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Multiple myeloma (MM) is a plasma cell malignancy of the bone marrow.
Despite therapeutic advances, MM remains incurable, and better risk
stratification as well as new therapies are therefore highly needed. The

proteome of MM has not been systematically assessed before and holds
the potential to uncover insight into disease biology and improved

prognosticationin addition to genetic and transcriptomic studies. Here we
provide acomprehensive multiomics analysis including deep tandem mass
tag-based quantitative global (phospho)proteomics, RNA sequencing,

and nanopore DNA sequencing of 138 primary patient-derived plasma cell

malignancies encompassing treatment-naive MM, plasma cell leukemia
and the premalignancy monoclonal gammopathy of undetermined
significance, as well as healthy controls. We found that the (phospho)
proteome of malignant plasma cells are highly deregulated as compared
with healthy plasma cells and is both defined by chromosomal alterations
as well as posttranscriptional regulation. A prognostic protein signature
was identified thatis associated with aggressive disease independent of
established risk factorsin MM. Integration with functional genetics and
single-cell RNA sequencing revealed general and genetic subtype-specific
deregulated proteins and pathways in plasma cell malignancies that include
potential targets for (immuno)therapies. Our study demonstrates the
potential of proteogenomicsin cancer and provides an easily accessible
resource for investigating protein regulation and new therapeutic

approachesin MM.

Multiple myeloma (MM), the second most frequent hematologic malig-
nancy, is characterized by expansion of monoclonal plasmacellsin the
bone marrow. Patients suffer from bone lesions, renal insufficiency,
hypercalcemia and bone marrow failure’. The introduction of effective
therapies including thalidomide analogs, proteasome inhibitors and
immunotherapies such as chimeric antigen receptor (CAR)-T cells in
the past decade substantially extended survivalin MM. However, MM
is still considered incurable and those patients with high-risk charac-
teristics have a particularly poor outcome’.

Chromosomal alterations are the initiating step in the patho-
genesis of MM that are already present in the premalignant stage of
monoclonal gammopathy of undetermined significance (MGUS).
Primary genetic events define the cytogenetic subgroups of MM*and
are associated with a distinct gene expression profile**. Half of the
patients exhibit translocations involving the immunoglobulin heavy
chain (IgH) enhancer on chromosome 14, predominantly with onco-
genes CCNDI (t(11;14)), NSD2 and FGFR3 (t(4;14)) and MAF B (t(14;16)).
Patients without these translocations typically have a hyperdiploid
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(HRD) karyotype with trisomies primarily of the odd-numbered chro-
mosomes. Secondary genetic events occur later in the pathogenesis
of MM andinclude del(13q) comprising RB1, del(17p) comprising TP53,
gainor amplification of chromosome 1q and mutationsin NRAS, KRAS,
TP53, TENTS5C (FAM46C) and DIS3 (refs. 5-7). Genetics together with
blood protein levels of albumin, b2-microglobulin and lactate dehy-
drogenase are incorporated in the revised international staging sys-
tem (R-ISS), the current standard for risk classification and therapy
stratificationin MM®.

Proteomics hasrecently emerged as atechnology to study cancer
biology, generate prognostic and predictive models and identify new
therapeutic targets®. Proteogenomic studies integrating genomics
and transcriptomics in solid tumors’™ and in hematologic malignan-
cies”revealed low correlation between RNA and protein expression,
demonstrating thatinferring the activity of proteins merely based on
studying RNA expressionis limited. While many proteogenomic studies
contribute to the general understanding of disease mechanisms, only
a few of them have connected proteome alterations to clinical out-
come'“*° For MM, alimited number of proteomic studies have been
conductedinsmall cohorts”*, while comprehensive proteogenomic
studies that evaluate how the proteomeis influenced by genetic altera-
tions, disease stage and how protein expressionimpact outcomes, are
currently missing. In this Resource, to address this gap, we performed
an integrated multiomics study, including tandem isobaric mass tag
(TMT)-based quantitative global- and phosphoproteomic analysis,
RNA sequencing and whole-genome nanopore DNA sequencing to
assess copy number alterations (CNAs) of 138 patients with plasma
cell malignancies of different disease stages including MGUS, newly
diagnosed multiple myeloma (NDMM) and plasma cell leukemia (PCL),
ahighly aggressive form of plasma cell dyscrasias.

Results

Proteomic landscape of newly diagnosed MM

To characterize the proteomic landscape of treatment-naive symp-
tomatic MM we analyzed plasma cells isolated from 114 patients with
NDMM (Fig.1a and Supplementary Table1). The frequency of primary
and secondary chromosomal alterations, as assessed by fluorescence
insitu hybridization (FISH) was distributed according to the described
incidencein MM°®. RNA sequencing (Supplementary Table 2) and nano-
pore whole-genome DNA sequencing (Supplementary Table 3) were
conducted for the majority of samples to assess gene expression and
CNAs, respectively, which largely aligned with the genetic alterations
detected by FISH (Fig. 1b and Supplementary Table 3). Global proteome
and phosphoproteome levels were quantified with TMT. The number
of identified proteins and phosphopeptides across TMT plexes was
comparable (Extended DataFig.1a) and intotal, over 10,000 proteins
and 50,000 phosphopeptides were identified, of which 8,336 proteins
and 25,131 phosphopeptides were quantified in at least half of the sam-
ples (Fig. 1c). The phosphoproteomic data extended the number of
detected proteins to 11,297 proteins (Fig. 1c and Extended Data Fig. 1b).
Technical replicates showed a good correlation, and no batch effects
of TMT plexes were observed (Extended Data Fig. 1c). Key plasma cell
markers, including the transcription factor IRF4, surface proteins CD38,
TNFRSF17 (BCMA) and SDC1(CD138) and translocation partners NSD2,

FGFR3 and CCND1wereidentified (Fig. 1c). Immunoglobulin heavy and
light chain protein levels corresponded to clinical metadata (Extended
DataFig.1d). Compensation effects of CNAs from RNA to protein levels
were especially observed for ribosomal, spliceosome and proteasome
proteins as well as proteins located on 1q (Extended Data Fig. 1e,f).
RNA-to-protein correlation was moderate, withamedian Pearson cor-
relation coefficient of 0.29 (Fig. 1d) and proteins affected by translo-
cations, as well as key cell surface proteins and transcription factors,
displayed above-average correlation (Fig. 1d). Single sample gene set
enrichment analysis (ssGSEA) of ranked RNA-protein correlations
revealed enrichment of individual signaling pathways and negative
enrichment of genes associated with splicing, proteasomal degradation
and oxidative phosphorylation (Fig. 1e). These data imply extensive
posttranscriptional regulation in MM. We observed varying levels of
immune cell signatures as contaminants arising from differences in
CD138" sorting status and efficiency, but these did not compromise
the major distinctions we identified between the different genetic
subgroups (Extended Data Fig.1g,h). The CD138" cell enrichment pro-
cedure itself had no effect on the (phospho)proteome of malignant
plasma cells as assessed in the myeloma cell line MM.1S (Extended Data
Fig.liand Supplementary Tables 4 and 5).

Unsupervised nonnegative matrix factorization (NMF) cluster-
ing of phosphoproteomics-derived pathways (Extended Data Fig. 2a)
identified a distinct subcluster of patients with lower survival prob-
ability (Extended Data Fig. 2b). This cluster was independent of genetic
alterations and characterized by upregulation of proliferation and cell
cyclesignatures, alongside downregulation of TNF-a and ERBB signal-
ing pathways (Extended Data Fig. 2c).

Genetic alterations affect proteinlevelsin cis and trans
Given the central role of chromosomal aberrations in disease initia-
tion, biology and prognosis in MM, we determined the impact of com-
mon genetic alterations on the (phospho)proteome with differential
expression analysis. Most translocations, HRD, +1q and del(13q), had a
profound effect on the expression levels of proteinsin cisand in trans.
Less regulation was observed by t(14;16), del(1p) or del(17q) although
this couldin part be explained by the smaller sample numbers and thus
reduced statistical power (Fig. 1fand Supplementary Tables 6 and 7). The
mostsignificant proteins and phosphopeptidesin the genetic subtypes
arelgH translocation partners and proteins encoded on chromosomes
affected by CNAs (Fig. 1g). SSGSEA of global and phosphoproteomic
data confirmed significant regulation of myeloma molecular subgroups
previously defined by RNA expression studies® (Extended Data Fig. 2d).
In cases with t(11;14) cell cycle regulators were highly deregu-
lated, including high expression of the translocation partner CCNDI,
increased CDK4 protein levels and RB1 phosphorylation, with con-
comitantly decreased CDK6 protein levels (Fig. 2a,b). In non-t(11;14)
cases, high RB1 phosphorylation was instead associated with CDK6
protein expression and/or high levels of CCND2 and CCND3 RNA and
phosphoprotein (Fig. 2b). T(11;14) myeloma is the only genetic sub-
group sensitive to venetoclax, a selectiveinhibitor of BCL2 (ref. 22). Of
note, we found 102 apoptosis-related proteins deregulated in t(11;14)
myeloma, including downregulation of apoptosis inhibitor BIRC2
and BCL2L1(BCL-XL) and upregulation of proapoptotic proteins such

Fig.1|Proteogenomiclandscape of newly diagnosed MM. a, Overview of the
proteogenomic study. b, A heat map of CNVs detected by nanopore sequencing
in109 cases of NDMM sorted by primary genetic subgroup: HRD, t(11;14),

t(4;14) and t(14;16) translocations. Cytogenetic alterations, including deletions,
amplifications and translocations were detected by FISH. ¢, Proteins and
phosphopeptides detected by TMT-based mass spectrometry ranked by median
intensity. d, Ranked gene symbol-wise Pearson correlation of mRNA-protein
levels across MM samples (n = 8,511 RNA-protein pairs with at least ten valid
values inboth datasets). e, ssGSEA of the mRNA-protein correlations for KEGG
pathways (n =165 ranked pathways). Gene sets were ranked by their normalized

enrichment score and informative pathways are annotated with purple circles.

f, Differentially regulated proteins (left) and phosphopeptides (right) in each
cytogenetic subgroup were determined with a two-sided, moderated two-
sample ¢-test comparing subsets of samples against all other samples. The
number of significant hits (FDR <0.05) in each group is plotted across genomic
location. g, Heat maps displaying the five most significant proteins (left) and
phosphopeptides (right) in each genetic subgroup across MM samples. For
phosphopeptides mapping to the same protein, only the most significant entry is
displayed. Phosphopeptides are annotated with gene name, position, amino acid
and number of phosphorylations present.
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as TRADD and FADD (Fig. 2a and Extended Data Fig. 3a,b). We also
detected elevated protein levels of several B cell markers and genes
present in the myeloma CD2 gene set® (Extended Data Fig. 3c), which

may also be linked to BCL2 dependency in t(11;14) myeloma****,

Plasma cell malignancies
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“ahll

TMT global and phospho proteomics

‘ lﬂm )_‘zz

Translocation ¢(4;14) leads to integration of the /gH enhancer
upstream of NSD2 (MMSET) and FGFR3 (Extended Data Fig. 3d). NSD2
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was not uniformly expressed and could be detected only in12/19 (63%)
samples with t(4;14) (Fig. 2d and Extended Data Fig. 4e), consistent with
RNA data (Extended DataFig. 3f) and previous findings** %, SsGSEA of
phosphoproteomic data revealed upregulation of the FGFR3 signal-
ing pathway in samples with elevated FGFR3 protein independent of
t(4;14) status (Fig. 2e). FGFR3 protein expression highly correlated with
dependency on FGFR3 while NSD2 knockout (KO) shows no effect on
survival in MM cell lines (Fig. 2f)**%. Accordingly, the FGFR inhibitor
erdafitinib was highly effective in the t(4;14) positive/FGFR3 high cell
line OPM2, butineffective in FGFR3-negative cellsirrespective of t(4;14)
status (Fig. 2g). Among the top upregulated proteinsin t(4;14) casesin
trans is the deubiquitinating enzyme ubiquitin C terminal hydrolase
L1 (UCHLI) (Fig. 2c and Extended Data Fig. 3e). UCHL1 has been previ-
ously shown to be essential for MM and other B cell malignancies and
is associated with aggressive disease™.

In HRD myeloma cases, we detected changes in the proteome
that reflect characteristic patterns of aneuploidy (Extended Data
Fig. 4a,b). Most significantly upregulated proteins include the deu-
biquitinase USP4 (chr3), as well the redox regulator TXN (chr9) and
pyruvate kinase PKM (chr15) (Extended Data Fig. 4c). Pathway analysis
revealed upregulation of the tricarboxylic acid cycle cycle and oxida-
tive phosphorylation, and downregulation of mitotic cell cycle gene
signatures (Extended DataFig. 4d).

For secondary genetic alterations, we mostly found proteins
regulated in cis. Del(13q) comprises the known tumor suppressor
genes RBI and DIS3, and their RNA and protein levels were consist-
ently downregulated (Extended Data Fig. 5a,b). The most significantly
downregulated proteinwas MYC binding protein 2 (MYCBP2), located
on13q (Extended Data Fig. 5a). MYCBP2 acts as an E3 ubiquitin ligase,
playing a crucial role in modulating MYC transcriptional activity®. In
patients with del(1p), we found downregulation of tumor suppressor
and apoptosis regulator FAS-associated factor 1 (FAF1), as previously
reported” (Extended Data Fig. 5¢c,d). Deletion of 17p always comprises
the tumor suppressor TP53, whichwas only detected in 18% of samples
inour proteomic data. The most significantly downregulated proteinin
del(17p) cases was FXR2 (located 100 kb downstream of TP53), whichis
often codeleted with TP53in cancer (Extended DataFig. Se,f)*.

The E2 ubiquitin ligase UBE2Ql is a candidate oncoproteinin
MM with 1q amplification
Amplificationofthelongarmofchromosome1(+1q)isawell-established
high-risk marker in MM and, consistent with previous studies, the num-
ber of 1q copies correlated with shorter overall survival (OS) in our
cohort (Extended Data Fig. 6a)°. A large fraction of the upregulated
proteins (147/237, 62%) is regulated in cis (on 1q), including many of
the proteins previously suggested as potential oncogenic drivers such
as ANP32E, BCL9 and MCL1 (Fig. 3a and Extended Data Fig. 6b)*. We
observed only partial correlation of 1q status with protein levels of the

clinical trial stage drug target MCL1 (Fig. 3b) and confirmed this finding
with reanalysis of previously published expression data®* (Extended
Data Fig. 6¢). Several proteins involved in proteasomal degradation,
proteostasis and protein folding pathways were upregulated in MM
with 1q gain/amplification including proteins regulated in cis such
as the E2 ligase UBE2QI (Fig. 3¢) and the E3 ligase DCAF8 as well as in
trans such as members of the chaperonin containing TCP-1complex
and E2 ligases UBE2G2 and UBE2H (Extended Data Fig. 6d). Although
correlation of 1q genes from copy number (CN) to RNA and protein
was in general high, many genes exhibited buffering effects of CNAs
(Fig. 3d). The E2 ligase UBE2Q1 was the only 1q protein significantly
associated with both adverse OS and progression-free survival (PFS)
after false discovery rate (FDR) correction. The prognostic impact of
UBE2QI1 protein expression was independent of 1q status, predicting
outcomes even in patients without 1q chromosomal gain or amplifi-
cation (Fig. 3e). Additionally, high RNA expression levels of UBE2Q1
were associated with shorter OS in an independent patient cohort?
(Extended Data Fig. 6e). Analysis of clustered regularly interspaced
short palindromic repeat (CRISPR) KO screening datain MM cell lines
revealed acorrelation between UBE2Q1 genetic dependency and copy
number status (Extended Data Fig. 6f). Given the role of UBE2Q1 in
ubiquitination-mediated protein degradation, we evaluated the effect
of UBE2Q1 overexpression in two MM cell lines (Fig. 3f). In UBE2Q1
overexpressing LP1 cells, we observed deregulation of proteins that
also correlated with UBE2Q1 level expressionin primary MM and were
alsodifferentially expressed in primary myeloma patients with 1q gain
(Fig.3g,h). Theseincluded the cell surface protein BCMA (TNFRSF17),
ubiquitin hydrolase UCHLI, heat shock protein HSPB1, dual specificity
phosphatases DUSP23 and DUSP12 and the stem cell marker nestin
(NES). We also observed an overlap of regulated proteins in UBE2Q1
overexpressing OPM2 cells, although the effect was less pronounced
(Extended DataFig. 6gand Supplementary Table 8). These dataimply
that UBE2Q1, which is deregulated by DNA amplification of its gene,
modulates protein levels of other proteins and points toward arole of
UBE2Q1in MM pathogenesis.

Protein signaturesin MGUS and PCL
MM develops from the premalignant state MGUS defined by the pres-
ence of less than10% monoclonal plasma cells in the bone marrow and
the absence of symptoms. Patients can remain in this state for >10 years
without treatment. Proteomic analyses of seven MGUS cases revealed
only afew differences to NDMM with deregulation of 20 proteins and
509 phosphopeptides (Fig. 4a and Extended Data Fig. 7a). Within the dif-
ferentially expressed proteins, the histone methyltransferase KMT2D,
aknown tumor suppressor in B cell malignancies, was found at higher
abundance in MGUS (Fig. 4a and Extended Data Fig. 7¢)*.

PCL is a highly aggressive form of extramedullary myeloma with
a poor outcome, where plasma cells acquire independence of the

Fig.2| (Phospho)proteomic profiles of primary translocations t(11;14)

and t(4;14). a, Global protein levels in newly diagnosed MM cases with t(11;14)
(n=27)were compared against cases without t(11;14) (n = 87) with atwo-sided,
moderated two-sample ¢-test. The log, fold change (FC) of each proteinis
plotted againstits Pvalue. Pvalues were adjusted with the Benjamini-Hochberg
method and the significance threshold of 0.05 FDR is indicated. b, The heat map
displays the normalized expression of RB1, CDK4, CDK6, CCND1, CCND2 and
CCND3 onRNA and protein level and RB1 phosphopeptides. Phosphopeptides
are annotated with protein name, position, amino acid and number of
phosphorylations. ¢, Global protein levels in cases with t(4;14) (n = 19) were
compared against other MM cases (n = 95) with a two-sided, moderated two-
sample t-test. The log,FC of each protein is plotted against its P value. Pvalues
were adjusted with the Benjamini-Hochberg method and the significance
threshold of 0.05 FDR s indicated. d, Protein, phosphoprotein and RNA
expression levels of FGFR3 and NSD2 in samples with (n =19) or without t(4;14)
(n=95).For phosphopeptide data, the peptide with the least missing values

was selected for a graphical representation (FGFR3.S.425; NSD2.S.618). FDRs of
the comparison between the two groups are indicated. Box plots show median
(middle line), 25th and 75th percentiles, whiskers extend to minimum and
maximum excluding outliers (values greater than 1.5x interquartile range (IQR)).
e, FGFR3 protein levelsin MM samples are plotted against the ssGSEA normalized
enrichment score of the Reactome gene set ‘Downstream signaling of activated
FGFR3in phosphoproteomic data’. Normalized TMT ratios in each sample were
used asinput for ssGSEA. f, FGFR3 and NSD2 RNA expression and CRISPR-Cas9
KO screening datain MM cell lines were extracted from the depmap portal
(depmap.org). RNA expression is plotted against the CRISPR KO gene effect. g,
Cellviability of MM cell lines after treatment with FGFR3 inhibitor erdafitinib for
96 hatindicated concentrations (n =3, independent replicates). Data are plotted
asmean +s.d. Drug treatments of each cell line were compared to respective
DMSO controls with a Dunnett’s test. ***Pvalue < 0.0001. Exact Pvalues listed in
thesource table.
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bone marrow microenvironment and enter the bloodstream. While
genetically similar, the (phospho)proteome of PCL and MM differs
significantly as demonstrated by principal component analysis (PCA)
(Fig.4b) and statistical comparison (Fig. 4c and Extended DataFig. 7a),
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irrespective of whether the PCL cells were obtained fromblood (n=12)
or bone marrow (n =5) (Extended Data Fig. 7b,c). SSGSEA analysis
revealed a gradual enrichment of proliferative and MYC target signa-
tures fromMGUS to MM to PCL (Fig. 4d). Among the most upregulated
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Fig.3|Identification of UBE2Q1 as a candidate protein for the aggressive
phenotype of MM with gain/amp of chromosome 1q. a, Global protein levels
in MM samples with 1q copy number gain (n = 46) were compared against all
other samples (n = 68) with atwo-sided, moderated two-sample ¢-test. The -
log,o(FDR) of each protein is plotted across genomic location. The significance
threshold of 0.05 FDR is indicated. b, MCL1 protein levels in patients with MM
grouped by 1q gain status. FDR for the comparison 1q gain versus no 1q gain
isindicated (0: n=68;1:n=29;2+:n=17).Box plots show median (middle
line), 25th and 75th percentiles, whiskers extend to minimum and maximum
excluding outliers (values greater than 1.5% IQR). ¢, UBE2Q1 protein levelsin
patients with MM grouped by 1q gain status. FDR for the comparison 1q gain
versus nolqgainisindicated (0:n=68;1:n=29;2+:n=17). Box plot shows
median (middleline), 25th and 75th percentiles, whiskers extend to minimum
and maximum excluding outliers (values greater than 1.5x IQR). d, Genes located
on chromosome 1q with at least ten valid value pairs in all datasets (RNA, DNA

and protein) were extracted (n =397 genes). The Pearson correlation coefficient
of copy number determined by nanopore sequencing with RNA expression

level (cor(CNV~RNA)) is plotted against the Pearson correlation coefficient of
copy number with protein expression level (cor(CNV-protein). e, Kaplan-Meier
plots show survival of patients grouped by UBE2Q1 protein levels (median) and
1q gain status. Survival in the different groups is compared by a log rank test.

f, UBE2Q1 was overexpressed in LP1and OPM2 cell lines. Empty vectors were
used asa control. Cell lines were analyzed with label-free DIA proteomics (n =4,
biological replicates). g, Correlation of protein FCs in 1q gain myeloma patients
(xaxis) and UBE2Q1 overexpressing LP1 cells compared with control (y axis).
Proteins regulated in LP1cells (<0.05 FDR) and patients with MM with 1q gain
(<0.1FDR) and correlating with UBE2Q1 protein levels in myeloma cohort (r> 0.3
orr<-0.3) areindicated. h, Correlation analysis of UBE2Q1 with all other protein
levels in newly diagnosed MM. Proteins are ranked by their Pearson correlation
coefficient. The same proteins asin g are highlighted.

proteinsin PCL are cysteine-rich protein1(CRIP1) and CRIP2,aprotein
also highly expressed in acute myeloid leukemia®. Further upregulated
proteins in PCL include AHNAK, TAGLN2 and LMNA, which are linked

to metastasis and aggressive disease in solid cancer (Extended Data
Fig. 7c)”. Conversely, PCL cases displayed lower levels of the mono-
clonal antibody target CD38 (Fig. 4c).
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Fig. 4 | Proteome profiles of MGUS and PCL. a, Global protein levels in newly
diagnosed MM samples (n = 114) were compared with those in premalignant
MGUS samples (n = 7) with a two-sided, moderated two-sample ¢-test. The
log,FC of each proteinis plotted against its Pvalue. Pvalues were adjusted with
the Benjamini-Hochberg method and the significance threshold of 0.05 FDR is
indicated. b, PCA of global proteome data of newly diagnosed MM, MGUS and
PCLsamples. ¢, Global protein levels in MM samples (n = 114) were compared
against PCL (n =17) with atwo-sided, moderated two-sample ¢-test. The log, fold

change of each proteinis plotted against its P value. Pvalues were adjusted with
the Benjamini-Hochberg method and the significance threshold of 0.05 FDR is
indicated. d, The mean log, fold change of proteinsin MM versus MGUS or PCL
versus MM or samples was used as input for an ssGSEA analysis. The plot shows
proteins ordered by their rank; proteins belonging to the respective gene set are
marked by color. The normalized enrichment score (NES) and FDR of each gene
setare indicated.

Proteomic-based outcome prediction

Risk stratification of NDMMis currently based onR-ISSand inour cohort
we concordantly observed asignificantimpact of R-ISS onsurvival while
other parameters had no effect (Extended DataFig. 8b,c). We evaluated
whether proteomics and phosphoproteomics provide prognostic
information in addition to R-ISS, the current standard for risk stratifi-
cation in MM. We conducted single-variable Cox regression analysis
onPFSand OS using fully quantified proteins and phosphopeptidesin
100 patients treated in the Deutsche Studiengruppe Multiples Myelom
(DSMM) XII1, XIland XIV clinical trials. Despite variations ininduction
therapy, all patients were scheduled to receive a lenalidomide-based
induction, high-dosage melphalan with autologous stem cell transplan-
tation (auto-SCT) and lenalidomide maintenance therapy (for details,
see Methods). In total, 40 proteins and 4 phosphopeptides had FDR
<0.1and one protein FDR <0.05 (Supplementary Table 9 and Extended
DataFig. 8a). Applying abootstrapping approach and model optimiza-
tion (Fig. 5a), we defined a protein risk score containing protein level
information of eight proteins with differing weights, including the 1q
protein UBE2Q1 (Supplementary Table 9). Patients with a high protein
risk score (n =25) had a median PFS of 12.5 months as compared with
30.0 monthsin patients withamedianscore (n = 50), and 87.4 months
inpatients withalowscore (n=25), whichtranslated to amedian OS of
29.6,86.3and108.1 months, respectively (Fig. 5b). The prognostic value
of the protein risk score remained consistent across CD138-enriched
and nonenriched samples (Extended Data Fig. 8d) and wasindependent
of R-ISS (Fig. 5¢). Strikingly, the proteinrisk score gradually increased

following disease aggressiveness from MGUS (median score —0.43) to
NDMM (median score —0.15) and PCL (median score 0.97) (Fig. 5d,e).
The proteomic risk signature had a significant impact on outcome
inanindependent, external cohort of patients with NDMM recently
published by Kropivsek et al.” despite the small number of patients
as well as differences in treatment and proteomic data acquisition
(Extended Data Fig. 8e).

Identification of MM-selective and essential proteins

We utilized TMT-based proteomics with a booster channel to identify
proteins specific to MM cells compared with hematopoietic stem and
progenitor cells (CD34"), B cells (CD19%) and plasma cells (CD138")
isolated from the bone marrow of healthy donors (Fig. 6a). Key hemat-
opoieticlineage markersbehaved as expected with higher levels of PAX5
inB cells,CD34 in stem/progenitor cellsand IRF4 in CD138" plasma cells
(Fig. 6b). A comparison of MM cells with each of the three healthy popu-
lations revealed 1,475,1,350 and 1,187 significantly regulated proteins
(FDR <0.1) in MM as compared with CD34", CD19" and CD138" healthy
cells, respectively (Fig. 6c and Extended Data Fig. 9a). Among the pro-
teins consistently upregulated in MM were ribosomal proteins and heat
shock proteins (Extended Data Fig. 9a). Several markers of plasma cell
differentiationincluding PRDM1, CD56 (NCAM1) and BCMA (TNFRSF17)
were higher expressed in MM cells while for CD138 (SDC1) and CD38
no major differences were observed (Extended Data Fig. 9b). We com-
bined the list of significantly upregulated proteins in any of the three
comparisons (Fig. 6¢) with proteins selectively identified in myeloma
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Fig.5| A proteomicrisk score predicts outcome in NDMM. a, The workflow for
the generation of a proteomic risk score in patients with NDMM who received a
lenalidomide-based intensive treatment within clinical trials (n =100). b, Kaplan-
Meier plots show PFS and OS for patients according to the protein risk signature
score divided by lowest quartile (low, n = 25), second and third quartile (medium,
n=>50)and highest quartile (high, n = 25). Survival in the different groups is
compared by the log rank test. ¢, Multivariable Cox regression analysis for PFS
and OS including the protein risk score as continuous variable (hazard ratio (HR)
per1pointincrease) and R-ISS. Data are represented as hazard ratio with 95%

confidence interval (Cl). Significance was tested with a Wald test. d, Expression

of proteins contained in the protein high-risk score across samples from healthy
donors, patients with premalignancy MGUS, MM and PCL. e, Protein risk score
values calculated for the proteome data of healthy plasma cells, MGUS, MM and
PCL samples. Pvalues from a two-sided Student’s t-test are indicated. Healthy
CD138: n=3;MGUS: n=7; MM: n=114; PCL: n =17. Box plots show median (middle
line), 25th and 75th percentiles, whiskers extend to minimum and maximum
excluding outliers (values greater than1.5x IQR).

cells (402 proteins) and performed integrated analysis with genetic
dependency data (depmap.org)*® (Fig. 6d). To detect myeloma-specific
vulnerabilities, genes were filtered by their median dependency in
myeloma versus nonmyeloma cell lines applying a cutoffbased on the
lenalidomide targets IKZF1 and IKZF3 (refs. 39,40). This resulted in a
candidate target list of 31 proteins that included known MM survival
factorssuchastranscription factors IRF4 and PRDM1and kinases PIM2
and PIK3CA (Fig. 6e)*. Among the proteins not previously linked to

MM were three members (TAF5L, SUPT7L and SUPT20H) of the SAGA
complex, a posttranslational regulator of MYC transcriptional activity
thatisimportant for myeloma growth. Two additional SAGA subunits,
SUPT3H and TAF12, were also upregulated in MM but did not pass the
filter for selective dependency*. The candidate list further included
members of the dolichol-phosphate mannose synthase complex DPM1
and DPM3 and the ubiquitin-like modifier UFM1 as well as its ligase
UFLL. To further evaluate the role of proteins in MM, we performed a
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complementary whole-genome CRISPR activation screenin the MM.1S
cellline (Fig. 6f and Supplementary Table 10). Strikingly, the top genes
driving MM cell growth were POU2AF1 and IRS], two proteins highly
expressed and essential for MM (Fig. 6g,h). POU2AF1, encoding the
OCA-B transcriptional coactivator, is a B cell differentiation factor
essential for germinal center formation and several B cell neoplasias,
includinglymphoma**and MM*.IRS1is adownstreamsignaling protein
ofinsulingrowth factor1receptor (IGFIR) and s highly phosphorylated
in MM cells when IGF1binds to IGFIR*. Expression of IRS1and POU2AF1
in MM cell lines extracted from the Cancer Cell Line Encyclopedia
and the pan cancer proteomic map*°is highly correlated with genetic
dependency (Extended DataFig. 9¢). Treatment with the IRS1inhibitor
NT157 (ref.47) reduced proliferationin MM cell lines, highlighting IRS1
as a potential selective target for therapy (Extended Data Fig. 9d). In
aggregate, these datademonstrate that integrated proteomic analysis
in primary patient cells with functional genetics in cell lines reveals
potential therapeutic vulnerabilitiesin MM.

Proteomics reveals candidates forimmunotherapies
Immunotherapies suchas CAR-T cells and bispecific antibodies target-
ing BCMA and GPCR5D are approved and highly effective treatments
for MM**_ To identify additional MM selective cell surface proteins,
we integrated our comparison of healthy and malignant plasma cells
with the cancer surface proteome resource® (Fig. 7a). While TNFRSF17
(BCMA) was highly specific for myeloma samples, otherimmunother-
apy targets suchas CD38, CD138 (SDC1) and SLAMF7 were not or only
moderately higher expressed in MM versus healthy plasma cells. In
addition, we detected several proteins with expression levels higher
in MM cells, including Fc receptor-like 2 and 5 (FCRL2 and 5), receptor
tyrosine kinase like orphan receptor 2 (ROR2), signaling lymphocytic
activation molecule family member 1 (SLAMF1) and lysosomal associ-
ated membrane protein 3 (LAMP3) (Fig. 7b). All proteins displayed good
RNA-to-protein correlationin our dataset (Extended DataFig. 9e) and
evaluation of these targets in single-cell RNA sequencing data® further
confirmed their selective and higher expression in malignant plasma
cells (Fig. 7c). FCRLS s currently being explored as animmunotherapy
targetin MM n clinical trials**. Leveraging single-cell RNA sequencing
datafromthe proteinatlas (https://www.proteinatlas.org/)* revealed
ROR2,LAMP3 and SLAMF1to be expressed in non-hematopoietic tissue
and we thus chose to further evaluate FCRL2, which is only expressed
on plasma and B cells. Flow cytometry in primary patient and healthy
donorbone marrow confirmed FCRL2 surface expressionon MM cells
in7 of 11 patients and showed moderate or low expression on healthy
plasmaand B cells and other hematopoietic cells, respectively (Fig. 7d,e
and Extended Data Fig. 9f,g).

Discussion

We provide aproteogenomic landscape of newly diagnosed, untreated
MM, covering the major cytogenetic alterations of this disease. Includ-
ing comparisons with healthy cells, MGUS and PCL, and correlation with
clinical data, MM-specific proteins can be explored in the context of
disease progression. Analysis of >100 well-annotated primary patient
samples and integration with DNA and RNA sequencing allowed us to
map the consequences of recurrent genetic alterations to the (phospho)
proteome. A low correlation of RNA to protein levels was observed in
myeloma cells, consistent with proteogenomic studies in other types
of hematologic and solid cancer’ ™. This was especially true for the
proteinsinvolved in protein homeostasis, such as proteasome forma-
tion, ubiquitination and splicing. In contrast, RNA and protein levels
of regulators of B cell differentiation, IgH translocation partners and
those encoded in CNAs showed higher correlation. Multiple genetic
alterations affecting cell cycle regulation, including cyclin D translo-
cations or upregulation of RB1 phosphorylation as well as RBI dele-
tions, had amajor impact on the (phospho)proteome, highlighting cell
cycle dysregulation as a hallmark of MM. In patients with primary IgH

translocations, the recurrent translocation partners were, in general,
the most upregulated proteins and RNA transcripts, with the excep-
tion of FGFR3, which was only elevated in asubset of cases with t(4;14).
FGFR3 protein abundance independent of t(4;14) was predictive of
downstream signaling and sensitivity to FGFR3 inhibition. The pro-
nounced deregulation of proteins involved in the apoptosis pathway
and B cell markers observed in t(11;14) myeloma provides a possible
link to the enhanced sensitivity of these cases to BCL2 inhibition?.
These findings may guide future studies to find more reliable predictive
protein-based biomarkers for personalized treatmentin MM. In line
with this, proteomic-based prediction for ex vivo drug sensitivity in
primary MM cells has recently been demonstrated by Kropivsek et al.”.

Amplification of chromosome 1q is an established high-risk
marker in MM and also other types of cancer. However, which of the
proteins encoded on 1q confer therapy resistance is not completely
understood®. While several previously described 1q candidates such as
ANP32E, BCL9 and MCL1 were found upregulated on the protein level
in+1q cases, our integrated analysis identified the E2 ubiquitin ligase
UBE2Q1 as a 1q protein highly correlated with outcome. Consistent
withour findingsin MM, high UBE2Q1 expression levels are associated
withshorter survivalin other cancersindicating atumor-agnosticrole
in conferring therapy resistance’* . E2 ubiquitin ligases, which as
enzymes are in principle amenable for pharmacologic intervention,
mediate ubiquitin transfer to a substrate protein via an E3 ligase and
thus can regulate their substrate proteins on the posttranslational
level. Consistently, we show that UBE2Q1 regulates many of the pro-
teins also found differentially expressed in patient samples with 1q
gain. The E3 ubiquitin ligase(s) for UBE2Q1 as well as its substrates
implicated in drug resistance are currently not known and warrant
further studies. In addition to UBE2Q1, we found other members of
the ubiquitin-proteasome system deregulated either directly by chro-
mosomal events in cis or through trans effects including E3 ligases
DCAF8(Chr1q)and MYCBP2 (Chr13q), the deubiquitinating enzymes
UCHL1and USP4 (Chr 3) and ubiquitin-like modifiers UFL1and UFM1.
Conceivably, altered levels of these enzymes lead to posttranslational
regulation of their substrates, which to some extent may explain the
low RNA-protein correlation observed in MM.

Outcome prediction is of high clinical relevance in cancer to
identify patients with aggressive disease and to personalize therapy.
We identified a protein risk signature that was highly predictive for
outcome and independent of the R-ISS in patients with NDMM from
three consecutive DSMM clinical trials that incorporated the major
therapy principles still included in current first-line therapies. The
proteinsintherisk signature, whichinclude the 1q protein UBE2Q]1, are
notassociated with known drug mechanisms and do not overlap with
genes from RNA-based risk signatures such as GEP70 or SKY92, high-
lighting additional value provided by proteomics**. Furthermore, our
proteinrisk signature was associated with disease stage and could be
validated in an independent cohort” that was treated with different
treatment modalities, further implying that these proteins are asso-
ciated with aggressive disease. These findings need to be evaluated
in larger patient cohorts in the context of currently applied therapy
regimens to determine clinical applicability. While we could only
investigate asmall but representative subset of patients of the DSMM
trials due to sample availability, technically, (phospho)proteomics
could be performed for the majority of myeloma patients, similar
to cytogenetic and RNA expression analysis. Since the reliability of
global analyses of bulk tumor samples in general depends on tumor
cell purity, we show that our results including outcome and conclu-
sions are robust and independent of sorting status if a cutoff of 75%
tumor cell purity is applied.

We found the premalignancy MGUS and symptomatic MM to be
almostindistinguishable on the proteome level, whichiin part may be
explained by the strongimpact of genetic alterations that are already
present in MGUS™. In contrast, PCLs have a more distinct protein
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Fig. 6| Integrated proteomic and genetic screens reveal drivers of MM cell
growth. a, Hematopoietic cell populations were sorted using MACS enrichment
for the surface markers CD34 (hematopoietic stem and progenitor cells (HSCs)),
CD19 (B cells) and CD138 (plasma cells) from bone marrow of individuals without
hematologic malignancy (n = 3). Proteins were quantified via TMT with abooster
channel approach. Booster and equal loading control were identical to the
internal standard used for TMT analysis of cohort samples. b, Protein levels of cell
lineage-specific markersin healthy samples. z-scored TMT ratios are displayed.
¢, Proteins in MACS sorted healthy bone marrow and CD138" sorted MM samples
were compared with atwo-sided, moderated two-sample ¢-test. Pvalues were
adjusted with the Benjamini-Hochberg method. The total number of regulated
proteinsisindicated, the Venn diagrams show overlap of up-and downregulated
proteins in MM samples compared with healthy samples (FDR < 0.1).d, Data
analysis workflow to identify potential therapeutic candidates from myeloma
upregulated or specifically expressed proteins. e, Gene dependency scores from

CRISPR-Cas9 KO screening data from the depmap portal. The gene effect of
potential therapeutic targets in myeloma (n = 18) and other cell lines (n =1,082) is
displayed. The RNA to protein correlation in myeloma cohortisindicated for each
candidate gene. Box plot shows median (middle line), 25th and 75th percentiles,
whiskers extend to minimum and maximum excluding outliers (values greater
than1.5xIQR). f, The workflow for agenome-wide CRISPR-Cas9 activation screen
using the Calabrese library performed in the MM cell line MM.1S. g, Gene effect
on proliferation ranked by beta score. A higher beta score indicates expansion of
cells carrying theindicated sgRNAs. The MAGeCK MLE algorithm was applied for
the analysis of beta scores and Pvalues. Potential targets identified by proteomic
analysis are marked in purple. h, Protein levels of IRS1and POU2AF1 across
healthy and malignant cell populations. Healthy CD138: n = 3; healthy CD19:

n=3, healthy CD34: n=3; MGUS:n =7; MM: n =114; PCL: n =17. Box plot shows
median (middle line), 25th and 75th percentiles, whiskers extend to minimum and
maximum excluding outliers (values greater than1.5x IQR).
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Fig.7|Identification of surface proteins on MM cells. a, The identified surface
proteins from the healthy to disease comparison were extracted by integrating
proteomics data with the cancer surfaceome atlas. The plot shows the correlation
of median-normalized raw intensities of surface proteins in CD138"* sorted MM
and healthy bone marrow samples. The 95% confidence intervalis indicated

with ablueline, the 95% prediction interval is indicated with dashed blue lines.

b, Protein levels of selected surface proteins in healthy hematopoietic cells and
malignant plasma cells. Healthy CD138: n = 3; healthy CD19: n = 3, healthy CD34:
n=3;MGUS: n=7;MM: n=114; PCL: n =17. Box plot shows median (middle line),
25th and 75th percentiles, whiskers extend to minimum and maximum excluding

outliers (values greater than 1.5x IQR). ¢, UMAP plots showing single-cell RNA
sequencing data of bone marrow from healthy and patients with MM. Cells are
colored by cell type, malignancy status or by normalized RNA expression levels
of selected surface proteins. d, FACS analysis of BCMA (TNFRSF17) (x axis) and
FCRL2 (y axis) expression in MM samples. Two representative examples of
patients with MM with high FCRL2 expression were selected. e, The percentage
of FCRL2-positive cells in MM cells and minimal to no expression in other normal
hematologic cell populations, n = 19. MkP, megakaryocyte progenitor; MAP,
megakaryocyte/erythrocyte progenitor; DC, dendritic cell; NK, natural killer.
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expression profile and we observed some overlap of upregulated
proteins to other disseminated, aggressive malignancies such as
acute leukemia®.

Proteomic profiling of healthy and malignant plasma cells and
integration with CRISPR dependency datarevealed myeloma-specific
vulnerabilities. Besides well-established B cell differentiation regula-
tors, including IRF4 and PRDM1, we found the transcriptional coac-
tivator POU2AF1 (OCA-B, BOBI) as a highly expressed protein and
essentialin MM. These findings areinline witharecent study describing
POU2AF1asaregulator of genesimportant for MM proliferation®. We
detected insulinresponse substrate-1(IRS1) as another potential drug
targetin MM. Insulin growth factor signaling leads to the activation of
AKT, which has been shown to promote myeloma growth* but is also
important for other tissues. Our data indicate that IRS1 as compared
with IGF-R1is a highly selective target of this pathway in MM cells.
Our integrated analyses further point to a potential role of the SAGA
complex in MM that, among other functions, is a posttranslational
regulator of MYC, providing a potential link to the transformation of
plasma cells™,

T cell therapies such as CAR-T and bispecific antibodies are rev-
olutionizing MM treatment, showing remarkable effectiveness in
multidrug resistant patients. However, resistance can arise from loss
or mutation of targeted surface proteins, as shown for BCMA and
GPCR5D**®°, highlighting the need for additional targets. Our com-
bined proteomic and single-cell RNA sequencing approach reliably
detected MM-specific surface proteins, including candidates recently
found by an orthogonal approach using surface biotinylation or glyco-
protein capture®®*, We validated FCRL2 as asurface protein on primary
MM cells. FCRL2 is also expressed on chronic lymphocytic leukemia
cells®® and may be exploited as a potential immunotherapy target in
myeloma and other B cell malignancies.

Collectively, the proteomic landscape of plasma cell malignan-
cies described here provides a powerful resource that can easily be
assessed through anonline tool for interactive self-exploration (https://
myelomaprot.mdc-berlin.de) to promote research on MM biology, risk
stratification and novel therapies.

Methods

Study cohort

A total of 138 patients were included in the proteomics study (114
NDMM, 17 PCL and 7 MGUS cases). Inclusion criteria were the avail-
ability of myeloma cells of appropriate quantity and quality for prot-
eomic and genetic analyses and available information on FISH-bases
cytogenetics and clinical parameters. All patients provided written
informed consent according to the Declaration of Helsinki. The study
was approved by the responsible ethic committees Ulm University
(136/20,307/08) and Charité Universitdtsmedizin Berlin (EA2/142/20).
Clinicaltrials of the DSMM and sample collection were approved by the
ethics committee of Wiirzburg University (2008-000007-28, 145-11).

Patient characteristics are summarized in Supplementary Table 1.
One hundred out of 114 newly diagnosed patients were treated within
one of the DSMM XII-XIV clinical trialand had available outcome data
(NCT00925821,NCT01090089 and NCT01685814)%*. All of these 100
patients were scheduled to receive a lenalidomide-based intensive
therapy within aclinical trial.

DSMM XII/NCT00925821 (N=12): induction therapy with four
cycles lenalidomide/adriamycine/dexamethasone. All patients were
scheduled toreceive high-dose melphalan/auto-SCT, while the nature
of the second SCT was determined by risk stratification: high-risk
patients (cytogenetics, ISS) were scheduled to undergo allogeneic
stem cell transplantation (N = 3) followed by lenalidomide maintenance
while standard-risk patients received a second auto-SCT followed by
lenalidomide maintenance for 1year®".

DSMM XIII, arm A2/NCT01090089 (N =20): induction therapy
with three cycles of lenalidomide/dexamethasone followed by two

cycles of high-dose melphalan/auto-SCT and lenalidomide mainte-
nance until progression.

DSMM XIVNCTO01685814 (N = 68): induction therapy randomized
between four cycles lenalidomide/adriamycine/dexamethasone
(N=36) or three cycles lenalidomide/bortezomib/dexamethasone
(N=32) followed by high-dose melphalan/auto-SCT, second randomi-
zation in patients with very good partial response (VGPR) or better
directly to lenalidomide maintenance until progression or a second
cycle of high-dose melphalan/auto-SCT followed by lenalidomide
maintenance for 3 years. Patients not achieving VGPR after the first
high-dose melphalan/auto-SCT were randomized to receive a second
cycle of high-dose melphalan/auto-SCT followed by lenalidomide
maintenance for 3 years or allogeneic stem cell transplantation (N =3)
followed by 1 year of lenalidomide maintenance.

No significant difference was observed for PFS and OS across the
patients treated in the three different trials.

Healthy control cells were obtained from orthopedic surgery
patients without evidence for malignancy. The median age of the
healthy donorswas 63 years (range, 57-78 years). Alldonors provided
writteninformed consentaccording to the Declaration of Helsinki and
the study was approved by the responsible ethic committee Charité -
Universitdtsmedizin Berlin (EA4/115/21).

Cellisolation

Except for 12 PCL samples from peripheral blood, all samples were col-
lected from bone marrow aspiration. Mononuclear cells were isolated
withaFicoll gradient and plasma cell content was determined morpho-
logically. The majority of samples (89/138) were enriched for CD138" cells
via magnetic-activated cell sorting (MACS) directly after mononuclear
cellisolationusing magnetic beads conjugated toa human CD138-specific
antibody (130-051-301, Miltenyi). Non-MACS enriched samples (49/138)
were selected for a plasma cell content >75% and had an average CD138"
purity of 85%. Healthy bone marrow mononuclear cells were isolated by
Ficoll gradient and CD34", CD19"* and CD138" cells were enriched with
MACS antibody bead conjugates (all Miltenyi), according to the manufac-
turer’s protocol. For each cell population of healthy bone marrow cells,
three replicates were obtained. Replicates one and two were obtained
from separate individuals and replicate three was obtained by pooling
material fromthree different donors due tolimitationsinsample material.

FISH analysis

FISH in combination with immunofluorescent detection of light
chain-restricted plasma cells was performed on plasma cells from
patients. Genetic regions of interest for the diagnosis of MM and their
translocation partners were detected. FISH was performed according
tostandardized protocols using commercially available probes (Abbott
Laboratories and MetaSystems).

DNA preparation and nanopore sequencing

DNA was isolated with the AllPrep DNA/RNA kit (QIAGEN, 80204).
RNA and DNA were extracted from the same sample while protein
was extracted from a different aliquot of the same patient/time point
sample. Nanopore DNA sequencing was performed with the Oxford
Nanopore Technologies (ONT) platform. Libraries containing either
apool of three samples or just a single sample were prepped with the
Rapid Barcoding Sequencing kit (SQK-RBK004, ONT) using approxi-
mately 350 ng starting material for each sample in a pool of three or
400 ng of starting material for asingle run (Rapid Sequencingkit, SQK
RADO004). A maximum amount of 850 ng library was loaded onto the
flow cell (FLO-MIN106D, R 9.4.1, ONT) and sequenced on a GridION
sequencer (ONT), according to the manufacturer’s instructions.

RNA sequencing library preparation and sequencing
RNA was isolated with the AllPrep DNA/RNA kit (QIAGEN, 80204).
Library preparation was performed from 20 to 100 ng of input total
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RNA per sample using the TruSeq Stranded Exome RNA kit (Illumina),
according to the manufacturer’sinstructions. The pooled RNA libraries
were sequenced onanllluminaHiSeq2000 with 50-bp single-end reads
with an average coverage of 36.6 x 10° reads per sample.

Protein extraction and digestion

Samples were lysed at 4 °C with urea lysis buffer as previously
described®. Protein lysates were reduced with 5 mM dithiothreitol
for 1h and alkylated with 10 mM iodoacetamide for 45 min in the
dark. Samples were subsequently diluted 1:4 with 50 mM Tris-HCI,
pH 8 and sequencing grade LysC (Wako Chemicals) was added at a
weight-to-weight ratio of 1:50. After 2 h, sequencing grade trypsin
(Promega) was added at aweight-to-weight ratio of 1:50 and digestion
was completed overnight. Samples were acidified with formicacid and
centrifuged to remove precipitated material (20,000g, 15 min). The
supernatant was desalted with Sep-Pak C18 cc Cartridges (Waters).

TMTpro labeling of peptides

Desalted and dried peptides were labeled with TMTpro 16 plex reagents
(Thermo Scientific) according to the manufacturer’sinstructions and at
asample-to-tagratio of 1:7 (w/w). After confirming successful labeling,
TMT-labeled peptides of cohort samples were randomly combined
into ten TMTpro plexes (see Supplementary Table 11 for TMT channel
allocation). For TMT plex 1-9, 75 ug peptides per channel were used
and 45 pgof peptides per channel were used for TMT plex10. An equal
loadinginternal standard that consisted of amix of all cohort samples
was included in each TMT plex. Samples from healthy bone marrow
donors were analyzed in an 11th TMTpro plex with 10 pg peptides per
sample and an equal loading internal standard that was the same as
for the cohort samples. The 11th TMT plex also contained a booster
channel (500 pg peptides) that was identical to the internal standard
and the two TMT channels next to it were left empty to prevent signal
spillover. Combined TMT samples were dried down and resuspended
inliquid chromatography sample buffer (3% acetonitrile (ACN), 0.1%
formicacid) before desalting with Sep-Pak C18 cc Cartridges (Waters).

Peptide fractionation of TMT-labeled samples

Dried TMT-labeled samples were resuspended in high pH buffer A
(5 mM ammonium formate, 2% ACN) before offline high pH reverse
phase fractionation by high-performance liquid chromatography
(HPLC) onan UltiMate 3000 HPLC (Thermo Scientific) with an XBridge
Peptide BEHCI18 (130 A°, 3.5 um; 4.6 mm x 250 mm) column (Waters)
as previously described (Mertins et al.®*). Each fractionated TMT plex
was pooledinto 24 or 28 fractionsand 10% of each fraction was reserved
for global proteome measurements. The remaining fractions were
further pooled into 12 or 14 fractions per TMT plex for phosphoprot-
eomics. Dried global proteome fractions or immobilized metal affin-
ity chromatography-enriched phosphopeptides were reconstituted
inliquid chromatography sample buffer before mass spectrometric
measurements.

Phosphopeptide enrichment

Phosphopeptide enrichment was performed withimmobilized metal
affinity chromatography automated on an AssayMap Bravo System
(Agilent) equipped with AssayMAP Fe(lll)-NTA cartridges.

Liquid chromatography-mass spectrometry

Samples were fractionated online with a 25-cm column packed in-house
with C18-AQ1.9 pmbeads (Dr. Maisch Reprosil-Pur120).Samples were
separated with a gradient of mobile phase A (0.1% formic acid and
3% acetonitrile in water) and mobile phase B (0.1% formic acid, 90%
acetonitrile in water) at a flow rate of 250 pl min™. TMT samples were
separated with an EASY nLC1200 HPLC system and temperature of the
column was controlled by a column oven set to 45 °C. For a 2 h gradi-
ent, mobile phase B was increased from 4% to 30% in the first 88 min,

followed by an increase to 60% B in 10 min and a plateau of 90% B for
5 min, followed by 50% buffer B for 5 min. For a 4 h gradient, mobile
phase Bwasincreased from3%to30%in the first 192 min followed by an
increaseto 60%Bin 10 min, aplateau of 90% B for 5 minand 5 min 50%
buffer B. Al TMT fractions were measured witha2 h gradient. To boost
identificationin the 11th TMT plex with healthy bone marrow samples,
fractions of plex 11 were additionally measured with a 4 h gradient.
MS data of TMT samples was acquired in profile centroid mode and
data-dependent acquisitiononaQExactive HF-X (Thermo Fisher). MS1
scanswereacquired at 60,000 resolution, scanrange of 350-1,500 m/z,
maximum injection time (IT) of 10 ms and automatic gain control (AGC)
target value of 3e6. The 20 most abundant ion species were picked
for fragmentation, normalized collision energy (NCE) was set to 32
and the isolation window was at 0.7 m/z. MS2 scans were acquired at
45,000 resolution, fixed first mass 120 m/z, AGC target value of 3e5
and maximum IT of 86 ms. Dynamic exclusion was set to 30 sand ions
with charge state 1, 6 or higher were excluded from fragmentation.
For analysis of phosphoproteomic fractions of TMT-labeled samples
theliquid chromatography-mass spectrometry parameters were the
same, with the exception of MS2 maximum IT that was set to 120 ms.

TMT raw data search and processing

All TMT mass spectrometry raw files were analyzed together in one
MaxQuant (v.2.0.3.0)°° run. Data were searched against the human
reference proteome (UP000005640) downloaded from UniProt in
January 2021 (https://ftp.uniprot.org/pub/databases/uniprot/previ-
ous_releases/) and default protein contaminants. TMT correction
factors were applied and the minimum reporter precursor intensity
fraction was set to 0.5. Fixed modifications were set to carbamido-
methylation of C and variable modifications were set to M oxida-
tion and acetylation of protein N-termini. TMT global proteome and
phosphopeptides fractions were analyzed in the same MaxQuant
runin separate parameter groups using the same settings, except for
includingalso phospho (STY) as a variable modification when search-
ing phosphopeptide fractions. A maximum of five modifications per
peptide were allowed. N-terminal acetylation and M-oxidation were
used in protein quantification. Only unique and razor peptides were
used for protein quantification. Protein FDR was set to 0.01. Protease
specificity was set to Trypsin/P. MaxQuant output files were further
analyzed in R studio (v.4.1.1). The protein groups file was filtered for
reverse hits, potential contaminants and proteins only identified by
site. Protein groups were further filtered for at least two peptides and
atleast one unique orrazor peptide. The TMT-based phosphosite table
was expanded by multiplicity and reverse database hits and potential
contaminants wereremoved. Corrected reporter ionintensity columns
ofboth tables were log, transformed and normalized by subtraction of
theinternal standard channel contained in each TMT plex. The result-
ing TMT ratios were normalized via median-median absolute deviation
(MAD) normalization. Before differential expression analysis, datawere
filtered for detectionin more than 49% of cohort samples. For compar-
ing healthy and malignant samples, only MACS-sorted samples were
compared. Proteomic results are available in Supplementary Table 6
(global proteome) and Supplementary Table 7 (phosphoproteome).

Label-free proteomic analysis of cell lines

CD138 MACS sorted and unsorted cell line samples were fractionated
online with a2 h gradient and mass spectrometry data were acquired
onaQExactive Plus mass spectrometer indata dependent acquisition
(DDA) mode (top ten). MS1scans were acquired at 70,000 resolution,
scanrange of 350-2000 m/z, maximum IT of 50 ms and AGCtarget value
of3e6.NCE was set to 26 and the isolation window was at 1.6 m/z. MS2
scans were acquired at17,500 resolution, fixed first mass 120 m/z, AGC
target value of 5e4 and maximum IT of 50 ms. Dynamic exclusion was
setto30 sandionswith charge state1, 6 or higher were excluded from
fragmentation. Label-free DDA datawere analyzed in MaxQuant 2.0.1.1.
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using default parameters. The LFQ and match between run options
were enabled. Phospho (STY) was included as a variable modification
for searching the phosphoproteome data. MaxQuant LFQ intensities
were log, transformed and filtered for contaminants, identified by side,
as well as valid values (minimum three per experimental group). The
missing values were imputed from a normal distribution with a width
of 0.3 times the standard deviation in the sample and a downshift of
1.8 from the observed mean. LFQ intensities were median normal-
ized before differential expression analysis and experimental groups
(control and MACS) were compared using a two-sided moderated
two-sample t-test.

UBE2Ql overexpressing samples were analyzed as described previ-
ously using data-independent acquisition (DIA)*. Label-free DIA data
were searched using DIA-NN 1.8.1software against the human UniProt
reference proteome®®. The search was performedin library-free mode
withtheinsilico FASTA digest parameter enabled. The peptide length
range was set to 7-30, and the precursor charge range was set to 1-4.
The m/z range for precursors was set to 340-1,650, and for fragment
ions, itwas set t0 200-1,800. The rest of parameters were set to default
with reannotate and match between run being enabled. LFQ protein
intensities from the DIA-NN pg output table were log, transformed
and filtered for contaminants and peptides per protein (>1), as well
asvalid values (>70%). Imputation was performed as described above
and resulting intensities were median normalized before differential
expression analysis. Experimental groups (empty overexpression
vector (empty OE) and UBE2Q1 overexpression (UBE2Q1 OE)) were
compared using a two-sided moderated two-sample t-test.

Cell culture

All cell lines were obtained from the American Type Culture Collec-
tion (ATCC) or DSMZ German Collection of Microoganisms and Cell
Cultures and were maintained in RPMI-1640 medium containing 10%
fetal bovine serum (FBS) and supplemented with 1% penicillin/strep-
tomycin and 1% L-glutamine. NCI-H929 cells were cultured in media
supplemented with beta-mercaptoethanol and sodium pyruvate,
and INA-6 cells were cultured in media supplemented with IL-6. Cells
were maintained at 37 °C with 5% CO2 in the humidified atmosphere.

CRISPR-Cas9 activation screen

Lentiviral plasmid dCAS-VP64 _Blast was a gift from Feng Zhang
(Addgene plasmid #61425)°° and was used to stably transduce MM.1S
cells. The human Calabrese CRISPR activation pooled library set Awas
agift from David Root and John Doench (Addgene #92379)"°. Lentivi-
rus was produced using HEK293T cells via transfection of the guide
library with pSPAX2 and pMD2.G. Virus titration was performed to
achieve aMOIl of 0.3 in MM.1S dCas-VP64 cells. A total of 1 x 10 MM.1S
dCas-VP64 cells were transduced, and 3 x 107 cells were collected for
baseline comparison. The remaining cells were maintained and the
media were refreshed every 3 days. On day 28, all cells were collected
for genomic DNA analysis. Genomic DNA extraction was performed
with Wizard Genomic DNA Purification Kit (A1120). The guide RNA
library was amplified and cleaned up with AMPure XP beads. Library
single guide (sg)RNAs were sequenced on a NextSeq 500 instrument
(Ilumina). The MAGeCK algorithm (https://www.bioconductor.org/
packages/release/bioc/html/MAGeCKFlute.html) was utilized for
analyzing normalized reads and beta score. The beta score indicates
the difference in sgRNA abundance between day 4 and day 28, a high
scoreindicating a survival advantage of the respective gene.

Generation of UBE2Q1 overexpression cell lines

UBE2Q1 cDNA was cloned into retroviral vector pRSF91-FLAG-GW-
IRES-GFP-T2A-Puro via a Gateway reaction. Retroviral vectors contain-
ing empty or UBE2Q1 constructs generated in HEK293T cells were
used to stably transduce MM cell lines OPM2 and LP-1. Seven days
posttransduction, cells were placed under puromycinselection. At the

time of analysis, the purity of stable cell lines was 99% GFP fluorescence
as determined by flow cytometry.

Inhibitor treatment and viability assays

NT157 was obtained from SelleckChem (S8228), erdafitinib was pur-
chased from Holzel Diagnostics (HY-18708). Cells were seeded in
384-well plates with respective treatments and plates wereincubated
at37 °Cfor 96 h. Cell viability readout was measured using CellTiter-Glo
Luminescent Cell Viability Assay on a POLARstar Omega plate reader.

FACS analysis of FCRL2 expression

FCRL2 fluorescence-activated cell sorting (FACS) analysis was per-
formed on primary cells, of 14 samples from patients with MM (13 bone
marrow aspirates and one ascitic fluid) and 7 healthy donor samples (6
bone marrow samples and one peripheral blood). Allsamples contained
isolated mononuclear cells and were stained with allophycocyanin
(APC) anti-FCRL2 (Miltenyi Biotech, 130-107-439). For myeloma cell
identification, we used BV421 anti-BCMA (BioLegend, 357519) and
FITCanti-SLAMF7 (BioLegend, 331818). The different subpopulations
ofimmune cells were distinguished by PE anti-CD138 (BD Pharmigen,
552026), FITC anti-CD19, PE anti-CD3 (both from BioLegend, 302206
and 344806) as well as PC7 anti-CD13, PE anti-CD33 and PE anti-CD34
(all from Beckman Coulter, B19714, A07775 and A07776). All antibod-
ies were used in a dilution of 1:40. Data analysis was performed with
FlowJo v10. Unstained controls were used to set the gates for the
fluorochromes.

Survival analysis with bootstrapping and risk score
calculation with AIC-optimal model

The analysis was restricted to patients with MM treated with lena-
lidomide in induction and maintenance therapy as well as high-dose
melphalan/auto-SCT within DSMM clinical trials (N =100 patients).
For each fully quantified protein and phosphopeptide, a continu-
ous variable Cox proportional hazard model for PFS was calculated
and resulting P values were corrected with Benjamini-Hochberg. We
combined the FDR-controlled approach with 1,000-fold bootstrap-
pingtoidentify the most reproducibly significant proteinsinacohort
of the same size randomly sampled with replacement from our data,
that is, allowing multiple occurrences of samples in the bootstrap
cohort. The 95% confidence interval of P values from the bootstrap-
ping was calculated. Proteins with an upper confidence interval of P
values <0.1and an FDR <0.1 (n = 32) were selected as candidates for
the final risk score. A multi-protein Cox PH model was constructed by
step-wise addition of optimal proteins based on the Akaike Informa-
tion Content (AIC), balancing increased model performance versus
increased model complexity. The final risk score was calculated on
the AIC-optimal multi-protein model, by linear combination of the
protein abundance scaled by the model coefficients. This resulted in
aprotein score containing protein-level information of eight proteins
with differing weights. The inclusion of additional proteins or phos-
phopeptidesinto the model only led to marginal improvement in the
survival prediction accuracy. Differences in survival were analyzed with
alog-rank test. For validation, we calculated the protein risk score on
untreated myeloma samples analyzed by Kropivsek et al.” based on
the provided protein quantifications (‘CD138 cells’ quantification).
The term for PDSS2 was omitted from the risk score since it was not
quantified in the Kropivsek et al. cohort. No other adaptations of the
risk score were employed. Survival curves were stratified by the median
risk score of the respective cohort.

RNA-protein correlation and CNV buffering analysis

For RNA-protein correlation analysis RNAseq samples were filtered
for a minimum plasma cell content of 80% and a mapped read count
higher than 20 million. Proteome data were collapsed to gene-level
information via median and RNA and protein datasets were matched
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by gene name. Copy number variation (CNV) data were matched with
RNA and protein data via the cytogenetic band of the corresponding
gene locus. For calculating Pearson correlation across MM samples,
the resulting data matrix was filtered for at least ten paired values. To
estimate the buffering of CNVs from RNA to protein level we calculated
acustomized score with the following formula:

buffering scoreg = [corr (RNA, CNg) — corr (protein,, CNg)| x |CN, — 2

For each gene (g) we subtracted the Pearson correlation (corr) of
proteinto copy number (CN) from the Pearson correlation (corr) of RNA
to CN. Theresulting delta was corrected with the average copy number
effect diverging from a diploid genotype. Pearson correlations and
buffering scores were subjected to ssGSEA analysis as described below.

SsGSEA

The ssGSEA implementation available on https://github.com/broa-
dinstitute/ssGSEA2.0 was used to separately project protein and
phosphopeptide abundance changes to signaling pathways. The
normalized ratio or fold change matrix was collapsed to gene level
information via median and subjected to ssGSEA. For ssGSEA of nor-
malized TMT ratios, the gene set databases containing curated gene
sets (C2.all.v7.0.symbols.gmt), oncogenic signature gene sets, (c6.
all.v7.0.symbols.gmt) and hallmark gene sets (h.all.v7.0.symbols.
gmt) were used. For ssGSEA of RNA to protein correlations, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) gene sets (c2.cp.kegg.
v7.0.symbols.gmt) were used. For ssGSEA of buffering of CNVs from
RNA to protein level, databases containing positional genesets (cl.
all.v7.0.symbols.gmt) and KEGG gene sets (c2.cp.kegg.v7.0.symbols.
gmt) were used. The following parameters were used for all ssGSEA
analyses: sample.norm.type = ‘rank’, weight = 0.75, statistic =‘area.
under.RES’, output.score.type = ‘NES’, nperm =1,000, min.overlap =
10, correl.type =‘z.score’

NMF clustering of ssGSEA enrichment scores

Normalized ssGSEA scores of phosphoproteomic data were used
as input for NMF with the NMF R package (v.0.23.0)" as previously
described”. The following parameters were used: K =2:7, method =
‘brunet’, nrun = 50. The cophenetic correlation coefficient was used
to evaluate the clustering quality. After determining the optimal fac-
torization rank k, we repeated the NMF analysis using 500 iterations
with random initializations and performed partitioning of samples
into clusters.

GO term analysis with Metascape

Gene Ontology (GO) term enrichment analysis of a gene list corre-
sponding to proteinsregulated in1q gainnotlocated on chromosome
1q was performed with the Metascape” online tool.

Integration of Depmap data

Proteins significantly upregulated in myelomaversus healthy samples
(<0.1FDR) or selectively identified in myeloma samples were further
filtered for potential therapeutic targets by integrating the depmap
CRISPRKO database (gene effect download file™). First, genes coding
proteins in our candidate list were filtered for median dependency in
myeloma cell lines <-0.4 (median dependency of the myeloma thera-
peutic targets IKZF1 and IKZF3). Common essential genes (DepMap
Public 22Q2) were excluded from the target list. In addition, genes
were filtered for having aminimum difference of median dependency
inmyelomaversus median dependency innonmyelomacell lines >0.1.

RNA sequencing data analysis

RNA sequencing datawere aligned and quantified with STAR and mes-
senger RNA reads were identified using an in-house analysis pipeline
detecting exonsinashuffled order. Toincrease comparability to TMT

data, RNA gene-level transcripts per million (TPM) values were further
normalized as described previously”. First, TPM gene-level data were
normalized viamedian subtraction (by gene) and, subsequently, each
sample was normalized by median-MAD normalization. The normal-
ized dataare available in Supplementary Table 2.

Nanopore DNA sequencing data analysis

After basecalling, the sequenced reads were aligned with minimap2
(ref. 76) to the University of California, Santa Cruz (UCSC) hgl19 genome
reference (https://www.ncbi.nlm.nih.gov/grc) without haplotype
specific scaffolds. After conversion of the alignment files (SAMtools
v.0.1.19, https://github.com/samtools/) SAM format, (https://samtools.
github.io/hts-specs/SAMv1.pdf)) sorting and indexing to binary align-
ment format (BAM format, https://samtools.github.io/hts-specs/
SAMv1.pdf) the copy number profiles were generated with the absolute
copy number estimate package” in R (4.2.1, https://cran.r-project.
org/) with a bin size of 1 million base pairs. Errors were estimated
with ‘maximum absolute error’ and only autosomes were called. The
resulting copy number aberrations were reported on to genomic band
level to the nearest integer. Ambiguous copy numbers were called by
the most prevalent copy number on the particular band. Bands with
insufficient reads were marked as NA. For subclonal events, the near-
est natural number was chosen, except in the vicinity of two where a
deviation threshold of 0.35was used to maximize the concordance with
FISH results.

Ploidy and cellularity (relevant local minimum used) of each sam-
ple in absolute copy number estimate were matched to existing FISH
data. IfFISH data were not available, the profiles were chosen for plau-
sibility, minimizing the number of aberrations and avoiding scaffolds
with copy number 0. The processed dataare available in Supplementary
Table 2. Four additional cases without 9q amplification were assigned
to the hyperdiploidy group based on nanopore sequencing

Validation by single-cell sequencing data

Expression of candidates from the proteomic analysis was further
validated with single-cell RNA sequencing data of bone marrow from
healthy individuals and patients with MM from Lutz et al.*’. Uniform
manifold approximation and projection (UMAP) plots highlighting
normalized expression for genes of interest were generated in Rusing
the FeaturePlot() function from the Seurat package’.

Statistics and reproducibility

No statistical method was used to predetermine sample size, samples
were chosenbased on availability. As the study focuses on newly diag-
nosed samples, four TMT labeled samples corresponding to relapse
cases were excluded from the analysis. In the TMT plex analyzing
healthy cells, carrier channels containing the booster channel and
unsorted mononuclear cells were excluded from further analysis;
they were present in the TMT plex to increase coverage of low abun-
dant proteins. Patient samples were randomly distributed across TMT
plexes. Technical replicates of eight samples were differentially labeled
andincludedindifferent TMT plexes. Replicates clustered together as
expected and had an average Pearson correlation coefficient of 0.8 for
global proteome and 0.77 for phosphoproteomic normalized ratios,
respectively. We performed four or three biological replicates of cell
culture experiments for proteomics or inhibitor treatments, respec-
tively. All attempts of replication were successful and no replicate
was excluded from analysis. Differentially expressed proteins were
determined with a two-sided moderated two-sample ¢-test (limma
package). The resulting P values were corrected with the Benjamini-
Hochberg method. Drug treatments of each cell line were compared
to respective dimethyl sulfoxide (DMSO) controls with a Dunnett’s
test. For analyzing CRISPR-Cas9 activation screen data, the MAGeCK
maximume-likelihood estimation (MLE) algorithm was applied for the
analysis of beta scores and Pvalues.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Data that support the findings of this study have been depositedin the
following repositories. Mass spectrometry data have been deposited
on PRIDE with the accession numbers PXD038437 and PXD043580.
Processed proteomics data of patient samples can be interactively
explored at https://myelomaprot.mdc-berlin.de/. RNA sequencing
expression data are available at the Gene Expression Omnibus under
accession number GSE222727. Previously published microarray data
that werereanalyzed here are available under accession code GSE2658
ref. 34. Proteomics data were searched against the human reference
proteome (UP000005640) downloaded from UniProtinjanuary 2021
(https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/).
Source data are provided with this paper. All other datasupporting the
findings of this study are available from the corresponding author on
reasonable request.

Code availability

The datawere processed as described in Methods. All used R packages
arepublicand are freely available online. No new code or mathematical
algorithms were generated from this manuscript.
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Extended Data Fig. 1| Quality control and influence of cell sorting. a:
Numbers of proteins and phosphopeptides detected in each TMT plex. b:
Overlap of detected protein IDs in the proteome and phosphoproteome
datasets. c: Correlation matrix showing Pearson correlation of technical
replicates (normalized TMT ratios). d: Immunoglobulin constant light chain
protein levels. Predominant light chain kappa n = 83,lambda n = 39. Predominant
immunoglobulin constant1gG n = 68, IgA n = 32; other n =24, unknownn =14.
Boxplots show median (middle line), 25th and 75th percentiles, whiskers extend
to minimum and maximum excluding outliers (values outside of 1.5 times the
interquartile range (IQR)). e: Genes ranked by the buffering score of CNVs from
RNA to protein level. The buffering score was calculated with a customized score
and for each gene (g) the Pearson correlation of protein to copy number (CN)
was subtracted from the Pearson correlation of RNA to CN. The resulting delta
was corrected with the average copy number effect diverging from a diploid
genotype. Genes are ranked from highest (high buffering of CNVs from RNA to
protein level) to lowest score. f: SSGSEA of the protein-CNV buffering score in
S1E for KEGG and positional pathways (n = 359 ranked pathways) showing that
CNVs of certain pathways are buffered from RNA to protein level. g: Correlation

of protein and phosphopeptides changes in each genetic subgroup in all samples
(x-axis) and MACS-sorted samples (y-axis) in MM cohort. Regulated proteins
(<0.05FDR) areindicated in green. h: Levels of top-regulated proteins and
phosphopeptides in each genetic subgroup in MM samples with and without
MACS sorting. HRD sorted n = 35, HRD unsorted n =25, HRDneg sorted n =41,
HRDneg unsorted n =13; t(11.14) sorted n = 24, t(11.14) unsorted n = 3, t(11.14)neg
sorted n=52,t(11.14)neg unsorted n = 35; t(14.16) sorted n = 3, t(14.16) unsorted
n=1,t(14.16)neg sorted n =73, t(14.16)neg unsorted n = 37; t(t4.14) sorted n =11,
t(t4.14) unsorted n = 8, t(t4.14)neg sorted n = 65, t(t4.14)neg unsorted n = 30;
Boxplots show median (middle line), 25th and 75th percentiles, whiskers extend
to minimum and maximum excluding outliers (values outside of 1.5*IQR).

i: MMI1S cells were sorted with CD138 + MACS and the global proteome and
phosphoproteome were analyzed with label-free proteomics (n = 4, biological
replicates). MACS-sorted samples were compared against the control with a
moderated 2-sample t-test. No significant differences between MACS-sorted
and non-sorted MM.1S cells were detected (< 0.05 FDR). Plots show results of
moderated 2-sample t-test and correlation of averaged normalized intensitiesin
both groups.
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Extended DataFig.2| Unsupervnsed clustering of phosphoproteomic data.
a:SsGSEA normalized enrichment scores of phosphoproteomic data were used
asinput for non-negative matrix factorization (NMF) clustering. NMF consensus
map is shown. b: Kaplan-Meier plots show progression-free survival (PFS) and
overall survival (OS) of MM patients grouped by consensus cluster as shownin
A.Survivalin different groups was compared with alog-rank test. c: Gene sets
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Extended Data Fig. 3| Protein level changes in multiple myeloma patients
with translocations t(11;14) and t(4;14). a: Significantly regulated proteins
int(11;14) (FDR < 0.05) with the GO term annotation apoptosis. b: Levels of
proteins involved in venetoclax response in patients with (n =27) and without
(n=87)t(11;14). FDRis indicated. Boxplot shows median (middle line), 25th

and 75th percentiles, whiskers extend to minimum and maximum excluding
outliers (values greater than 1.5 times the interquartile range). c: Protein levels
of selected B cell markers and genes in CD2 gene set in patients with (n=27) and
without (n = 87) t(11;14). FDRis indicated. Boxplot shows median (middle line),

25th and 75th percentiles, whiskers extend to minimum and maximum excluding
outliers (values greater than 1.5 times the interquartile range). d: Schematic
representation of the chromosomal locus on 4p16 affected by t(4;14). e: Levels of
the most regulated proteins in t(4;14) samples (top 20 by FDR). Row annotation:
dotsindicate proteins located on chromosome 4. f: Normalized FGFR3 RNA
levels in t(4;14) patients with (n =13) or without (n = 7) FGFR3 protein detection.
FDRis indicated. Boxplot shows median (middle line), 25th and 75th percentiles,
whiskers extend to minimum and maximum excluding outliers (values greater
than 1.5 times the interquartile range).
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Extended DataFig. 5| Proteins deregulated in del13q, dellp and del17p
myeloma. a: Global protein levels in del13q samples were compared against

all other samples with a2-sided, moderated 2-sample t-test. The log2 of fold
change of each protein is plotted against its p-value. P-values were adjusted

with the Benjamini-Hochberg method and the significance threshold of 0.05
FDRisindicated. Proteins located on13q are indicated with a triangle. b: Protein
levels of the most regulated proteins in del13q samples (top 20 by FDR). Row
annotation indicates proteins located on chromosome 13q. c: Global protein
levels in dellp samples were compared against all other samples with a 2-sided,
moderated 2-sample t-test. The log2 of fold change of each proteinis plotted
against its p-value. P-values were adjusted with the Benjamini-Hochberg method
and the significance threshold of 0.05 FDRis indicated. Proteins located on1p are

indicated with a triangle. d: Protein levels of significantly regulated proteinsin
dellp samples. Row annotation indicates proteins located on chromosome 1p. e:
Global protein levelsin dell7p samples were compared against all other samples
with a2-sided, moderated 2-sample t-test. The Log2 of fold change of each
proteinis plotted against its p-value. P-values were adjusted with the Benjamini-
Hochberg method and the significance threshold of 0.05 FDRis indicated.
Proteins located on chromosome 17p are indicated with atriangle. f: RNA,
protein, and phosphoprotein levels of TP53 and FXR2 in samples with (n =12)
and without (n =102) del17p. Boxplot shows median (middle line), 25th and 75th
percentiles, whiskers extend to minimum and maximum excluding outliers
(values greater than 1.5*IQR).
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Extended Data Fig. 6 | Influence of 1q amplifications on the proteome. a:
Kaplan-Meier plot showing progression free and overall survival of myeloma
patients stratified by chrlq gain (n =100 patients). P-values were calculated
withalog-rank test. b: Global protein levels in multiple myeloma samples with
1q copy number gain (n = 46) were compared against all other samples (n = 68)
witha 2-sided, moderated 2-sample t-test. The log2 of fold change of each
proteinis plotted against its p-value. Proteins located on 1q are denoted with
atriangle. P-values were adjusted with the Benjamini-Hochberg method and
the significance threshold of 0.05 FDR is indicated. c: MCL1RNA expressionin
multiple myeloma extracted from microrarray datasets GSE2658 (2: n =134; 3:
n=70,4+:n=44)and GSE6401 (1q gain n =40, no 1q gain n = 37). Boxplot shows
median (middle line), 25th and 75th percentiles, whiskers extend to minimum
and maximum excluding outliers (values greater than 1.5 *IQR). The levels of

logFC 1qg amplification in MM

MCL1were compared by the two-sided t-test, p-values are indicated above the
boxplots. P-values are adjusted using Bonferroni correction. d: Metascape GO
term enrichment of proteins upregulated in 1q samples (< 0.05 FDR) that are not
located on1q. e: UBE2Q1 expression was extracted from Zhan et al. Microarray
dataset (GSE2658). Kaplan-Meier plot shows overall survival of myeloma patients
stratified by median UBE2Q1 expression. Survival in the groups is compared by
thelogrank test. f: Multiple myeloma cell line dependency data extracted from
the depmap portal. The DNA copy number of UBE2Ql is plotted against the
genetic dependency. 1q copy number gains are indicated by color. g: Correlation
of protein fold changes in 1q gain myeloma patients (x-axis) and UBE2Q1
overexpressing OPM2 compared to control (y-axis). Proteins regulated in OPM2
(<0.05FDR) and in1q patients (< 0.1 FDR) are indicated by color.
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Extended Data Fig. 7 | Differential protein levels in plasma cell leukemias isolated fromblood (n =12) or bone marrow (n = 5) were compared with a 2-sided,
indicate a highly proliferative phenotype. a: Global protein or phosphopeptide = moderated 2-sample t-test. The log2 of fold change of each proteinis plotted
levels in multiple myeloma samples (n =114) were compared against MGUS (n=7)  against its p-value. P-values were adjusted with the Benjamini-Hochberg method

or plasma cell leukemia (n =17) samples with a 2-sided, moderated 2-sample and the significance threshold of 0.05 FDRis indicated. Bottom plot shows the
t-test. P-values were adjusted with the Benjamini-Hochberg method. Significant same analysis for phosphoproteomic data. c: Heatmap displays normalized
(<0.05FDR) proteins or phosphopeptides in each comparison are plotted across levels of the most significantly regulated proteins between MM and PCL or MM
their genomic location. b: Global protein levels in plasma cell leukemia samples and MGUS (by FDR).
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Proteins and phosphopeptides associated with
outcome. a: Fully quantified proteins and phosphopeptides were investigated
for their correlation with progression-free survival with a univariate Cox
regression analysis as a continuous variable. The resulting p-values were
subjected to multiple testing control with Benjamini-Hochberg. Normalized
expression levels of proteins and phosphopeptides passing the 0.1 FDR cutoff
are plotted as a heatmap. Row annotation indicates hazard ratios > 1 (up) or <
1(down). b: Table showing the impact of clinical parameters and protein risk
score on progression-free survival (PFS) and overall survival (OS). P-values were
calculated with univariate Cox regression analysis. c: Kaplan-Maier plots showing
PFS and OS curves of patients with (blue) and without (red) at least one high-risk
FISH marker (del(17p), t(4;14), +1q21). P-values were calculated with alog-rank

test. Patients treated within the DSMM clinical trials that received alenalidomide-
based induction therapy followed by high-dose melphalan/autologous
hematopoietic stem cell transplantation and lenalidomide maintenance were
included (n =100) in the survival analysis. d: Kaplan-Meier plots showing
progression-free survival (PFS) for patients according to the protein risk
signature score in samples with and without CD138 MACS sorting. Survival in the
groups is compared by the log rank test. e: Proteomics data was extracted from
Kropvisek et al. and protein risk score was calculated for untreated myeloma
patients (n =10). Kaplan-Meier plot shows time to the next treatment or death
for myeloma patients stratified by median risk score. Survival in the groups is
compared by the log rank test.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Comparison of multiple myeloma with healthy bone
marrow reveals potential therapeutic targets. a: Global protein levels of
multiple myeloma samples (MACS sorted samples only, n = 76) and healthy bone
marrow cells sorted for CD138+ (plasma cells, n =3), CD19+ (B cells, n = 3) and
CD34+ (HSC, n =3) were compared with a 2-sided, moderated 2-sample t-test.
Thelog2 of fold change of each proteinis plotted against its p-value. P-values
were adjusted with the Benjamini-Hochberg method and the significance
threshold of 0.1FDRis indicated. Data was integrated with the depmap database
and potential therapeutic targets (Fig. 6d) are indicated as purple stars. b:
Protein levels of selected plasma cell-specific proteins in healthy and disease
samples. Healthy CD138: n = 3; healthy CD19: n = 3, healthy CD34: n = 3; MGUS:

n=7;MM:n =114;. PLC: n =17. Boxplot shows median (middle line), 25th and
75th percentiles, whiskers extend to minimum and maximum excluding outliers
(values greater than 1.5 *IQR). c: Protein (top) or RNA (bottom) expression

of IRS1and POU2AF1in multiple myeloma cell lines plotted against genetic
dependency. Data was extracted from the depmap database and Goncalves et
al. d: Cell viability of multiple myeloma cell lines treated for 96 h with the IRS1
inhibitor NT157 in biological triplicates. Concentration is indicated in uM. Data
isrepresented as mean + standard deviation. e: RNA to protein correlation

of selected surface markers in myelomasamples displayedin Fig.7.fand g:
Representative plot showing gating strategy for the FACS analysis in Fig. 7d-f:
Multiple myeloma cells, G: non-malignant cells on example of T cells.
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Data collection  Proteomics: Q-Exactive HF-X and Exploris 480 (ThermoFisher Scientific)
RNA-seq: single end RNA sequencing HiSeq2000 (lllumina)
nanopore DNA seq: sequencing was performed on a GridlON sequencer (Oxford Nanopore Technologies (ONT) platform)
CRISPR/Cas9 activation screen : Library sgRNA was sequenced on a nextSeq 550 System (lllumina)
Cell viability: POLARstar® Omega plate reader

Data analysis Proteomics: raw data was analyzed with MaxQuant (Version 2.0.3.0 for cell culture experiments and 2.0.1.1. for patient samples or with
DIANN 1.8.1, processed raw data was further analyzed in R studio (V 4.1.1)
The single sample Gene Set Enrichment Analysis (ssGSEA) implementation available on https://github.com/broadinstitute/ssGSEA2.0 was used
to separately project protein and phosphopeptide abundance changes to signaling pathways in R. GO term enrichment analysis of a gene list
corresponding to proteins regulated in 1q gain not located on chromosome 1q was performed with the Metascape online tool.
RNA-seq: alignment with STAR 2.7, quantification with RSEM 1.3.0, analysis with R 4.0.3 GUI 1.73. TPM RNA data was futher normalized with
R studio (V 4.1.1) to increase comparability to proteomics data.
nanopore DNA seq : sequenced reads were aligned with minimap2. After conversion of the alignment files (samtools v. 0.1.19, https://
github.com/samtools/) SAM format, (https://samtools.github.io/hts-specs/SAMv1.pdf)) sorting and indexing to binary alignment format (BAM
format, https://samtools.github.io/hts-specs/SAMv1.pdf) the copy number profiles were generated with the absolute copy number estimate
(ACE) package in R (4.2.1).
CRISPR/Cas9 activation screen: The MAGeCK package (version 0.5.9.4.) was utilized for analyzing normalizing reads and beta-score

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Data that support the findings of this study have been deposited in the following repositories. Mass spectrometry data have been deposited on PRIDE with the
accession number PXD038437 and PXD043580. Processed proteomics data of patient samples can be interactively explored at https://myelomaprot.mdc-
berlin.de/ . RNAseq expression data is available at GEO under the accession number GSE222727. Source data is provided with the article. Previously published
microarray data that were re-analysed here are available under accession code GSE265834. Proteomics data was searched against the human reference proteome
(UP000005640) downloaded from UniProt in 01/2021 (https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/). Source data for all Main Figures and
Extended Data Figures have been provided as Source Data files. All other data supporting the findings of this study are available from the corresponding author on
reasonable request.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender only biological sex is reported. Information on gender was not collected

Reporting on race, ethnicity, or Information on race, ethnicity or other socially groupings was not collected.
other socially relevant
groupings

Population characteristics Bone marrow samples from 138 patients encompassing treatment-naive newly diagnosed multiple myeloma (N=114), plasma
cell leukemia (N=17), and MGUS (N=7). 100 of the newly diagnosed patients were treated within one of three consecutive
trials of the DSMM XIl, XllI, XIV (NCT00925821, NCT01090089, NCT01685814) and were scheduled to receive a lenalidomide-
based induction therapy, high-dosage melphalan with autologous stem cell transplantation and lenalidomide maintenance
therapy and had available outcome data . Patient characteristics are summarized in Table S1.

Recruitment Patients were included based on the availability of a bone marrow/ blood sample with more than 75% tumor cell content
and/ or CD138-MACS sorting, genetics performed within standard routine (FISH) and clinical data.
Of the 138, 89 were CD138+ enriched using MACS immediately post-PBMC isolation with beads linked to a CD138-specific
antibody (#130-051-301, Miltenyi). The remaining 49, not enriched via MACS, were chosen for their >75% plasma cell
content, showing an average CD138+ purity of 85%. Despite tumor purity potentially influencing proteomic composition, our
major findings are consistent across sorted and non-sorted samples.

Ethics oversight All patients provided written informed consent according to the Declaration of Helsinki and the study was approved by the
responsible ethic committees Ulm University (136/20, 307/08) and Charite Universitatsmedizin Berlin (EA2/142/20). The
DSMM trial was approved by the ethics committee of Wirzburg Universit (DSMM XII: 2008-000007-28, DSMM XIV: 145-11).
All donors pf healthy bone marrow material provided written informed consent according to the Declaration of Helsinki and
the study was approved by the responsible ethic committee Charite - Universitatsmedizin Berlin (EA4/115/21).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size Available bone marrow biopsied from multiple myeloma MGUS and plasmacell leukemia patients were analyzed. No statistical method was
used to predetermine the sample size that was limited by the number of samples provided with sufficient protein material.

Data exclusions  Proteomics: Technical replicates to assess reproducibility of TMT measurments were not further included in downstream analysis. Carrier
channels in TMT channel setup (see table S11) that were used to boost identification of proteins were not further analyzed. for comparison of
healthy and disease bone marrow, only MACS sorted samples were analyzed to increase comparability
RNAseq: For RNA-protein correlation analysis, a stringent data quality filter was first applied and RNAseq samples were filtered for a minimum
plasmacell content of 80% and a mapped read count higher than 20 million. These cutoffs were chosen in a way that further stringency did
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not improve overall RNA-protein correlation. As RNA is less stable than protein, we expect a higher degree of variability in RNAseq data
quality. All sequenced RNA samples passed the initial RNA quality filter specified in the TruSeq Stranded Exome RNA Kit (DV200 > 30%)

Replication Technical replicates of 8 patient samples were included in different TMT plexes to assess the reproducibility of TMT based proteomics. All
attempts of replication were successful; replicates clustered together as expected and had an average Pearson correlation coefficient of 0.8
for global proteome and 0.77 for phosphoproteomic normalized ratios, respectively. For cell culture experiments, we performed four
(proteomic experiments in cell lines) or three (inhibitor experiments) independent biological replicates and all attempts at replication were
successful.

Randomization  Randomization for clinical data was not applicable because this study was performed retrospectively where samples were chosen based on
availability. TMT channels for proteomics data measurment were randomly assigned

Blinding We performed proteogenomic analysis of available retrospective samples. No blinding was applied

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging
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Antibodies

Antibodies used MACS sorting: CD138-specific (#130-051-301), CD19-specific and CD34-specific microbeads, human (all Miltenyi, Cologne, Germany),
FACS analysis: FCRL2:Miltenyi Biotech APC CD307b (FcRL2) Antibody, anti-human, REAfinity™, Clone: REA474, Catalogue #:
130-107-439; CD138: BD Pharmingen™ PE Mouse Anti-Human CD138, Clone: MI15, Catalogue #: 552026; BCMA: BioLegend® Brilliant
Violet 421™ anti-human CD269 (BCMA) Antibody, Clone: 19F2, Catalogue #: 357519; SLAMF7: BioLegend® FITC anti-human CD319
(CRACC) Antibody, Clone: 162.1, Catalogue #: 331818; CD19: BioLegend® FITC anti-human CD19 Antibody, Clone: HIB19, Catalogue #:
302206; CD3: BioLegend® PE anti-human CD3 Antibody, Clone: SK7, Catalogue #: 344806;
CD33: Beckman Coulter PE CD33, Clone: D3HL60.251, Catalogue #: AO7775;
CD34: Beckman Coulter PE CD34, Clone: 581, Catalogue #: AO7776; CD13: Beckman Coulter PC7 CD13, Clone: 366, Catalogue #:
B19714

Validation All antibodies used in this study were procured directly from manufacturers and were validated by the manufacturers for both
antigen specificity and reactivity with human cells using flow cytometry. Briefly, BioLegend® confirmed specificity through single- or
multi-color flow cytometry analysis of human peripheral blood lymphocytes (anti-CD3, anti-CD19, anti-SLAMF7) or the human
myeloma cell line U266 (anti-BCMA); Miltenyi Biotech validated their anti-FCRL2 antibody on human peripheral blood mononuclear
cells and conducted an epitope competition assay additionally; Beckman Coulter conducted validation on human whole blood
samples, comparing results with a reference reagent; and BD Pharmingen™ validated their anti-CD138 antibody on the U266 cell line.
Comprehensive details on the extended validation procedures for each antibody are available in the technical datasheets and
references provided by the respective manufacturers. All antibodies utilized in this study exhibited expected staining results in
accordance with the existing literature.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Multiple myeloma cell lines MM. 1S, LP-1, OPM2, NCI-H929, AMO-1, INA-6, and JIN3, as well as HEK293T cells were
purchased from DSMZ or ATCC.

Authentication Cell line authentification was performed via short tandem repeat(STR) profiling. Molecular markers were compared against
STR profile database DSMZ CellDive to confirm correctness of cell lines. Regular authentification was performed on all cell
lines.

Mycoplasma contamination All cell lines were tested negative for Mycoplasma contamination.

Commonly misidentified lines  No commonly misidentified cell lines were used.
(See ICLAC register)
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  NA

Study protocol NA
Data collection NA
Outcomes NA

Flow Cytometry
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Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|:| All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation All samples contained isolated mononuclear cells and were stained with APC anti-FCRL2 (Miltenyi Biotech, 130-107-439). For
myeloma cell identification, we used BV421 anti-BCMA (BioLegend®, 357519) and FITC anti-SLAMF7 (BioLegend®, 331818).
The different subpopulations of immune cells were distinguished by PE anti-CD138 (BD Pharmigen™, 552026), FITC anti-
CD19, PE anti-CD3 (both from BioLegend®, 302206 and 344806) as well as PC7 anti-CD13, PE anti-CD33 and PE anti-CD34 (all
from Beckman Coulter, B19714, AO7775 and A07776). All antibodies were used in a dilution of 1:40.

Instrument Beckman Coulter CytoFLEX S

Software Flow Jo_v10.6.2, Beckman Coulter CytExpert v2.4

Cell population abundance Cell sorting was not performed.

Gating strategy Cells were gated based on FSC-H/SSC-H. Single cells were gated with FSC-H/FSC-A followed by SSC-H/SSC-A. Multiple

myeloma cells were defined as BCMA+ and/or SLAMF7+. Boundaries for presence of the fluorochromes were defined by
gating against unstained controls.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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