
Vol.:(0123456789)

Journal of Neurology (2024) 271:5577–5589 
https://doi.org/10.1007/s00415-024-12507-w

ORIGINAL COMMUNICATION

Evaluation of machine learning‑based classification of clinical 
impairment and prediction of clinical worsening in multiple sclerosis

Samantha Noteboom1  · Moritz Seiler2,4 · Claudia Chien2,3  · Roshan P. Rane2,4  · Frederik Barkhof5,6  · 
Eva M. M. Strijbis7  · Friedemann Paul3  · Menno M. Schoonheim1  · Kerstin Ritter2,4 

Received: 29 February 2024 / Revised: 1 June 2024 / Accepted: 9 June 2024 / Published online: 23 June 2024 
© The Author(s) 2024

Abstract
Background Robust predictive models of clinical impairment and worsening in multiple sclerosis (MS) are needed to identify 
patients at risk and optimize treatment strategies.
Objective To evaluate whether machine learning (ML) methods can classify clinical impairment and predict worsening in 
people with MS (pwMS) and, if so, which combination of clinical and magnetic resonance imaging (MRI) features and ML 
algorithm is optimal.
Methods We used baseline clinical and structural MRI data from two MS cohorts (Berlin: n = 125, Amsterdam: n = 330) to 
evaluate the capability of five ML models in classifying clinical impairment at baseline and predicting future clinical worsen-
ing over a follow-up of 2 and 5 years. Clinical worsening was defined by increases in the Expanded Disability Status Scale 
(EDSS), Timed 25-Foot Walk Test (T25FW), 9-Hole Peg Test (9HPT), or Symbol Digit Modalities Test (SDMT). Different 
combinations of clinical and volumetric MRI measures were systematically assessed in predicting clinical outcomes. ML 
models were evaluated using Monte Carlo cross-validation, area under the curve (AUC), and permutation testing to assess 
significance.
Results The ML models significantly determined clinical impairment at baseline for the Amsterdam cohort, but did not 
reach significance for predicting clinical worsening over a follow-up of 2 and 5 years. High disability (EDSS ≥ 4) was best 
determined by a support vector machine (SVM) classifier using clinical and global MRI volumes (AUC = 0.83 ± 0.07, 
p = 0.015). Impaired cognition (SDMT Z-score ≤ −1.5) was best determined by a SVM using regional MRI volumes (thala-
mus, ventricles, lesions, and hippocampus), reaching an AUC of 0.73 ± 0.04 (p = 0.008).
Conclusion ML models could aid in classifying pwMS with clinical impairment and identify relevant biomarkers, but pre-
diction of clinical worsening is an unmet need.
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Introduction

Multiple sclerosis (MS) is a chronic inflammatory, demyeli-
nating, and neurodegenerative disease with a heterogeneous 
and unpredictable disease course [1]. Prognostic biomarkers 
are urgently needed for monitoring disease progression and 
optimizing therapeutic strategies [2]. The clinical relevance 
of magnetic resonance imaging (MRI) for diagnosing and 

monitoring MS by using inflammatory markers (e.g., white 
matter (WM) lesion counts) is well established [3, 4]. How-
ever, these inflammatory markers have limited explanatory 
value for determining the severity of symptoms and predict-
ing clinical progression [5, 6]. MRI markers of neurodegen-
eration, instead, are more closely related to clinical outcomes 
and thought to be the main driver of irreversible disability 
[7, 8]. Regional volumetric MRI measures such as deep gray 
matter (DGM) and cortical gray matter (CGM) volumes 
have shown the closest associations to motor dysfunctions 
and cognitive decline [9, 10]. However, the use of regional 
MRI volumes as predictors of disease progression remains 
largely unexplored.
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Machine learning (ML) strategies have been increasingly 
applied for prediction in medicine and identifying patients 
at risk [11]. While traditional statistical techniques can typi-
cally handle only a few input variables and are often based 
on strict assumptions, ML is able to derive complex hidden 
patterns in high-dimensional data [12]. In MS, various ML 
approaches have been applied, but predicting disability pro-
gression with high accuracy remains challenging [13–15]. 
These studies used progression on the Expanded Disability 
Status Scale (EDSS) as a prediction target, since it is the 
predominant outcome measure for defining disability accu-
mulation and progression in MS [16, 17]. However, the reli-
ability of the EDSS is compromised by a significant meas-
urement error and interrater variability [18]. In addition, it is 
heavily influenced by ambulatory functioning, while upper-
extremity dysfunction and cognitive dysfunction are not 
adequately measured resulting in a low sensitivity in identi-
fying crucial factors for disease progression [19, 20]. Recent 
evidence suggests that other outcome measures, such as the 
Timed 25-Foot Walk Test (T25FW) and the 9-Hole Peg Test 
(9HPT), as well as composite scores of EDSS, T25FW, and 
9HPT (EDSS +), may be more sensitive in capturing disease 
progression [21, 22]. For cognitive functioning, the Symbol 
Digit Modalities Test (SDMT) is widely employed in clini-
cal trials, because it is highly sensitive for measuring infor-
mation processing speed (IPS), the most affected cognitive 
function in MS [23, 24].

In this study, we aimed to systematically compare the 
performance of ML approaches for classifying clinical 
impairment and predicting disease progression in people 
with MS (pwMS), based on a range of (composite) clinical 
outcomes (EDSS, T25FW, 9HPT, EDSS + , and SDMT). 
Our secondary aim was to identify which clinical and MRI 
markers were most important in determining clinical impair-
ment and predicting worsening defined for each outcome. 
ML approaches included logistic regression, support vectors 
machine, gradient boosting, and random forest classifiers. 
Models were trained on two clinical data sets, one early MS 
cohort from Berlin with a follow-up after 2 years and a long-
standing MS cohort from Amsterdam with a follow-up after 
5 years.

Methods

Study population

Data were retrospectively collected from the early MS cohort 
of Berlin, Germany (32 people diagnosed with clinically 
isolated syndrome (CIS) and 93 pwMS) [25, 26] and people 
with clinically definite MS from the Amsterdam MS cohort, 
the Netherlands (330 pwMS) [27, 28]. All included subjects 
were over the age of 18 and had a clinical assessment and 

a structural MRI examination available at baseline. Clini-
cal measurements included EDSS, 9HPT, T25FW, and 
SDMT score. The early MS cohort of Berlin had a 2-year 
clinical follow-up available for all 125 included subjects. 
For Amsterdam, a 5-year clinical follow-up was available for 
225/330 included subjects. The institutional ethics review 
boards of both institutions (Amsterdam UMC, Amsterdam 
and Charité, Berlin) approved the study protocol and sub-
jects gave written informed consent prior to participation.

MRI acquisition

All subjects underwent a 3T MRI examination including 
the following pulse sequences: 3D T1-weighted (3D-T1) 
and 3D fluid-attenuated inversion recovery (3D-FLAIR). 
The scanning protocol in Berlin included a 3D-T1 mag-
netization prepared rapid acquisition gradient echo 
sequence (1.0 × 1.0 × 1.0 mm resolution, repetition time 
(TR) = 1900 ms, echo time (TE) = 3.03 ms, inversion time 
(TI) = 900 ms, flip angle = 9°) and a 3D-FLAIR sequence 
(1.0 × 1.0 × 1.0 mm resolution, TR = 6000 ms, TE = 388 ms, 
TI = 2100 ms), using a Tim Trio scanner (Siemens Medi-
cal Systems, Erlangen, Germany). The scanning protocol 
in Amsterdam included a 3D-T1 fast-spoiled gradient-
echo sequence (1 × 0.9 × 0.9 mm resolution, TR = 7.8 ms, 
TE = 3 ms, TI = 450 ms, flip angle = 12°) and a 3D-FLAIR 
sequence (1.2 × 1.0 × 1.0 mm resolution, TR = 8000 ms, 
TE = 125 ms, TI = 2350 ms), using a GE Signa HDxt scan-
ner (Milwaukee, WI).

MRI processing

T2-lesion volumes (T2LV) were determined on 3D-FLAIR. 
In Berlin, lesions were manually segmented using ITK-
SNAP (www. itksn ap. org) by two expert MRI technicians 
[26]. In Amsterdam, lesions were automatically segmented 
using a k-nearest neighbor algorithm and visually checked 
[28–30]. To reduce lesion-associated brain tissue segmen-
tation bias, lesions were filled with values approximat-
ing normal WM on 3D-T1 [31]. Whole-brain, CGM, and 
DGM segmentations were derived for both centers using 
the FreeSurfer 7.1.1 (http:// surfer. nmr. mgh. harva rd. edu/) 
recon-all pipeline on lesion filled 3D-T1. Subsequently, the 
cortical surface of each subject was parcellated into 210 
regions using the Brainnetome Atlas (BNA) [32]. The vol-
umes of the left and right regions were averaged to decrease 
the number of input features without losing too much ana-
tomical information, resulting in 5 global volumes (whole-
brain volume (WBV), CGM volume, DGM volume, lateral 
ventricular volume (LVV), cortical cerebellum volume), 105 
CGM regional volumes, and seven DGM regional volumes 
(thalamus, accumbens, putamen, caudate, pallidum, amyg-
dala, hippocampus). All volumes, except for T2LV, were 

http://www.itksnap.org
http://surfer.nmr.mgh.harvard.edu/
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corrected for head size by dividing the volume by the esti-
mated total intracranial volume (eTIV).

Overview of machine learning approach

Based on different sets of clinical and MRI features, we 
trained different ML algorithms for classifying clinical 
impairment and predicting clinical worsening. The input fea-
tures included demographic (age, sex) and clinical informa-
tion (symptom duration, MS subtype, use of disease-mod-
ifying therapy (DMT)) as well as structural MRI volumes. 
The outcome measures for classifying clinical impairment 
included EDSS (cutoff ≥ 4) to define high disability or 
SDMT (Z-score ≤ −1.5) to define cognitive impairment. 
Clinical worsening was evaluated over a follow-up of 2 years 
(Berlin) and 5 years (Amsterdam), based on EDSS, 9HPT, 
T25FW, or SDMT scores. The significance of classification 
and prediction models was assessed with permutation test-
ing and the most important clinical and MRI features were 
determined using Shapley additive explanations (SHAP). 
See Fig. 1 for an overview of the machine learning approach.

Clinical impairment

Clinical impairment at baseline was defined using the EDSS 
or SDMT. PwMS were classified as having a low or high 
disability based on an EDSS ≥ 4 cutoff. For classifying pre-
served or impaired cognition, SDMT standardized Z-scores 
were calculated based on German normative healthy control 
data for the Berlin cohort [33] and norm scores of matched 
healthy controls for the Amsterdam cohort [28]. PwMS 

reporting an SDMT Z-score below −1.5 were considered as 
cognitively impaired.

Clinical worsening

Clinical worsening was assessed using the EDSS, 9HPT, 
T25FW, a combination of EDSS, 9HPT, and T25FW 
(EDSS +), or SDMT. EDSS-based worsening was defined 
as an increase in EDSS of  ≥ 1.5 points for a baseline score 
of 0, an increase of  ≥ 1.0 for a baseline score between 1.0 
and 5.5, or an increase of  ≥ 0.5 for a baseline EDSS score 
of  ≥ 6.0 [34]. For 9HPT and T25FW, clinically meaning-
ful worsening was defined as a 20% increase in the time 
required to finish the test compared to the baseline measure-
ment [35, 36]. For 9HPT, worsening in the non-dominant 
hand and dominant hand was assessed separately. Worsening 
on EDSS + was defined as worsening on  ≥ 1 of the three 
components (EDSS, T25FW, or 9HPT (dominant or non-
dominant hand)) [21]. Lastly, SDMT worsening was defined 
as an increase of  ≥ 4 points compared to the baseline meas-
ure [37].

Input features

To compare the performance of clinical and MRI-derived 
features for classifying clinical impairment and predicting 
clinical worsening, and assess which combination would 
result in the highest performing models, five different fea-
ture sets were defined: (1) clinical data, (2) global MRI vol-
umes, (3) clinical data + global MRI volumes, (4) regional 
MRI volumes, (5) clinical data + regional MRI volumes. See 
Table 1 for an overview of included features in each feature 

Fig. 1  Overview of the machine learning (ML) approach. Input fea-
tures for ML included different sets of clinical variables and MRI 
volumes. Different ML approaches were evaluated to classify clinical 
impairment and predict clinical worsening. Shapley additive explana-
tions were applied to identify the most important clinical and MRI 

features for classification and prediction. DGM deep gray matter; 
BNA Brainnetome Atlas; LR logistic regression; SVM support vector 
machine; RF random forest; XGBoost eXtreme Gradient Boosting; 
EDSS Expanded Disability Status Scale; SDMT Symbol Digit Modal-
ities Test; 9HPT 9-Hole Peg Test; T25FW Timed 25-Foot Walk Test



5580 Journal of Neurology (2024) 271:5577–5589

set. Clinical data included age, sex, symptom duration, MS 
subtype (CIS, RRMS, or progressive MS), and use of DMT 
(yes or no).

Machine learning model training

Five ML algorithms were compared for classification of clin-
ical impairment and prediction of worsening for the different 
clinical outcomes. A comparison of multiple ML models 
was conducted because these models have varying abilities 
to capture linear and non-linear relationships between input 
features [38]. As linear classifiers, logistic regression (LR) 
and support vector machine with a linear kernel (SVM-lin) 
[39] were selected due to their robust performance dem-
onstrated in prior structural neuroimaging studies [40, 
41]. Their performance was compared to three non-linear 
models that have been successfully applied in other stud-
ies [42]: SVM with a radial basis function kernel (SVM-
RBF) [43], eXtreme Gradient Boosting Classifier (XGBoost) 
[44], and random forest (RF) [45]. The ML pipelines were 
implemented in Python 3.9.15 using the scikit-learn [46] 
and xgboost [47] software packages. Due to variations in 
demographics, follow-up times, and the use of different MRI 
scanners and protocols between the cohorts, it was unfavora-
ble to employ one cohort as a training set and the other as a 
validation set. Consequently, machine learning models were 
independently trained on the data from each center. Pre-
processing of all input features included standardization by 
removing the mean and scaling to unit variance [48]. In addi-
tion, random oversampling of the minority class was used in 
the preprocessing pipeline to account for class imbalance in 
model training. Due to the relatively low sample size of our 
data, stratified Monte–Carlo cross-validation with ten rep-
etitions (i.e., 10 randomly selected test sets) was performed 
using an 80%/20% train/test split ratio to avoid evaluation 
bias resulting from sampling effects [49, 50]. A stratified 
5-fold cross-validation was applied within the training set of 
each repetition for hyperparameter optimization [51]. Since 
not all clinical outcome variables were available for each 

participant, train and test sets were different for each clinical 
outcome due to random selection. Model performance was 
assessed using several metrics: area under the curve (AUC) 
of the receiver operating characteristics curve, balanced 
accuracy (BA), precision, and recall (or sensitivity). AUC 
assesses the model's ability to distinguish between classes 
by plotting the true positive rate against the false positive 
rate across all possible classification thresholds. Balanced 
accuracy represents the average of recall and specificity, pro-
viding a balanced view of the model's performance across 
both classes. Precision quantifies the proportion of true posi-
tives among all positive predictions, highlighting the model's 
accuracy in predicting positive instances. Recall, also known 
as sensitivity, measures the proportion of actual positives 
correctly identified by the model, indicating its effectiveness 
in detecting positive instances. The final performance of the 
models was ranked based on the average and standard devia-
tion of the AUC across the 10 repetitions. Statistical signifi-
cance of the best performing ML model for each outcome 
measure was determined using permutation testing [52]. To 
reduce computational time, the p value was derived based 
on 100 permutations.

Model explanations

To understand which combination of clinical and MRI fea-
tures were most relevant for clinical impairment and wors-
ening predictions in pwMS, SHAP values were calculated 
in a post hoc analysis. SHAP is a local model explanation 
method aimed to explain the model prediction for each sub-
ject by computing the relative importance of every input 
feature for the final prediction [53]. SHAP values explain the 
difference between the individual prediction and the average 
prediction. For an individual, the sum of all SHAP values 
equals the difference between their prediction and the aver-
age probability of clinical impairment or worsening. Global 
ranking of feature importance was defined as the mean abso-
lute SHAP value of each feature across all subjects and all 

Table 1  Combinations of clinical and MRI features for classifying clinical impairment and worsening

BNA-CGMV Brainnetome Atlas regional cortical gray matter volumes; CCerV cortical cerebellum volume; CGMV cortical gray matter volume; 
DGMV deep gray matter volume; DMT disease-modifying therapy; LVV lateral ventricular volume; T2LV T2-lesion volume; WBV whole-brain 
volume

Feature set No Variables

Clinical data 5 Sex, age, symptom duration, MS subtype, DMT
Global MRI volumes 6 WBV, CGMV, DGMV, LVV, CCerV, T2LV
Clinical data + global MRI volumes 11 Sex, age, symptom duration, MS subtype, DMT, WBV, CGMV, DGMV, LVV, CCerV, T2LV
Regional MRI volumes 116 WBV, BNA-CGMV (n = 105), thalamus, accumbens, putamen, caudate, pallidum, amygdala, 

hippocampus, LVV, CCerV, T2LV
Clinical data + regional MRI volumes 121 Sex, age, symptom duration, MS subtype, DMT, WBV, BNA-CGMV (n = 105), thalamus, 

accumbens, putamen, caudate, pallidum, amygdala, hippocampus, LVV, CCerV, T2LV
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test sets [54]. SHAP values were calculated with the Ker-
nelSHAP method implemented in Python.

Results

Demographics

A total of 125 participants from Berlin and 330 participants 
from Amsterdam were included. Demographic, clinical, and 
global MRI variables of the cohorts are shown in Table 2. 
The participants from Amsterdam were older compared to 
those from Berlin (47.7 ± 10.9 vs. 33.2 ± 7.2, p < 0.001), 
had a longer disease duration (14.8 ± 8.5 vs. 0.6 ± 0.7, 
p < 0.001), and a higher EDSS at baseline (3.0 [2.0 − 4.0] 
vs. 1.5 [1.0 − 2.0], p < 0.001). For the Berlin cohort only, 
2% (n = 3) of pwMS had a high disability (EDSS ≥ 4) at 
baseline and 2% (n = 2) had cognitive impairment (SDMT 
Z ≤  − 1.5). For the Amsterdam cohort, 39% (n = 129) of 

pwMS had a high disability at baseline and 36% (n = 119) 
had cognitive impairment. See Fig. 2 for total sample sizes 
for each longitudinal clinical outcome measure and percent-
ages of patients showing worsening during the follow-up 
period. For the Berlin cohort, a 2-year clinical follow-up 
was available for all 125 patients, of whom 18% (n = 22) 
showed worsening on EDSS and 21% (n = 20) on SDMT. 
For the Amsterdam cohort, a 5-year follow-up was available 
for 225 pwMS, of whom 35% (n = 78) showed worsening 
on EDSS and 29% (n = 66) on SDMT. The lowest progres-
sion rates were seen for the 9HPT in both cohorts, with 2% 
(dominant hand, n = 2) and 4% (non-dominant hand, n = 4) 
in the Berlin cohort, and 16% (dominant hand, n = 34) and 
15% (non-dominant hand, n = 32) in the Amsterdam cohort.

Classification of clinical impairment

Due to the low proportion of pwMS having clinical impair-
ment in the Berlin cohort (2% of pwMS had a high disability 
and 2% had cognitive impairment), cross-sectional clinical 
impairment classification was only performed for the Amster-
dam cohort. The best performance for determining high 
disability at baseline was achieved by the clinical + global 
MRI feature set (AUC = 0.83 ± 0.07, BA = 0.76 ± 0.09, pre-
cision = 0.68 ± 0.11, recall = 0.74 ± 0.11, p = 0.015) using 
SVM-RBF. As shown in Fig. 3, all models showed good 
performance for determining high disability at baseline 
(mean AUC 0.75–0.78 across all feature sets), with the low-
est performance for LR (mean AUC = 0.68). The model 
performance for determining impaired cognition was the 
highest for SVM-lin with regional MRI volumes as input 
feature set (AUC = 0.73 ± 0.04, BA = 0.67 ± 0.03, preci-
sion = 0.60 ± 0.11, recall = 0.55 ± 0.09, p = 0.008). Clinical 
features only could not predict cognitive impairment (SVM-
RBF: AUC = 0.55 ± 0.05, p = 0.27).

Important brain regions for determining clinical 
impairment

We used SHAP values to assess which clinical features 
and brain regions were most important for classifying high 
disability and impaired cognition in long-standing MS 
(Amsterdam cohort). The most informative features were 
determined for the SVM-RBF model since it had the high-
est average performance across all feature sets in determin-
ing high disability (AUC = 0.78 ± 0.07) and impaired cog-
nition (AUC = 0.67 ± 0.08). Figure 4 presents the 20 most 
important features from the feature set including all clinical 
and MRI features (clinical data + regional MRI volumes). 
Based on all input features, the SVM-RBF model achieved 
an AUC of 0.77 ± 0.05 (p = 0.035) in determining high dis-
ability and an AUC of 0.72 ± 0.04 (p = 0.008) in determin-
ing cognitive impairment. The feature importance for the 

Table 2  Baseline demographic and clinical variables of the studied 
MS cohorts

MRI volumes are expressed as a fraction of total intracranial volume 
and T2-lesion volumes in mL
CIS clinically isolated syndrome; CGMV cortical gray matter volume; 
DGMV deep gray matter volume; EDSS Expanded Disability Status 
Scale; LVV lateral ventricular volume; MS multiple sclerosis; PPMS 
primary progressive MS; RRMS relapsing-remitting MS; SDMT Sym-
bol Digit Modalities Test; SPMS secondary progressive MS; T2LV 
T2-lesion volume; WBV whole-brain volume;  SD standard deviation; 
IQR interquartile range

Berlin: early MS Amsterdam: 
long-standing 
MS

Subjects (n) 125 330
Subjects at follow-up (n) 125 225
Follow-up time (years) 

[mean ± SD]
1.8 ± 0.3 4.8 ± 0.8

Phenotypes (CIS/RRMS/SPMS/
PPMS)

32/94/ − / −  − /174/34/18

Disease-modifying therapy (no/
yes)

86/39 212/118

Age (years) [mean ± SD] 33.2 ± 7.2 47.7 ± 10.9
Disease duration (years) 

[mean ± SD]
0.6 ± 0.7 14.8 ± 8.5

EDSS [median [IQR]] 1.5 [1.0 − 2.0] 3.0 [2.0 − 4.0]
EDSS ≥ 4 (n/total n, %) 3/125, 2% 129/330, 39%
SDMT [mean ± SD] 60 ± 12 50 ± 13
SDMT Z ≤  − 1.5 (n/total n, %) 2/118, 2% 119/328, 36%
WBV (fraction) [mean ± SD] 0.74 ± 0.03 0.72 ± 0.04
CGMV (fraction) [mean ± SD] 0.30 ± 0.02 0.32 ± 0.02
DGMV (fraction) [mean ± SD] 0.039 ± 0.003 0.034 ± 0.003
LVV (fraction) [mean ± SD] 0.011 ± 0.006 0.020 ± 0.011
T2LV (mL) [median [IQR]] 1.1 [0.3–2.7] 10.0 [4.9 − 19.1]
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other feature sets are shown in Supplementary Figs. 1 and 2. 
Most relevant features for determining high disability were 
age, disease duration, LVV, DGM volumes (thalamus, hip-
pocampus, caudate, and accumbens) and CGM regions in 
the middle frontal gyrus (BNA: A46, A46v, A6vl, A10l) and 
inferior temporal gyrus (BNA: A20cv, A20il), see Fig. 5 and 
Table 3. For determining cognitive impairment, the most 
relevant features were regional MRI volumes, including 
DGM volumes (thalamus, hippocampus, putamen, accum-
bens), LVV, T2LV, and volumes of the superior frontal gyrus 
(BNA: A8dl, A8m), orbital gyrus (BNA: A11m), and para-
hippocampal gyrus (BNA: TI).

Prediction of clinical worsening

The performance of the ML models in predicting clini-
cal worsening was evaluated based on the mean AUC, 
BA, precision, and recall for each longitudinal outcome 
measure across all test sets. The combination of the best 

ML models and feature sets for each prediction task are 
presented in Table 4. For the Berlin cohort, prediction of 
9HPT 20% worsening could not be assessed due to a large 
class imbalance (2% worsening on dominant hand and 4% 
worsening on non-dominant hand). Although the predic-
tion of EDSS worsening over a 2-year follow-up showed 
the highest AUC using SVM-RBF and global MRI vol-
umes as input features (AUC = 0.73 ± 0.13), precision was 
low (0.24 ± 0.09) and the prediction was not significant 
after permutation testing (p = 0.163). Other measures of 
clinical worsening also did not reach significance after 
permutation testing, with mean AUC varying from 0.53 
to 0.73 and mean BA between 0.51 and 0.63. For the 
Amsterdam cohort, clinical worsening could not be pre-
dicted over the 5-year follow-up, as none of the ML mod-
els reached significance after permutation testing. The 
highest prediction performance was achieved for 9HPT 
20% worsening in the dominant hand (AUC = 0.63 ± 0.11, 
BA = 0.53 ± 0.08), with low precision (0.21 ± 0.12) and 

A) Berlin: Early MS, follow-up=2 years

B) Amsterdam: Longstanding MS, follow-up=5 years

Fig. 2  Number of subjects with clinical worsening based on multiple 
clinical end points for the A Berlin cohort and B Amsterdam cohort. 
The percentage of pwMS showing worsening (orange) or being stable 
(green) on a clinical outcome measure over the follow-up period var-
ies for each outcome measure. The total sample size for each outcome 

measure (n) is  displayed above the graphs. EDSS Expanded Disabil-
ity Status Scale; 9HPT 9-Hole Peg Test (D dominant hand; ND non-
dominant hand); SDMT Symbol Digit Modalities Test; T25FW Timed 
25-Foot Walk Test
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recall (0.23 ± 0.17) values. The ML models for predict-
ing other clinical worsening outcomes reached a mean 
AUC between 0.54 and 0.63, with a mean BA between 
0.50 and 0.59.

Discussion

In this study, five different ML models were applied to deter-
mine the clinical impairment and predict clinical worsening 

Fig. 3  Performance of ML models in classifying clinical impair-
ment at baseline across ten partitions (Amsterdam cohort, 
n = 330). For determining EDSS ≥ 4, the highest mean AUC was 
achieved by SVM-RBF with feature set Clinical + global MRI 
(AUC = 0.83 ± 0.07, p = 0.016), for determining SDMT Z ≤ 1.5 the 
highest mean AUC was found for SVM-lin with regional MRI as fea-

ture set (AUC = 0.73 ± 0.04, p = 0.008). AUC  area under the curve; 
EDSS Expanded Disability Status Scale; SDMT Symbol Digit Modal-
ities Test; LR logistic regression; SVM-lin support vector machine 
with a linear kernel; SVM-RBF SVM with a radial basis function ker-
nel; XGBoost eXtreme Gradient Boosting Classifier; RF random for-
est

Fig. 4  Distributions of SHAP feature importance for the 20 most 
important features using SVM-RBF in determining high disabil-
ity (left, AUC = 0.77 ± 0.05, p = 0.035) and cognitive impairment 
(right, AUC = 0.72 ± 0.04, p = 0.008) at baseline (Amsterdam cohort, 
n = 330). The mean of the distributions is shown in red. The Brain-

netome Atlas  (BNA) cortical regions are plotted in Fig.  5  and 
described in Table  3. EDSS Expanded Disability Status Scale; 
LVV lateral  ventricular volume;  SDMT Symbol Digit Modalities 
Test; T2LV T2-lesion volume; WBV whole-brain volume
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in pwMS based on clinical and structural MRI input features. 
For baseline models, the classification of high disability and 
cognitive impairment exhibited commendable accuracy 
when relying on a combination of clinical and regional MRI 
input features. Nevertheless, forecasting disease worsening 
in pwMS over a longitudinal period of 2–5 years, utilizing 
baseline clinical and structural MRI features, did not yield 
significant prediction accuracies.

In the classification of high versus low disability at base-
line, both clinical characteristics and MRI volumes played 
a crucial role in the prediction, achieving an AUC of 0.83. 
However, for cognitive impairment, regional MRI volumes 
were most important, as clinical features alone offered little 
explanatory value. The performance of the cognitive classi-
fication task (AUC = 0.73) was highly comparable to another 
study predicting cognitive impairment in a large cohort 
(n = 540), achieving an AUC of 0.74 using MRI features as 
input only [55]. From all MRI features, the thalamus volume 
was the most important regional MRI feature associated with 
both disability and cognitive impairment, which is in line 
with previous findings [9, 56, 57]. Regarding other DGM 
volumes, atrophy of the hippocampus and accumbens was 
important for determining both high disability and cognitive 
impairment, while caudate volume seemed more predictive 

for disability, and the volume of the amygdala and putamen 
for cognitive impairment. The classification tasks demon-
strated comparable performance whether utilizing global 
MRI volumes or intricate parcellations of the CGM with 
the BNA. The advantage of the latter approach is that dis-
tinct CGM regions could be identified that were important 
for high disability and cognitive impairment. Consistent 
with previous work using other statistical methods, mostly 
regions in the temporal and frontal gyrus were important for 
determining high disability and cognitive impairment [58, 
59]. From the temporal lobe, specific areas in the inferior 
and middle temporal gyrus were most important for EDSS, 
while the parahippocampal gyrus was more important for 
determining cognitive impairment. When comparing the 
stability of feature importance across tasks, it is important 
to highlight that the feature importance for predicting cog-
nitive impairment were less consistent across various test 
splits. This reduced stability might be attributed to the lower 
task performance (0.73 compared to 0.83). However, it could 
also suggest that the model captures heterogeneous cognitive 
profiles in pwMS, since the SDMT assesses various cogni-
tive processes [60].

Despite achieving good performance in cross-sectional 
classification tasks, predicting future disease worsening over 
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Fig. 5  Most important brain regions for classifying clinical impair-
ment using SVM-RBF for determining high disability (left) and cog-
nitive impairment (right) at baseline (Amsterdam cohort, n = 330). 

Intensity represents the median SHAP value across all ten partitions. 
EDSS Expanded Disability Status Scale; SDMT Symbol Digit Modal-
ities Test
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2 and 5 years proved to be unattainable using the same ML 
models and input variables. While two earlier ML studies 
reported more promising results in predicting MS disease 
worsening, these results were limited by relying on relatively 
small sample sizes and model evaluation on only one small 
test set, possibly reporting overly optimistic results [15, 61]. 
In larger cohort studies using similar ML approaches, base-
line data had limited predictive value for disease worsening 
over 5 years, while incorporating longitudinal observations 
of clinical and brain MRI changes in the first two years 
improved prediction performance (AUC = 0.75–0.83) [13, 
62]. Furthermore, incorporating standardized disease his-
tory from electronic health records in combination with MRI 
might be a promising direction to increase data availability 
and information content with higher frequency for improv-
ing ML prediction models [63]. In addition, all previous ML 
studies investigating disease worsening in MS used EDSS 
as the clinical end point. While EDSS-based definitions are 
still considered the gold standard in clinical research, they 
are often criticized for low sensitivity and reliability [64]. To 
address the challenge of heterogeneous subjective scoring 

in clinical assessments, one promising approach involves 
leveraging ML models capable of accommodating label 
uncertainty [65]. In our study, we took a different approach 
by exploring a range of other widely used clinical end points, 
including assessments of hand dysfunction (9HPT), walk-
ing dysfunction (T25FW), and a combination of EDSS, 
9HPT, and T25FW (EDSS +). However, we did not observe 
an improvement in the prediction performance for all these 
outcomes. While 9HPT and T25FW have a lower measure-
ment error compared to the EDSS, worsening could still not 
be predicted by baseline MRI measures [22]. These findings 
highlight the need for defining accurate clinical end points in 
addition to the exploration of better predictors [66]. In addi-
tion to predicting disability worsening, SDMT worsening 
of at least 4 points over 5 years was defined as a cutoff for 
cognitive worsening, but also did not achieve significant pre-
diction performance. This is in contrast to an earlier inves-
tigation of the Amsterdam MS cohort, which showed that 
cortical atrophy was predictive of cognitive decline, using 
traditional logistic regression and an extensive cognitive test 
battery to define cognitive worsening [30]. The difference 

Table 3  Most important cortical regions within the Brainnetome Atlas (BNA) determining high disability and cognitive impairment

BNA Brainnetome Atlas; EDSS Expanded Disability Status Scale; SDMT Symbol Digit Modalities Test

BNA region EDSS

Gyrus Lobe

A9/46v, ventral area 9/46 MFG, middle frontal gyrus Frontal lobe
A20cv, caudoventral of area 20 ITG, inferior temporal gyrus Temporal lobe
A10l, lateral area 10 IFG, inferior frontal gyrus Frontal lobe
aSTS, anterior superior temporal sulcus MTG, middle temporal gyrus Temporal lobe
A6vl, ventrolateral area 6 MFG, middle frontal gyrus Frontal lobe
A20il, intermediate lateral area 20 ITG, inferior temporal gyrus Temporal lobe
A11l, lateral area 11 OrG, Orbital Gyrus Frontal lobe
A20iv, intermediate ventral area 20 ITG, inferior temporal gyrus Temporal lobe
A46, area 46 MFG, middle frontal gyrus Frontal lobe
A9l, lateral area 9 SFG, Superior Frontal Gyrus Frontal lobe
A8dl, dorsolateral area 8 SFG, superior frontal gyrus Frontal lobe

BNA region SDMT

Gyrus Lobe

TI, area TI (temporal agranular insular cortex) PhG, parahippocampal gyrus Temporal lobe
A11m, medial area 11 OrG, orbital gyrus Frontal lobe
A8dl, dorsolateral area 8 SFG, superior frontal gyrus Frontal lobe
A8m, medial area 8 SFG, superior frontal gyrus Frontal lobe
A23v, ventral area 23 CG, cingulate gyrus Limbic lobe
A12/47o, orbital area 12/47 OrG, orbital gyrus Frontal lobe
mOccG, middle occipital gyrus LOcC, lateral occipital cortex Occipital lobe
A20r, rostral area 20 ITG, inferior temporal gyrus Temporal lobe
A9m, medial area 9 SFG, superior frontal gyrus Frontal lobe
A12/47l, lateral area 12/47 OrG, orbital gyrus Frontal lobe
A6vl, ventrolateral area 6 MFG, middle frontal gyrus Frontal lobe
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in predictive performance may be explained by the lower 
sensitivity of the SDMT as a standalone measure to capture 
cognitive decline [67, 68].

The main limitation of our study is the relatively small 
sample size of our data sets for an ML-based analysis, along 
with the lack of evaluation on an additional external test set. 
Despite the application of our approach across two diverse 
cohorts that span early to late stages of MS, the divergent 
data collection and follow-up times (2 vs 5 years) prevented 
the merging of cohorts for analysis and the utilization of one 
cohort as an independent test set. Future ML studies with 
larger datasets are required to explore individualized pre-
diction of disease course both in early and later MS phases, 
facilitating early detection of high-risk patients and enabling 
personalized treatment strategies. Predictive variables for 
disease progression may differ between MS disease stages, 
as there are some indications that some predictors such as 
white matter damage are predictive for worsening in early 
stages and other measures such as cortical atrophy are spe-
cific for later, more progressive, stages of MS [30]. Further-
more, considering the predictive value of spinal cord lesions 
and atrophy is crucial, as these factors significantly contrib-
ute to walking dysfunction in long-standing disease [69]. In 
addition, the limited sample size resulted in a low stability of 
feature importance across the evaluated test sets, especially 
for classifying cognitive impairment. To establish a more 
robust understanding of the relationship between clinical and 
structural brain information and clinical end points related to 
disease severity and progression, further investigations with 

larger sample sizes and extended follow-up durations are 
essential. Lastly, the currently used clinical end points may 
not be specific enough to capture disease progression in MS. 
Development of new outcome measures, such as frequent 
smartphone-based assessments, may be more sensitive in 
capturing worsening in various symptoms of MS [70].

Conclusion

While ML models could accurately identify patients with 
clinical impairment based on clinical data and regional 
MRI volumes, accurate prediction of MS disease worsen-
ing remains an unmet need. Improving clinical end point 
metrics and using larger standardized datasets representative 
of the heterogeneity in MS can be a promising direction for 
future ML research.
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Table 4  Classification metrics of best ML models and combination of clinical and MRI features predicting clinical worsening on randomly sam-
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Mean values and standard deviation of metrics were calculated on ten test sets. None of the classifiers reached significance after permutation 
testing
EDSS Expanded Disability Status Scale; T25FW 20% 20% worsening in Timed 25-Foot Walk Test; EDSS + worsening based on EDSS + ; SDMT 
4 pts worsening of 4 points in Symbol Digit Modalities Test; 9HPT 20% D/ND 20% worsening in 9-Hole Peg test for dominant/non-dominant 
hand; AUC  area under the curve; BA balanced accuracy

Berlin, early MS (follow-up: 2 years)

Outcome Best ML model Best feature set AUC BA Precision Recall

EDSS SVM-RBF Global MRI 0.73 ± 0.13 0.62 ± 0.15 0.24 ± 0.09 0.58 ± 0.33
T25FW 20% SVM-lin Regional MRI 0.53 ± 0.22 0.51 ± 0.16 0.08 ± 0.13 0.22 ± 0.36
EDSS + XGB Clinical + global MRI 0.66 ± 0.11 0.60 ± 0.14 0.46 ± 0.22 0.47 ± 0.19
SDMT 4 pts SVM-lin Regional MRI 0.67 ± 0.11 0.63 ± 0.15 0.29 ± 0.17 0.64 ± 0.36

Amsterdam, long-standing MS (follow-up: 5 years)

Outcome Best ML model Best feature set AUC BA Precision Recall

EDSS RF Clinical 0.57 ± 0.10 0.54 ± 0.06 0.40 ± 0.07 0.41 ± 0.16
9HPT 20% D RF Clinical 0.63 ± 0.11 0.53 ± 0.08 0.21 ± 0.12 0.23 ± 0.17
9HPT 20% ND SVM-RBF Global MRI 0.57 ± 0.12 0.59 ± 0.12 0.24 ± 0.11 0.44 ± 0.23
T25FW 20% LR Clinical 0.59 ± 0.08 0.57 ± 0.07 0.39 ± 0.07 0.63 ± 0.17
EDSS + SVM-RBF Clinical 0.60 ± 0.07 0.59 ± 0.08 0.71 ± 0.07 0.61 ± 0.05
SDMT 4 pts LR Clinical + global MRI 0.54 ± 0.13 0.50 ± 0.11 0.34 ± 0.27 0.39 ± 0.31
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