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Abstract

The fitness effects of new mutations determine key properties of evolutionary processes.

Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-

effect deleterious mutations, whose combined effect can burden otherwise adaptive line-

ages and alter evolutionary trajectories and outcomes in clonally evolving organisms such

as viruses, microbes, and tumors. The small effect sizes of these important mutations have

made accurate measurements of their rates difficult. In microbes, assessing the effect of

mutations on growth can be especially instructive, as this complex phenotype is closely

linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-

lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribu-

tion of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae.

We show that mutational effects on growth rate are overwhelmingly negative, highly skewed

towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers

may impose a significant burden on evolving lineages. By using lines that accumulated

mutations in either wild-type or slippage repair-defective backgrounds, we further disentan-

gle the effects of 2 common types of mutations, single-nucleotide substitutions and simple

sequence repeat indels, and show that they have distinct effects on yeast growth rate.

Although the average effect of a simple sequence repeat mutation is very small (approxi-

mately 0.3%), many do alter growth rate, implying that this class of frequent mutations has

an important evolutionary impact.
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Introduction

Mutations constitute the raw material upon which selection acts. Understanding the properties

of new mutations is therefore of central importance to evolutionary biology [1]. For example,

the frequency and effect sizes of mutations that increase fitness are key determinants of the

rate of evolutionary adaptation [2]. The frequencies of mutations that decrease fitness also

impact adaptation, as well as patterns of genetic diversity [3]. In addition, mutational proper-

ties are informative of the structure of genetic networks: if a large proportion of mutations

affecting a phenotype is non-neutral, then the phenotype can be affected by changes to the

function of a large number of genes across the genome, suggesting a high degree of intercon-

nectedness among the gene-regulatory networks operating in the cell. For example, evidence

of large numbers of variants affecting complex traits in humans has recently been proposed to

support a model of widespread interconnectedness among gene-regulatory networks [4]. The

relative contributions of different mutational types (e.g., single-nucleotide substitutions, copy-

number variants, repetitive sequence expansions/contractions) to phenotypic differences

among organisms is another poorly understood property of mutations. Shedding light on this

property is critical not only for understanding a phenotype’s propensity to change, but also for

selecting appropriate technologies to assay the phenotype’s genetic basis [5,6]. Finally, the

properties of new mutations are also of interest because of their relevance to human health: de

novo mutations are thought to constitute a major set of causative variants for many genetic

disorders [7], and the rate of small-effect deleterious mutations has been shown to play a sig-

nificant role in tumor evolution [8].

Mutation-accumulation (MA) lines in model organisms have allowed unbiased exploration

of the properties of new mutations. Repeatedly passaging organisms through extreme bottle-

necks for many generations allows mutations to accumulate while largely shielded from selec-

tion. The phenotypes of these MA lines can then be assayed, revealing the spectrum of

mutational effects of new mutations. Studies have used mutation accumulation to probe muta-

tional effects in diverse organisms, but the resulting estimates of typical effect sizes vary widely,

even among studies assaying closely related phenotypes in the same species (reviewed in

[9,10]). Two culprits likely explain the discrepancies. First, MA studies have historically lacked

genotypic information. That is, it was not known how many mutations were present in each

strain, let alone how many trait-altering mutations there were. Many studies addressed this

issue by assuming a parametric distribution representing a single mutational effect; each MA

strain was then modeled as containing a Poisson random number of mutations with an

unknown mean. The parameters of the distribution of mutational effects were then jointly fit-

ted with a parameter representing the mean number of mutations present across the MA

strains of interest. However, these estimates of mutation rate are difficult to interpret because

in most cases, the confidence intervals of such estimates have no upper bound (see for example

[9,11,12]). This problem is caused in part by the second culprit: noisy phenotype measure-

ments. The identification of small mutational effects depends on the amount of measurement

noise. In addition, because estimates of mutational parameters are confounded with each

other [11], the lack of a precise mutation rate estimate translates into uncertainty in the esti-

mates of the other mutational parameters, which describe the shape of the effect distribution.

Several recent studies have sequenced MA lines to make independent measurements of

mutation rate. The expected numbers of mutations per line for these sequencing-based muta-

tion rates tend to far exceed the expected numbers of non-neutral mutations estimated from

phenotypic measurements in MA lines. This observation has led to the conclusion that in most

cases, the majority of substitutions are neutral or nearly neutral with respect to the observed

phenotype (reviewed in [10]). However, caution must be taken in transferring mutation rate
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estimates between different MA experiments. There is ample evidence that mutation rate is

highly experiment-dependent even within a species, with substitution rates differing with

strain ploidy, genetic background, and even the environmental conditions in which the muta-

tion accumulation occurred [13–16]. Recent work using either direct measurement of accu-

mulated mutation number in phenotyped MA lines in Chlamydomonas reinhardtii [17],

Drosophila melanogaster [18], mice [19], and Escherichia coli [20] or measuring mutation

number and phenotype in parallel MA experiments in a mismatch repair-deficient strain of E.

coli [21] has provided more precise estimates of the distribution of mutational effect size in

these species. For example, Robert and colleagues [21] and Böndel and colleagues [17] both

show strong evidence for highly leptokurtic (L-shaped, with most mutations having very small

effect sizes) distributions of fitness effects in E. coli and C. reinhardtii, respectively, and Sane

and colleagues [20] identify significant differences in the rate of beneficial mutations between

transitions and transversions in E. coli.
Interpretation of mean mutational effect sizes is further complicated by the fact that

although precise estimates of single-nucleotide mutation (SNM) rate are now available from

MA studies across a wide range of organisms and conditions, other frequent mutation types,

especially mutations in simple sequence repeats (SSRs), are more difficult to identify using

conventional analyses of next-generation sequencing data [22,23]. However, because of their

repetitive nature, these regions are particularly prone to acquiring mutations by forming loops

during replication (polymerase slippage events), which lead to contraction or expansion of the

repeat locus. Recent advances in genome-wide SSR genotyping (e.g., [24]) have allowed high-

throughput studies of the effects of SSR variants, which demonstrated that variation in these

difficult-to-genotype mutation types contributes significantly to phenotypic variation in

nature: thousands of short SSR loci contribute substantially to the variance attributed to com-

mon polymorphisms affecting gene expression across human tissues and cell lines [6,25,26],

rare variants and de novo mutations in SSRs are associated with autism spectrum disorder

[27,28], and expression of genes whose promoters contain these repeats diverges more than

SSR-free promoters among closely related yeast species [29]. Evidence that mutations in short

repeats may contribute significantly to the spectrum of mutational effects is also emerging in

MA studies. For example, it has been suggested that the higher estimate of fitness-altering

mutation rate in Dictyostelium discoideum when compared to other single-celled organisms

may be explained by the large number of SSRs in its genome, and the resulting high frequency

of expansion/contraction events occurring at these highly mutable loci [9]. More direct evi-

dence comes from estimating the frequency of SSR mutations in MA experiments in Daphnia
pulex [30]. Selection against SSR mutations was demonstrated by comparing their prevalence

in an MA experiment to a control in which selection was active [30]. However, with the excep-

tion of that study, little is known about the relative contribution of SNMs as compared to SSR

indels and other mutation types to the full spectrum of mutational effects.

Precise and accurate phenotypic measurements are especially important if mutations of

small effect dominate. In microbes, batch culture can be used to generate growth rate measure-

ments averaged across tens of millions of cells within a population. However, such measure-

ments can still have appreciable errors, likely caused by the interactions of small biological and

technical variations with the exponential growth process: for example, in one study, yeast

growth rate measured by optical density in batch culture varied across replicates with a stan-

dard deviation of 3% of the mean [31], limiting the ability to detect small mutational effects to

strains with the most extreme effects or largest numbers of mutations. Moreover, in laboratory

strains of budding yeast, frequently occurring respiration-deficient, slow-growing “petite” cells

can stochastically bias average growth rates downwards to extents that are independent of the

genetic properties of each individual strain [32,33]. We have developed an alternative to batch
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culture measurements that uses time-lapse microscopy to perform growth rate measurements

simultaneously in tens of thousands of microbial microcolonies [34,35]. Because of the highly

replicated nature of the assay, it yields very precise estimates of strains’ mean growth rates

[35,36].

Here, we combine sequence information, precise growth rate measurements, and modeling

to interrogate the properties of spontaneous mutations in yeast. We are particularly interested

in 3 key questions: how frequent are small-effect deleterious mutations, what proportion of the

genome affects growth when mutated, and how do the effects of different classes of mutations

affect growth? To answer these questions, we estimate the effects of spontaneous mutations on

growth rate, a complex phenotype closely related to microbial fitness, in 2 sets of MA lines

with different mutation spectra. We first show that our microscopy-based growth rate assay

allows us to accurately and precisely estimate the net effect on growth of the mutations in each

line, notwithstanding stochastic variation in the proportion of slow-growing petite cells across

the experimental samples. We next use these individual-level growth data along with substitu-

tion rate data from MA lines to fit a distribution of mutational effects. Our results demonstrate

that the distribution of spontaneous SNMs is highly skewed towards mutations with extremely

small effects on growth rate, and that the vast majority of these mutations decrease growth rate

in rich media. Finally, we use an additional, slippage repair-deficient set of MA lines to show

that spontaneous indels in SSRs significantly affect growth rate. By applying high-throughput

phenotyping and integrating genotype and phenotype data into a single framework for fitting

mutational effects, we show that the effects of spontaneous mutations accumulated in MA

experiments can be parsed into multiple classes and that SSR mutations make important con-

tributions to trait variation, on the order of a quarter of the combined effect of SNMs. Our

results underscore the role that deleterious load from a range of mutational types is likely to

play in clonal evolution.

Results

Statistical modeling accounts for across-strain variability in the proportion

of respiration-deficient (petite) colonies

Our study seeks to infer the effects of spontaneous mutations on yeast growth rate. However,

estimating the growth rates of interest is nontrivial. Laboratory strains of Saccharomyces cerevi-
siae are prone to the spontaneous formation of petites, mutants with impaired mitochondrial

function that grow at a slower rate than their non-petite counterparts [32,33]. Variation in

petite numbers across samples can arise from chance events that cause different numbers of

petites in the original founder populations for each sample. Such variation would impact the

mean growth rate estimated in each strain, resulting in estimates that reflect stochastic inter-

strain differences in petite proportions, obscuring the genetic effect of mutations on the rate of

growth of non-petite cells.

To determine whether differences in petite proportions across MA line estimates could be

impacting growth rate estimates, we first tested whether experimental aliquots of genetically

similar strains truly differ in the proportion of petite cells. On petri dishes, petite colonies in

ade2mutant strains can be identified by color, as they lack the red color typical of mutants in

the end stages of the adenine biosynthesis pathway [37]. We therefore assayed the proportion

of petites in a set of 18 MA lines described in [38]. Because these strains differed from each

other by only approximately 2 mutations on average, large variation in the proportion of

petites across these strains was not likely to be explained by genetic differences among the

strains. The line with the highest proportion of non-red colonies had a large proportion of

non-petite (large, rapidly growing) colonies that were not red, indicating a decoupling between
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colony color and respiratory ability; this line was excluded from this analysis. We found signif-

icant variation in the proportion of colonies that were red across the remaining lines (p<<
0.001 by likelihood ratio test, see Methods) (S1A Fig).

We next sought to determine whether we could accurately estimate the petite proportion in

each strain directly from microcolony growth rate data. Unlike batch culture-based measures of

growth rate, which estimate population-average growth rates, the output of the microcolony

growth rate measurements we performed is a distribution of individual microcolony growth

rates for each sample (Fig 1A) [35,39]. We therefore can make estimates of the proportion of

petites directly from microcolony growth rate data, while simultaneously estimating the mean

Fig 1. Measuring the cumulative effects of spontaneously accumulated mutations on growth rate across MA

strains. (A) The microcolony growth rate assay. Microcolony growth rates are measured in parallel using automated

microscopy and image analysis. Fluorescent imaging at the end of the growth period is used to differentiate between

the MA strain and the ancestor-derived strain grown in each well as a reference. The brightfield images of 3 time

points show automated colony detection for 2 representative colonies: from a GFP-marked ancestral reference (red)

and an MA line (blue), growing side-by-side with different starting sizes and lag times, but at similar rates. A

fluorescence image taken after the final time point shows the GFP expression in the reference colony. The points on

the plot represent log(area) over a 10-h time period measured for these colonies, with the best fit used to determine

growth rates for each colony (using a 7-time point window) shown as a line. (B) Mutation effects (s) in MA lines

relative to ancestral reference strain. Points in the plot on the bottom are colored yellow if their s value differs

significantly from the ancestor at an FDR of 0.05. Blue points represent mutational effects calculated for 2 control

strains derived from independent haploid spores of the ancestral diploid (these are not included in histogram or

boxplot calculation). Boxplot shows the 25th and 75th percentiles, and median, of the s value across all MA strains. The

data and code needed to generate this figure can be found on OSF: https://doi.org/10.17605/OSF.IO/H4J9F. FDR, false

discovery rate; MA, mutation-accumulation.

https://doi.org/10.1371/journal.pbio.3002698.g001
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growth rate of the non-petite microcolonies. We model the distribution of colony-wise growth

rates as a mixture of 2 Gaussian growth rate distributions, with the parameters of the distribution

of petite growth rates estimated from independent petite strains derived from the MA ancestor

(see Materials and methods). We found that microcolony assay-derived petite proportions are

highly correlated with colony color-based proportion estimates (Pearson correlation coeffi-

cient = 0.83), indicating that microcolony growth rate data can be used directly to partition

growth rates of petite and respiring colonies. Microcolony assay-based petite proportion esti-

mates are approximately 4% lower than the colony color-based estimates (S1B Fig). This discrep-

ancy may be a consequence of underestimation of the proportion of petites using growth rate

data; alternatively, the discrepancy may arise as a result of a small number of non-petite white-

colored colonies (which we have seen in these strains [40]). However, because measurements of

mutational effect on growth rate are relative to the ancestral strain, a consistent offset in the esti-

mated proportion of petites would result in consistent bias in mean growth rate estimates of all

strains, including the ancestor, resulting in accurate estimates of relative growth rates.

Accumulated mutations have primarily negative effects on haploid growth

rate

To assess the effects of spontaneous mutations, we first examined the distribution of growth

rates of a set of haploid MA lines, each likely harboring a unique set of mutations. These lines

are derived from diploid parent strains that accumulated mutations over the course of 2,000

generations [31,40,41], accumulating an average of approximately 8 SNMs each [42] (or

approximately 4 SNMs per haploid strain assayed here). Hall and colleagues reported that

2.5% of these diploid yeast MA strains, and 14% of viable haploid progeny of these strains, had

a significant increase in growth rate as compared to the ancestral line [43]. Sequencing

revealed that about a fifth of these diploid MA lines harbored aneuploidies [42]; we excluded

the progeny of these aneuploid strains from our study to avoid confounding the effects of

smaller mutations, although we did not eliminate strains that underwent aneuploidization

events during meiosis. We assayed the growth rates of 70 haploid viable MA line progeny

(each derived from a single unique diploid parent MA strain) using the microcolony growth

assay [34,35,39]. Cells of each MA strain were grown and imaged in independent wells of

96-well plates; each well also contained cells of a reference strain (a GFP-marked haploid line

derived from the MA ancestor) to control for well effects on growth (Fig 1A). The use of hap-

loid MA lines allows us to assay the effects of any mutations in these lines in the absence of

dominance effects.

We are interested in the distribution of the changes in growth rate among MA-derived hap-

loid strains relative to the growth rate of the ancestral strain. We measure these differences as

the selection coefficient, s, which is positive when mutations are beneficial (increase growth

rate) and negative when they are deleterious:

sMA ¼
gMA
ganc
� 1; ð1Þ

where sMA is the selection coefficient representing the combined effect of the mutations in a

given MA line on growth rate, and gMA and ganc are the growth rates of the MA and ancestral

strains, respectively. We estimate the proportion of petites in each strain by fitting a mixture of

Gaussians as described above (and in Materials and methods), and estimating gMA and ganc as

the respective means of the non-petite colony growth rates for the MA and ancestral strains.

Before examining the distribution of MA-line selection coefficients, we first tested the effect

of partitioning petite and non-petite growth rates. As expected, modeling colony growth rates
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in each strain as a mixture of 2 Gaussians that allows for a subpopulation of petites produces a

significantly better fit to the data (p<< 0.001 by likelihood ratio test; see Methods) than sim-

ply fitting a single Gaussian distribution to the colony growth rates of each MA line (S1B Fig).

In addition, the strains subjected to growth rate assays included 2 non-GFP marked control

strains, derived from independent haploid spores of the ancestral diploid; these served as inde-

pendent controls in the experiment, as their growth rates should be the same as that of the

ancestral reference strain. As expected, the confidence interval for the selection coefficient s
estimated for each of these strains overlaps 0, indicating that they do not significantly differ in

growth rate from the ancestral strain. However, these strains do differ from the reference strain

in the proportion of petite colonies as estimated by our modeling. As a result, if mutational

effects are estimated without accounting for petites, these ancestral control strains are incor-

rectly estimated to have a significant mutational effect relative to the GFP-marked ancestral

control (S1C Fig). Together, these results support the importance of using modeling to sepa-

rate the effects of stochastically variable petite proportions across strains from the genetic

effects of spontaneous mutations on growth rate.

The distribution of MA-line mutational effects (Fig 1B and S1 Table) reveals that the major-

ity of strains contain at least 1 mutation that alters growth rate, and that mutations tend to be

deleterious. At a false discovery rate (FDR) of 0.05, approximately 4% of strains have a signifi-

cant increase in non-petite growth rate (positive s value), and 56% have a significant decrease in

non-petite growth rate (negative s value) relative to the ancestral strain. The growth-rate differ-

ences tend to be small, with 37% of strains having an s value between 0.01 and -0.05 (1% to 5%

decrease relative to the ancestral growth rate), and only 10% of strains having an s value below

-0.05 (growth rate decrease below 5%); an additional 9% of strains have significant decreases

but with an s value above –0.01. Only a single strain has an s value of>0.01.

SNMs do not fully explain observed mutational effects

One likely source of variation in s values across strains is differences in the effect of these muta-

tions on protein-coding genes. To test whether strains’ s values were explained by the predicted

severity of the substitutions found in these strains, we sequenced the haploid MA strains and

identified SNMs and short indels in non-repetitive regions relative to the ancestral strain, as

described in [38]. We identified a total of 307 SNMs and 3 indels across 68 strains. In some

cases, multiple nearby SNMs comprised complex mutations in a single locus; by grouping

together mutations within 50 bp of each other, we identified 271 mutated loci (S2 Table).

We then predicted the putative effect of each mutation using snpEff [44]. snpEff categorizes

each mutation into one of 4 groups: “high” effect mutations, such as nonsense mutations and

frameshifts; “moderate” effect mutations, such as in-frame indels and nonsynonymous substi-

tutions; “low” effect mutations, such as synonymous substitutions; and “modifier” mutations,

such as mutations outside the coding region of genes. We identified mutations in 262 unique

genes (with a small number of genes mutated in more than 1 strain). Among the mutant genes

in each strain, 8 had at least 1 mutation with an effect categorized as “high”-impact, 148 had

no more than “moderate” effect mutations, and 47 and 65 had mutations predicted to be no

more severe than “low” and “modifier” effects, respectively (S2 Table). We also identified

aneuploidies in 2 strains (S1 Table); both these strains also had additional mutations. Six

strains also lacked any non-repeat mutations.

Because many of our strains contain mutations in multiple loci, we first grouped mutations

in each strain and identified the most high-impact mutation that each strain contained. We

then compared the magnitude (absolute value) of s values across strains in which the most

severe mutations had high, moderate, low, or modifier effects, as well as s value magnitudes in
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strains with no mutations (S2 Fig). Note that this analysis does not take into account the total

number of mutations found in each strain. Although median smagnitudes were higher for

strains that included at least 1 moderate- or high-impact mutation, there was no significant

effect of the most severe impact type on mean s value (Kruskal–Wallis test p-value = 0.35).

Critically, four of the 6 strains that did not have any identified mutations had significant

growth defects, including 1 strain with an s value of −0.047. This finding indicates that the

mutations identified outside of repeat regions in these strains do not fully explain the variation

in MA strain s values, and strongly suggests that additional, unidentified mutations are affect-

ing yeast growth rate.

Modeling reveals distinct distributions of the effects of SNMs and

unidentified mutations

We next sought to determine the properties of the distribution of individual mutational effects

(DMEs) whose combined effects were observed in Fig 1B. To model the DME, we expanded

on the approach proposed by Keightley [11]; in short, individual mutational effects are mod-

eled as drawn from a reflected gamma distribution, with sides weighted to represent the differ-

ent proportions of mutations with positive versus negative effects on the phenotype of interest.

The gamma distribution is advantageous because it captures a range of distribution shapes,

from highly peaked to exponential, with only 2 parameters: here, we use the mean (m) and

shape (k) of the distribution. To account for the fact that mutations may be biased in the direc-

tion of their effects, the 2 sides of the reflected gamma distribution are weighted based on q, a

parameter representing the proportion of mutations causing a positive effect on the observed

phenotype (see http://shiny.bio.nyu.edu/ms4131/MAmodel/ to interactively explore how

changes to parameters affect the distribution of mutational effects in MA lines). We treat indi-

vidual mutations as additive: the net mutational effect in each strain (sMA from Eq 1) is the

sum of the mutational effects of individual mutations found in that strain. Unlike earlier work,

where the number of mutations per strain was not known, here we leverage sequence informa-

tion to constrain the model. The mean number of non-neutral mutations per strain,U, is mod-

eled as half the average number of mutations in the MA strains’ diploid parents [42], corrected

with a fitted parameter (p0) estimating the total proportion of mutations that are neutral with

respect to growth rate (Eq 13) (note that U has also been used to denote the deleterious rate

specifically [45], which here would be (1-q)U). The distribution of observed mutational effects

in the MA strains, sMA, is therefore modeled as a multifold convolution of the distribution of

individual mutational effects.

Although we expected that constraining the model by the known number of mutations per

diploid-parent strain would improve fitting, the existence of growth defects in strains lacking

identified mutations suggests that there may be a substantial number of mutations missed in

the initial sequence analysis of the MA lines whose haploid derivatives are phenotyped here. In

particular, the analysis in [42] and the analysis described in the previous section disregarded

any repetitive regions, including SSRs, which have a higher mutation rate than the surround-

ing genome [46]. As a result, the true number of mutations in the MA lines may be the sum of

the number of known mutations (almost all SNMs), and of an additional set of “unidentified”

mutations, which would include mutations in SSR regions. Therefore, in addition to the

“SNMs only” model described above, we considered 3 approaches to modeling the distribution

of the effects of “unidentified” mutations: the “single DME” model, in which both substitution

effects and unidentified mutation effects are modeled as being drawn from a single distribu-

tion of mutational effects; the “two-gamma” model, in which the effects of unidentified muta-

tions are modeled as being drawn from a separate reflected gamma distribution; and a
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“Gaussian” model, in which substitution effects are modeled as a reflected gamma distribution

and the combined effects of unidentified mutations in each strain are modeled as a Gaussian

distribution. Below, we lay out the properties and justifications for each of these models in

more detail, and then present the results of fitting these models to our data.

If there is no fundamental difference in the distribution of effects of “unidentified” muta-

tions and the distribution of SNM effects, it should be possible to model their effects by releas-

ing the constraint on the average number of mutations per strain (essentially the model

proposed by Keightley [11], with no constraint on the value of U); the difference between the

estimate of U in this model and the estimate of non-neutral mutations estimated by our SNM-

only model would provide an estimate for the typical number of unidentified mutations per

strain. We fit this model to our data in the “single DME” model.

The other 2 approaches for modeling unidentified mutational effects are rooted in the pos-

sibility that SNMs and unidentified mutations have distinct distributions of phenotypic effects

and that our phenotyping data are precise enough to be able to distinguish these 2 distribu-

tions. In this case, the effects of SNMs are described as above in the “SNM-only” model, but the

DME for unidentified mutations is modeled separately in one of 2 ways. First, it is possible to

model the effects of these mutations as a reflected gamma distribution with an unknown num-

ber of mutations (the “two-gamma” model). This is the same model described above for

SNMs, with the proportion of positive versus negative mutational effects, the shape and mean

of the gamma distribution, and (unlike for SNMs) the average number of unidentified muta-

tions with an effect on growth rate all fitted by the model. However, we hypothesized that the

parameter estimates from this model would not be very informative due to the confounding

between mutation number and mutation effect size/distribution shape when the total number

of mutations is unknown, especially because the effects being modeled by this distribution rep-

resent an unknown portion of the total observed effects and the rate of non-neutral mutations

must be high enough to be consistent with most strains’ differing in growth rate from the

ancestral strain.

Considering the lack of information about the number of unidentified mutations in each

MA strain, we can instead seek to understand the typical combined per-strain contribution of

these mutations. To do so, we modeled the combined effects of unidentified mutations in each

line as being drawn from a Gaussian distribution with mean μunid and standard deviation σunid
(“Gaussian” model). In this model, the σunid term fits variance not explained by experimental

noise or by the distribution of mutational effects fit to SNMs. Although this model is not infor-

mative regarding the parameters of the distribution of single unidentified mutations, it pro-

vides useful information regarding the distribution of the cumulative effects of the

unidentified mutations on the growth of each MA strain.

In all 3 cases, the observed growth rate of each MA line is the result of the sum of the effects

of its SNMs (whose average number per line is known), its unidentified mutations (whose

number is unknown), and experimental noise.

We initially fit all 3 models, as well as the “SNM-only” model that includes only the effects

of sequenced substitution mutations, to the mutational effects estimated for each strain (see

Materials and methods for maximum-likelihood estimation procedure, S1 Table for the data

that was used as input into the models, and S3 Table for model results). The Akaike informa-

tion criterion (AIC) score was lowest for the “Gaussian” model, suggesting that this model fits

the data best, and that the fit of the “two-gamma” model was not sufficiently improved to war-

rant the addition of the extra parameters. We also found that, as expected, it was impossible to

interpret the mutational parameter estimates in the “two-gamma” model, which has large con-

fidence intervals; this is likely the result of confounding effects among all parameter values

when attempting to fit a distribution of individual mutational effects with an unknown total
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mutation number. Importantly, the significantly improved fit of the “Gaussian” model over

both the “SNM-only” and “single-DME” models indicates that our phenotypic data were pre-

cise enough to identify distinct distributions of the effects of SNMs and unidentified muta-

tions. The better fit of the “Gaussian” model relative to the “single DME” model in particular

implies that the effect distributions of the 2 mutation classes are distinct.

Although our approach of fitting the distribution of mutational effects based on summary

statistics of the mutational effects observed in each strain is computationally efficient, it treats

uncertainty in the mutational effect estimates for the different strains as uncorrelated; how-

ever, in practice, these estimates depend on a number of shared parameters, such as the esti-

mate for the means and standard deviations in growth rate of the reference strain and of petite

yeast microcolonies. These dependencies mean the parameter space is likely more constrained

than it appears when fitting the model to uncorrelated mutational effect estimates: for exam-

ple, an overestimate of the mean growth rate of the reference strain would lead to a consistent

overestimate of the magnitude of s across all slow-growing MA strains. The correlated uncer-

tainty in strain estimates should propagate to the estimates of DME parameters (in this exam-

ple, likely leading to an overestimate of the mean effect size of a single mutation). Failing to

account for the correlated structure of strain estimates can lead to incorrect estimates of uncer-

tainty on DME parameters and of the relative goodness of fits of different models. We there-

fore repeated the fit to the distribution of mutational effects model using the microcolony

growth rate data directly. We limited this analysis to the “SNM-only” model and the “Gauss-
ian” model, which had the best fit to the summary statistic-based data. Parameter estimates

and confidence intervals were very similar to those estimated in the summary statistic-based

fit, with slightly less uncertainty in the parameter estimates of the “SNM-only” model when

using the microcolony data directly (Tables 1 and S3). Consistent with our previous finding,

the “Gaussian” model, which modeled SNMs and unidentified mutations as having 2 indepen-

dent DMEs, provided the best fit to the data (ΔAIC = −10.8, LRT-based p = 0.00002 as com-

pared to the “SNM-only” model) (Table 1 and Figs 2A and S3).

We find that the vast majority of non-neutral SNMs are deleterious. We further find that

the inferred distribution of SNM effects is highly skewed towards mutations with an effect size

approaching 0 (Fig 2B). As a result, there is large uncertainty regarding the proportion of

SNMs that are completely neutral with respect to growth rate; however, at a selection coeffi-

cient cutoff of 10−6 (larger than the reciprocal of effective population size for wild yeast popula-

tions, which has been estimated to be on the order of 3.4 × 106 [47]) our best-fit model

indicates that 3% of all substitutions have a significant positive effect on growth rate, and 39%

have a significant negative effect on growth rate. Our model estimates that the mean effect of

unidentified mutations across the MA lines is likely to be moderately deleterious, and that the

typical combined effect of all the unidentified mutations in an MA line is comparable to the

effect of a single SNM.

Spontaneous simple sequence repeat mutations significantly affect growth

rate in yeast

Our modeling and sequencing results strongly suggest that SNMs alone do not account for the

full range of phenotypic effects observed in the yeast MA lines tested; likely candidates for the

source of these mutational effects are SSR loci. To directly test whether mutations in these loci

significantly affect growth rate, we measured growth in a set of MA lines mutant for theMSH3
gene involved in slippage repair [38]. These strains accumulated mutations over the course of

200 generations and contain an average of 1.8 SSR mutations each, the majority of which are

deletions of a single repeat unit.
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We first selectedmsh3Δ mutant MA lines for which we could confidently report the

absence of any substitutions outside SSR regions, and where any phenotypic change could

therefore be attributed to “unidentified” mutations. After 200 generations of MA, only 15

high-coverage sequenced strains reported in [38] had no known substitutions. Samples of the

strains had been frozen every 20 generations throughout the mutation accumulation. We

therefore genotyped a subset of strains that had high sequencing coverage, but harbored

known substitutions, at the 100-generation point. This analysis resulted in an additional four

100-generationmsh3Δ MA strains with high coverage and no known substitutions. We

selected eighteen 200- or 100-generation MA strains without known substitutions for growth-

rate analysis (S4 Table). It is possible that our chosen strains contain an SNM that was missed.

However, based on the previously calculated non-SSR substitution rate in these strains (0.004

substitutions/strain/generation) [38], as well as the proportion of each strain’s genome that

was either in a repetitive sequence or not sequenced at 10× coverage, we calculate that the total

expected number of unidentified non-SSR substitutions across all the phenotyped strains is

only approximately 0.6 mutations. As a result, any significant deviations from the ancestral

growth rate in these strains are most likely attributable to the effects of SSR mutations.

Our phenotyping ofmsh3Δ MA lines shows that they include many lines with significant

deviations from the ancestor in non-petite growth rate (Fig 3 and S4 Table), with 17% of

strains having a significant increase in growth rate, and 44% having a significant decrease in

growth rate relative to the ancestralmsh3Δ strain. Strains with significant mutational effects

are found both among the strains that accumulated mutations for 100 generations (3 of 4

Table 1. Properties of DMEs identified by alternative models on full data. A model that accounts for unidentified mutations by fitting a Gaussian distribution repre-

senting the effects of these mutations across strains performs better than a model that only accounts for SNMs. Parameter values for each model shown with 95% confi-

dence intervals; ΔAIC is calculated relative to the “SNMs only” model.

Model Parameter ln(L) AIC ΔAIC

SNMs only kSNM
(shape parameter of gamma distribution for SNMs)

1.4 × 10−1

(7.8 × 10−2 –

4.9 × 10−1)

384,760.6 −769,359.3 –

mSNM
(absolute value of gamma distribution mean for SNMs)

5.0 × 10−3

(3.4 × 10−3 –

1.4 × 10−2)

qSNM
(proportion of SNMs with positive effect on growth)

10.5%

(2.5%– 24%)

p0 SNM
(proportion of SNMs with no effect on growth)

0.1%

(0%– 63.1%)

SNMs + unid,“Gaussian” kSNM
(shape parameter of gamma distribution for SNMs)

5.5 × 10−2

(2.0 × 10−2–1.8)

384,768.1 −769,370.1 −10.8

mSNM
(absolute value of gamma distribution mean for SNMs)

4.1 × 10−3

(2.0 × 10−3 –

5.5 × 10−2)

qSNM
(proportion of SNMs with positive effect on growth)

6%

(0.9%– 26.6%)

p0 SNM
(proportion of SNMs with no effect on growth)

5.9%

(0%– 94%)

μunid

(mean combined effect size of all unidentified mutations within a strain)

−3.3 × 10−3

(−7.0 × 10−3 –

7.7 × 10−4)

σunid

(standard deviation of combined effect sizes of all unidentified mutations across strains)

5.5 × 10−3

(2.7 × 10−3 –

8.6 × 10−3)

AIC, Akaike information criterion; DME, distribution of individual mutational effect; SNM, single-nucleotide mutation.

https://doi.org/10.1371/journal.pbio.3002698.t001
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strains) and among strains that accumulated mutations for 200 generations (8 of 14 strains).

The mean mutational effect across all strains was a decrease in s of approximately 0.0024 per

100 generations. Considering the fact that there are approximately 1.8 SSR mutations per

200-generationmsh3Δ MA strain [38], this change corresponds to approximately 0.3% mean

decrease in growth rate per SSR mutation. Importantly, the low average number of mutations

in each strain, combined with the high proportion of strains with a detected mutational effect

on growth rate, suggests that many SSR mutations (at least one third of them) are not neutral.

We next sought to identify potential SSR mutations that may be responsible for the

observed effects. In our previous work, we developed an approach to identify a high-confi-

dence, unbiased set of SSR mutations using high-depth sequencing data [38]. We first analyzed

Fig 2. The distributions of mutational effects estimated by a model with independent distributions for sequenced

and unidentified mutations. (A) The cumulative density function of the fit of the “Gaussian” model (which models

SNM effects as a reflected gamma distribution and the sum of all unidentified mutations in a strain as a Normal

distribution) to all individual MA strain mutational effects s. Inset: histogram of mutational effects, with PDF of the

model overlaid. To account for the effect of experimental noise on the estimates of s, the model density function is

shown convolved with a Gaussian noise kernel with a variance that is the mean of the error variances of each strain’s

mutational effect estimate. (B) The distributions corresponding to the maximum likelihood estimates of individual

effects of SNMs (pink line) and combined effects of unidentified mutations per strain (orange line) plotted over the

distribution of MA strain mutational effects. The data and code needed to generate this figure can be found on OSF:

https://doi.org/10.17605/OSF.IO/H4J9F. MA, mutation-accumulation; PDF, probability density function; SNM,

single-nucleotide mutation.

https://doi.org/10.1371/journal.pbio.3002698.g002
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the SSR mutations identified in themsh3Δ strains. We identified 6 genes with a “high”-impact

mutation, 9 with at least a “moderate”-impact mutation, and 9 with “modifier” mutations;

none of the genes had “low”-effect mutations (S5 Table); 8msh3Δ MA strains had no identi-

fied mutation. Many of themsh3Δ MA strains with significant s values did not have any identi-

fied SSR mutations (S4 Fig), and there was no significant effect of the most severe impact type

on mean s value (Kruskal–Wallis test p-value = 0.47); neither finding is unexpected consider-

ing the relatively low number of SSRs that we are able to call in these strains [38].

We also performed the analysis from [38] in order to identify a subset of the SSR mutations

in the 2,000-generation MA strains used in this study. Of the 49 SSR mutations identified, 14

are deletions, 6 are insertions, 28 are substitutions, and 1 is a complex repeat expansion/substi-

tution. The majority of the mutations (37/49) are in homopolymers (S6 Table). About half

(23/49) of the SSR mutations were predicted to be modifiers, and 10, 15, and 1 were predicted

to have “high,” “moderate,” and “low” effects, respectively; 35 of 68 strains had no identified

SSR mutations. Although this is an incomplete catalog of SSR mutations in these strains, it

allowed us to assess whether SSRs may account for the growth rate effects observed in strains

lacking non-repeat mutations. Of the 6 strains without SNMs, we identified SSR mutations in

4. Three of these 4 strains had significantly negative s values. The strain with the highest-mag-

nitude s value among those that lacked non-repeat mutations harbored a single identified SSR

mutation with a “high” snpEff-predicted impact. Together, these data provide additional sup-

port for our finding that mutations in SSRs contribute significantly to the distribution of fit-

ness effects of de novo mutations.

Discussion

The distribution of mutational effects determines key properties of a trait’s evolution. We

sought to understand 3 critical aspects of the characteristics of new mutations: the frequency

of deleterious mutations that cannot be effectively purged from adaptive lineages during clonal

Fig 3. Mutational effects of SSR mutations. Mutation effects (s) ofmsh3Δ MA lines relative to theirmsh3Δ ancestor.

Points in plot on the bottom are colored yellow if their s value differs significantly from the ancestor at an FDR of 0.05.

The data and code needed to generate this figure can be found on OSF: https://doi.org/10.17605/OSF.IO/H4J9F. FDR,

false discovery rate; MA, mutation-accumulation; SSR, simple sequence repeat.

https://doi.org/10.1371/journal.pbio.3002698.g003

PLOS BIOLOGY Distributions of fitness effects of spontaneous mutations

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002698 July 1, 2024 13 / 30

https://doi.org/10.17605/OSF.IO/H4J9F
https://doi.org/10.1371/journal.pbio.3002698.g003
https://doi.org/10.1371/journal.pbio.3002698


evolution; the proportion of the genome that affects growth when mutated, which may be a

proxy for the interconnectedness of genetic networks in the cell; and the contributions of dif-

ferent mutation types to growth effects, an important consideration for future approaches to

studying evolutionarily relevant genetic diversity. We used MA lines of the budding yeast S.

cerevisiae to estimate the distribution of the effects of spontaneous mutations on growth, a

complex phenotype that contributes substantially to microbial fitness. By combining precise

measurements of growth phenotypes with genotypic information, we found that SNMs do not

account for all the observed mutational effects, and that an additional set of mutations outside

of this commonly investigated mutational class, indels in SSR loci, makes a significant (but

smaller) contribution to mutational effects on growth rate. We also found that the distribution

of spontaneous substitution effects in yeast is highly skewed towards extremely small effects,

consistent with other recent estimates of mutational effects performed across a range of organ-

isms (e.g., [17,21]).

Our work provides multiple lines of evidence that a class of frequent mutations besides sin-

gle-nucleotide substitutions has significant effects on growth phenotypes in yeast. Our model-

ing of 2,000-generation MA phenotypic effects suggests that the unidentified mutations whose

effects we are detecting have typical combined effect sizes per strain similar to the average

effect size of a single substitution. The exact estimate of the contribution of these mutations

may be affected by the choice of the parametric distribution of mutational effects used in the

model. However, this result matches closely with the mean effect of non-substitution muta-

tions measured directly in the 200-generationmsh3Δ slippage-repair-deficient mutation accu-

mulation. Previous work in yeast measured the effects of mutations caused by EMS

(predominantly SNMs) or inmsh2-mutant cells (predominantly homopolymer slippage muta-

tions) [48]. That study hinted at the possibility that small-effect mutations might be very com-

mon, yet it was admittedly underpowered to detect very small effects, let alone differences

between SNM and SSR-mutation effect distributions, and it did not examine the locations of

these mutations [48].

Mutations in SSRs are the most likely candidate for the identity of the non-substitution

mutations underlying the observed growth rate effects in the 2,000-generation andmsh3Δ MA

experiments. Our previous estimates suggest that in the 200-generationmsh3Δ MA experi-

ment, SSRs are mutated at a rate of approximately 0.9 loci per genome per 100 generations

[38]. These mutations are likely relatively frequent in wild-type strains as well: although esti-

mates of the SSR spontaneous mutation rate vary widely, our work suggests that it may be up

to half of the rate observed in themsh3Δ background [38]. However, SSRs were masked in the

original sequencing analysis of the 2,000-generation MA lines used here [42], as is commonly

done due to the difficulty of accurately identifying SSR mutations using conventional variant-

calling approaches [24]. Although other mutation types, such as large chromosomal rearrange-

ments and aneuploidies, are likely to have strong phenotypic effects, segmental duplications

are very rare: rates in diploid yeast are on the order of approximately 1 × 10−5 duplications per

cell division [14,42], suggesting that they are unlikely to have occurred in even one of the

200-generationmsh3Δ MA strains assayed here. Only two of the haploid 2,000-generation MA

strains we studied here had aneuploidies. Therefore, the most likely explanation for the high

number of significant changes in growth rate observed among these strains is that they are the

result of fitness consequences of SSR mutations. In combination with documented effects of

SSR mutations and variants on gene expression in yeast [29] and humans [6,25–28], and the

finding that SSR length is selectively constrained in laboratory populations of Daphnia [30],

our study underscores the importance of looking beyond genic substitutions in studies aimed

at understanding the phenotypic effects of mutations. Although not addressed in this study

and although they make up a much smaller fraction of the genome, other repetitive sequences,
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including those associated with telomeres and transposable elements, may also have higher fre-

quencies of mutations and thus contribute to the distribution of fitness effects observed in

mutation accumulation strains.

An important question addressed by our study concerns the frequency of mutations affecting

complex traits and fitness (these traits’ genomic target size). If a large proportion of mutations

alter a trait value, it suggests that cellular networks are highly interconnected, because changes to

genes in many pathways affect the trait [4]. Fitness is rightly seen as the ultimate interconnected

trait [49], and the number of mutations affecting growth rate likely serves as a close lower bound

of the number affecting fitness itself. However, estimates of the target size for fitness differ sub-

stantially. For example, Lynch and colleagues [50] estimate that 0.1% to 1.8% of all mutations

have “discernible” fitness effects in S. cerevisiae. This low estimate, however, is at odds with our

results. Although the overall rate of substitutions in the MA strains assayed here was indepen-

dently estimated from sequencing data, the number of those mutations that had an effect on the

phenotype in question was fit as a parameter in our model: the proportion of SNMs that are neu-

tral (s = 0). This parameter can be interpreted in terms of the genomic target size for our pheno-

type of interest: mutations in (1- p0) of the genome result in effects on growth rate in rich media.

Our maximum-likelihood estimate of p0 is 6%, which implies that the majority of SNMs are

non-neutral. In addition, estimates based on the maximum-likelihood parameter values of the

DME suggest that>40% of SNMs would be visible to selection in the wild, where yeast popula-

tion sizes are on the order of 3 × 106 [47]; the effective population sizes are even larger in typical

laboratory evolution experiments, in which Ne of>108 are common (e.g., [51,52]).

The uncertainty in the estimate of the genomic target size is important to consider with

respect to the shape of the DME. Recent studies of mutational effects in C. reinhardtii and E.

coli that also utilized mutation-number information found, as we did, that the DME is skewed

toward very small effects [17,21]. It is therefore important to determine whether these very

small effects are real or are based on faulty inference from noisy data. Unlike other parameters

we estimated, the estimate of p0 has a very large uncertainty that allows both possibilities:

although the maximum-likelihood estimate of 6% suggests that very few SNMs are completely

neutral, its 95% confidence interval ranges from 0% to 94% of SNMs. Any amount of measure-

ment noise makes it difficult for a model to differentiate very small-effect mutations from

zero-effect mutations. Nonetheless, other considerations lead to the conclusion that neutrality

is limited. Despite the uncertainty in the proportion neutrality among individual mutations,

we find that a large proportion of MA strains (approximately 60%) deviate significantly from

their ancestor in growth rate, although most contain only approximately 4 SNMs, providing

evidence that non-neutral mutations must be relatively frequent. Furthermore, our work sug-

gests that a large number of mutations in SSRs have a significant effect on fitness: despite the

fact that the average SSR mutation number in themsh3Δ MA strains assayed here is approxi-

mately 1.5 (with approximately 20% of strains expected to have no mutations at all), approxi-

mately 60% of these strains have detectable changes in growth rate relative to their ancestor.

Overall, our results indicate that mutations affecting fitness are very common, both among

SNMs and additional unidentified mutations.

We also demonstrate that the vast majority (73% to 99%) of non-neutral spontaneous sub-

stitutions affecting growth rate in rich media are deleterious. This result is consistent with

most previous studies of the distribution of mutational effects on fitness phenotypes

[9,17,31,53]. In our experiments, growth rate was assayed in rich media in which laboratory

yeast are commonly propagated. The high proportion of deleterious mutations suggests that

the strain used is already well-adapted to these growth conditions.

A key goal of mutation accumulation studies is that the distribution of mutational effects

gleaned from these experiments would shed light on constraints affecting the speed and
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direction of evolution. The low frequency of mutations increasing fitness identified in such

experiments—including the present one—often precludes a detailed analysis of the properties

of mutations that may be selected for in the course of evolution. Nonetheless, the distribution

of mutations with deleterious effects on fitness is informative. During clonal evolution—long

bouts of which occur in many microorganisms, as well as during tumor development—delete-

rious mutations have a direct effect on evolutionary trajectories due to the prevalence of muta-

tional hitchhiking. When beneficial mutations are rare, they often appear in individuals

harboring a number of deleterious mutations. As a result, the “fittest” individuals after a bout

of clonal evolution often contain numerous deleterious mutations. Studies of cancer evolution

show that these hitchhikers can have a significant effect on evolutionary trajectories, and may

explain phenomena such as spontaneous cancer remission and tumor heterogeneity [8,54].

Our study can help untangle conflicting evidence regarding the prevalence of deleterious-

mutation hitchhiking. A study comparing sexual and asexual evolution in yeast found that

evolved asexual lines had significantly lower fitness than sexual lines, an effect attributed to

hitchhiking deleterious mutations [55]. In contrast, a study that exhaustively measured the

effects of hitchhiking mutations in a set of yeast lines evolved asexually found that only approx-

imately 3% of these had significantly deleterious effects, with only a single mutation of 116

assayed decreasing fitness by>1%, while approximately 80% were neutral [56]. Our work can

bridge the gap between these results, because it underscores the fact that most mutations are

likely deleterious but with very small effects that are below the detection limit of commonly

used growth assays. The DME estimated here implies that only 7.5% of all mutations can be

expected to have individual effects with an s< −0.01 (1% decrease in growth rate), and about

half of these would have deleterious effects strong enough to counteract the typical beneficial

mutation identified by Buskirk and colleagues [56], making them targets of selection. How-

ever, we would expect another 88% of mutations to have deleterious effects smaller than 0.01

(similar to the 80% reported as neutral), and although the effects of these mutations would not

be individually detectable in most assays, their combined effects would significantly decrease

the fitnesses of the clones carrying them, consistent with the findings by McDonald and col-

leagues [55]. Thus, robust estimates of the distribution of mutational effects can provide key

parameters for interpreting and potentially predicting the results of evolutionary processes.

Materials and methods

Strains

All strains used in this study are derived from MA lines described in [31,41] and [38]. Briefly,

the original lines were created from a haploid strain of genotype ade2 lys2-801 his3-Δ200 leu2–
3.112 ura3–52 ho that was transformed with a plasmid expressing HO to create a diploid strain

homozygous at every locus genome-wide, with the exception of the mating type locus [31].

This strain was then passaged independently in 151 replicates by streaking a single colony

every 2 days for approximately 2,000 generations on YPD media (“2,000-generation” experi-

ment) [41]. To generate MA lines deficient in SSR slippage repair, theMSH3 gene was deleted

in a strain (MAT0.a1) derived from a spore of the diploid ancestor of the 2,000-generation

experiment, and the resulting strain was passaged independently in 36 replicates as above for

approximately 200 generations [38]. Because respiring ade2mutant colonies are red, petites

could be detected by their white color and were not passaged to the next generation. To avoid

unconscious bias in the passaging procedure, the red colony closest to a pre-marked spot on

the plate was chosen at every passage [31,38].

The haploid 2,000-generationMAH strains used in this study were created previously: a

subset of the MA lines were sporulated, and a random spore of amating type was selected
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[40,57]. Two amating type spores from a full tetrad derived from the diploid ancestor,MAT0.

a1 andMAT0.a2, were phenotyped alongside the 2,000-generationMAH lines. These 2 strains

were also streaked out onto YPD plates, and 6 independent white colonies on these plates were

picked and used as petite control strains in the 2,000-generation growth assays; for the

200-generation assays, 3 petite colonies from theMAT0.a1 strain were selected for use as the

microcolony phenotyping assay petite controls.

To construct a GFP-marked ancestral reference strain, a GFP gene driven by an Scw11 pro-

moter was cloned upstream of aHERP1.1 positive/negative selection cassette [58] that was

flanked by 2 Cyc1 terminator sequences. This construct was inserted into a neutral locus

(YFR054C dORF) [34] in either the diploid ancestor or themsh3Δ haploid ancestor for the

2,000 andmsh3Δ MA experiments, respectively, and, after selection on hygromycin and geno-

typing, yeast were re-selected on 50 μg/ml 5-fluorodeoxyuridine. The resulting strain was

YFR054C/YFR054CΔ::pScw11-GFP-Cyc1T in the ancestral background of the 2,000-generation

MA experiment, or YFR054CΔ::pScw11-GFP-Cyc1T msh3Δ in the ancestral background of the

msh3Δ MA experiment. For the 2,000-generation experiment, this strain was sporulated, and

progeny of a haploid, GFP-marked, a-mating type spore was selected to act as the in-well

ancestral reference strain control.

For themsh3Δ MA experiment, we previously reported that we have likely identified every

substitution in these strains that falls into a region of the genome that was sequenced at 10× or

higher and that is not repetitive (telomere, centromere, or long terminal repeat) [38]. We

therefore selected 28 “high-coverage” strains in which no more than 10% of the genome was

sequenced at<10× or was part of a repetitive sequence, and then selected strains with no fur-

ther mutations either at the final (200th) generation of MA or at the 100th MA generation.

Growth rate assays

Strains were randomized into 96-well U-bottom plates and stored frozen at –80˚C in 20 μl of

50% YPD + 15% glycerol. “Petite-only” control strains were included in each experimental

plate. Three days before each growth rate assay, a plate each of MA and reference strains was

thawed and 180 μl SC media supplemented with 50 mg/l adenine (SC+Ade) added to each well

(adding adenine decreases selection pressure for Ade+ phenotypes, including [PSI+] cells).

After 1 day of growth in a shaking incubator at 30˚C, each strain was diluted 1:10 in SC+Ade

in a new plate. The experiment was performed following an additional 2 days of growth from

the resulting saturated cells of each line.

The microscope growth rate assay was performed largely as described in [35]. On the day of

the growth rate assay, MA line and reference strains were mixed in a 2:1 ratio and diluted

approximately 1 × 10−4-fold with vigorous mixing. For the 2,000-generation experiments, in

an attempt to identify petite microcolonies directly rather than through statistical modeling,

strains were stained with MitoTracker Red CMXRos dye for 10 min as described in [33], fol-

lowed by 10−4 dilution in SC media. However, this treatment was found not to efficiently stain

mitochondria in the high-throughput experimental setup used here, so the fluorescence values

were not used and the staining was not repeated for themsh3Δ MA experiment. The Mito-

Tracker dye does not affect microcolony growth [33]. Cells were imaged hourly for 10 h in

brightfield, followed by a single GFP exposure, as described previously [34]. Image analysis

was performed using the PIE software [39]. PIE settings are listed in S1 File.

Petite proportion experiments

To independently estimate the proportion of petites in 200-generationmsh3Δ MA strains, we

used a subset of the cells cultured on 2 experimental days and plated approximately 200
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colonies per plate onto YPD plates. We tested at least 3 replicates of each strain per experimen-

tal day. Plates were grown for 2 days at 30˚C and then left at room temperature for an addi-

tional 8 days before counting. Red colonies were counted as wild type, whereas white colonies

were counted as petites.

To estimate the significance of variance in non-red colony proportion across strains as

measured by the colony color assay, we fit a mixed effect logistic regression to estimate the

odds of a colony being non-red, with strain as a random effect. We compared this model to

one without the strain effect by a likelihood ratio test.

To estimate the significance of the improved fit of the individual line effect model when

accounting for the existence of petites in the 2,000-generation MA experiment, we compared

likelihoods of a “full” model, in which MA strain growth rates were estimated as described in

Eq 3 below, to a model in which all petite proportions were set to 0, meaning that MA strain

growth rates were estimated as a Gaussian with a common standard deviation across all MA

strains and a strain-specific mean.

Sequencing and mutation calling

MA strains were grown for 2 days in YPD media, treated for 1 h in 600 μl sorbitol solution (0.9 M

sorbitol, 0.1 M Tris (pH 8.0), 0.1 M EDTA) with 75 μl 100 T zymolyase and 1 μl β-mercaptoetha-

nol, and yeast DNA was isolated using a Qiagen DNeasy Blood and Tissue kit (#69506). DNA

sequencing and mutation calling was performed largely as described in [38]; briefly, DNA libraries

were prepared following the protocol in [59], but with 14 rounds of PCR amplification. Bead

cleanup optimized for 500 to 600 bp fragments was used, as described in [38]. Sequencing was

performed on an Illumina NovaSeq 6000 SP flowcell with paired-end, 150-bp reads. Two strains

(MAH.138 and MAH.150) were removed from further analysis due to low sequencing coverage.

To call mutations, we followed the mutation-calling pipeline described in [38], but using

the S288C sacCer3 genome assembly as a reference. Briefly, mutations were called as differ-

ences relative to the ancestral-strain derivedMAT0.a1 sequence. Non-repeat mutations identi-

fied in multiple strains were removed, and SSR loci in the lower 35% percentile of call

confidence levels were also removed from further analysis. Because our initial SSR analysis

only included SSRs with motif length of 4 or smaller, indels in SSRs with larger or more com-

plex motifs were sometimes called as part of our non-repeat mutation calling pipeline. Such

indels were included with the list of SSR mutations for the purposes of the predicted muta-

tional impact analysis described above.

To detect aneuploidies, the coverage in 10-kb windows across the genome was computed

using bedtools [60]. The log2(coverage) of each window (relative to the average coverage across

all strains) was then modeled as a function of the window identity and strain. Model residuals

were averaged across all the windows on a chromosome, and chromosomes in a strain having

an absolute value of the log2(relative coverage) mean residual value above 0.3 were further

inspected. In practice, all aneuploid chromosomes in our dataset had a log2(relative coverage)

mean residual value close to 1, indicating duplication of the entire chromosome.

To identify putative mutational effects, we ran snpEff [44] on the mutations identified in

our data. snpEff identifies multiple possible putative mutational effects for each mutation, tak-

ing into account different nearby genes. For each mutation, we selected the most severe effect

identified and its corresponding gene (this was always the nearest gene to the mutation as

well). When assessing the effects of multiple mutations in a gene, or multiple mutant genes in

a strain, we also identified the most severe of the putative effects listed: e.g., a gene with 1 early

stop codon (“high” impact) and 1 nonsynonymous substitution (“moderate” impact) in a par-

ticular strain was labeled as having a high-impact mutation.
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Analysis code and data necessary to replicate these findings can be found on the Open Sci-

ence Framework: https://doi.org/10.17605/OSF.IO/H4J9F. All sequencing data was deposited

in the Sequence Read Archive under project PRJNA1117962.

Outline of parameter estimation

We are interested in identifying the values of the parameters of the DME, θDME, based on a set of

observations of colony growth (here generally denotedO). Within a single strain i, this probability

is the convolution of the probability of mutational effect Si (e.g., as defined in Eq 1) being drawn

from a DME with parameters θDME, and the probability of the set of observations of strain i given s:

PðOijyDMEÞ ¼ PðSi ¼ sjyDMEÞ∗PðOijsÞ; ð2Þ

where * denotes convolution. The overall likelihood of θDME is the product of all the likelihoods

over strains i, and is maximized by maximizing the sum of the log likelihoods across all strains, as

discussed in detail below.

Below, we first outline the computation of the probability of colony growth observations

given s. We then describe the computation of the distribution of mutational effects for differ-

ent classes of candidate probability functions. We present 2 ways in which we combined these

2 functions (one summary statistic-based, and one jointly performing the likelihood computa-

tion across every individual observation) to calculate the total likelihood of a set of θDME values

given a set of growth observations. Finally, we briefly describe the computational methods

used to perform likelihood maximization. Note that parameters in θDME are described in S3

Table, and other parameter names used in this section are listed in S7 Table.

Computation of the likelihood of single-strain growth rate observations

In this section, we describe the calculation of the probability of making growth observations of

a strain given its mutational effect, PðOijsÞ. We discuss the need to account for the fact that

growth rate distributions consist of populations of both respiration-deficient (petite) and

respiring colonies, as well as for the substantial batch effects in growth rate estimation. We

show that using the differences in growth rates between randomly paired MA and reference

strain colonies as the observations of interest allows us to account for both factors in a compu-

tationally efficient manner.

Accounting for petites. The colonies of a single strain consist of 2 distinct subpopulations

that grow at different rates. The first subpopulation, constituting the majority of the popula-

tion, consists of cells with a strain-characteristic growth rate for each strain i (μi) and with a

standard deviation that we model with a parameter that is common to all strains within an MA

experiment (σnonpetite-bio). Each population also contains a smaller proportion of petite colo-

nies, which have lost the ability to respire and grow at a lower rate than their non-petite coun-

terparts in fermentation conditions. We model these petite cells as having a common mean

growth rate (μpetite) and standard deviation (σpetite-bio) across all strains. Experimental data

show that the strains in our experiment vary in the proportion of petites, ρi. Therefore, we

model the growth rate, g, of each colony a of strain i as being drawn from the distribution:

gai � ð1 � riÞNðmi; s
2

nonpetite� bioÞ þ riNðmpetite; s
2

petite� bioÞ: ð3Þ

The setup of the growth rate assays described in this paper is such that ρi may vary among

strains for nonbiological reasons: After the completion of the mutation accumulation, the

strains are passed through a relatively narrow bottleneck before being frozen, followed by 6 to

8 generations of subculture. As a result, ρi may vary as a result of jackpotting events rather
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than underlying biology. Because of this, we chose to focus on understanding mutational

effects affecting μi, not ρi, such that Eq 1 can be restated as follows:

si ¼
mi
manc
� 1: ð4Þ

Note that although ρi is not the focus of our study, it is important to estimate this strain-spe-

cific proportion of petites in order to accurately estimate μi, and it is therefore estimated for

each strain as part of our model fitting.

Accounting for batch effects and colony measurement noise in experimental setup.

The growth rate assay is performed in batches. In the assay for the 2,000-generation experi-

ment, each MA strain is assayed in a single well on an experimental plate, with a total of 14

experimental plates assayed. In the assay for themsh3Δ experiment, each MA strain is assayed

in 3 wells per plate, and the ancestral strain is present in 9 wells per plate, with a total of 10

experimental plates assayed. For each well, growth rates were typically obtained for approxi-

mately 500 microcolonies of the strain being assayed as well as approximately 500 microcolo-

nies of a single GFP-marked reference strain.

Previous work has shown that the experimental organization can result in significant batch

effects across wells within a plate and across plates (which correspond to experimental days)

[36]. These batch effects can be accounted for in the context of a mixed effect model:

gobs � Nð m!;SÞ ð5Þ

Where gobs is the vector of measured (observed) growth rates, μ! is the vector of mean

growth rates, and S is the covariance matrix of colony growth rates derived from the block

design.

Colonies from “petite-only” samples can be analyzed in the above way. However, as

described in Eq 3, the growth rates of MA and reference strains are described by bimodal dis-

tributions with an unknown proportion of petites, complicating the computation of the likeli-

hoods of observing specific growth rates.

If random batch effects are additive on the growth rate scale, then their effects can be elimi-

nated by calculating the difference in growth rate between a reference strain colony and an

MA colony that share the same experimental plate and well. For example, consider the

observed growth rates, gaiobs and gbjobs, of 2 colonies a and b of MA strain i and reference strain

j, respectively, growing in the same microscope plate k, in well l. The genetic component of the

growth rate of each colony is distributed as described in Eq 3: 2 sources of measurement error

are responsible for the difference between observed and “genetic” growth rates: εkl, which is

the sum of the batch effect of the plate and well in which the colonies are grown (with standard

deviations σplate and σwell, respectively) and an independent and identically distributed (iid)

measurement noise across colonies (with standard deviation σcol):

gobsai ¼ gai þ εa þ εkl

gobsbj ¼ gbj þ εb þ εkl

εa;b � Nð0; s
2

colÞ

εkl � Nð0; s
2

plateÞ þ Nð0; s
2

wellÞ; ð6Þ

(note that indices kl were left off of ga and gb, respectively, to streamline notation).
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Because the colony measurement terms εa and εb are iid random variables, we can subsume

them into a combined noise term that includes both the biological variation in colony growth

rates and the independent cross-colony measurement noise:

s2

nonpetite ¼ s
2

col þ s
2

nonpetite� bio

s2

petite ¼ s
2

col þ s
2

petite� bio: ð7Þ

This eliminates the εa and εb terms from Eq 6, although it also means that we are not able

to independently estimate the biological and measurement noise components of petite and

nonpetite colony growth variance.

Next, subtracting the growth rates of colonies a and b from each other yields the formula

for the growth rate difference, D, eliminating the random batch effect term εkl. Thus, by esti-

mating the likelihood of the difference in growth rates between 2 colonies that share random

batch effects,D, we eliminate the necessity of using a mixed effect model to estimate likelihood.

Instead, the probability of observing a particular difference in colony growth rates between a

same-well colony pair becomes dependent on a mixture of independent normal distributions:

D � ð1 � riÞð1 � rjÞNðmi� mj; 2s
2

nonpetiteÞ

þð1 � riÞðrjÞNðmi� mpetite; s
2

nonpetite þ s
2

petiteÞ

þðriÞð1 � rjÞNðmpetite� mj; s
2

nonpetite þ s
2

petiteÞ

þrirjNð0; 2s
2

petiteÞ: ð8Þ

We select random pairs of colonies without replacement from an MA strain and the GFP-

marked reference strain within each imaging field in each well and estimate the likelihood of

the parameter values above given each pair’s difference in growth rates.

The logs of these likelihoods are then added to the sum of the log likelihoods of the petite

parameters given each colony growth rate in the petite-only samples to calculate the total likeli-

hood of our data. To identify the maximum likelihood parameter values, we iterate over values

of each of the following “general” parameters: μancestor, μpetite, ρancestor, σnonpetite, σpetite, σplate, σwell;
and find the maximum likelihood parameter values of the MA strain petite proportions ρMA
and selection coefficient sMA for each MA strain (as defined in Eq 4). We then find the values of

the “general” parameters that result in the maximum overall likelihood.

In the 2,000-generation experiment, the GFP-marked reference strain was treated as the

“ancestral” strain, and indeed this strain did not differ significantly in growth rate from 2 hap-

loid strains derived from the diploid MA ancestor. In the 200-generationmsh3Δ experiment,

the in-well GFP reference strain was found to have a different growth rate than the ancestral

msh3Δ strain, so the s value for each MA strain was estimated relative to the ancestralmsh3Δ
strain.

Computation of the probability density function for the distributions of

mutational effects

To jointly estimate the distributions of effect sizes of SNMs and unidentified mutations based

on the MA lines, we expanded on a modeling approach developed by Keightley [11,12]. As

described in Results, we model the distribution of mutational effects as a reflected gamma
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distribution with shape k and meanm; the 2 sides of the distribution are weighted by the pro-

portion of non-neutral beneficial mutations q. The distribution of MA line phenotypes is the

convolution of a Poisson random number of single DME distributions with mean U.

Previous work has found that fitting the model described in [12] is nontrivial due to the sig-

nificant amount of time required for the numerical integration used to estimate the combined

probability density function (PDF) of mutational effects caused by multiple mutations. Rather

than performing multiple numerical integrations, we transferred the computation of the den-

sity function into the Fourier domain, as follows.

First, consider a mutation whose mutational effect, Y, is gamma-distributed. We can

describe the PDF of observing a mutational effect s of this mutation using its characteristic

function (the Fourier transform of the PDF):

FY oð Þ ¼
1

1 � io m
k

� �k ð9Þ

wherem and k are the mean and shape parameters of the distribution, as described in the

Results section.

We would like to instead model the distribution of single mutational effects Z as a reflected

gamma distribution weighted by q and 1-q for positive and negative mutational effects. The

characteristic function of Z is then

FZ oð Þ ¼
1 � q

1þ io m
k

� �k þ
q

1 � io m
k

� �k ð10Þ

For a strain with a known number of mutations, n, the combined mutational effect S can be

expressed as follows:

S ¼ Z1 þ Z2 þ � � � þ Zn:

The PDF of S, fS, is the convolution of n PDFs of Z, and the characteristic function of S in

this known-mutation number case is thus

Fknown mutS ðoÞ ¼ ðFZðoÞÞ
n
: ð11Þ

The mean number of mutations across the parental diploid strains has been precisely esti-

mated [42]. We therefore treat the number of non-neutral mutations in each MA strain as a

Poisson-distributed random variable, N, with mean U:

fN N ¼ nð Þ ¼
Un

n!
e� U :

For a set of strains each containing an unknown number of non-neutral mutations drawn

from a single Poisson distribution with mean U the characteristic function of the combined

mutational effect S observed in the MA strains is therefore

FSNM� onlyS oð Þ ¼ Fsingle DMES oð Þ ¼
X1

n¼0

ðUFZðoÞÞ
n

n!
e� U ¼ eUFZðoÞ� U ¼ eUðFZðoÞ� 1Þ ð12Þ

This equation applies to both the “single DME” model, in which U is a parameter estimated

by the model, and the “SNM-only” model, in which U is a function ofMdiploid (the mean num-

ber of mutations per diploid MA strain) and the parameter p0 (the probability that any single
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mutation is neutral, with s = 0), which is in turn estimated by the model:

USNM� only ¼
Mdiploid

2
1 � p0 SNMð Þ: ð13Þ

For the models that treat SNMs and unidentified mutations as being drawn from distinct

distributions, fS is a convolution of the distributions of SNMs and unidentified mutational

effects in each strain; thus, for the “two-gamma” model described in the text, there are 2 dis-

tinct reflected gamma distributions with different parameters, one for the sequenced SNMs

(“SNM”) and one for the unidentified mutations (“unid”):

Ftwo� gammaS ðoÞ ¼ eUSNMðFSNMZ ðoÞ� 1ÞeUunidðFunidZ ðoÞ� 1Þ; ð14Þ

and for the “Gaussian” model described in the text, the unidentified mutational effects are nor-

mally distributed:

FGaussianS ðoÞ ¼ eUSNMðFSNMZ ðoÞ� 1ÞFunidN ðoÞ: ð15Þ

Where FNunid(ω) is the Fourier transform of a Gaussian PDF with mean and standard devi-

ations μunid and σunid, respectively.

Estimation of the distribution of mutational effects from MA-line-wise

summary statistics

One approach described in the Results section for calculating the likelihood of the observed

growth data was to first estimate a mutational effect Si and standard error of the Si estimate for

each 2,000-generation MA strain, and then use sampling distributions parameterized by these

values as the probability of the observed growth rate differences in Eq 2. To calculate the likeli-

hood of the observed results, the distribution of MA line phenotypes (relative to the ancestral

strain) is convolved with a normal distribution whose standard deviation is the error estimate

based on the confidence intervals of each line’s mutational effect Si, following [11,12], here

with an individual strain-specific error estimate derived from likelihood profiles of each

strain’s mutational effect estimates. In practice, fS is also convolved with a narrow Gaussian

kernel to resolve numerical issues that occur in computing fS in certain parts of parameter

space.

As a result, the characteristic function of the estimated mutational effect of MA strain i,
Siest, is

FSesti ðoÞ ¼ FSðoÞF
kernel
N ðoj0; 2� 16ÞFerrorN ðoj0; sMAiÞ: ð16Þ

Where FS(ω) is given by Eqs 12, 14, or 15 above, depending on the model.

By computing this convolution in the Fourier domain, and then performing a discrete

inverse Fourier transform, we compute the PDF of estimating a mutational effect given a set of

DME parameter values. We then interpolate estimated mutational effects measured in each

MA strain, Siest, (S1 Table) within the computed values for this density function to compute

the likelihood of each mutational effect estimate. This likelihood is maximized across all

parameters shown in S3 Table.

Estimation of the distribution of mutational effects from complete colony

growth data

To directly jointly estimate the likelihood of observing v differences D(i)1. . .v in growth rates

between each MA strain colony of a single strain i and ancestral reference colony given a
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distribution of mutational effects fS, we computed the likelihood of the DME parameters

(θDME), the strain-specific petite proportions, and the “general” parameters described above

(θgeneral, which includes the mean petite and ancestral strain growth rates, the petite proportion

of the reference strain, the standard deviations of petite and non-petite colony growth rates,

and random batch effect standard deviations), given the observed set of growth rate differences

between random pairs of MA and reference colonies in each well:

Pðobserved growth differences ¼ DðiÞ1:::vi jyDME; ygeneral; riÞ

¼

Z

Pðmutational effect Si ¼ sjyDMEÞ∗ð
Yvi

j¼1

½Pðobserved growth difference

¼ DðiÞj jygeneral; s; riÞ�Þds ð17Þ

where Dj(i) is the jth difference observed in strain i, and vi is the number of observed differences

(colony pairs) in strain i.
The integral above was computed using numerical integration, with the individual proba-

bilities inside computed as described above: using Eqs 12, 14, or 15 to calculate the PDF over s
for the first half of the integral and Eq 8 to calculate the probability inside the product. Note

that the random variable μi from Eq 8 appears in every term of the product in Eq 17 and that

the change of variable

mi ¼ mancestor∗ð1þ SiÞ

is done before doing the integration in Eq 17, also within the product. All of the terms within

the integral are initially calculated as log likelihoods and only exponentiated for integration.

The log likelihood of the complete set of measurements across strains is computed by sum-

ming over all strains the log of the likelihoods as in Eq 17; for each term, the strain-specific set

of D values is used.

The maximum likelihood parameters were identified by iterating over sets of parameter val-

ues in a nested algorithm similar to that described above for strain mutational effects: the max-

imum likelihood parameter values of ρMA are identified for fixed values of θDME and θgeneral;
the maximum likelihood of θDME are found for a fixed set of values of θgeneral.

Maximum likelihood parameter value and confidence interval

identification

Maximum likelihood parameter values were identified by implementing an interior-point

minimization algorithm in MATLAB and minimizing the negative log likelihood [61], using

constrained optimization with wide bounds on possible parameter values. Optimization code

can be found at https://github.com/plavskin/MutationEffectEstimation [62] and likelihood

calculation code can be found at https://github.com/plavskin/GR_diff_DFE [63]. The data and

additional analysis code can be found on OSF: https://doi.org/10.17605/OSF.IO/H4J9F.

Confidence intervals on all parameter values were calculated using the profile likelihood

method following [11], where the value of a single parameter is fixed at various points, and

likelihood is maximized with respect to all other parameters, and 95% confidence interval

bounds were then identified via quadratic interpolation between points along the parameter of

interest to identify the point corresponding to a log likelihood change of approximately 2.5.

To ensure global likelihood maxima were identified, constrained maximum likelihood esti-

mation was started at multiple points across most parameters. The maximum likelihood

parameter search was repeated multiple times, starting at the optimal parameter values from
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the previous run and additional points in parameter space, until a consistent maximum likeli-

hood value was identified regardless of starting point, and each parameter’s log likelihood pro-

files were monotonically ascending from the left and monotonically descending to the right of

the maximum likelihood parameter values.
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S3 File. S3_file_YFR054C-Scw11p-GFP-Cyc1T-post-dp.str. Sequence of YFR054C locus

with GFP marker cassette after FuDR counterselection and resistance cassette removal.

(STR)

S1 Table. Estimated mutational effect of each 2,000-generation mutation accumulation

strain. The mutational effect s and petite proportion for the single haploid 2,000-generation

MA progeny phenotyped in this study (MAH lines), as well as 2 haploid lines derived from the

2,000-generation mutation accumulation ancestor (MAT.0.a1-a2); 95% confidence interval

presented in parentheses. Two strains whose sequencing data was not analyzed due to poor

quality are missing ploidy information.

(XLSX)

S2 Table. Non-repeat mutations in 2,000-generation mutation accumulation strains and

their putative effects predicted by snpEff. When multiple mutations are within 50 bp of each

other, they share a “superlocus.” The snpEff annotation with the most severe putative effect is

listed for each mutation; see [44] for details on additional snpEff output columns.

(XLSX)

S3 Table. Properties of DMEs identified by various models using mutational effect sum-

mary data. Preliminary models fitted to summary data of individual strain s value fits. Models

that attempt to fit unidentified mutations either as additional mutations drawn from the same

reflected gamma distribution as SNMs, or as an independent reflected gamma distribution to

individual unidentified mutations, improve fit only marginally. The “two-gamma” model pro-

duces uninformative parameter estimates, with poor computational likelihood estimation

across the likelihood profile (due to confounded parameters). The resulting non-monotonic

likelihoods lead to uninterpretable confidence interval bound estimation for many parameters

(question marks). The “Gaussian” model, which accounts for unidentified mutations as a

Gaussian distribution representing the effects of these mutations across strains, performs bet-

ter than a model that only accounts for SNMs. Parameter values for each model shown with

95% confidence intervals; ΔAIC is calculated relative to the “SNMs only” model.

(XLSX)

S4 Table. Estimated mutational effect of each msh3Δ mutation accumulation strain. The

mutational effect s and petite proportion formsh3Δ MA strains phenotyped in this study, as

well as theMSH3+ strain from which themsh3Δ ancestor was derived (a clone ofMAT0.a1),

and a GFP-markedmsh3Δ strain used as an in-well reference; 95% confidence interval pre-

sented in parentheses and % genome sequenced at>10× and not part of a repetitive sequence
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comes from data in [38].

(XLSX)

S5 Table. SSR repeat mutations in msh3Δ mutation accumulation strains and their puta-

tive effects predicted by snpEff. Indels in SSR loci with repeat size >4 nucleotides, or in com-

plex repeats, are included in this table but do not have an associated SSR start and end listed.

The snpEff annotation with the most severe putative effect is listed for each mutation; see [44]

for details on additional snpEff output columns.

(XLSX)

S6 Table. SSR repeat mutations in 2,000-generation mutation accumulation strains and

their putative effects predicted by snpEff. Indels in SSR loci with repeat size >4 nucleotides,

or in complex repeats, are included in this table but do not have an associated SSR start and

end listed. The snpEff annotation with the most severe putative effect is listed for each muta-

tion; see [44] for details on additional snpEff output columns.

(XLSX)

S7 Table. Variables used in modeling. Variables used in modeling the DME or individual

strain s values.

(XLSX)

S1 Fig. (A) Petite proportion estimated for strains from [38] using plate-based colony color

assay versus by modeling observed colony growth rates in the microscope assay as a mixture of

Gaussians. Error lines represent 95% confidence intervals; dashed line shows a 1:1 correspon-

dence. Each point represents estimates for a single strain on a single experimental day (with

error bars based on replicates across microscope plate wells). Two data points in red are for a

strain in which colony color and colony size were decoupled. (B) A histogram of growth rates

of the ancestral reference strain in all wells in which it was co-cultured with 2,000-generation

MAH strains. Red line shows the distribution estimated by the best-fit model of the distribu-

tion of growth rates for this strain in the full model (including a distribution of petites); blue

line shows distribution estimated by the model in which the distribution of growth rates is not

partitioned into petite and non-petite growth rates. Note that although distributions are

shown overlaid on raw reference strain growth rate measurements, the models that produced

the distribution parameters were based on differences between reference strain and MA strain

growth rates (see Methods). (C) Mutational effects for strains from Fig 1 estimated either by

the full model of MA strain s effects described in the text, or by a model that does not include a

petite population in any of the strains. Error lines represent 95% confidence intervals; dashed

line shows a 1:1 correspondence. Two ancestral control strains included in the experiments

(purple points) have mutational effects whose confidence intervals overlap with 0 when petites

are accounted for, but not when they are ignored.

(TIFF)

S2 Fig. The absolute value of the MLE of the selection coefficient of each 2,000-generation

MA strain, with strains grouped by the effect of the highest putative effect non-repeat muta-

tion, as predicted by snpEff, found in each one. Points are colored yellow if their s value differs

significantly from the ancestor at an FDR of 0.05.

(TIFF)

S3 Fig. The cumulative density function of the fit of each DME model to all individual MA

strain mutational effects s. Inset: histogram of mutational effects with probability density func-

tions of the models overlaid. To account for the effect of experimental noise on the estimates

of s, the model density function is shown convolved with a Gaussian noise kernel with a
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variance that is the mean of the error variances of each strain’s mutational effect estimate.

SNMs + unid, Gaussianmodel as in Fig 2.

(TIFF)

S4 Fig. The MLE of the absolute value of the selection coefficient of eachmsh3Δ MA strain,

with strains grouped by the effect of the highest putative effect SSR mutation, as predicted by

snpEff, found in each one. Points are colored yellow if their s value differs significantly from

the ancestor at an FDR of 0.05.

(TIFF)
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