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ABSTRACT

Datasets used for molecular docking, such as PDBBind, contain technical vari-
ability - they are noisy. Although the origins of the noise have been discussed,
a comprehensive analysis of the physical, chemical, and bioactivity characteris-
tics of the datasets is still lacking. To address this gap, we introduce the Com-
prehensive Accurate Assessment (Compass). Compass integrates two key com-
ponents: PoseCheck, which examines ligand strain energy, protein-ligand steric
clashes, and interactions, and AA-Score, a new empirical scoring function for
calculating binding affinity energy. Together, these form a unified workflow that
assesses both the physical/chemical properties and bioactivity favorability of lig-
ands and protein-ligand interactions. Our analysis of the PDBBind dataset us-
ing Compass reveals substantial noise in the ground truth data. Additionally,
we propose CompassDock, which incorporates the Compass module with Diff-
Dock, the state-of-the-art deep learning-based molecular docking method, to en-
able accurate assessment of docked ligands during inference. Finally, we present
a new paradigm for enhancing molecular docking model performance by fine-
tuning with Compass Scores, which encompass binding affinity energy, strain
energy, and the number of steric clashes identified by Compass. Our results
show that, while fine-tuning without Compass improves the percentage of docked
poses with RMSD < 2Å, it leads to a decrease in physical/chemical and bioac-
tivity favorability. In contrast, fine-tuning with Compass shows a limited im-
provement in RMSD < 2Å but enhances the physical/chemical and bioactivity
favorability of the ligand conformation. The source code is available publicly at
https://github.com/BIMSBbioinfo/CompassDock.

1 INTRODUCTION

Molecular docking is crucial in drug discovery as it helps determine the feasibility of potential drug
candidates. Traditional docking methods are slow (Trott & Olson, 2010; Halgren et al., 2004), lead-
ing to the development of deep learning (DL)-based methods (Stärk et al., 2022; Lu et al., 2022).
These newer approaches have shown impressive accuracy and significantly faster performance, de-
creasing the run time from hours/days to seconds/minutes per protein-ligand pair (Corso et al.,
2022; 2024; Lu et al., 2024).

Deep learning-based methods typically assess their accuracy using numerical metrics such as Root
Mean Square Distance (RMSD) (Meli & Biggin, 2020). Although RMSD measures the overall
deviation of individual molecules from the ground truth, it is a purely distance-based metric and
does not consider the physico-chemical interactions or bioactivity properties between the ligand
and the protein at the binding site. As a result, metrics like RMSD fail to capture critical factors
that determine strong molecular binding, such as the favorability of these interactions. PoseBuster
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Figure 1: (A) Inference Mode: Provides comprehensive PCB feature quality assessment during DL-
Based Molecular Docking Inference runtime using integrated Compass workflow. (B) Fine-Tuning
Mode: Introduces a new fine-tuning method for DL-Based Molecular Docking with a PCB-based
approach, utilizing the Integrated Compass Score.

(?) demonstrated that even when structures have RMSD < 2Å, it is common to find ligands with
unfavorable physico-chemical properties.

PoseCheck (Harris et al., 2023) was developed for Structure-Based Drug Design (SBDD) (Blun-
dell, 1996; Ferreira et al., 2015; Anderson, 2003) to analyze molecular stability by calculating strain
energy, identifying interactions within the complex, and counting steric clashes between the protein
and ligand. Another critical metric for assessing protein-ligand interactions is binding affinity en-
ergy, which reflects bioactivity. Autodock-Vina (Trott & Olson, 2010) is a widely used method for
calculating binding affinity energy. However, the recently introduced AA-Score (Pan et al., 2022),
an empirical scoring function, has been shown to be more accurate than Autodock-Vina. Addition-
ally, AA-Score provides the 3D structure of the docked ligand within the protein pocket (pdb file),
allowing for easier visual inspection of docking results.

Additionally, (Corso et al., 2024) demonstrated that model fine-tuning boosts performance, yielding
an increased percentage of structures’ with an RMSD score of less than 2Å. While fine-tuning with-
out Physico-Chemical and Bioactivity (PCB) features increases the percentage of docked poses with
RMSD < 2Å, we demonstrate that this approach results in degraded physico-chemical interactions
and bioactivity. On the other hand, fine-tuning with PCB results in only a slight improvement in
RMSD < 2Å but enhances the ligands’ physico-chemical and bioactivity favorability.

To tackle the challenges in DL-based molecular docking, such as identifying ligand strain energy,
counting protein-ligand steric clashes, finding interaction types, finding the best score function for
binding affinity energy, and enhancing performance with a PCB-based approach, we propose Com-
passDock with two modes (Figure 1):

• Inference Mode: Provides comprehensive PCB quality analysis during DL-based molec-
ular docking with integrated Comprehensive Accurate Assessment (Compass) module.

• Fine-Tuning Mode: Introduces a new paradigm for fine-tuning DL-based molecular dock-
ing using a PCB-based approach with the Integrated Compass Score.

Our analysis of the PDBBind (Liu et al., 2017) dataset, commonly used in molecular docking,
revealed significant PCB noise/unfavorability. Secondly, we give users the opportunity to analyze
their docking results with real assessments in an inference run. Finally, with these PCB-based
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assessments, we can improve the model by fine-tuning it with a new score function called Compass
Score.

In summary, our CompassDock offers the following key contributions:

• A unified module, named Compass, was developed to determine PCB features of docked
molecular conformations sampled by DL-based molecular docking during inference mode.

• A PCB quality/favorability analysis of why DL methods do not achieve the desired perfor-
mance, highlighting the noisy nature of the training dataset (i.e. PDBBind).

• Proposing a novel loss function called Log Absolute Normalized - Mean Square Error
(LAN-MSE) which prevents exploding loss values and effectively reduces the impact of
outliers thereby enhancing model robustness.

• A new objective function, called Compass Score, which incorporates binding affinity en-
ergy, strain energy, and steric clashes into LAN-MSE.

• A new paradigm introduced to enhance molecular docking model performance in PCB
quality by fine-tuning DL-based docking models using Compass Score.

2 METHODS

The proposed CompassDock method not only enables accurate and realistic PCB quality assess-
ments in DL-based molecular docking during inference, such as with DiffDock but also enhances
the model’s ability to capture favorable PCB features by incorporating these properties into the fine-
tuning process using a novel score (Compass Score) and loss function (LAN-MSE). The overall
structure of CompassDock is illustrated in Figure 1.

2.1 MOTIVATION

PDB ID: 1a46, RMSD: 1.23

PDB ID: 1a46 Gr. Tr. Inf. Pred.
Bind. Aff. -6.46 -3.13

Str. En. 0.16 11.9
# of Clash. 3 19

Figure 2: Example of RMSD Fails.
Green: Ground Truth 1a46 Ligand’s
Conformation; Yellow: Inference Pre-
diction of 1a46 Ligand’s Conformation;
Gray: Ground Truth & Inference Pre-
diction of 1a46 Protein Pocket

.

Generally, the performance of the docking methods is
evaluated using the RMSD metric, where RMSD val-
ues below 2 Ångstroms(Å) are considered nearly accu-
rate (Alhossary et al., 2015; Hassan et al., 2017; McNutt
et al., 2021). However, PoseBuster (?) demonstrated that
even in structures with RMSD < 2Å, ligands can still dis-
play unfavorable physico-chemical properties. We further
illustrated this by incorporating a bioactivity score during
CompassDock inference, as shown in Figure 2, in order to
highlight that the RMSD metric does not necessarily lead
to physico-chemically and bioactively favorable confor-
mation structures. Despite an RMSD of 1.23 within the
same protein pocket region, the sampled molecular con-
formation exhibits less favorable binding affinity energy,
along with higher strain energy and steric clashes com-
pared to the ground truth of PDB ID 1a46.

Also, when we have new protein-ligand pairs, we don’t
always have Ground Truth Data. DiffDock Confidence
Score (Corso et al., 2022) is used to rank the various con-
formations, but what we discussed in RMSD also applies
to the Confidence Score.

To accurately evaluate protein-ligand molecular docking, a unified workflow integrated with DL-
based docking methods, such as DiffDock, is needed to provide information on binding affinity,
strain energy, steric clashes, and interaction types. To achieve this, we propose CompassDock,
which utilizes the Compass module, combining PoseCheck and AA-Score, without the need for
complex package management.

Despite advancements in deep learning (DL)-based molecular docking methods, their performance
improvements remain limited, partly due to the noise present in the PDBBind dataset used for train-
ing, which has not been thoroughly discussed or analyzed. An examination of approximately 14,000

3



Published as a Preprint

protein-ligand pairs in the PDBBind dataset using Compass reveals the presence of unfavorable PCB
values, as shown in Figure 3.

Finally, (Corso et al., 2024) showed that fine-tuning the model can improve the percentage of struc-
tures with RMSD < 2Å. However, while fine-tuning without incorporating PCB features increases
the proportion of docked poses achieving RMSD < 2Å, our results demonstrated a decrease in the
favorability of PCB features. To improve favorable PCB features, we introduce a new regularizer
called Compass Score, which penalizes the loss function during fine-tuning based on PCB features.

2.2 COMPASSDOCK

As shown in Figure 1, CompassDock operates in two modes: Inference Mode (Section 2.3) and
Fine-Tuning Mode(Section 2.4). In both modes, the core component is a unified module called
Compass, which integrates with DL-based molecular docking methods, such as DiffDock, to assess
how well molecular conformations exhibit favorable PCB features, including ligand strain energy,
binding affinity energy, and the number of steric clashes between protein-ligand pairs. The Compass
workflow/module consists of two key elements: PoseCheck and AA-Score. All source codes are
available 1.

2.2.1 DIFFDOCK

DiffDock (Corso et al., 2022; 2024) approaches molecular docking as a problem of learning a
distribution of ligand poses based on the protein structure, utilizing a diffusion generative model
(DGM) developed over this defined space. While (De Bortoli et al., 2022) initially described DGMs
on submanifolds by projecting a diffusion from ambient space onto the submanifold, they refined
this by mapping to a more manageable manifold where the diffusion kernel is directly sampled,
thereby enhancing the efficiency of training the DGM on this new manifold.

Ligand movements are mapped in molecular docking to mathematical groups, associating transla-
tions with the 3D translation group T (3), rigid rotations with the 3D rotation group SO(3), and
changes in torsion angles with multiple copies of the 2D rotation group SO(2). These movements
are formalized by defining how each group acts on a ligand pose c ∈ R3n, where translations are
straightforward additions to atom positions, and rotations are conducted around the ligand’s center
of mass. Furthermore, modifications to torsion angles are defined to minimally perturb the structure
in an RMSD sense and can be specified separately from translations and rotations to ensure changes
are disentangled.

Overall, DiffDock consists of two primary models: the Score Model and the Confidence Model.

Score Model s(x, y, t) processes the current ligand pose x and protein structure y in 3D space, out-
putting in the tangent space TrT

3⊕TRSO(3)⊕TθSO(2)m. It generates two SE(3)-equivariant vec-
tors for translations and rotations, along with an SE(3)-invariant scalar for each rotatable bond, uti-
lizing architectures based on SE(3)-equivariant convolutional networks over point clouds (Thomas
et al., 2018; Geiger et al.). Additionally, the Score Model represents structures as heterogeneous
geometric graphs, incorporating features derived from protein sequences and convolutions specific
to translation, rotation, and torsion to optimize for multiscale integration and computational effi-
ciency (Lin et al., 2022; Jing et al., 2022).

Confidence Model d(x, y), on the other hand, takes the same inputs of ligand pose and protein
structure and outputs a single scalar that is SE(3)-invariant, reflecting the joint rototranslations of x
and y. This model focuses on assessing the stability and plausibility of the ligand pose relative to
the protein structure, providing a scalar output that can guide the refinement of docking predictions.

2.2.2 POSECHECK

PoseCheck (Harris et al., 2023) is developed to assess molecular stability by measuring strain en-
ergy, identifying interactions within the complex, and counting steric clashes between the protein
and ligand.

1https://github.com/BIMSBbioinfo/CompassDock
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Strain Energy: Strain energy is the internal energy accumulated in a ligand due to conformational
changes during binding, affecting bond lengths, angles, and torsional stability, which in turn influ-
ences the binding affinity and stability of the protein-ligand complex (Perola & Charifson, 2004).
Lower strain energy typically leads to more favorable binding interactions and could enhance ther-
apeutic effectiveness due to the balance between enthalpy and entropy. The calculation of strain
energy involves determining the difference in internal energy between a relaxed pose and the gener-
ated pose using the Universal Force Field (UFF) in RDKit (Rappé et al., 1992).

Steric Clashes: Steric clashes occur when two neutral atoms are closer than the sum of their van
der Waals radii, indicating an energetically unfavorable and physically implausible interaction (Ra-
machandran et al., 2011; Buonfiglio et al., 2015). Such clashes suggest that the current conformation
of the ligand within the protein is suboptimal, highlighting potential inadequacies in pose design or
a fundamental mismatch in molecular topology. In SBDD, the total number of these clashes is con-
sidered a crucial performance metric, with a clash defined as the pairwise distance between protein
and ligand atoms falling below their combined van der Waals radii by a tolerance of 0.5 Å (Harris
et al., 2023).

Interaction Fingerprint: Interaction fingerprinting is a computational technique in SBDD that cap-
tures and analyzes interactions between a ligand and its target protein, encoding these interactions
as a bit vector known as an interaction fingerprint (Bouysset & Fiorucci, 2021; Marcou & Rognan,
2007). This method allows for the rapid comparison of different ligands or binding poses by calcu-
lating the Tanimoto similarity between fingerprints, providing a quantitative measure of interaction
similarity. The approach uses specific libraries like ProLIF to encode molecular interactions like
hydrogen bonds and hydrophobic contacts into a compact, easily comparable format (Bouysset &
Fiorucci, 2021).

2.2.3 AA-SCORE

A new empirical scoring function by (Pan et al., 2022), named AA-Score, which includes several
amino acid-specific interaction components such as hydrogen bonds, electrostatic, and van der Waals
interactions (Appendix B.1). This scoring function differentiates interactions with main-chain and
side-chain atoms across these types and incorporates additional energy components that are not
amino acid-specific, including hydrophobic contacts, π-π stacking, π-cation interactions, metal-
ligand interactions, and a conformational entropy penalty. Each of these energy components is
thoroughly described to provide a comprehensive understanding of their contributions to the scoring
function.

2.3 INFERENCE MODE

In inference mode, the protein (provided as either a sequence or 3D structure) and the ligand (given
as a SMILES string or 3D structure) are input into DiffDock to generate 3D ligand conformations.
Compass then analyzes the protein and ligand 3D structures to evaluate binding affinity, strain en-
ergy, the number of steric clashes, and protein interaction types. Additionally, we developed a
recursive redocking method to further optimize the molecular conformation during inference, mak-
ing the PCB features’ quality more favorable. This process is described by the following Equation
1:

f(Li, P, n) =


Li if the conformation is favorable
stop if the conformation is unfavorable
stop if n ≥ Nmax

f(Li+1, P, n+ 1) otherwise (further refinement is needed)

(1)

where Li is current ligand conformation at step i; P is the protein structure; f : the recursive function
that refines ligand conformations based on PCB features; n is the current iteration step and Nmax is
the maximum number of iterations allowed.

This function iterates through docking steps, checking each conformation against the thresholds. It
halts the recursion when the optimal conditions are met, when the scores are too low, or when the
maximum iteration limit Nmax is reached. If none of these conditions are satisfied, it continues to
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the next conformation Li+1, refining the results until a favorable state is achieved or the iteration
limit is reached.

2.4 FINE-TUNING MODE

2.4.1 LOSS REGULARIZER WITH COMPASS SCORE FOR FINE-TUNING

Fine-tuning of the DL-based docking method focuses on reducing the overall structural deviation of
individual molecules from the ground truth but tends to overlook important PCB features’ quality
of ligands and protein-ligand interactions. To address this, we used Compass to fine-tune the model
with the goal of improving the quality of these PCB features. To more effectively compare these
results with ground-truth data, we propose replacing traditional regression methods with a new loss
function, Log Absolute Normalized - Mean Square Error (LAN-MSE), which better handles the
normalization of outliers (Section 2.4.2).

2.4.2 LOG ABSOLUTE NORMALIZED - MEAN SQUARE ERROR (LAN-MSE)

The LAN-MSE loss function applies a logarithmic transformation to both predicted and true values
before computing the mean squared error (MSE). This logarithmic approach effectively reduces the
impact of outliers, enhancing model robustness by prioritizing relative rather than absolute differ-
ences. This characteristic is particularly advantageous in scenarios where output values span large
scales.

Theorem: Stability of Logarithmic Transformation. Let x be a real number. The logarithmic
function log(|x| + buffer) is stabilized by a buffer buffer = 1.1 for |x| < 1 to prevent the function
from diverging or becoming overly sensitive near zero.

Proof: For x approaching zero, log(|x|) approaches −∞. Introducing a buffer shifts the domain
away from zero, ensuring that log(|x|+ buffer) remains finite and non-sensitive as x → 0.

Error normalization in LAN-MSE utilizes the term 2| log(|yi| + buffertrue,i)|, scaling each error
according to the magnitude of the true value. This scaling mechanism proportionately decreases the
significance of errors for larger true values, aligning the error metric with scenarios where percentage
differences outweigh absolute differences.

LAN-MSE is ideally suited for applications involving data with exponential growth or decay, as it
adjusts for the logarithmic nature of such data. The following function provides a mathematical
representation of LAN-MSE, which includes mechanisms for handling the peculiarities of the data:

LAN-MSE(ŷ, y) =
1

N

N∑
i=1

(
log(|yi|+ buffertrue,i)− log(|ŷi|+ bufferpred,i)

2| log(|yi|+ buffertrue,i)|+ ϵ

)2

(2)

where ŷi represents the predicted value for the i-th data point; yi is the true value for the i-th data
point; buffertrue,i is set to 1.1 if |yi| < 1, otherwise, it is 1.0; bufferpred,i is similarly set based on the
magnitude of ŷi; ϵ is a small constant (e.g., 10−5) to prevent division by zero in the denominator.

This detailed definition underscores how the application of buffers and normalization constants in the
loss function ensures a nuanced evaluation of prediction accuracy across various data magnitudes.
(Details for further Analysis in Appendix C)

2.4.3 COMPASS SCORE

The Compass Score is a key element of the Fine-Tuning mode in CompassDock. It compares the
PCB features (binding affinity, strain energy, and number of steric clashes) of the sampled molecular
conformation with those of the ground truth conformation using the LAN-MSE loss function.

Regularizers for Compass Score:

• Binding Affinity Regularizer: Binding affinity is calculated based on the translational
(tr), rotational (rot), and torsional (tor) movements and is compared to the ground truth
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using the LAN-MSE loss function:

Compass ScoreBinding Affinity = LAN-MSE(ŷBinding Affinity, yBinding Affinity) (3)

where ŷBinding Affinity represents the predicted binding affinity energy, and yBinding Affinity de-
notes the true binding affinity value.

• Strain Energy Regularizer: Strain energy is calculated based on the same movements and
compared to the ground truth strain energy using the LAN-MSE loss function:

Compass ScoreStrain Energy = LAN-MSE(ŷStrain Energy, yStrain Energy) (4)

• Steric Clash Regularizer: The number of steric clashes is calculated based on the same
movements and compared to the ground truth using LAN-MSE:

Compass ScoreSteric Clash = LAN-MSE(ŷSteric Clash, ySteric Clash) (5)

Given the uncertain relative importance of these three physical properties, they are assumed to con-
tribute equally to the overall Compass Score:

Compass ScoreTotal =
CSBinding Affinity + CSStrain Energy + CSSteric Clashes

3
(6)

where CSBinding Affinity denotes Compass ScoreBinding Affinity illustrated in Equation 3;
CSStrain Energy denotes Compass ScoreStrain Energy illustrated in Equation 4; CSSteric Clashes denotes
Compass ScoreSteric Clashes illustrated in Equation 5. This score acts as a Non-Gradient-Tracked
Loss (or loss function penalizer) and does indirectly influence parameter updates through gradients
during the fine-tuning process.

2.4.4 LOSS FUNCTION

To optimize CompassDock in Fine-Tuning mode, the overall loss function incorporates the total
Compass Score, shown in Equation 6, which acts as a non-gradient-tracked penalizer alongside the
primary DiffDock loss, with both components weighted accordingly:

LTotal = LDiffDock · wDiffDock + CSTotal · wCompass Score (7)

where LDiffDock represents the DiffDock loss function, which updates translation, rotation, and tor-
sional angles; wDiffDock is the weight assigned to the DiffDock loss; CSTotal represents the total
Compass Score (as defined in Equation 6); wCompass Score is the weight assigned to the total Compass
Score, calculated as 1− wDiffDock.

3 EXPERIMENTS

3.1 PCB QUALITY ANALYSIS

The experiments used the PDBBind dataset, specifically the preprocessed version applied by Diff-
Dock. In experiments, the unified Compass workflow was employed to evaluate binding affinity,
strain energy, and the number of clashes. A notable portion of the preprocessed ligands were found
to have unfavorable PCB features.

The dataset comprised approximately 14,000 protein-ligand pairs. The remaining 5,000 pairs, pre-
processed by EquiBind (Stärk et al., 2022), were excluded from the analysis due to errors in bond
structures detected (Details in Appendix A.1) by PoseCheck (Harris et al., 2023) and AA-Score (Pan
et al., 2022).

3.2 FINE-TUNING WITH COMPASS SCORE PENALIZER

Instead of fine-tuning the entire dataset, an initial subset of 900 protein-ligand pairs from the PDB-
Bind validation set was selected. Due to structural issues in some of the preprocessed data, as
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Figure 3: Distribution of PCB properties and quality within the PDBBind ground truth dataset. (A):
Distribution of binding affinity across the PDBBind dataset. (B): Distribution of the number of steric
clashes between protein-ligand pairs in PDBBind. (C): Distribution of strain energy in ligands from
the PDBBind dataset.

discussed in Section 3.1 (Appendix A.1), this subset was further reduced to approximately 700 sam-
ples. Given the relatively long computation time for the Compass Score, 80 protein-ligand pairs
were randomly selected for training and 20 for validation.

For the test set, similar structural issues resulted in the selection of about 261 samples from the
preprocessed data.

3.2.1 EXPERIMENT SETTINGS

During the fine-tuning, the weights for the DiffDock loss function (wDiffDock) were set at 0.99, 0.9,
and 0.75 (Section 2.4.4). The corresponding weights for the Compass Score (wCompass Score) were
determined as 1− wDiffDock.

Additionally, the hyperparameters from the DiffDock-L model were applied, and various learning
rates—0.1, 0.01, 0.001, and 0.0001—were used to optimize performance.

4 RESULTS

4.1 PCB QUALITY ANALYSIS

We analyzed the PDBBind ground truth data using the unified Compass workflow (Section 3.1),
focusing on binding affinity, steric clashes between protein-ligand pairs, and ligand strain energy, as
illustrated in Figure 3.

Figure 3A shows the distribution of binding affinity in the PDBBind dataset, with a mean of -8.44
kcal/mol and a standard deviation of 3.76 kcal/mol. In Figure 3B, the average number of steric
clashes is 5.85, with a standard deviation of 4.43; notably, only about 5% of the dataset has no
steric clashes, indicating minimal physical violations. Finally, Figure 3C illustrates the distribution
of ligand strain energy, with a mean of 3.11 and a standard deviation of 6.15.

4.2 FINE-TUNING WITH COMPASS SCORE PENALIZER

The performance of CompassDock in Fine-Tuning mode was benchmarked (Section 3.2) against
DiffDock-L in inference and DiffDock with fine-tuning based on the percentage of ligands with
RMSD < 2Å and RMSD < 5Å, as well as the percentage of ligands with favorable PCB features
(binding affinity < 0, strain energy < 5, and number of steric clashes < 5), as shown in Figure 4.

The baseline DiffDock-L model, consisting of 30 million parameters, achieved an accuracy of
11.38% for RMSD below 2 Å and 24.67% for RMSD below 5 Å on the selected 261-sample test
set (Appendix A.1). After fine-tuning, the DiffDock-L model improved slightly, reaching 11.57%
accuracy for RMSD below 2 Å and 25.75% for RMSD below 5 Å. Applying the Compass Score
method yielded a modest enhancement, with 11.42% accuracy for RMSD below 2 Å and 24.75%
for RMSD below 5 Å.
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Figure 4: Benchmarking DiffDock models: pre-trained model (DiffDock-L), fine-tuned model
(DiffDock-L+FineTuning), and fine-tuning with Compass Score (CompassDock (ours)), based on
RMSD and favorable PCB properties.

Figure 5: Comparison of PDB ID: 5c28 Ligand Conformation predictions during fine-tuning. Green
Structures: Ground Truth Conformation of Ligand; Cyan Structures: Ground Truth Struc-
tures of Binding Pocket. Ground Truth Binding Affinity, Strain Energy, and Number of Clashes
indicated as green in the first column

In terms of favorable PCB ligands (defined as binding affinity < 0, strain energy < 5, and number
of steric clashes < 5), the original PDBBind test set achieved 41.38%. The DiffDock-L model
performed at 4.21%, and fine-tuning further reduced this to 3.83%. However, applying the Compass
Score in CompassDock improved the percentage of favorable PCB ligand conformations to 4.98%.

5 DISCUSSION

This study conducted two key experiments to assess the effectiveness of the Compass Score within
the molecular docking framework using the PDBBind dataset. The first experiment (Section 4.1)
evaluated PCB feature quality, revealing notable variations in binding affinity, steric clashes, and
strain energy, which highlight the complexities and inconsistencies of protein-ligand interactions.
The findings showed that most of the dataset exhibited steric clashes, with only a small portion free
from such violations. This suggests that even widely-used datasets like PDBBind contain inherent
inaccuracies that could influence docking prediction outcomes. These results emphasize the need for
robust modeling techniques that can handle the diverse physicochemical and biochemical properties
found in various ligand-protein pairs, underscoring the challenges in predicting accurate docking
conformations. This aligns with the approach taken by the PLINDER dataset (?).
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Although the use of the Compass Score as a loss penalizer (Section 4.2) resulted in only a slight
improvement in RMSD accuracy compared to standard fine-tuning, our results showed that standard
fine-tuning tends to reduce the capture of favorable PCB properties. In contrast, incorporating the
Compass Score improved the favorable PCB characteristics. This highlights the effectiveness of
integrating PCB properties into the fine-tuning process of molecular docking algorithms.

Furthermore, as shown in Figure 5, RMSDs greater than 5 Å can still result in viable molecular
conformations. While lower RMSDs correlate (Alhossary et al., 2015; Hassan et al., 2017; McNutt
et al., 2021) with improvements in binding affinity, strain energy, or steric clashes, it is not accurate
to assert that a specific RMSD threshold consistently leads to better molecular conformations during
docking processes. This point is further exemplified by the RMSD discrepancies shown in Figure 6,
where despite an RMSD value of 4.75 for the 2si0 PDB ID ligand in the initial fine-tuning epoch,
significant violations in PCB are evident, highlighting the RMSD’s limitations.

PDB ID: 2is0 Ground Truth Predicted 2

Binding Affinity -11.33 3505.32
Strain Energy 7.31 20.65

Number of Clashes 6 205

Figure 6: Example of Difference of PCB Properties of Ground Truth and Predicted Sample during
the early stages of Fine-Tuning and its visualization. RMSD value is 4.75. Yellow: Ground Truth
Protein Pocket3; Purple: Predicted Protein Pocked; Green: Predicted Conformation of Ligand;
Cyan: Ground Truth Conformation of Ligand

6 CONCLUSION

These findings support the integration of detailed PCB features into docking algorithms to improve
predictive accuracy and assessment. Future research should investigate the scalability of refined
scoring mechanisms across larger datasets and explore the incorporation of more complex interac-
tion dynamics to further advance DL-based molecular docking. This approach holds the potential to
significantly enhance the predictive capabilities of computational models, leading to more accurate
outcomes in drug discovery and biomolecular research.
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A EXPREIMENT DETAILS

A.1 DATASET

In the PDBBind dataset, a subset of the ligands’ bonds was preprocessed or encoded in a manner
that rendered them incompatible with the AA-Score and PoseCheck modules. Specifically, AA-
Score was unable to process 125 protein-ligand pairs, while PoseCheck failed to process 3,040
pairs. Despite these challenges, Compass successfully ran analyses on 16,070 protein-ligand pairs.

Given the presence of significant outliers within the dataset, which could skew the distribution anal-
ysis, we applied a filtering criterion. We selected only those protein-ligand pairs exhibiting values
less than 20 in Binding Affinity, Strain Energy, and Clashes to ensure more meaningful distribu-
tion analysis. This filtering process resulted in a refined dataset comprising approximately 13,977
protein-ligand pairs for subsequent analysis.

B METHOD DETAILS

B.1 AA-SCORE

AA-score (Pan et al., 2022) calculates the binding affinity energy as illustrated in Equation 8:

∆Gbinding =
∑
i

∆GAA
hb–main +

∑
i

∆GAA
hb–side +

∑
i

∆GAA
ele–main +

∑
i

∆GAA
ele–side+∑

i

∆GAA
vdW–side +∆Ghc +∆Gstacking +∆Gcation +∆Gmetal +∆Grot+∑

i

∆GAA
vdW–main

(8)

Table 1 summarizes energy components like Hydrogen Bond, van der Waals interaction, Electro-
static interaction, Hydrophobic contacts, π − π interaction, π-cation interaction and Metal-Ligand
Interactions.

Category Number of Components Description

Hydrogen bond 32 ∆GAAi

hb–main,∆GAAi

hb–side
vdW interaction 40 ∆GAAi

vdW–main,∆GAAi

vdW–side
Electrostatic interaction 80 ∆GAAi

ele–main,∆GAAi

ele–side
Hydrophobic contacts 1 ∆Ghc
π–π 1 ∆Gπ−π

π-cation 1 ∆Gπ−cation
Metal–ligand interaction 1 ∆Gmetal
Number of rotatable bonds 1 ∆Grot

Table 1: Description of energy components in the AA-Score

B.1.1 HYDROGEN BOND INTERACTION

The contribution of hydrogen bonds to overall energy depends on the bond’s length between the
donor and acceptor atoms, and the angle formed with the hydrogen atom. (Pan et al., 2022) defined
a hydrogen bond based on two criteria: the bond length must not exceed 3.5 Å, and the angle must
be at least 120°. The strength of each hydrogen bond is calculated as following Equation 9 by (Yan
et al., 2017):

∆GAAi

hbond = Whb
i

AA∑
m

lig∑
n

(
1

1 +
(
dmn

2.6

)6 /0.58
)

(9)
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where ∆GAAi

hbond represents the energy contribution from the hydrogen bond interaction between atom
m in the ligand and atom n of amino acid type i within the binding pocket. The term dmn denotes
the distance between the donor and acceptor atoms involved in the hydrogen bonding interaction.

B.1.2 HYDROPHOBIC CONTACTS

The hydrophobic interactions are quantified by summing the contributions of all hydrophobic atom
pairs between the protein and the ligand. This calculation follows the methodology established by
ChemScore (Eldridge et al., 1997; Murray et al., 1998), whereby the hydrophobic interaction energy
is computed based on the specific pairing criteria as shown in Equation 10:

∆GAAi

hc = W i
hc

AA∑
m

lig∑
n

f(dmn) (10)

where

f(d) =


1.0 if d ≤ d0 + 0.5
1
1.5 × (d0 + 2.0− d)× d0 + 0.5 if d0 + 0.5 < d ≤ d0 + 2.0

0 if d > d0 + 2.0

(11)

where ∆GAAi

hc represents the hydrophobic interaction energy between amino acid type i and the
ligand, calculated by summing the contributions of all hydrophobic matches between the ligand and
protein amino acid type i. The term d0 is the sum of the atomic radii of atom m and atom n, and
dmn denotes the distance between ligand atom m and protein atom n of amino acid type i.

B.1.3 ELECTROSTATIC INTERACTION

The electrostatic interaction is quantified using the Coulomb’s law as follows:

∆GAAi

ele = W i
ele

AA∑
m

lig∑
n

qm × qn
dmn

(12)

where ∆GAAi

ele signifies the electrostatic interaction energy between atom n in the ligand and atom
m from amino acid type i in the binding site. Here, qm and qn are the partial charges on atoms m
and n, respectively, and dmn denotes the distance between these atoms.

B.1.4 VAN DER WAALS INTERACTIONS

AA-Score employed a modified Lennard-Jones potential for computing the van der Waals (vdW)
interactions as following:

∆GAAi

vdW = W i
vdW

AA∑
m

lig∑
n

[(
d0
dmn

)8

− 2

(
d0
dmn

)4
]

(13)

where ∆GAAi

vdW quantifies the energy contribution from the van der Waals interaction between amino
acid type i and the ligand. This interaction is derived by aggregating the effects from all atom pairs
between the ligand atoms and the protein atoms of amino acid type i. The term dmn denotes the
atomic distance between the ligand atom m and protein atom n of amino acid type i, while d0 is the
sum of the atomic radii rm and rn, used in AA-Score calculations (Wang et al., 2002).

B.1.5 METAL-LIGAND INTERACTION

Protein binding sites often include metal ions such as Zn2+, Cu2+, Fe3+, among others, which are
crucial for the stability of protein-ligand complexes. It is utilized from (Wang et al., 1998) where
they calculate the metal-ligand binding as the following Equation 14
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∆Gmetal = Wmetal

lig∑
m

metal∑
n

f(dmn) (14)

where

f(d) =


1.0 if d < 2.0

3.0− d if 2.0 ≤ d ≤ 3.0

0.0 if d > 3.0

(15)

where, ∆Gmetal quantifies the energy from metal-ligand interactions, where m is the coordinating
atom in the ligand, and dmn is the distance between ligand atom m and the metal atom n.

B.1.6 π-π INTERACTION.

π-stacking interactions occur when the distance between the centers of two aromatic rings is less
than 5.5 Å. The angle between the normals of the rings should deviate no more than 30° from the
optimal orientation (0° for face-to-face and 90° for edge-to-face configurations) (Salentin et al.,
2015; de Freitas & Schapira, 2017). The interaction strength is computed in Equation 16:

∆Gπ−π = Wπ−π

prot∑
m

lig∑
n

f(dmn, θ, σ) (16)

where

f(d, θ, σ) =


1 if 60◦ ≤ θ < 90◦ and 0.5 ≤ d ≤ 5.5 and σ ≤ 2

1 if θ ≤ 30◦ or θ ≥ 150◦ and 0.5 ≤ d ≤ 5.5 and σ ≤ 2

0 otherwise
(17)

Here, d represents the distance between the centers of the aromatic rings, θ is the angle between the
normals to these rings, and σ is the perpendicular distance between one ring center and the plane of
the other ring.

B.1.7 π-CATION INTERACTION.

The π-cation interaction is considered significant when the distance between the center of an aro-
matic ring and a charged group is less than 5.5 Å. It is illustrated in Equation 18:

∆Gπ−cation = Wπ−cation

prot∑
m

lig∑
n

f(dmn) (18)

where

f(d) =

{
1 if 0.5 ≤ d ≤ 5.5

0 otherwise
(19)

here d is the distance between the center of the aromatic ring and the center of the cation.

C THEORETICAL ANALYSIS OF LAN-MSE

C.1 MATHEMATICAL JUSTIFICATION FOR LOGARITHMIC TRANSFORMATION

The utilization of logarithmic transformations in the LAN-MSE is substantiated through several
mathematical properties:
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• Dimensionless Measurement: Logarithmic transformations convert scale-dependent
quantities into dimensionless measures, facilitating comparisons across data of different
scales.

• Relative Error Sensitivity: By employing logarithms, the LAN-MSE accentuates sensitiv-
ity to relative errors over absolute differences, aligning it with scenarios where proportional
discrepancies are more significant than absolute magnitudes.

Consider two sets of values (yi, ŷi) and their scaled versions (kyi, kŷi), where k is a positive scalar.
We aim to demonstrate that the LAN-MSE remains invariant under scaling of the input data.

The logarithmic transformation used in the LAN-MSE scales as follows when the data are multiplied
by a scalar k:

log(|kyi|+ buffer) = log(k(|yi|+
buffer
k

)) (20)

Using the property that log(ab) = log(a) + log(b), we can express this as:

log(k) + log(|yi|+
buffer
k

) (21)

As k is constant across all terms in the LAN-MSE, it will factor out in the subtraction within the
MSE computation:

log(|yi|+ buffertrue,i)− log(|ŷi|+ bufferpred,i) = log(k) + log(|yi|+
buffertrue,i

k
)−(

log(k) + log(|ŷi|+
bufferpred,i

k
)

) (22)

Simplifying, the log(k) terms cancel each other out:

log(|yi|+
buffertrue,i

k
)− log(|ŷi|+

bufferpred,i

k
)

Hence, the LAN-MSE computed for the original and scaled values yields the same result:

LAN-MSE(ŷ, y) = LAN-MSE(kŷ, ky)

This demonstrates the scale invariance of the LAN-MSE, which is essential in fields where data mag-
nitudes can span multiple scales, ensuring that the loss function treats all data uniformly regardless
of their absolute magnitude.

C.2 STABILITY ANALYSIS

The stabilization of the logarithmic function via a buffer is examined by considering the limit be-
havior as x approaches zero:

lim
x→0+

log(|x|+ buffer) = log(buffer) (23)

This limit is finite and well-defined, ensuring that the logarithmic function remains stable and less
sensitive to small perturbations in x.
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C.3 IMPACT OF THE BUFFER ON ERROR DYNAMICS

The buffer’s influence on the error dynamics is reflected in the derivative of the logarithmic function:

d

dx
log(|x|+ buffer) =

1

|x|+ buffer
(24)

This derivative indicates reduced sensitivity as |x| becomes very small, resulting in less aggressive
penalization for small deviations in x, which can be beneficial when dealing with noisy data or
outliers.

C.4 NORMALIZATION AND SCALING

The normalization using 2| log(|yi| + buffertrue,i)| not only scales the errors but adapts the error
metric to the magnitude of the true values:

Normalized Error =
log(|yi|+ buffertrue,i)− log(|ŷi|+ bufferpred,i)

2| log(|yi|+ buffertrue,i)|+ ϵ
(25)

This adaptive scaling ensures that each data point’s error is balanced proportionally, allowing for a
more equitable influence across the dataset.

C.5 PRACTICAL IMPLICATIONS AND LIMITATIONS

While the LAN-MSE provides numerous advantages, it may introduce biases in datasets where zero
or negative values are significant, as the logarithmic function requires positive arguments. More-
over, the sensitivity of model performance to the parameters ϵ and buffer values necessitates careful
tuning, possibly supported by empirical testing or sensitivity analysis.
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