannon diversity 
of functional profiles across life 
stages (larva and adult), with 
significant differences observed 
(Wilcoxon test, q < 0.001, BH-
FDR corrected). B Intersample 
Bray–Curtis dissimilarities 
reveal significant differences in 
functional composition across 
life stages (PERMANOVA, 
p < 0.001). C Shannon diversity 
of the functional profiles across 
sexes shows no significant 
difference. D Intersample Bray–
Curtis dissimilarities between 
sexes indicate significant 
differences (PERMANOVA, 
p < 0.05). Black-bordered points 
indicate the centroids of the 
displayed groups
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support. Ingroup relationships of Orbaceae are less well-
supported, with the subsequent branching order of OTU1 
unknown genus, Zophobihabitans entericus, an endosym-
biont described from larvae of the darkling beetle Zopho-
bas morio, and a well-supported monophyletic group 
comprising the genera Orbus, Frischella, and Gilliamella.

OTU3 was placed firmly within the genus Wohlfahrtii-
monas, which is altogether highly supported as monophyletic 
group (98%). OTU3 is found with a bootstrap support of 93% 
as a sister group of Wohlfahrtiimonas chitiniclastica (Fig. S8).

Discussion

The gut microbiome is crucial in insect physiology, behav-
ior, and ecology, where symbiotic relationships with gut 
bacteria have enhanced the limited metabolic capacity of 

most insects [60]. In this study, we investigated the gut 
microbiome of Coelopa frigida (Diptera, Coelopidae) in two 
life stages in a population in Helgoland (Germany): larva 
and adult. Our analysis revealed substantial differences in 
microbiome diversity (Shannon index) between different life 
stages, with a highly significant dissimilarity between larval 
and adult stages. Contrasting the microbiome composition 
between sexes and sizes within the adults and larvae did not 
yield statistically significant differences. However, we could 
detect a significant difference in the abundance of specific 
genera grouping for size (large, medium, and small) among 
the adult and larval insects. We discovered that the size of 
adult and larval specimens significantly affects the abun-
dance of certain bacterial genera, indicating that the size 
of the species and its associated metabolic capacity play a 
role in shaping the structure of the microbiome. This vari-
ation between different size classes could be attributed to 

Fig. 5   Abundance and unique 
functions of KEGG and GMM 
modules across life stages and 
sizes. A Barplots illustrating the 
differences in the abundance of 
the 15 most associated KEGG 
and GMM (Gene Ontology 
Molecular Function) mod-
ules across various life stages 
(larva and adult). B Barplots 
showing the differences in 
the abundance of the 15 most 
associated KEGG and GMM 
modules across different sizes 
(small, medium, and large). A 
Venn diagram displays unique 
functions specific to each life 
stage among the 250 KEGG 
and GMM modules, with three 
modules found to be uniquely 
present in adult animals. B In 
the larval stage, two unique 
modules were identified for 
small larvae, and one unique 
module was identified for 
medium-sized larvae
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differences in resource utilization, metabolic rates, or other 
ecological factors [61]. Moreover, consistent with this result, 
Mérot et al. found that differently sized males of Coelopa 
frigida differ in their fitness across microhabitats [62]. We 
also observed an influence of sex on the distribution of cer-
tain genera, a result that mirrors human microbiome studies 
[63]. When comparing the sexes among adult insects, we 
found an overlap of 301 genera, with 18 unique to females 
and 57 unique to males. This finding aligns with the idea 
that sex hormones influence the gut microbial composition 
in various organisms, but further research is necessary to 
understand this relationship in insects [63, 64]. Our findings 
highlight the complexity and diversity of bacterial taxa in 
insects, which can vary across life stages, sexes, and sizes. 
Understanding these variations can provide valuable insights 
into the role of gut microbiota in insect development, repro-
duction, and overall health.

The influence of the developmental stage (adult vs. larva) 
on the beta diversity of the microbiome in our study aligns 
with previously published research, reinforcing the hypothe-
sis that the microbiome in holometabolous insects is affected 
by their complete metamorphosis, which encompasses sig-
nificant alterations in their physiology, morphology, and 
ecology [39, 65]. A comparative study found a much higher 
microbiota turnover in holometabolous insects than in hem-
imetabolous insects [38]. In the case of Coelopa frigida from 
Helgoland, we find the larval microbiome dominated by Pro-
teobacteria, while the adult microbiome showed a higher 
variety of phylum-level bacterial taxa. Some OTUs that are 
predominant in the larval microbiome nearly disappear from 
the list of the most abundant taxa in adults. The fact can also 
explain such a strong change in the microbiome composition 
of many holometabolous insects, which are decoupled, as 
demonstrated for honey bees [66]. During metamorphosis, 
most of the larval gut is replaced, which poses a problem for 
transmitting symbionts across life stages [67]. For example, 
for several mosquito species, a near-complete elimination 
of gut bacteria has been found when investigating freshly 
emerging adults [68]. This problem can be circumvented 
with the presence of specific gut paunches which facilitate 
symbiont transmission [69]. Specific investigations target-
ing metamorphosis are needed to address this question in 
kelp flies.

Diet, habitat, and host physiology impact insect microbial 
composition and diversity [70]. Disentangling the effects of 
dietary change from developmental changes is challenging. 
Both larval and adult stages of Coelopidae inhabit the kelp, 
providing them with a food source. These macroalgae con-
tain complex polysaccharides, which can make up to half of 
their biomass, and specific enzymes are needed for their deg-
radation [71, 72]. A similar study by Berdan and colleagues 
characterized the microbiome of Coelopa frigida larvae and 
the wrack bed they inhabited across different sampling sites 

in the North and Baltic Seas [31]. They found that polysac-
charide degraders dominated both microbiomes [31]. Dif-
ferences between wrack bed and fly microbiomes led them 
to hypothesize that microbes were selected for their abilities 
to degrade different polysaccharides [31]. Similar to most of 
the populations investigated by Berdan and colleagues, we 
found that the major component of the larval microbiome of 
the Helgoland population is Proteobacteria [31]. We could 
show that the larval microbiome is dominated by only four 
OTUs, with around 50% of the metabarcoding reads coming 
from a single hitherto uncharacterized OTU belonging to 
the Gammaproteobacteria. We applied phylogenetic analysis 
to help clarify its taxonomic assignment and placed it as a 
sister taxon to other included Orbaceae. This family includes 
mostly taxa found as symbionts of insects like bees or but-
terflies [69, 73–75]. Additionally, unclassified Orbaceae 
species were found in fruit flies and beetles [76–78]. The 
best-studied Orbaceae genus is Gilliamella, found in several 
Hymenoptera with a full-genome analysis indicating they are 
involved in the degradation of multiple carbohydrates [79]. 
According to our phylogenetic analysis, the highly abun-
dant OTU1 belongs to an undescribed genus of Orbales, and 
investigating the complete genome or functional metagen-
omics would be needed to see if gene encoding for poly-
saccharide-degrading enzymes are present. While this OTU 
dominates the larval microbiome, only 2% of the reads of the 
adult microbiome are assigned to this genus. A not further 
characterized OTU belonging to Orbaceae also was found 
in the very high read count numbers in the study by Berdan 
et al. in the larval samples, but less frequently in the wrack 
bed samples [31]. Interestingly, with the Actinobacteriota 
Demequina sp., they also report very high read counts for 
another OTU, which also shows the potential in being bene-
ficial in degrading complex carbon sources [80]. In contrast, 
we find only very low read counts for Actinobacteriota in our 
larval samples (Table S1).

Another highly abundant Proteobacteria OTU found in 
the larval microbiome of Coelopa frigida is OTU3, which, 
based on a detailed phylogenetic analysis, belongs to the 
genus Wohlfahrtiimonas and is closely related to Wohlfahrti-
imonas chitiniclastica. Around 18% of the metabarcoding 
reads can be assigned to this OTU for larvae, and with 
around 11% of metabarcoding reads, this OTU is among 
the most abundant genera in the more diverse adult micro-
biome. Berdan and colleagues’ metabarcoding study also 
revealed this taxon’s presence in the North Sea and Baltic 
Sea populations of Coelopa frigida [31]. Interestingly, in 
their study, these bacteria were only found in the larval sam-
ples, but not in the environmental samples from the wrack 
bed [31]. The genus Wohlfahrtiimonas belongs to the Car-
diobacteriales (Gammaproteobacteria) and comprises three 
described species. The type species Wohlfahrtiimonas chi-
tiniclastica was originally isolated from larvae of the spotted 
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flesh-fly Wohlfahrtia magnifica (Diptera: Sarcophagidae) 
and is known to be a zoonotic human pathogen causing, 
among other problems, sepsis in cases of myasis [81, 82]. 
Wohlfahrtiimonas spp. have been found in the microbiome 
of several species of Diptera belonging to the Sarcophagi-
dae, Stratiomyidae, Muscidae, or Calliphorida, but also 
have been isolated from other sources, such as meat, soil, or 
the bark tissue of a tree canker [49, 82–85]. While several 
reports about the pathogenesis in humans of Wohlfahrtii-
monas have been published and the complete genomes are 
characterized, there seems to be no data on the influence of 
these bacteria on their insect host [86].

Thirteen percent of the metabarcoding reads of the lar-
val microbiome can be assigned to the genus Psychrobacter 
(Gammaproteobacteria), with a similar number seen in the 
adult microbiome (15%). Most Psychrobacter species are 
reported from cold environments, but strains are also known 
from temperate marine environments [87]. Psychrobacter 
is frequently found in studies dealing with the microbiome 
associated with macroalgae and is also reported from Lami-
naria species [88–90]. Given the distribution of the bacteria, 
it seems likely that Coelopa frigida acquires them from the 
environment while feeding on the rotten kelp.

Finally, around 15% of the reads of the larval microbiome 
are mapped to an OTU classified as Cetobacterium (Fuso-
bacteriota), which only makes up around 1% of the reads of 
the adult microbiome. A comparative study on the microbi-
ome of different larval stages of a Chironomus sp. (Diptera) 
found Cetobacterium among the most abundant bacterial 
genera [91]. Functional studies revealed that Cetobacte-
rium spp. synthesize vitamin B12, which has been shown to 
improve host resistance against pathogen infection [92, 93]. 
The exact role of these Fusobacteriota in the microbiome of 
Coelopa frigida remains elusive, but its abundance in larval 
samples suggests a possible important role. However, while 
this taxon was also found in the microbiome of some larval 
samples of the study of Berdan et al. [31], it was recovered 
much less common and made up less than 1% of the read 
count.

Adult samples displayed a more even distribution in their 
microbiome composition, with taxa like Cetobacterium dis-
appearing from the list of the 15 most abundant taxa and new 
taxa like Pseudoalteromonas, Psychromonas, and Nesteren-
konia appearing in significantly higher abundances.

To better understand the functional profiles of the micro-
biota, we analyzed the functional composition of bacterial 
communities based on their taxonomic composition. Our 
taxonomic profiling suggests a significant decrease in func-
tional diversity in larva samples compared to adult samples. 
Similar patterns are also known from other insects, e.g., 
the fall armyworm Spodoptera frugiperda (Lepidoptera) 
[94]. This reduction can likely be attributed to the overall 
decreased bacterial richness in larvae, suggesting that the 

metabolic capacity in larvae may not be as diverse as in 
adult insects. No significant difference in functional diversity 
was observed when comparing sexes within the adult subset. 
We investigated the abundance of the 15 most associated 
KEGG and GMM (Gene Ontology Molecular Function) 
modules across different life stages. Overall, the hallmark 
functions are preserved in the microbiome. We identified 
three modules uniquely present in adult animals: xylene 
degradation, archaeal proteasome, and MrpB-MrpA system. 
However, these did not correspond to abundant OTUs, and it 
is unlikely they play a vital role. Importantly, the functional 
predictions made in this study should be interpreted with 
caution. Most inferences about microbial genes and their 
functions in PICRUSt2 are based on previous gene annota-
tions. Therefore, any error or limitation in these annotations 
could impact the accuracy of our functional predictions. 
Additionally, it is crucial to acknowledge that amplicon-
based predictions, like those used in our study, lack the reso-
lution to distinguish strain-specific functionality. This is a 
significant limitation of PICRUSt2 and any amplicon-based 
analysis, as they can only differentiate taxa to the extent that 
they vary at the amplified marker gene sequence. This limi-
tation is critical in understanding the functional dynamics of 
the microbiome, as it may lead to an underestimation of the 
true functional diversity present within these communities.

Even though experimental data and microbiome studies 
are available now for Coelopa frigida, several open ques-
tions remain regarding their feeding biology: Are they pri-
mary consumers, degrading the algal material with the help 
of bacterial symbionts, or are they secondary consumers 
feeding on the bacterial component of the algae? The most 
thorough investigation of the dietary requirements of Coe-
lopa frigida was done by Cullen and colleagues [11]. They 
showed that larvae can survive when eggs are externally 
sterilized, but not if seaweed is sterilized [11]. Cullen and 
colleagues confirmed the need for microbial colonization 
of the larval gut and isolated around 20 species of bacteria 
[11]. The predominant genera are Bacillus, Flavobacterium, 
Staphylococcus, and possibly Enterobacter and Sarcina. 
Additionally, this study showed that the larvae actively fil-
ter bacteria from their environment [11]. They can be reared 
on a medium composed of seaweed and only one bacterial 
species, even one normally not associated with algae [11]. 
However, the presented data by Berdan et al. showed that the 
importance of culturable species was overestimated in their 
culture-dependent study [31]. A bacterial dietary component 
of Coelopa frigida was also confirmed by comparing the 
chemical composition and the stable isotopes of flies and 
algae, and the limitations of the algae food source in the 
aspect of essential amino acids were likewise demonstrated 
[34]. In the light of the here presented data and when inter-
preting the results by Berdan et al., we agree with Cullen 
et al. that the combined activities of microbial and insect 
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populations result in the rapid decomposition of seaweed, 
thereby blurring the distinction between primary and sec-
ondary consumption in the case of Coelopa frigida [11, 31].

Conclusion

Our study offers insights into the microbiome dynamics 
and functional composition of Coelopa frigida. The results 
revealed a highly significant dissimilarity in microbiome 
composition between life stages, with a significant difference 
in microbial richness and functional diversity between larva 
and adult samples. However, it is important to note the limi-
tations of our study, as it was conducted in only one loca-
tion (Helgoland, Germany) with one population of a single 
kelp fly species during one time of the year. A longitudinal 
study design would provide the opportunity to investigate 
the seasonal effects, such as temperature, on the microbiome 
dynamics and functional composition in Coelopa frigida. 
Future research should consider incorporating a broader 
range of sampling locations and times to understand better 
the complex interactions between the kelp fly microbiome, 
their unique adaptations, and the environmental factors that 
influence their microbial communities.
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