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Abstract  

The importance of subcellular mRNA localization is well-established, but the underlying 
mechanisms remain mostly enigmatic. Early studies suggested that specific mRNA sequences 
recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite thousands of 
localized mRNAs observed, only a handful of these sequences and RBPs have been identified. 
This suggests the existence of alternative, and possibly predominant mechanisms for mRNA 
localization. In this review, I reexamine currently described mRNA localization mechanisms and 
explore alternative models that could account for its widespread occurrence. 
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Main 

In many cell types, mRNAs are transported to specific subcellular locations, creating localized 

protein pools with diverse functions. This was first observed 40 years ago when asymmetric mRNA 

distribution was found in ascidian eggs1. Recent genome-wide studies have underscored the 

importance of this process, revealing thousands of RNAs that are localized to specific sites within 

cells2-22. This phenomenon has been observed in various organisms, such as yeast, plants, 

insects, and vertebrates (reviewed in23,24), as well as in a multitude of cell types, including 523 

human cell lines studied22,25, emphasizing its widespread nature. It is especially prominent in highly 

polarized cells, such as oocytes, migrating cells, and neurons. For instance, the development of 

the embryonic body axes in Drosophila depends on the asymmetric localization of the maternal 

mRNAs gurken, bicoid, oskar, and nanos (reviewed in26). As highly polarized cells, neurons rely on 

specific mRNA localization patterns within their cell bodies (soma) and extensions (neurites) for 

their proper functioning. For instance, in developing neurons, the localization of β-actin mRNA to 

growth cones is crucial for axon guidance27,28. Synaptic plasticity, which is crucial for learning and 

memory, is also dependent on mRNA localization. Here, synaptic localization of activity-regulated 

cytoskeleton-associated protein (Arc) mRNA is required for regulation of the trafficking of α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate synaptic 

transmission29,30. Although the significance and extensive scale of mRNA localization are well 

established, the mechanisms driving this process remain mostly elusive. In this Review, I revisit the 

current models of asymmetric mRNA localization and explore alternative mechanisms that might 

explain the widespread occurrence of this phenomenon.  

Zipcode model of mRNA localization 

In the early 90s, it was postulated that mRNAs undergo localization due to specific cis-acting 

elements in their 3'UTR, so called “zipcodes” or “localizers”31. The localization of β-actin mRNA to 

lamellipodia in fibroblasts was used as a model to map the localization determinants32. For that, 

localization of fusion constructs between the coding sequence of β-galactosidase and segments of 

β-actin 3'UTR was analyzed. This approach identified two key regions of 54 nucleotides and 43 

nucleotides in length, respectively, within the β-actin 3'UTR that were responsible for its 

localization. The 54-nucleotide segment was more effective in mediating mRNA localization and 

was termed the “mRNA zipcode.” This study also reported that these localization determinants do 

not impact mRNA stability or protein production, but only mediate mRNA transport within the cell. 

Based on this, the authors postulated that zipcodes recruit RNA-binding proteins (RBPs) that are 

involved in transport, such as cytoskeleton-associated proteins32 (see Box 1 for details on the role 

of cytoskeleton). In support of this, zipcode-binding protein 1 (ZBP1, also called IGF2BP1 and 

IMP1) was subsequently identified to bind to the β-actin zipcode33. ZBP1 forms ribonucleoprotein 
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(RNP) granules that have been suggested to move along cytoskeleton fibers in a motor-dependent 

manner to locations, such as the edge in fibroblasts34, or to neuronal growth cones28 and 

dendrites35. Further work36 showed that the β-actin zipcode consists of two short motifs separated 

by a spacer of 10 to 25 nucleotides in length. This sequence has been found to be conserved in 

114 other mRNAs, suggesting that it may play a role in the localization of multiple mRNAs. The 

localization of β-actin mRNA has thus become the foundation for our understanding of mRNA 

localization within cells (see Fig. 1A and Box 2 for more details on β-actin mRNA zipcode).  

A well-studied example of mRNA localization, which is mediated by a zipcode as validated with in 

vitro reconstitution experiments, is the transport of ASH1 mRNA in yeast, which is required for the 

proper control of mating-type switching (reviewed in37) (Table 1). The zipcode of ASH1 mRNA is 

composed of four stem-loop structures, with three located within its coding sequence and one 

within the 3'UTR (reviewed in37). These stem-loop structures are bound by the RBPs She2p and 

She3p and transported by the myosin motor Myo4p along actin filaments to the tip of the daughter 

cells (reviewed in37). 

Another example of zipcode-mediated RNA transport that has been reconstituted in vitro involves 

the Bicaudal-D (BicD) dynein adaptor protein and the RBP Egalitarian (Egl), which mediate mRNA 

transport in Drosophila38. Egl specifically interacts with the stem-loop structures found in the 

mRNAs of gurken, oskar, K10, hairy, and the I factor retrotransposon 38-41. This binding facilitates 

their interaction with BicD and the recruitment of dynein, along with its accessory complex 

dynactin38. The resulting complex moves towards the minus-ends of microtubules, helping to 

establish cell polarity.  

Alongside zipcode-mediated recruitment of RNA to motor proteins for transport, other mechanisms 

also play a role in RNA localization within cells, such as diffusion, anchoring, and selective RNA 

degradation in specific cellular regions as discussed below (Table 1). The scientific community has 

not reached a consensus on whether the term "zipcode" should apply to all cis-acting elements 

responsible for RNA localization, or if it should be reserved only for those elements linking mRNA 

to motor proteins through specific RBPs for mRNA transport. In some of the recent studies, cis-

acting elements that mediate RNA localization have been referred to more generally as localization 

elements or localization signals37,42,43. For clarity, I will use the term 'localization element' to include 

all elements that mediate local accumulation of transcripts, irrespective of the specific underlying 

mechanism.  

RNA anchoring  
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As mentioned above, mRNA transport involves not only motor-dependent mechanisms. For 

instance, the localization of nanos mRNA in Drosophila oocytes is achieved by a diffusion-driven 

mechanism coupled with the anchoring of nanos within the germ plasm, a specialized cytoplasm at 

the posterior pole, through its association with the actin cytoskeleton44 (Fig. 1B and Table 1). 

Although this does not directly involve motor-mediated transport of the mRNA, its diffusion is 

accelerated by motor-induced movements in the cytoplasm that result in cytoplasmic streaming45. 

Similarly, during Xenopus oogenesis, nanos1 mRNA is localized through a process of diffusion and 

subsequent entrapment in the Balbiani body46. 

Translation-dependent mRNA anchoring has long been recognized as a mechanism to direct 

mRNAs that encode membrane and secreted proteins to the endoplasmic reticulum (ER) 
(reviewed in47). In this process, the emerging peptide acts as a signal, which is bound by the signal 

recognition particle (SRP) and its corresponding receptor on the ER. This interaction anchors 

mRNA that is being translated to the ER through the nascent peptide. Recent studies have 

revealed that co-translational mRNA targeting is more prevalent than previously thought and that it 

occurs at various intracellular locations, including mitochondria22, centrosomes48, cytoplasmic 

protrusions, endosomes, the Golgi apparatus, and the nuclear envelope25. These findings suggest 

that the nascent protein chains may anchor mRNAs that encode them at specific subcellular 

locations. It remains an open question whether such translation-dependent anchoring contributes 

to mRNA localization to more distant sites, such as within neurons. For example, Fragile X Mental 

Retardation Protein (FMRP) was suggested to play a role in transport of mRNAs that are stalled in 

translation to distal sites in neurons49. An intriguing possibility is that mRNAs may become 

anchored through their nascent peptides to membrane organelles, thereby enabling the mRNAs to 

"hitchhike" on the organelles.  

mRNA degradation 

Another means of mRNA localization is through localization-dependent mRNA degradation, which 

differs fundamentally from active transport of mRNA from one subcellular region to another without 

altering the overall mRNA levels within the cell. However, in this mechanism, enrichment of an 

mRNA in certain cellular regions is achieved by decreasing its levels in other areas. One such 

example of localization-dependent degradation, already described in the early 90s50, is the 

localization of Hsp83 mRNA to the posterior pole of Drosophila embryos. This is achieved by 

Hsp38 degradation throughout most of the embryo, whereas it is protected from degradation at the 

posterior pole50 (Fig. 1C and Table 1). Here, the local concentration of Hsp83 mRNA at the 

posterior pole remained constant, whereas the total amount of Hsp83 decreased as the localization 

pattern was established, ruling out mRNA transport as a possible mechanism50. Subsequent 

research revealed that Hsp83 mRNA degradation involves recruitment of the CCR4-NOT 
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deadenylation complex, which is mediated by the RNA-binding protein Smaug51. Smaug also binds 

to the 3'UTR of nanos mRNA in Drosophila embryos, which targets it for degradation, while nanos 

is shielded from degradation at the posterior pole through interaction with Oskar protein52.  

Our work53 showed that in neurons, mRNAs with binding sites for the micro (mi)RNA let-7 or those 

containing (AU)n repeats (n > 5) are preferentially degraded in the cell body, resulting in an 

enrichment of these mRNAs in neurites. Let-7 is the most abundantly expressed miRNA in the 

mammalian brain and plays crucial roles in neuronal differentiation54, regeneration55,56, and 

synapse formation57,58. Interestingly, the protein components of the miRNA machinery are depleted 

from neurites, which leads to a preferential degradation of let-7 targets within the cell bodies53.  

Insights from transcriptome-wide localization datasets and assays 

The advancement of Next-Generation Sequencing (NGS) technologies has led to the creation of 

multiple datasets that report mRNA localization on a transcriptome-wide scale2-15,17-19,59-64. An 

integrative analysis of 20 such datasets, spanning different species and types of neurons, has 

identified a conserved set of mRNAs, which were consistently found to localize to neurites in 

multiple studies21. This set includes mRNAs that encode for ribosomal proteins, components of 

translation machinery, mitochondrial proteins, cytoskeletal elements, and proteins involved in 

neurite formation21. 

An interesting finding from these comprehensive datasets is the identification of thousands of 

localized mRNAs, with between 5% to 15% of the cellular transcriptome being at least two-fold 

enriched in neurites compared to cell bodies. However, localization elements have been identified 

only for a few of them (Table 1). Therefore, we and others have employed massively parallel 

reporter assays (MPRA) to map the localization elements within the mRNA that are localized to 

neurites53,65,66. In these studies, a pool of oligonucleotides, representing fragments of 3'UTRs from 

neurite-localized transcripts, were cloned into the 3'UTR of a reporter gene library, which was then 

introduced into neurons. Subsequently, the neurons were divided into subcellular compartments — 

cell bodies and neurites — and the enrichment of individual fragments was analyzed through 

sequencing. 

Two of the studies found shared localization elements, including (AU)n motifs and binding motifs for 

the CELF/BRUNOL (GU-rich motif) and PCBP (C-rich motif) protein families53,66. Notably, 

CELF/BRUNOL plays a role in the localized translation in Drosophila oocytes67,68. PCBP2 is 

involved in Mapt splicing, which is critical for neuron survival and function69, and its C-rich motif 

was identified in our study of neurite-enriched RNAs12. Interesting, a role for let-7 binding sites in 

RNA localization was only observed in the study that used primary cortical neurons53, but not in the 
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one using two different neuroblastoma cell lines66, likely due to differences in let-7 expression in 

these cells. Some of the previously known localization elements, such as the cytoplasmic 

polyadenylation element (CPE), were also identified53.The third MPRA study65 identified GA-rich 

sequences similar to those that regulate localization to projections of mesenchymal cells70. 

However, as it focused on dissection of only eight neurite-localized transcripts, its overlap with 

other datasets was not informative. 

Remarkably, only a fraction of the analyzed transcripts in these assays showed identifiable 

localization elements. For example, in primary cortical neurons, asymmetrically localized fragments 

were found for one-third of the 99 analyzed transcripts53, while in N2A and CAD neuroblastoma 

lines, localized fragments were identified for one-tenth and one-fifth of analyzed transcripts, 

respectively66. These findings raise the question of how the majority of transcripts achieve their 

localization. One explanation is the limited capability of MPRA-based assays to detect localization 

elements due to their design constraints. MPRA-based assays detect relatively short localization 

elements, shorter than the library fragments used (ranging from 150 to 198 nucleotides). For 

instance, the localization element of Arc mRNA, which includes a 350 nucleotides region71, 

exceeds the mapping capability of MPRA-based assays. Localization elements that comprise 

multiple motifs spread across 3’UTR or the coding sequence, as well as those that are splicing-

dependent72, are also undetectable with the current versions of the MPRA-based assay. A further 

limitation of these assays is that they examine the activity of localization elements within a fixed 

vector backbone. Different backbones, with variations in their promotors, splicing status, and GC 

content, can influence the activity of the embedded fragments differently. Additionally, the 

effectiveness of individual localization elements may vary depending on the developmental stage 

of neurons and on neuronal activity. 

An alternative explanation for the inability of MPRA-based assays to detect localization elements in 

most mRNAs could be the existence of other mechanisms for mRNA localization that do not 

depend on specific sequences for their recruitment to the localization machinery (e.g. motor or 

anchoring proteins). Instead, these may be driven by mRNA stability as discussed next.  

Stability-driven localization 

A plausible factor that could influence mRNA localization is its stability as mRNAs that are prone to 

rapid degradation are less likely to reach the cell periphery. mRNA labelling and modeling 

experiments have estimated that it takes around 4.8 hours for an mRNA to cover a distance of 100 

μm73,74. With the average half-life of neuronal mRNAs at around 3.7 hours75, the importance of 

mRNA stability in its transport to distal sites is evident. Our recent work75 performed a 

transcriptome-wide quantification of mRNA degradation rates in subcellular neuronal 
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compartments and assessed how differential mRNA stability influences mRNA localization in 

neurons. This study demonstrated that high mRNA stability is a reliable predictor for mRNA 

localization to neurites. The stable, neurite-localized transcripts are linked with housekeeping 

functions such as translation, e.g. ribosomal protein (RP)-encoding transcripts. Stability of such RP 

transcripts is maintained through the binding of the LARP1 protein to 5' terminal oligopyrimidine 

(5'TOP) tracts in these mRNAs76. Crucially, experiments that destabilized these transcripts via 

LARP1 depletion also interfered with their localization to neurites, local translation and neuronal 

activity75, suggesting that a high mRNA stability is necessary to localize these mRNA to distant 

parts of the cell and this mechanism is essential for neuronal function. Consistently, prior studies 

have shown that RPs are not only translated locally in neurites21 but also incorporated into axonal 

ribosomes and are required for ribosome function77,78. Furthermore, mRNAs that encode for RPs 

were reported to localize in various other cell types. This includes the protrusions of mesenchymal-

like migrating cells79 and the basal surface of epithelial cells80, indicating conservation of this 

mechanism across diverse cell types.  

Destabilizing specific mRNAs disrupted their localization to neurites, whereas stabilizing them 

reinforced it75. For example, when mRNAs were globally stabilized through interfering with the 

function of the deadenylase CAF1, the amounts of RNA localized to neurites increased 

approximately two-fold75. Furthermore, perturbing specific mRNA decay pathways confirmed the 

role of mRNA stability in localization. For example, m6A (N6-methyladenosine) modifications in 

mRNAs trigger their degradation through the recruitment of YTH domain-containing family 

(YTHDF) proteins that recognize these modified mRNAs and attract deadenylases81,82. Depletion 

of YTHDF proteins or interfering with the protein that deposits m6A modifications on mRNA lead to 

a stronger accumulation of these mRNA in neurites75. These data suggest that high mRNA stability 

is not only necessary but also sufficient to localize an mRNA to distant parts of the cell and that 

stable mRNAs might localize to neurites primarily because they remain intact long enough to reach 

the cell periphery (Fig. 1). I propose the term stability-driven localization to describe the idea that 

stable housekeeping transcripts, which are continuously required in remote locations, localize to 

distant areas due to their high stability, without relying on specific sequences to recruit them to a 

localization machinery.  

The differential stability of mRNAs is largely determined by cis-acting elements within the mRNA. A 

high mRNA stability is typically owing to the absence of destabilizing elements in mRNA (such as 

m6A, AU-rich elements), or the presence of stabilizing elements (e.g. 5'TOP, optimal choice of 

codons)75. Interestingly, ZBP1, which binds to the β-actin zipcode, has been recently shown to bind 

to the methylated consensus GG(m6A)C sequence and stabilize bound mRNAs84; such a 

consensus sequence is also present in β-actin zipcode36. Additionally, Staufen2, whose orthologs 

have roles in RNA transport across various species (reviewed in85), has been found to stabilize its 
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target mRNAs in primary neurons86. This suggests there is potential overlap between these 

mechanisms and that some of the previously described localization elements might also function 

by stabilizing their mRNA substrates. 

Reconciling current data with models for asymmetric RNA localization 

As discussed above, transcriptome-wide analyses of mRNA localization have revealed several key 

points: (i) thousands of mRNA molecules are localized within cells; (ii) for the majority of these 

localized mRNAs, no specific localization elements could be identified; (iii) high mRNA stability 

appears sufficient to achieve their localization to neurites. These observations raise the question of 

how mRNAs that lack localization elements are transported to distal parts of the cell. In 

vertebrates, axons can span up to a meter, and dendrites can extend hundreds of micrometers 

from a cell body typically measuring 10-25 μm in diameter87. While diffusion followed by anchoring 

might account for RNA localization in cells where cytoplasmic streaming occurs (as seen in 

oocytes44) or over short distances (e.g. in fibroblasts88), it cannot explain asymmetric mRNA 

distribution in thin and long neurites74,75; here, mRNAs are thought to be localized by motor-driven 

transport, mediated by interactions between adaptor RBPs and localization elements.  

However, recent findings challenge this view, suggesting that specific RBP-RNA sequence 

interactions may not always be required for recruitment to motor proteins. In fact, a significant 

number of RBPs display only low sequence-specificity or non-specific RNA-binding properties 

(reviewed in89). Indeed, of over 2,000 known human RBPs90, RNA-binding specificity has been 

determined for only 223 proteins91. Furthermore, RNA Bind-n-Seq experiments designed to 

determine specific binding motifs identified multiple interacting sequences in more than half of 

analyzed RBPs (41 of 78)92. This suggests that many RBPs tolerate a high degree of variation in 

their RNA-binding sites. Consistent with this, RBPs found in transported RNA-protein complexes 

(referred to as transport complexes or granules) often bind hundreds of RNAs. For example, 1,206 

RNAs were significantly enriched in immunoprecipitates of Staufen2, a key RBP in transport 

granules in the rat brain86. Additionally, an analysis of FMRP immunoprecipitates from mouse 

brains identified more than 400 associated mRNAs93. Similarly, cross-linking and 

immunoprecipitation (CLIP) of survival motor neuron protein 1 (SMN1) identified more than 200 

associated mRNAs in NSC-34 motor neuron-like cells94. In addition, CLIP of Adenomatous 

Polyposis Coli (APC), which has been implicated in RNA transport, revealed 260 mRNA targets95. 

These findings indicate that multiple mRNAs might be recruited to the transport machinery, i.e. 

RBPs and motor proteins, in a less specific manner than previously thought (Fig. 1A).  

However, several studies employing imaging techniques have provided experimental support that 

transport complexes contain only either a single RNA or only a few RNA molecules88,96-98. A 
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limitation of these approaches is that they can only monitor one or a few transcripts at a time. 

Therefore, it cannot be excluded that such complexes contain additional mRNA species.  

Indeed, recent studies suggest that RNAs are transported within larger, complex granules that 

comprise a mix of different RNAs and RBPs. For instance, CamkIIα, Neurogranin, and Arc mRNAs 

were found to co-assemble into the same RNP and are transported together along microtubules by 

kinesin motors99. The transport of multiple RNAs in the same transport unit makes the process 

more energy efficient. 

In line with this, recent findings suggest that mRNA transport may involve the assembly of higher-

order mRNP transport granules through phase separation (reviewed in43). Phase separation 

describes a process, in which untranslated RNA and proteins with intrinsically disordered regions 

segregate from the bulk cytoplasm or nucleoplasm and create so-called biomolecular condensates 

(reviewed in43). Examples include P-granules, stress granules, germ granules, processing bodies, 

and the nucleolus (reviewed in100,101). An example for transport of biomolecular condensates are 

the L-bodies (localization bodies) in Xenopus oocyte, which orchestrate the transport of over 450 

RNAs, including Vg1, and 86 proteins102. Another example are oskar-containing RNP granules in 

Drosophila oocytes, which form condensates with solid-like physical properties103 and at later 

stages of oogenesis, can encompass tens to hundreds of oskar molecules104. Neuronal RNP 

transport granules reach hundreds of nanometers in diameter105,106 and can also form through 

phase separation (reviewed in107). For instance, FMRP exhibits phase separation in vitro with RNA, 

forming liquid droplets due to its C-terminal low-complexity disordered region108. Similarly, TDP-43 

RNP granules found in the axons of rodent primary cortical neurons show liquid-like properties109. 

The low-complexity domains in FUS prompt its reversible transition into liquid droplets and 

hydrogels110. These large transport granules, comprising multiple RNAs and proteins, may allow for 

numerous mRNAs and RBPs be co-transported within cells, while only requiring a limited number 

of motor and adaptor proteins.   

Hitchhiking on membrane organelles, such as endoplasmic reticulum (ER), mitochondria and 

endosomes, has emerged as an alternative mode of RNA transport (reviewed in42) and is observed 

in fungi111,112, plants113, and animals114-116 (Fig. 1A). For instance, the fungus Ustilago maydis 

bidirectionally transports RNA bound to endosomes, facilitated by both kinesin and dynein, along 

its growing hyphal structures111. As mentioned above, yeast ASH1 mRNA has been demonstrated 

to co-migrate with the ER to the yeast bud112. RNA granules in human induced pluripotent stem 

cell (hiPSC)-derived neurons have been observed to use lysosomes for movement with Annexin 

A11 as an adaptor114. Moreover, RNA granules have been reported to associate with both Rab7a-

labelled late endosomes117 and Rab5-marked early endosomes116. Additionally, neuronal 

mitochondria have been found to transport the Pink1 mRNA using synaptojanin 2 as adaptor115. 
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Organelle-mediated RNA transport may involve various adaptors and RBPs offering an additional 

mechanism for the co-transport of numerous RNAs.  

It is important to note that the same mRNA can be transported by different means. For instance, β-

actin, one of the most extensively studied mRNAs, has been reported to be asymmetrically 

localized by kinesin-2 motor-dependent transport, assisted by the proteins APC and KAP3A, as 

well as its G-rich motif, in in vitro reconstitution experiments118, by diffusion and local entrapment in 

fibroblasts88, by anchoring via ZBP1 in dendrites of mouse cortical neurons119, and, finally, by 

hitchhiking on lysosomes with Annexin A11 acting as an adaptor in hiPSC-derived neurons114. The 

participation of multiple mRNA elements and of different means to reach its destination site may be 

important for ensuring proper localization of an mRNA. 

Conclusions and future perspectives 

Multiple studies have shown the widespread nature of RNA localization, with thousands of RNA 

localized within cells. However, the mechanisms that regulate the localization for the vast majority 

of these RNAs remain unknown. Regardless of the exact mechanism for recruitment of the mRNA 

to the motor proteins, i.e. directly through RBPs, or indirectly through large biomolecular 

condensates or membrane organelles, it is evident that with thousands of mRNAs requiring 

asymmetric localization, the underlying mechanisms are likely to be less selective than initially 

thought. Moreover, it is clear that a high stability of an mRNA is crucial in ensuring it can localize to 

distant sites. Such stability-driven mRNA localization is especially important for housekeeping 

transcripts, such as those associated with translation75. The notion that localization can depend on 

mRNA stability rather than only the presence of a specific sequence for recruitment to transport 

machinery aligns with Occam's razor, the principle suggesting the simplest explanation is often 

correct, and thus offers a simple and efficient mechanism to localize housekeeping transcripts to 

remote locations where they are continuously needed.  

Future research is clearly needed to better understand the factors that regulate the incorporation of 

RNAs and proteins into transport granules, as well as to understand how their localization impacts 

cell function. The binding of RBPs to motor proteins likely depends on specific protein-protein 

interactions, while the recruitment of RNAs and other RBPs may be less specific. Addressing these 

questions will become possible with advances in methodologies for high-resolution single-molecule 

imaging and spatial omics, along with the development of tools to analyze and manipulate RNP 

granules. 
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Text boxes 

Box 1. Role of the cytoskeleton in mRNA localization 

Localization of mRNAs within the cell is expected to rely heavily on the organization and orientation 
of the cytoskeleton, as well as on the specificity of motor proteins (reviewed in120). Myosin motors 
move along polar actin filaments, while microtubules act as tracks for kinesins and dynein, which 
travel towards their plus and minus ends, respectively. For instance, axonal microtubules exhibit a 
consistent orientation with their plus-ends facing outward, enabling kinesin-mediated cargo 
transport into axons (reviewed in120). Conversely, dendrites in mammalian neurons have mixed 
polarity, with dynamic tyrosinated microtubules mainly oriented with their plus-ends outward and 
stable untyrosinated microtubules oriented in the opposite direction122. These different groups of 
microtubules are preferred by different motor proteins, mediating transport in opposite directions. 
The so-called ‘sushi-belt’ model121 suggests that neuronal RNAs are transported with different 
motor proteins bidirectionally—outward from the soma to neurites and inward from neurites to the 
soma—resembling a conveyor belt. Neuronal synapses then selectively retrieve necessary 
components from the passing cargo. In most animal cells, long actin filaments with uniform polarity 
are absent  (reviewed in120), which points to myosin-mediated short-distance transport along actin 
filaments, such as for instance the delivery of post-synaptic proteins to synapses within dendritic 
spines. 

Box 2. A refined view of β-actin mRNA localization 

Our understanding of the localization of mRNAs with canonical zipcodes, such as β-actin mRNA, 
has evolved considerably since their initial description. Live-imaging studies using fluorescently 
labeled β-actin mRNA indicated that its localization in fibroblasts primarily depends on diffusion 
and local anchoring, rather than on motor-driven transport88. Although the neuronal localization of 
β-actin requires motor transport, ZBP1-knockout studies revealed that ZBP1 is not essential for β-
actin transport to dendrites but plays a role in mRNA anchoring119. Indeed, co-immunoprecipitation 
experiments have identified the kinesin family member 11 (KIF11) as a ZBP1 interactor123, but 
there is currently no evidence supporting the significance of this interaction for neuronal mRNA 
transport. Furthermore, KIF11 is unable to enter dendrites124, raising the question of how β-actin 
mRNA is transported into dendrites without ZBP1. Interestingly, in vitro reconstitution experiments 
have suggested that its transport may be mediated by other motifs and proteins118. Specifically, β-
actin and β2B-tubulin have been shown to utilize their G-rich motifs to associate with kinesin-2 
through the kinesin adaptor KAP3 and the APC protein and to travel distances spanning tens of 
micrometers118. Additionally, the disruption of APC binding to β2B-tubulin led to the loss of dynamic 
microtubules and impaired the migration of cortical neurons in vivo95. Furthermore, localization 
determinants can also affect translation, allowing for protein production from already localized 
transcripts, which adds yet another layer of gene regulation. For instance, the association of ZBP1 
with the β-actin zipcode has been shown to prevent its premature translation125. Once β-actin 
mRNA is localized at distal sites of the cell, the protein kinase Src activates translation by 
phosphorylating a crucial tyrosine residue in ZBP1, which results in a release of β-actin and its 
translation. Therefore, the asymmetric distribution of the β-actin protein is achieved through a 
combination of localization of its mRNA and regulated translation.  
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Table 1. RNA localization elements.  

RNA Mechanistic details Organism/Cell 
type 

Selected references 

Localization elements mediating recruitment to a transport machinery  
ASH1 Localization element:  four 

elements in coding region 
and 3'UTR - E1, E2A, E2B 
and E3; RBPs: She2p and 
She3p; motor: myosin Myo4p 

Yeast, bud tip 126 

Hairy, I-factor 
retrotransposon, 

K10, gurken, 
oskar (loading 
into oocyte) 

Localization element: stem-
loop RNA localization 
elements, oocyte entry signal 
(OES); RBP: Egalitarian 
(Egl); Adaptor: Bicaudal-D 
(BicD); motor: dynein; 
accessory complex: dynactin 

Drosophila 38-41 

oskar Localization element: 
dimerized oskar 3'UTR 
mediates motor loading, 
Spliced oskar Localization 
Element (SOLE)/ exon 
junction complex (EJC) 
mediate motor activation; 
RBP: DmTropomyosin1-I/C; 
motor: kinesin-1, or kinesin 
heavy chain (KHC) 

Posterior pole of 
Drosophila 
oocyte stages 8-
10 

127-130 

β-actin, β2B-
tubulin 

Localization element: G-rich 
motif, RBP: Adenomatous 
Polyposis Coli (APC); 
adaptor: KAP3; motor:  
kinesin-2  

Mammalian 
neurons 

118 

MBP (myelin 
basic protein) 

Localization element: 11 nt 
A2 response element 
(A2RE11); RBP: hnRNP A2; 
motor: Kif1b 

Mouse and 
zebrafish 
oligodendrocytes, 
processes; rat 
hippocampal 
neurons, 
dendrites 

131-133 

Rab13, Kif1c, 
Net1 

Localization element: GA-rich 
motif RGAAGRR (R = 
purine), RBP: Adenomatous 
Polyposis Coli (APC); motor: 
KIF1C 

Protrusions of 
mesenchymal 
cells, endothelial 
cells, cancer cell 
lines, 
neuroblastoma 
cell lines, 
fibroblasts, HeLa, 

70,80,134-137 
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and basal pole of 
epithelial cells 

Anchoring elements 
β-actin Anchoring element: “RNA 

zipcode”/ RBP: ZBP1 (also 
known as IGF2BP1 and 
IMP1) 

Mouse cortical 
neurons, 
dendrites  

119 

bicoid  Anterior anchoring 
independent of microtubule 
and actin cytoskeleton 

Drosophila 
oocyte, anterior 
pole 

138 

nanos Posterior anchoring/RBP: 
Oskar 

Drosophila 
oocyte, posterior 
pole 

44,52 

oskar Long Oskar protein Drosophila 
oocyte, posterior 
pole 

139 

gurken Static Dynein/Squid 
anchoring within sponge 
bodies 

Drosophila 
oocyte, dorsal 
anterior corner 

140 

Localization-dependent degradation elements 
Hsp83 Degradation element: Smaug 

recognition elements (SRE) in 
ORF/Smaug/CCR4-NOT 

Drosophila 
embryo 

51,141 

nanos Degradation element: Smaug 
recognition elements (SRE) 
3'UTR /Smaug/CCR4-NOT 

Drosophila 
embryo 

52 

let-7 targets Degradation element: let-7 
binding sites/AGO2&TNRC6/ 
CCR4-NOT 

Mouse primary 
cortical neurons 

75 

(AU)n-
containing 
mRNAs  

Degradation element: (AU)n- 
with n > 5/HBS1L 

Mouse primary 
cortical neurons 

75 

Stability-driven localization 
Stable 
housekeeping 
mRNAs, e.g. 
transcripts 
encoding 
ribosomal 
proteins 

Stabilizing cis- and trans-
acting elements 
(5'TOP/LARP1, ELAVLs, 
optimal codons) act as 
positive regulators of 
localization to distant location 
and destabilizing 
(m6A/YTHDF/METTL3, 
AREs) – as negative 
regulators of localization 

Mouse primary 
cortical neurons, 
mouse forebrains 
(m6A), intestinal 
epithelial cells 
and fibroblasts 
(5'TOP/LARP1 or 
LARP6) 

75,79,142,143 

Localization elements with unknown effector  
Bc1 (non-
coding) 

Localization element: 75 nt 
(stem-loop); RBP: hnRNP A2 

Rat neurons, 
dendrites 

144 

Map2, Bdnf, 
cyclinB 

Localization element: 
cytoplasmic polyadenylation 

Rat hippocampal 
neurons, 

145-147 
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element (CPE) and its binding 
protein CPEB 

dendrites; 
Xenopus 
embryos 

Camk2α, 
neurogranin 

Localization element: 30 nt  Rat hippocampal 
neurons, 
dendrites 

148 

Arc Localization element: 350 nt Rat hippocampal 
neurons, 
dendrites 

71 

Tau Localization element: U-rich; 
RBP: HuD 

P19 cells, axons 149 

GlyRα2 (glycine 
receptor α2 
subunit) 

Localization element: 
(YCAY)4 element; RBP: 
Nova 

neuroblastoma 
N2A, neurites 

150 

G-quadruplex-
containing 
RNAs 

G-quadruplex; RBP: FMRP neuroblastoma 
CAD, neurites 

80 

Different types of localization elements and their associated co-factors are described. These co-
factors comprise adaptor proteins that bind to localization elements and recruit effectors, for 
example, motor proteins, proteins that regulate RNA stability, or mediate its anchoring. If no 
effector protein is identified, the localization element is categorized as an unknown type. 
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Figure legends 

Fig. 1. Schematic illustration of the different mechanisms of subcellular RNA localization.  

A Motor-mediated transport of mRNA. Transport over longer distances (e.g. in neurons) is 
primarily achieved through motor proteins. Recruitment of an mRNAs to a motor protein can occur 
via a specific localization element (left). The image illustrates examples of ASH1 transport in yeast 
and the loading of multiple mRNAs from nurse cells into the oocyte in Drosophila. In addition, less 
specific interactions bring numerous RNAs into large localization granules, which may form 
biomolecular condensates and are then transported by motors along microtubules (middle). For 
instance, stable housekeeping transcripts (shown in blue), such as those involved in translation, 
have been shown to localize to distal cellular sites due to their high stability, without relying on 
specific sequence elements. Such transcripts may be recruited to motor proteins through 
degenerate RBP motifs or through non-specific RNA binding properties of motor-bound RBPs, and 
may remain in these transport complexes owing to their high stability. Any less stable mRNAs 
(shown in red) are likely to be degraded before arriving at the cell periphery. Furthermore, RNAs 
can also hitchhike on membrane organelles for their transport (right). 

B Diffusion and anchoring. Diffusion is a means of mRNA transport over shorter distances, but it 
can also be involved in long-distance transport in cases where cytoplasmic streaming (dotted 
arrow) occurs, such as in oocytes. mRNA remains localized due to anchoring at a specific 
subcellular region. The image illustrates a specific example of nanos localization and anchoring at 
the germ plasm in a Drosophila oocyte. 

C Localization-dependent degradation. mRNA can be localized due to being protected from 
degradation in a specific region, while it is degraded elsewhere. Shown is an example of nanos 
localization in a Drosophila embryo. Throughout the embryo, nanos is degraded via the recruitment 
of the Smaug protein. However, it is shielded from degradation at the posterior pole through its 
interaction with the Oskar protein. For further details, see main text and Table 1. 
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